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Abstract: We define and study Ulam-von Neumann transformations which are cer-
tain interval mappings and conjugate to q(x) = 1 — 2x2 on [—1,1]. We use a singu-
lar metric on [—1,1] to study a Ulam-von Neumann transformation. This singular
metric is universal in the sense that it does not depend on any particular mapping
but only on the exponent of this mapping at its unique critical point. We give the
smooth classification of Ulam-von Neumann transformations by their eigenvalues
at periodic points and exponents and asymmetries.
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1. Introduction

Ulam and von Neumann studied the chaotic behavior of the nonlinear self map-
ping q(x) = 1 — 2x2 of the interval [—1,1] in 1947. They observed that pq =
l/(π\/l — x2) is the density function of a unique absolutely continuous ^-invariant
measure (we only consider probability measures). In modern language, this obser-
vation shows that q is a chaotic dynamical system and follows from making the
singular change of metric dy = (2/π)(dx/\/l -x1). If we let y = h{x) be the corre-
sponding change of coordinate and q = h o q o h~λ, then q becomes q{y) = \ — 2\y\,
a piecewise linear mapping with expansion rate 2 on [—1,1]. The dynamics of q is
more easily understood.

Now consider a general self mapping / of [—1,1] whose graph looks like
those in Fig. 1. Then / is topologically conjugate to q under a certain smoothness

The author is partially supported by a PSC-CUNY grant and a NSF grant.



450 Y. Jiang

Fig.l.

condition, and furthermore, any two such mappings / and g are topologically con-
jugate, that is, there is a homeomorphism h of [—1,1] such that / o h = ho g. In
[3] (see[4]), we proved that h is a quasisymmetric homeomorphism [1] provided /
and g are both Ulam-von Neumann transformations which we will define in Sect. 3.
Thus it is a Holder continuous homeomorphism [1]. Usually h is not smooth be-
cause / and g have a lot of smooth invariants, for example, all eigenvalues of
/ at periodic points. For / and g are expanding circle endomorphisms, Shub and
Sullivan [8] proved that if h is absolutely continuous, then it is smooth. Similar
work has been done by Herman [2] for circle diffeomorphisms and by de Llave
and R. Moriyόn in [7] for Anosov diffeomorphisms of a torus. All these are results
for mappings without critical points. An important problem is to smoothly classify
mappings with critical points. In this paper, we will smoothly classify Ulam-von
Neumann transformations which are certain smooth self mappings / of [—1,1] with
a unique power law singular point 0 and whose graph looks like those in Fig. 1.

Suppose / is a Ulam-von Neumann transformation. The exponent of / is a
unique number γ ^ 1 such that f'(x)/\x\y~ι tends to non-zero numbers B- and
B+ as x goes to 0 from the left and right, respectively. The asymmetry of / is
A = B-/B+ which is the limit of f'(—x)/f'(x) as x decreases to 0. The eigenvalue
of / at a periodic point of p of period n is Ep = {fon)l{p)- We will prove that
any two Ulam-von Neumann transformations are topologically conjugate (Theorem
1) in Sect. 3. And moreover, we will prove the following main result in Sect. 4.

Theorem 2. Suppose f and g are two Ulam-von Neumann transformations and
H is the conjugacy from f to g. Then H is a C 1 + f -diffeomorphism for some
0 < ε ^ 1 if and only if the eigenvalues at all corresponding periodic points and
the exponents and asymmetries off and g are the same.

In order to study a Ulam-von-Neumann transformation / , we will use a change
of metric similar to the one used by Ulam and von Neumann. The change of
metric has singularities of the same type at the two boundary points —1 and 1
of the interval [—1,1]. It is universal in the sense that it does not depend on any
particular mapping / , but only on the power law \x\y. Suppose y = hy(x) is the
corresponding change of coordinate on the interval [—1,1]. After this change of
coordinate, / becomes f = hyofoh~ι, which is smooth except at the point 0.
The mapping / has nonzero derivative at every point except for a unique non-
differentiable point 0. At zero, the left and right derivatives of / exist and are
positive and negative, respectively. A nice feature of the mapping q{x) = 1 - 2x2

is that q is expanding with Holder continuous derivative, which implies that a certain
binary tree of intervals associated with the dynamics of q has bounded geometry
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(see [3,4]). The expanding property does not carry over to our more general setting
but the bounded geometry does. This is our main idea to study Ulam-von Neumann
transformations.

