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Abstract: We obtain non-tangential boundary estimates for the Dirichlet eigenfunc-
tions φn and their gradients \Vφn for a class of planar domains Ω with fractal
boundaries. This class includes the quasidiscs and, in particular, snowflake-type do-
mains. When applied to the case when Ω is the Koch snowflake domain, one of
our main results states that |Vφι(ω)| tends to oo or 0 as ω approaches certain
types of boundary points (where φ\ > 0 denotes the ground state eigenfunction of
the Dirichlet Laplacian on Ω). More precisely, let Ob (resp., Ac) denote the set
of boundary points which are vertices of obtuse (resp., acute) angles in an inner
polygonal approximation of the snowflake curve dΩ. Then given v G Ob (resp., v G
Ac), we show that |Vφι(ω)| —» oo (resp., 0) as ω tends to v in Ω within a cone
based at v. Moreover, we show that blowup of | V φ ι | also occurs at all boundary
points in a Cantor-type set. These results have physical relevance to the damping
of waves by fractal coastlines, as pointed out by Sapoval et al in their experiments
on the "Koch drum".

1. Introduction

Let Ω be a bounded simply connected John domain in IR2 and assume that the
boundary dΩ of Ω is a Jordan curve. Let — AQ ^ 0 be the Dirichlet Laplacian
defined in L2(Ω) and let 0 < E\ < E^ ^ be the eigenvalues of — AQ. Let φn

be the eigenfunction corresponding to En and normalized by | |φw | |2 — 1 (we assume
that φ\ > 0). In Sect. 2 (Theorem 2.8) we obtain an upper bound for φ\(x) as x
approaches a boundary point v G SΩ while remaining inside a "twisting cone" with
vertex at v. This upper bound is expressed in terms of the "average angle" of dΩ at
v. If Ω is a polygon in IR2 and v is a corner of dΩ, then our upper bound reduces
to the usual form

φι(x) ^ c ά i s t ( x , d Ω ) π / 0 ,
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where θ is the angle of dΩ at v and c ^ 1 is a constant depending only on Ω.
In Theorem 2.11 we establish an upper bound for \Vφn(x)\, the magnitude of the
gradient of φn, of the form

\Vφn(x)\ ^ knφ}(x)dιst(x,dΩΓl

as x approaches a point v G dΩ while remaining inside a "twisting cone" U with
vertex at v. For φ\ and for domains such as the snowflake region, we also prove a
lower bound of the same form

|V<pi(*)| ^ A^iOOdistfodΩΓ1 (x e U) .

In Sect. 3 we apply our results in Sect. 2 to the case when Ω is the (Koch)
snowflake domain. Our main result in this section is Theorem 3.2. Let Ob (resp.,
Ac} be the set of boundary points which are vertices of obtuse (resp., acute) angles
in an inner polygonal approximation of the snowflake. Then given v G Ob (resp.,
v £ Ac), we show that |Vφι(ω)| —» oo (resp., —» 0) as ω tends to v in Ω within
a cone based at v. Moreover we also show that blowup of | V φ ι | occurs at all
boundary points in a Cantor-type set. The potential significance of the blowup of
\Vφn\ (for the damping of waves by fractal coastlines, for example) was pointed
out by B. Sapoval and his collaborators [S,SGM,SG] in the appealing interpretation
of their physical experiments on the vibrations of the "Koch drum."

For other aspects of the spectral theory of "drums with fractal boundary," we
refer the reader, e.g., to the survey article [L].

For the rest of this paper a bounded simply connected region Ω in IR2 is a John
domain if there exists M ^ 1 such that for every rectilinear crosscut [a, b] of Ω,

άiam(H) ^ M\a - b\

holds for one of the two components H of Ω \ [a, b] (see [P, p. 96]). It can be
shown that all quasidiscs, in particular the snowflake domain, are John domains (see
[P, P. 107]).