2. Singular Change of Metric on an Interval

Suppose / is a piecewise C1 self mapping of an interval /. A singular point /
is either a non-differentiable point or a differentiable point with zero derivative.
There is a linear fractional transformation H(x) = (ax + b)/(cx + d) maps / onto
the interval [—1,1] homeomorphically such that H o / oH~ι is a self mapping of
[—1,1]. So we only need to consider a piecewise C1 self mapping / of the interval
[—1,1]. A singular point s is said to be power law if there is a real number y §; 1
such that the limits

= £_ and lim f M , - B
Xi->s- \χ — s\y-L

 x^s+ x — s

exist and are nonzero. Here y is called an exponent of / and A — B-/B+ is called
an asymmetry of / . For example, / has power law \x\y at 0 if f(x) = 1 — 5_|x|y

for negative x close to zero and f(x) = 1 — £+|x| y for positive x close to zero. We
will always make the following assumptions:

(1) / is a piecewise C1 self mapping of [—1,1] with a unique power law singular
point 0,

(2) / | [—1,0] is C1 and increasing, and /|[0,1] is C1 and decreasing, and
(3) / maps 0 to 1, and maps —1 and 1 to —1 (see Fig. 1).

Suppose / is a self mapping satisfying (1), (2), and (3) and y > 1 is the expo-
nent of / . Then / is C1 on [—1,1] and 0 is a critical point, i.e., / ' (0) = 0. We
define the singular metric associated to / to be

dx

on [—1,1]. The corresponding change of coordinate on [—1,1] is y = hy(x), where

hy(x)=-l+bf d~^TT

- i ( l - x 2 ) ~ r

and b is a number such that hy( 1) = 1. The representation of / under the singular
metric associated to / is

f=hyofoh;1.

Lemma 1. The mapping f is continuous on [—1,1], and /|[—1,0] and /|[0,1] are
C1 -embeddings.

Proof. If y is not one of 0,1, and —1, then / is differentiable at y. Suppose x is
the preimage of y under hr By the chain rule,
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Using this equation, we can get that /'(0—) and /'(0+) exist and equal nonzero

numbers and that / ( - I ) = (/'(-I))? and / ' (I) = - | / ' ( l ) | i •

Remark 1. The inverse of hy is C1. If the restrictions of r/ = /'OO/M7"1 to
[-1,0) and to (0,1], and the restrictions of / to [-1,0] and to [0,1] are α-Hόlder
continuous for some 0 < α ̂  1, then the restrictions of / to [—1,0] and to [0, 1]
are at least C1 + α.

Lemma 2. Suppose f is a continuous self mapping of [—1,1]. Assume 0 is its

unique turning point, f maps 0 to 1 and maps — 1 and 1 to — 1 and the restrictions

of f to [—1,0] and to [0,1] are C 1 -embeddings. Then for every γ > \,f = h~ιo

f o hy is a C 1 mapping and has a unique power law \x\y singular point 0.

Proof If x is not one of 0, 1 and —1, then / is differentiable at x. Suppose
y = hy(x). By the chain rule,

/'(*) =
f(y)(l-(h-ιof(y)f)

y-i
y

γ-l

Using this equation, / ' ( - I ) = (/ ' (- l)) τ and / ' (I) = -\f'(l)\y, and the limits of
r/(x) = f'(x)l\x\r~x as x increases to zero and as x decreases to zero exist and
equal nonzero numbers. D

Remark 2. The map hy is (l/y)-Hόlder continuous. If the restrictions of/ to [—1,0]
and to [0,1] are C1 + α embeddings for some 0 < α ̂  1, then / is C1+α/y and
the restrictions of r/(x) = f(x)/\x\γ~ι to [—1,0) and to (0,1] are α/y-Hόlder con-
tinuous.

Remark 3. For γ = 1, let f(x) = f(x) and hx(x) = x.