2. Bounded Simply Connected John Domains

In this section we let Ω C R2 be a bounded simply connected John domain whose
boundary dΩ is a Jordan curve. We let v be an arbitrary but fixed point on ΰΩ. "c"
will denote constants (^ 1) which depend only on Ω and v. We shall write —A^
for the Dirichlet Laplacian in L2(Ω) and write 0 < E\ < E2 g E3 ^ for the
eigenvalues of — ΔQ counted according to multiplicities. We let φn be the eigenfunc-
tion corresponding to En and normalized by | |φ w | |2 = 1 (we assume that φ\ > 0).
We shall use "Ga(x,7)" to denote the integral kernel of ( — A Q ) ~ I and write

d(x) = dΩ(x) = dist ( c, dΩ) (x G Ω) .

"/)" will denote the unit disk in R2. We first state the two main results from [DS,
RW] on which the proofs in this section are based. For the boundary behavior of
conformal maps defined on D we refer the readers to the excellent book [P] by
Pommerenke.

Definition 2.1. We say that eΔt is intrinsically ultracontractive if the semigroup
φ~leAtφι on L2(Ω,φ\(x)2dx) maps L](Ω,φ}(x)2dx) to L°°(Ω,φ\(x)2dx) as a
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bounded operator; i.e.,

\\^leΔty\\\L\Ω,φ{(xγdx^L^(Ω,φι(xγdx} ^ £(t) < 00

for all t > 0.

Lemma 2.2. ([DS, p. 374], see also [D, p. 131]) Let X be a bounded region in
R^ and let -Δx be the Dirichlet Laplacian on X. Let 0 < E\ < E2 ^ be
the eigenvalues of -Δx and let φn (φ\ > 0) be the corresponding eigenf unctions
normalized by \\φn\\2 = l Suppose the following conditions hold:

(i) eΔt is intrinsically ultracontractive,
(ii) — AX ^ k dist ( c, 3Jf)~α in the quadratic form sense for some /c, α > 0.

(iii) there exist c ^ 1 and β > 0 such that

φ\(x) ^ c~λdist(x,dX)β (x E X) .

Then for any fixed y E X, there exist k\ ^ 1 and ε > 0 such that

fcfViM ^ Gx(x9y) ^ k\φ\(x)

for all x E X with dist(x,dX) < ε. Also if

/6>r all t > 0,

\φn(x)\ ^ τnφ}(x) (x £ X) ,

where

τn = mf{c(t)e(E"-E^ : t > 0} .

Lemma 2.3. ([RW], see also [P, p. 264]) Let X be a bounded simply connected re-
gion in (Γ and let g : X — » D be a Riemann map which can be extended to a home-
omorphism between X and D. Let v G dX and let ζ — g(v). Let {Γ(p)}o<p<Po be
a family of circular crosscuts in X converging to v. Let B = Uo<p<p

for p G (0,p0), let
λ(p) = length of T(p) .

Then
( PO π Ί

1m \g(ω) - ζ\ exp <^ / — -dp > < oo (2.1)
w6fi

exists (see Fig. 1 (a)). Moreover if

X = {v + pei0 :0 < p

where the functions θ± are locally absolutely continuous and satisfy

PO
f [ θ + ( p ) - 0-(p)]-'[0;(p)2 + ff_(p)2]pdp < oo ,
0

/i£? ήm/ί /w (2.1) /51 positive (see Fig. 1 (b)).
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T ( P O >

v + pe

T(p0)

v + pe

Fig. 1. The notation of Lemma 2.3

Definition 2.4. Let v £ cΩ. A subset U C Q is called a twisting cone in Ω with
vertex at v // it satisfies the following conditions: there exists a family of circular
crosscuts {-Γ(p)}o<p^Po converging to v such that
(TCI) U is simply connected and U° C Ω . _
(TC2) dU consists of two curves y/ : [0, 1] — » Ω, i = 1, 2, ^sw/z

(a) 7,([0, 1)) C Ω for i= 1,2,
(b) 7 ι ([0, l))ny 2 ([0, l])) = φ,
(c) }Ίθ) = 72(1) = v .

(TC3) U Π T ( p ) is connected for all p G (0,p0)
(TC4) ΓλέT? ejcwί,y c ^ 1

/or all p G (0,p0), vv//er^ λ(T(p)Γ\ U) is the length of T ( p ) Γ \ U and d(T(p)Γ\
^([0, 1))) is the distance of T(p) Π 7,([0, 1)) from dΩ.
(TC5) There exists a sequence p\ > P2 > Pi - — > 0 #ft£/ c ^ 1 such that

(a) pm/pm+\ ^ 2/<?r w = 1,2,3,...;
(b) ί/zέ? distance between T(pm)Γ\U and T(pm+\)Γ\U in U is at most
c min {ί/(Γ(pw ) Π ̂ ([0, 1 )), / -1,2}.