3. Ulam-von Neumann Transformations

Suppose / is a piecewise C1 self mapping of the interval [—1,1] satisfying (1), (2),
and (3). Let /o and f\ be the restrictions of/ to [—1,0] and to [0,1], respectively.
Then /o and f\ are both embeddings. Let go and g\ be the inverse of /o and f\.
For a finite string wn = z'o * -in-\ of zeros and ones, let gWfl be the composition

Qwn =9io0'"0 Qin-x o f 0/o t 0 0ίΛ-i a π d ι*n b e t h e i m a g e of [-1,1] under gWn.
Suppose ηnj is the set of intervals IWn for all finite strings wn of zeros and ones of

length n. We call ηnj the nth-partition of [—1,1] by / . We use λnj to denote the

maximum length of the intervals in ηnj. The nth-partition ήnj of [—1,1] by / and

the maximum length λnj of the intervals in ήnj are defined similarly. (We will
suppress / if there is no confusion.)

Suppose Σ — Π ^ o i A 1} is the set of infinite sequences w — i§i\ of zeros
and ones with product topology and σ(w) = i\ - is the shift map of Σ.

Lemma 3. If λn tends to zero as n goes to infinity, then there is a continuous
mapping h from Σ onto [—1,1] such that f oh — ho σ on Σ. Moreover, h is
one-to-one except on a countable subset Γ of Σ, and on Γ, h is two-to-one.

Proof For every w = ioi\ - in-\ - in Σ and an integer n ^ 0, there is an interval
IWn in ηn where wn = ΪQ in-\. The interval IWn+ι — 0wn+1([~ 1? 1]) is contained in
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Iwn — 9wn([—l, !])• So Iw = fX^QIWn is a non-empty set. Since λn tends to zero as
n goes to infinity, Iw contains only one point xw. Let h(w) = xw. It is a mapping
from Γ to [-1,1].

Two points w and w' are ^-closed if their first n digits are the same. Suppose
w — - wn and wf — wn are w-closed. Then xw and xwt are in 7W|I. This implies
that h(w') tends to h(w) as w' goes to w. So /* is continuous.

The mapping h is onto because [jWn^ηJwn — [~1>1] f° r a ^ # = 0. Let Γ be
the set of points w which are preimages of endpoints p φ ± 1 of intervals of f/Λ
under /z for all n ^ 0. Then Γ is a countable subset. The mapping h is one-to-one
on Γ\Γ and two-to-one on Γ. D

Definition 1. We say that the sequence of nested partitions {rjn}^ (or {ήn}^0) by

f (or / ) decreases exponentially if there are two constants C > 0 and 0 < μ < 1

such that λn ^ Cμn (or λn ^ Cμn) for all integers n ^ 0.

Lemma 4. 77*e sequence of nested partitions by f decreases exponentially if and
only if the sequence of nested partitions of f decreases exponentially.

Proof Because hy is (l/y)-Hδlder continuous and the inverse of hy is C1, one can
easily see this lemma. D

Definition 2. A self mapping f of the interval [—1,1] is said to be a Ulam-von
Neumann transformation if it satisfy (1), (2), (3) in Sect. 2, and

(4) the restrictions of / to [—1,0] and to [0,1] are C 1 + α embeddings for some
0 < α ^ 1,

(5) the sequence of nested partitions {ήn}^l0 by / decreases exponentially.

Next lemma follows from Remark 1, Remark 2 and Lemma 4.

Lemma 5. A self mapping f of the interval [—1,1] satisfying (1), (2), and (3) in
Sect. 2 is a Ulam-von Neumann transformation if and only if it also satisfies

(4)' / | [-1,0] and /|[0,1] are C 1 + α for some 0 < α ^ 1 and the restrictions of
rf(x) = f'(x)l\x\y~ι to [—1,0) and to (0,1] are β-Hδlder continuous for some
0 < β ^ 1 and

(5/ the sequence {ηn}%ί0 of nested partitions by f decreases exponentially.

Remark 4. The condition (4/ in Lemma 5 and A—\ are equivalent to the state-
ment: / ( * ) = F(-\x\v), where F is a C 1 + α diffeomorphism from [-1,0] to [-1,1]
for some 0 < α ^ 1 (see [5]).