(TC6) There exists c ^ 1 such that

0 c~λp ^ ) , / = 1,2} .

Remarks, (i) In this paper we shall only use twisting cones of the type described
in Proposition 2.7 below.
(ii) Suppose U is a twisting cone with vertex at v. Assume that for every m —
1,2,3 . . . there exists ωm £ T(pm} Π (7 such that

φ\(ωm) ^
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where F is some explicit function. Then (TC4) — » (TC6) together with the elliptic
Harnack inequality imply that there exists c ^ 1 such that

φ\(ω) ^ cF(ρm) (ω G Uand pm-\ > \ω - v| ^ pm) .

In particular if F is of the form F ( p ) = kp<\ for some k,y > 0, then we have

φ\(u>) = c\ω — v\7 (ω G £/) .

We next want to define a canonical twisting cone in Ω with vertex at v. To do this
we shall need the following results:

Lemma 2.5. ([P, p. 97]) Let X be a bounded simply connected region in C and
let f : D — > X be a Riemann map. For r G (0, 1] and t G IR, let

B(re11) = {pe'° : r ^ p < 1, |0 - t\ ̂  π(l - r)} .

Then the following are equivalent:
(i) X is a John domain.

(ii) There exists c\ ^ 1 such that

diam(f(B(z))) ^ c}dx(f(z)) (z G D) . (2.2)

(iii) There exist c ^ 1 and α G (0, 1] such that

\f'(σ)\ ^c/ / (z) | [ ( l- |

for all σ G D n 5(z) ufwrf z G D.

Remark. If Ώ is a bounded simply connected domain, then Lemma 2.5 (iii) implies
that there exist CΊ §: 1 and a point ω* G Ω such that for any ωi G Ω there is a
rectifiable path 7 in Ω joining ω* to ω\ such that

/(y(ω,ωι)) g c2J(oj) (ω G y) , (2.3)

where y(ω,ω\) is the part of y joining ω to ωi and l(y(ω,ω\)) is its arc length.

(Proof. Given α>ι G Ω we can assume that f~l(ω\) G [0, 1). Let cυ* = /(O) and
let 7(0 = /(i) for all / G [0, 1). Then for any ω = y(t\ t G [0,/-1(^i)]

Equation (2.4) together with Lemma 2.6 below now give (2.3).)

Lemma 2.6. (Koebe, see [P, p. 9]) If f : D —* C /Λ α/7 injective conformal map,
then for all z G D we have
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and
4-'(l - z|2)|/'(z)| rg d i s t ( f ( z ) , d f ( D ) ) g (1 - |z|2)|/'(z)| , (2.6)

where d f ( D ) is the boundary of f(D).

For all sufficiently small ε,p0 > 0 we shall write

g(ε,po) = {ω G Ώ : ω — v < poandd(ω) > ε ω — v|} .

For the rest of this paper we let g : Ω — > D be a fixed Riemann map with g ( v ) = 1
and put / = g~λ .

Proposition 2.7. Lei c\,C2 ^ 1 έ? chosen so that (2.2) and (2.3) hold. Then there
exists R>0 such that if 0 < ε ̂  (2cιc2)~Λ if Q < pQ ^ R and if {V(ρ)}o<P<PPo

is a family of circular crosscuts in Q(ε,po) converging to v, then the set U —
Uo<p<p ^(P) ^ α twisting cone in Ω with vertex at v.

Proof. We first note that (2.3) implies that there exists a sufficiently small R > 0
such that for any ε G (0, (2c\C2)~l] the part of the boundary of Q(ε,R) inside Ω
consists of two branches, one on each side of v. Hence if 0 < po rg R and if
{^(p)}o<p<po is a family of circular crosscuts in (?(ε,po) converging to v, then

dU (where U = Uo<p<p ^(P)) consists of two curves y, : [0, 1] — » ΩJ = 1,2, that
satisfy the conditions in (TC2). Now U clearly satisfies (TCI) and (TC3). (TC6) is
true by the definitions of ζ?(ε,po) and ί/. (TC4) is a consequence of (TC6). Finally
we note that if ε G (0,(2cιc2)~1]?

 tnen (2 2) implies that there exists t0 G (0, 1) such
that /((fo, 1)) C C?(ε,po). Thus for every p G (0,p0), there exists ω(p) G /((0, 1)).
Given a sequence p0 > pi > P2 > — » 0 with ρm/pm+\ ^ 2, the distance dw

between F(pw) and V(pm+\) in t/ satisfies

dm ^ c \ f ' ( g ( ω ( P m ) ) ) \ ( l - g ( ω ( P m ) ) )

(2.7)

where the first inequality of (2.7) follows from (2.4) and the second inequality from
(2.6). (TC5) now follows from (2.7). D

For the rest of this paper we shall denote by U a fixed twisting cone in Ω with
vertex at v of the type described in Proposition 2.7.

Theorem 2.8. Let {7Xp)}o<p<p0 be a family of circular crosscuts in Ω converging
to v. For every p G (0,p0) let θ(p) be the angle subtended by T(p) at v. Then
there exists c ^ 1 such that

- / 7 > (ω G U) . (2.8)

Proof We shall need the following results:

Lemma 2.9. ([An, p. 280]) The Hardy inequality

fd(x)~2f(x)2dx ^ cxf\Vf\2dx (f G Q°
X X

holds for every simply connected bounded domain X in 1R2.
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Lemma 2.10. ([B, p. 186]) Let —A be the Dίrichlet Laplacian on a bounded John
domain X in IR^, then eΔt is intrinsically ultracontractive. Moreover there exist
GX ^ 1 and μ > 0 such that

dX) ^ CΛ r" (ί > 0) . (2.9)

Also, there exist c ^ 1 and β > 0 such that condition (Hi) of Lemma 2.2 holds.

Let ω0 = g~\Q)> Then, by the two preceding lemmas, -AΩ satisfies the hypotheses
of Lemma 2.2. Hence there exists c ^ 1 such that

c~lGΩ(ωQ,ω) ^ φι(ω) ^ cGΩ(ω0,ω) = -c In \g(ω)\

^ 2c(l - \g(ω)\) (2.10)

for all ω E Ώ with |#(ω)| ^ ^. Since U is a twisting cone of the type described
in Proposition 2.7, f([t0, 1)) C U for some /0 G (0, 1) by (2.2). Hence for all p G
(0,p0) there exists ω(p) G F(p) such that g(ω(p)) E (0, 1). Thus, by Lemma 2.3,

<0° (2 n)

exists. Hence (2.10) and (2.11) now give

ί p,9
^ cexp <^ -]τir^ f (0 < p < p0) (2.12)

for some c ^ 1. Estimate (2.8) now follows from (2.12), (TC4), (TC6) and the
elliptic Harnack inequality. D

Theorem 2.11. Let τn be the constants given in Lemma 2.2. Then there exists
c ^ 1 such that

|VφΛ(ω)| ^ cEnτnφ\(ω)d(ω)~l (ω G Ω) (2.13)

for all n — 1,2,3,.... Futhermore, if there is a curve y : [0, (5] —>• Ω with y(0) = v
and satisfying:

(i) y(0 G U for all t G (0,c5) ,
(ii) y'\ ^ M for some M > 0 ,

(iii) γ(t) G V(t) for all 0 < t < δ < p0 ,
then we also have the lower bound

|Vφι(ω)| ^ c-]

φι(ω)d(ωΓl (ω G U). (2.14)

(Remark. If Ω is the snowflake domain, then a curve y : [0, δ] —> Ώ satisfying
y(0) = v and (i) —* (iii) in Theorem 2.11 exists for every v G dΩ.)

Proof. We shall assume that D is on the z-plane where z = x + iy and Ω is on the
ω-plane where ω = u + πλ We let 0 : Ω —» /) be a Riemann map with #(v) = 1.
Then

1 = \9'(g~\z)}\~2 (z G z > ) .
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Let T : L2(Ω) -> L2(D, \g\g~1 (z))\~2dxdy) be the unitary operator defined by

Let H ^ 0 be the self-adjoint operator in L2(D, \g'(g~\z))\~2dxdy) unitarily
equivalent to — Δa in L2(Ω) under T. We first note that the conformal invari-
ance of the Green's function ([Ah, p. 249]) implies that if Gπ(z\,z2) is the Green's
function of //, then

G//(zι,z2) - GD(z!,z2) (z,,z2 <E D) .