We give two examples of Ulam-von Neumann transformations.

Example 1. A self mapping / of the interval [—1,1] satisfying (1), (2), and (3)
and the conditions (a) /|[—1,0] and /|[0,1] are C3 mappings whose Schwarzian
derivatives are non-positive and (b) |/ '(—1)| > 1 and | / ; (1) | > 1.

Remark 5. The Schwarzian derivative S(f) of a function / is, by definition,

Sin-f" 3(f")2

The function / is said to have non-positive Schwarzian derivative if S(f)(x) ^ 0
for all x in the domain of / .
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Example 2. A self mapping / of the intervals [—1,1] satisfying (1), (2), and (3)
and the conditions (i) f\[—1,0] and /|[0,1] are C 1 + 1 embeddings and (ii) all the
periodic points of / are expanding, that is, the absolute values of the eigenvalues
of / at all periodic points are greater than one.

The eigenvalue of / at a periodic point p of period n of / is Ef(p) =

(/OΛ )'(/>)•

Remark 6. A function g of an interval is said to be C 1 + 1 if its derivative g1 is
Lipschitz continuous, that is, there is a constant C > 0 such that

\g\x) - g'(y)\ S C\x - y\

for all x and y in the domain of g.
To prove that Examples 1 and 2 are Ulam-von Neumann transformations, one

needs to check (5) in Definition 2 or (5)' in Lemma 5. This can be implied if / or
/ has bounded geometry [3,4]. In [3], we proved that / has bounded geometry if
it is a mapping in Example 1 and that / has bounded geometry if it is a mapping
in Example 2. Hence Examples 1 and 2 are Ulam-von Neumann transformations.
Since it is not a main topic in this paper, we will not write down the proofs in
detail. The reader may refer to [3] for the proofs.

Theorem 1. Any two Ulam-von Neumann transformations f and g are topologi-
cally conjugate.

Proof. From Lemma 3, there are two continuous mappings h\ and h2 from Σ
onto [-1,1] such that / o h\ —h\of and g o h2 = h2 o g. Here h\ and h2 on Σ\Γ
are one-to-one. Thus H — h\ o//"1 is defined on [—1, l]\/z2(Γ) and is uniformly
continuous. It can be extended to a one-to-one continuous mapping from [—1,1]
onto itself. Similar argument can be applied to H~ι = h2 o h\ι. So H is a homeo-
morphism of [—1,1] and / oH = H o g. D

Remark 7. Furthermore, H is a quasisymmetric homeomorphism [3,4]. This implies
that H is Holder continuous [1].

4. Complete Smooth Invariants

A C1-invariant of a Ulam-von Neumann transformation / is an object associated
to / which is the same for / and for H o / o H~ι whenever H is an orientation
preserving C^diffeomorphism. The conjugacy H between two Ulam-von Neumann
transformations / and g is usually not a diffeomorphism because / has a lot of C1-
invariants, for example, the eigenvalue of / at a periodic point, the exponent and
asymmetry of / . An important question is that are these C1 invariants complete?
We give an affirmative answer to this question.

Theorem 2. Suppose f and g are two Ulam-von Neumann transformations and
H is the conjugacy from f to g. Then H is a C1+£-diffeomorphism for some
0 < ε ^ 1 if and only if the eigenvalues at all corresponding periodic points and
the exponents and asymmetries off and g are the same.

Before to prove Theorem 2, we will prove some very useful lemmas. The first
one is the well-known naive distortion lemma.
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Lemma 6. Suppose g from an interval I into the interval [—1,1] is a C 1 + α map-
ping for some 0 < α ^ 1 and a0 = ϊnfxeJ\g'(x)\ > 0. Let b0 = svφxφyeI(\g'(x) -
g'(y)\/\x — y\a) < oo. Then for any two sequences {xi}n

i=λ and {yi}n

i=x in /,

/ n

log Π
\i=\

^ — Σ

r. The proof of this lemma is easy for

login

1=1

Lemma 7. 4̂ Ulam-von Neumann transformation f is ergodic.