We have

φn(co\) = EnfGΩ(ω\,ω2)φn(ω2)du2dv2 ,
Ω

where ω; = wy + /^ G Ω, 7 = 1,2. Therefore

dφn ( λ „ ΓoGΩ-̂ — (ωi) = EnJ - — (ωι,ω2)
du}

 J

Ω cuλ

n —
Q \-CU\

Ω v dxi dii

^GTΓ

Similarly we have

n, . π Γ
— (ω\) =En<J

So writing

= /'— — (g(ω\),g(ω2))φn(ω2)du2dυ2
Ω Cχl

and
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2 = E2

ou\
Q(ωλ

cy\γ
dυ\

= Ei

(2.15)

Now (see [HK, p. 26])

So if z 2φO, then

In

(z2 - 0)

-In

Thus if z2 φ 0, then

+

-X2

- 2y}y2

Hence, for some c g: 1, we have

I I I I I
^2 Fl|z2 -*2

dxt zι|z2 | -z2z2

^ zιz 2 -z2z2

(Z !ΦZ 2 ,Z 2 ΦO)

^c|z 1-z 2 |- 1 |z 2 |- 1 . (2.16)

Since Ω is a bounded John domain, there exist c ^ 1 and β > 0 such that

c~]d(ωf ^ φι(ω) (ω G Ω) . (2.17)
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Thus Lemmas 2.2 and 2.6 together with (2.10) and (2.17) imply that, for some

,r '(z))

- W/β\z\ΓW (2.18)

for all z £ D. Then inequalities (2.16) and (2.18) now imply that P is a continuous
function on Ω. (To see this we only need to show that for all δ G (0, 1 ), we have

But

A ^'^^^Id = f ( f (X2 sec u} (XΊ tan ό u x2 SQCZ udu) }dx2J \ J ^ ^ V Z ^ /

-A V 0

,π/2

o

< 00.)

Similarly we can show that Q is a continuous function on Ω. Inequalities (2.15),
(2.16) and (2.18) now imply that

|V^(ωO|2 ^ cElτl\g'(ω^\2 (ω, e Ω)

hence (2.6) and (2.10) give

which implies (2.13). To obtain a lower bound for | V φ ι | we let y : [0,<5] — >• β with
y(0) = v and satisfying conditions (i) — » (iϋ). We now show that

Λ(v) 2 + ρι(v)2 >0. (2.19)

Suppose the contrary that

L(ω) = [Pι(ωf + βι(ω)2]ϊ as ω -> v . (2.20)

Put

(0 g / g δ) .

Then (2.10), (2.15) and Lemma 2.6 imply that

0| (0 ̂  ί^

^ 2^^1(7(0X1 - 100X0)1 ¥ ( y ( " '

^ cL( y(t))φι(y(t))d(y(t)Γl
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Hence (iii) implies that

ι//(OM(0 ^ cL(y(t))Γλ (O^t^δ). (2.21)

Integrating (2.21) we obtain

δ

-lnφ,(y(0) ^ c + cfL(γ(τ))τ~ldτ .
t

By (2.20) given any ε > 0, there exists a sufficiently small r0(ε) > 0 such that

I(y(0) ^ e if 0 ^ / ^ r0(ε).

So, for some k\, with k\ ^ 1, we have

'Ό(β)

-lnφι(y(0) ^ *! + / /^(τ))!-1^ (0 ̂  f ^ r0)
/

> oOO
^ A:ι +c / τ~ ]ί/τ

/

— k\ — ε In t.

Hence, for some £2 ^ 1, we have

^ *2ίfi (0 ̂  / ^ r0(fi))

which, since ε > 0 was arbitrarily small, contradicts Proposition 2.12 below. Thus
(2.19) holds. Estimate (2.14) now follows from (2.15), (2.19), (2.16) and (2.10).

D

Proposition 2.12. There exists c ^ 1 such that

φι(ω) ^ α/(ω)3 (ω e Ω).

(Clearly, as the example of the cardiord shows, the exponent ^ on the right is
sharp among the class of John domains. )

Proof. By (2.5) and (2.6) we have

1 - |0(ω)| ^ cd(ω)τ (ω G Ω)

for some c ^ 1. Hence (2.10) gives

φι(ω) ^ c(l - |0(ω)|) ^ cJ(ω)2 (ω e Ω) . D

Corollary 2.13. Let μ > 0 be chosen so that (2.9) holds. Then there exists c
such that

\V0)2K(t, ω ϊ s ω2)| ^ c
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where K(t, ω\, 0*2) is the heat kernel of eΔt and

l*~Ent < °° C > 0) -

Proof. Let τn be the constants given in Lemma 2.2. Then (2.9) gives

τn = inf^-V^-^' : t > 0} ^ ££ .

Thus by (2.13) and Lemma 2.2 we have

00

\Vω2K(t, ωι,ω 2 ) | ^ X>~£"V(^i

3. Snowflake Domain

In this section we apply the results in Sect. 2 to the special case where Ω is the
domain bounded by the Koch snowflake curve (see [F, Fig. 0.2(b), p. XV]). It will
be clear that our method also applies to other domains with self-similar (fractal)
boundaries, such as the square snowflake considered in [S, SGM, SG].

Notations. We let {P(n)}^λ be the usual sequence of interior polygonal approxima-
tions of Ω (i.e., P(n) is obtained from P(n — 1) by adding a "middle-third" triangle
on every segment of dP(n — 1)). For every n we let Ac(n) be the set of all acute
angle vertices of P(n) and let Ob(n) be the set of all obtuse angle vertices of P(n).
(All angles of polygons are measured from the inside.) If sf(J = 1, 2, . . . ,3 -4"" 1)
are the segments making up dP(n) and if for each j we let Ca(s;) be the (ternary)

Ί. Λn~ 1

Cantor set of sj9 then we define Ca(n) = U/=ι Ca(sj\ We also define the subsets

Ac, Ob and Ca of dΩ by:

Ac = U Ac(n\ Ob=\J Ob(n\ Ca = I Q Ca(n) \ \(Ac U Ob) .
n=\ n=\ U=l J

The position of each point v in dΩ\(Ac U Ob U Ca) can be specified using an infinite
sequence q\,qι,q^..., where

?ι 6 {1,2,3,4, 5, 6}

qn G {1,2,3,4, 5} for n ^2

(see Fig. 2 below). For the rest of this section U will again denote a twisting cone
in Ω with vertex at v £ dΩ of the type described in Proposition 2.7.

Proposition 3.1. (i) If v £ Ac, then

φ\(ω) ^ c\ω- v\π' (ω G U)

for some c ^ 1 and y G (^, |).
(ii) If v £ Ob, then

φ\(ω) ^ c ω - vπ7 (ω G t/)

/or some c ^
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= 1 2 4 .

Fig. 2. Labelling of the boundary points of the snowflake domain

(iii) If v G Ca, then there exists a function α : (0, po) —> (0, oo)

and

α(p) I oo as p | 0

\o) - v |α(|ω - v | ) ^ φι(ω) (ω e U)

Remark. The values of y in (i) and (ii) are independent of v ζ Ac or v G 0&. They
are given by (3.2) below and can be regarded as the reciprocal of the average angle
of dΩ at v.

Proof. We first prove (i) and (ii). Let {T(p)}o<p<Po and θ(p) be as in Theorem
2.8 and let

θ(r) = θ(e~r) (r > -Inp 0)

By the self-similarity of dΩ near v we see that

θ(r) = 0(r + In 3) (r > - In p0) .
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~ ln p

= [( ln3Γ 1 ( lnpo- lnp)- f ? (p)]

— In p

+ / θ(/ Γ
— In p+ln pQ—η(p) In 3

λ'+ln 3

ln 3

= (lnp 0- λ dr + 0(1) ,

where

0 ^ >?(p) < 1 (p G (0, po)) .