Proof Let m( ) denote the Lebesgue measure. Suppose the exponent of / is

γ ^ 1. Let / be the representation of / under the singular metric dΊy. Suppose

X is a /-invariant subset of [—1,1] and m(X) > 0. Let X — hy(X). Then it is a

/-invariant subset of [—1,1] and m(X) > 0.
Suppose p is a Lebesgue density point of X. There is a nested sequence of

intervals /„ in ήn containing p such that

lim = 1.
m(

From Lemma 6, the chain rule, and (5) of Definition 2, there is a constant C > 0
such that

K/0" )'(*)!<
~ \(fo")'(y)\

for all x and y in /„ and n ^ 1. Thus

< c

π m i .
»->oo m{fon(!n))

But / o w ( 4 ) = [-1,1] and fon(In ΠX) c X. So m(X) - ιw([-l, 1]). This implies
that m(X) = /w([— 1,1]), i.e., X has full measure. Hence / is ergodic. D

Suppose / and g are two Ulam-von Neumann transformations and H is the
conjugacy from / to g, i.e., / o H — H o g. Suppose 7/ ^ 1 and yg ^ 1 are the
exponents of / and g. Then H = h7j o H o h~ι is the conjugacy from / to g,

i.e., foH — Hog. We say H is absolutely continuous if it is non-singular with
respect to the Lebesgue measure m, that is, m(X) = 0 if and only if m(H(X)) =
0. For example, if H and H~ι are both Lipschitz continuous, then H and H~ι

are absolutely continuous. Suppose p is a periodic point of g of period «. Then
H(p) is a periodic point of / of period n too. The points p and H(p) are called
corresponding periodic points.

Lemma 8. Suppose the eigenvalues off and g at all corresponding periodic points
are the same and γ/ — yg. Then H is bi-Lipschitz.
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Proof. From the proof of Lemma 1 and the fact that hy\(—1,1) is C1, the eigen-

values of / and g at all corresponding periodic points are the same too.
From Lemma 6, the chain rule, and (5) of Definition 2, there is a constant

C > 0 so that

c

~ \(fonϊ(y)\
for any n > 0 and any x and y in / G ήnj , and

for any n > 0 and any x and 7 in / G ηng.
Now for any interval / in ήn , the ratio

\H(i)\ = \(g°»)'(ξ)\

for some ξ in / and τ in i?(/) because both images of / and H(I) under the gon

and fon are [—1,1]. But g°n has a fixed point p in / and, from the condition in
the lemma,

Therefore,

For any x and 7 in [—1,1], the interval bounded by x and y can be written
as a union of some intervals {/,} of {ήng}%Lo, where {If} have pairwise disjoint
interiors. Thus we have

2

= < r

\*-y\ ΣMi\ = '
which means that H is bi-Lipschitz. D

Proof of Theorem 2. The "only if" part can be proved from direct calculation.
We will make an effort to prove the "if" part. From the previous lemma, H is
bi-Lipschitz. So it is absolutely continuous and orientation-preserving. Therefore
ίi'(x) > 0 exists for a.e. x in [—1,1]. Let v = log//' a.e. on [—1,1] and φ\ —
log | / ' o H\ and φι = log \gf\ on /0 and I\. By the chain rule,

φ\-φ2 = vog-v (1)

a.e. on [—1,1]. Our goal is to prove that v can be extended to be a continuous
function on [—1,1].

Suppose h is the semi-conjugacy from (σ,Σ) to ($,[—1,1]) (see Sect. 3). Then
h~ι(\) = 1 0 0 - . There is a point a in Σ such that Φ = {σon(a)\n ^ 0} is dense
in Σ. Define

ΰ{σon{a)) = Σ(φi(h(σoi(a))) - φ2(h(σ°>'(α))))
1=0
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for n ^ 0. Then ύ is a function defined on Φ and

ύ o σ — u = φ\ o h — Φ2 o h

on Φ.
For any two different points e\ = σon(a) — bob\ and e2 — σom(a) = coQ * * *

in Φ. Assume m > n. There is an integer k > 0 such that b$ - -b^-x — c^ • c&-i
and bkφck Let wu — bo ^ - 1 and

Awk = {w = iO'-in - \k - - - ik-χ = wk} .