Hence, for some c ^ 1, we have

c~lp'IL ^ exp < -

where
A'+ln 3

k

(3.1)

(3.2)

(i) and (ii) now follow from (3.1), (3.2) and Theorem 2.8. To prove (iii) we let
v G Ca and let q\q^q^ - - ,qt = 0 or 2, be the ternary expansion of v with respect to a
segment s of dP(n). We assume that p0 is sufficiently small and to each p G (0, p0)
we associate two numbers y+(p), 7-(p) G [0, π/6) as illustrated in Fig. 3.

Fig.3. (1) ΔΛ\B\C2 and the curve C\D\ can be obtained from AA^B^C^ and the curve Cτ_D^ or
from ΔA^B^Cz and the curve C $Dι by a reflection, translation and dilation. (2) The curve D\C\v
is C00. (3) 7-(p) and 7+(p) are the size of <J\vK\ and </2vAΓ2, respectively, in radians
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Then one can check that y+ and y_ are locally absolutely continuous functions
on (0, po) and that there exists c ^ 1 such that

h/±(p)| ^ cp-λ (0 < p < po) - (3.3)

Let

0+(p) = 7+(p)/(-lnp) (0 < p < po) ,

and let

0_(p) = -π-y-(p)/(-lnp) (0 < p < p0) -

Let Ω' be the subregion of Ω defined by

Ω' = {v + pel° : 0 < p < po and 0_(/>) < # < 0+(p)} .

We now show that

' oo ,
0

so that we can apply Lemma 2.3. We have

pθ'±(p)2 = [(- InpΓ V±(p) + '/

= [(- In p)2?±(p)2 + 2p-'(- In pΓ3/±(P)?±(P)

+ y±(p)2(-lnpΓV2]p.

Thus (3.3) implies that

for some c §; 1. Hence

PO
'{0;(p)2 + ff_(p)2}pdp

= 2π ]c f r 2dr < oo.

Let ΨQI > 0 be the ground state eigenfunction of —ΔQI normalized by | | < p a / | | 2 — l
Let ί/β/ be a twisting cone inside Q! with vertex at v of the type described in
Proposition 2.7. Then a proof similar to that of Theorem 2.8 implies that, for some

c ^ 1,

πdτ
cc ] exp <^ - /

I |ω-v|| ωi v |[0+(τ)-0-(τ)]τ.

^ cexp I - / — i (3.4)

for all ω G UQ/. Writing

i + y_(p) (0 < p < po)
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we have

Po

; π(-lnτ) + y(τ) τ

Po vίτ) dτ
= (Inpo - mp) - / , Ί

 Λ ' ( . -. (3.5)
π(-lnτ) + y(τ) τ

Since 0 ^ y(τ) ^ π/3, there exists c ^ 1 with

c^τ-^-lnτ)-1 ^ τ~l[π(-lτ\τ) + y(τ)Γl ^ cτ~ ](- Inτ)" 1

for all τ G (0, p0). Let

Γ(r) = y(e~r) (r > -Inp 0) .

Then, by the definition of the functions γ±, one can check that there exist
with the following properties:

(— Inpo, oo) of length at least c^1 such that r G (σ\, σ^) and

(a) If r > — In po and if Γ(r) ^ c3

 !, then there exists an interval ( σ j , ^2) C

Γ(τ) £ c~] ( τ e ( < τ ι , σ 2 ) ) .

(b) If r > — Inpo and if Γ(r) < c^1, then there does not exist any interval
(0Ί, 02) C (— Inpo, oo) of length greater than 2 In 2 such that r G (<TI, σ2) and

Hence we have

—
_,

J

p [π(-lnτ) + y(τ)] τ ~ J

p (- lnτ)τ

-i-^r)
= c J -—^

- In Po

^oo as p I 0. (3.6)

Equations (3.4), (3.5) and (3.6) now imply that

|ω - v |α( |ω - v|) ̂  φΩ'(ω) (ω ^ UΩ/) ,

where α : (0, po) —> (0, oo) is a function such that

α(p) I oo as p | 0.

Thus there exists c ^ 1 such that

c~l \ω — v |α(|ω — v|) ^ φ\((o) (co G UQ>) . (3.7)

The elliptic Harnack inequality and the properties of twisting cones now enable
(3.7) to be extended to all ω G U (with a different c ^ 1), thus proving (iii). D
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Theorem 3.2. (i) If v G Ac, then

|Vφι(ω)| ̂  0 as ω — » v with ω G U .