Since e2 — σ^m~n\e\), σo(m~w) has a fixed point e3 in ΛWfc. From the condition in
the theorem and Eq. (1),

m—n— 1

ί=0
= 0 .

Applying Lemma 6, the chain rule, and (5) of Definition 2, there are constants
C > 0 and 0 < μ < 1 such that

m-l

m—n—l

Σ
ί=0
w—«— 1

Σ (φ2(h(σoi(e3))) - φ2(h(σ«n+i\a))))
i=0

This says that ύ is uniformly continuous on Φ. Thus it can be extended to a con-
tinuous function u on Σ and

u o σ — u — φ\ o h — Φ2 o h (2)

on Σ.
Suppose A~1(0) = {α_,Λ+}, where α _ = 0 1 0 0 and Λ+ = 1100 . Then

σ(a±) = 100 and, from Eq. (2),

w(100.- ) - lim u(w) = φι(0-) - φ2(0-),

w(100 ) - Hm u(w) =

By the condition Af — Ag, we have

01 (0—) — 02(O~~) :== 01 - φ2(0+).

So \imw-ya_u(w) = limw_>fl+w(w). This implies that for any endpoint /?+ ± 1 of

an interval / in 7/^, let h~ι(p) = {w_,w+}, then

lim w(w) = lim w(w)
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because p is a preimage of 0 under some iterate of g. Hence χ(x) = u(h ι(x)) is
a well-defined and continuous function on [—1,1], and, from Eq. (2),

x°g-χ = Φ\-Φ2 (3)

on [—1,1]. Now, using Eq. (1), we can get that

χog-vog = χ - v

a.e. on [—1,1]. Since g is ergodic, χ(x) — v(x) equals a constant function C a.e. on
[—1,1]. Thus v(x) can be extended to be a continuous function v\ = χ — C.

Because H is absolutely continuous,

- 1

So H is C1. _
Suppose / and g restricted to [—1,0] and to [0,1] are C 1 + α for some 0 < α < 1.

For any two points x = XQ and y = yo in [—1,1], let xn and yn in [—1,0] be defined
inductively so that they are the preimages of xn-\ and yn-\ under g. Then g°n
restricted to the interval bounded by xn and yn is a C1+α-diffeomorphism. Applying
Lemma 6, the chain rule, and (5) of Definition 2, we have a constant C > 0 such
that

) -Φ\° goi(yn))
i = 0

and
Λ - l

Σ(02
ί=0

(xn) - φi ogoi{yn

for any x and y in [—1,1]. From Eq. (3), we have

v\ ° g - v\ = φ\ - φi

on [—1,1]. Equation (4) implies that

(4)

V\(x) - V\(xn) =
n-\

and

Hence

ί=0

Λ - l

i=0

Qθi(xn) - Φl

° §oi(yn) - Φ2

4-

i(^n) - 0! o g°i(yn))
i=0 i=0

^ C max I ^ ' ( x ) | + C | x - 7 | α .
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Because yn — xn —> 0 as n —> oo and v\ — log//7 is uniformly continuous on [—1,1],

vi(yn) ~ v\(xn) —> 0 as n —> oo. Thus

where C" = CimaXxet-i^lJf'Oc)! + 1). So // is C 1 + α .

Now using H = h~ι o H o hy ίoτ y = y/ = y9, one can calculate directly that H

is C 1 + ε for ε = oc/y. Similarly, one can prove that H~ι is C 1 + ε . It completes the

proof of the "if" part. G

Remark 8. From Theorem 2, the set of eigenvalues of / at all periodic points, the

exponent, and the asymmetry of / are complete C1 invariants. Moreover, from the

proof of Theorem 2 and Eq. (4), for any x in [—1,1],

i=0
that is,

oo

log#'(*) = logtf'(-l) + Σ(log \f'(H(xi))\ - log \g(Xi)\), (5)
i=0

where x0 = x and JC, G [—1,0] is the preimage of xz_i under ^. This equation gives a

relation between H and its derivative i?'. We can use it to study higher smoothness

of H if / and g are both Ck+a for some integer k > 1 and some real number
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