(ii) //' v E <%U Cα, then

|Vφι(ω)| -^oo as ω — » v wzϊ/z ω G ί/ .

(iii) //' v belongs to the (ternary) Cantor set of the line segment joining two
adjacent acute angle vertices of P(n), separated by only one obtuse angle vertex,
for any n £ N, then

\Vφ\(ω)\ ^ 0 as ω —* v with ω £ ί/ .

/ (i) is a consequence of Proposition 3.1 (i) and (2.13). If v G Ca, then the
result follows from Proposition 3.1 (iii) and (2.14). If v G Ob, then, by considering
a finite wedge at v,

3/4 (ωeU) (3.8)

for some c ^ 1. Therefore the result for v G Ob follows from (3.8) and (2.14).
Finally suppose v is as in (iii) and let {TXp)}o<p<p 0

 an<^ ^(P) ^e as m Theorem
2.8. Then θ(p) < π for almost all p in (0, po) Hence the result follows from (2.8)
and (2.13). D

Remarks, (i) With more effort one can use Lemma 2.3, Theorems 2.8 and 2.11
to determine whether |Vφι(ω)| tends to 0 or oo as ω — -> v with ω G U for
v G cΩ\(Ac U Ob U Co] other than those described in (iii). For example, one can
show that if v G dΩ\(Ac U Ob U Co] and if the sequence representing v eventually
becomes

3323332333323333323333332- •• ,

then
|Vφι(ω)| — » 0 as ω — » v with ω G U .

(ii) By [O, Theorem 2] the set of boundary points v considered in Theorem 3.2
has zero harmonic measure. A detailed description of the behaviour of |Vφι | near
generic boundary points (with respect to harmonic measure) remains open.

Acknowledgement. We wish to thank Bernard Sapoval, Robert S. Strichartz and Rodrigo Banue-
los for very helpful discussions and comments. The second author also thanks the Mathematics
Department, University of California at Riverside, where part of this work was carried out.

References

[Ah] Ahlfors, L.V.: Complex analysis. 2nd edition, New York: McGraw-Hill, 1966
[An] Ancona, A.: On strong barriers and an inequality of Hardy for domains in 1RN. J. London

Math. Soc. 34, 274-290 (1986)
[B] Banuelos, R.: Intrinsic ultracontractivity and eigenfunction estimates for Schrόdinger op-

erators. J. Funct. Anal. 100, 181-206 (1991)
[D] Davies, H.B.: Heat kernels and spectral theory. Cambridge: Cambridge Univ. Press, 1989



376 M.L. Lapidus, M.M.H. Pang

[DS] Davies, E.B., Simon, B.: Untracontractivity and heat kernels for Schrodinger operators and
Dirichlet Laplacians. J. Funct. Anal. 59, 335-395 (1984)

[F] Falconer, K.J.: Fractal geometry. Wiley, Chichester, 1990
[HK] Hayman, W.K., Kennedy, P.B.: Subharmonic functions, vol. 1, London: Academic Press,

1976
[L] Lapidus, M.L.: Vibrations of fractal drums, the Riemann hypothesis, waves in fractal

media, and the Weyl-Berry conjecture. In: "Ordinary and Partial Differential Equations",
vol. IV B.D. Sleeman, R.J. Jarvis, (eds.) Pitman Research Notes in Math. Series 289,
London: Longman, 1993 pp. 126-209

[O] Oksendal, B.: Brownian motion and sets of harmonic measure zero. Pacific J. Math. 95,
193-204 (1981)

[P] Pommerenke, Ch.: Boundary behaviour of conformal maps, Springer, 1992
[RW] Rodin, B., Warschawski, S.E.: Estimates for conformal maps of strip domains without

boundary regularity. Proc. London Math. Soc. (3) 99, 356-384 (1979)
[S] Sapoval, B.: Experimental observation of local modes in fractal drums. Physica D 38,

296-298 (1989)
[SGM] Sapoval, B., Gobron, Th., Margolina, A.: Vibrations of fractal drums. Phys. Rev. Lett. 67,

2974-2977 (1991)
[SG] Sapoval, B., Gobron, Th.: Vibrations of strongly irregular or fractal resonators. Phys. Rev.

E 47, no. 5, 3013-3024 (1993)

Communicated by B. Simon




