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Abstract: Motivated by a recent paper of Fock and Rosly [6] we describe a math-
ematically precise quantization of the Hamiltonian Chern-Simons theory. We intro-
duce the Chern-Simons theory on the lattice which is expected to reproduce the
results of the continuous theory exactly. The lattice model enjoys the symmetry
with respect to a quantum gauge group. Using this fact we construct the algebra of
observables of the Hamiltonian Chern-Simons theory equipped with a *- operation
and a positive inner product.

1. Introduction

Quantization of the Chern-Simons theory in 3 dimensions has been attracting at-
tention and efforts of many physicists and mathematicians during the last 5 years.
The most spectacular results obtained in this way are the construction of knot in-
variants [13] and exact solution of 2 + 1 dimensional gravity [27]. Being a 3 di-
mensional topological field theory, the Chern-Simons model is intimately related
to the Wess-Zumino-Novikov-Witten (WZNW) model of conformal field theory
in 2 dimensions and to quantum groups (one may regard a quantum group as a 1
dimensional quantum system). Actually, it is this hierarchy of systems in different
dimensions which makes the Chern-Simons theory solvable. The relation between
CS and WZNW models allowed evaluation of partition functions and correlators
[13] using the methods of conformal field theory. The importance of the CS the-
ory is a motivation to look for different approaches. Among others the perturbation
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theory [16] and exact evaluation of the functional integral by means of localization
formulae [17] should be mentioned.

In this paper we develop an approach to the CS model based on its relation
to the theory of quantum groups. One of the advantages of the quantum group
approach is that we deal with finite dimensional objects only. As a consequence,
one can represent the answers in terms of finite sums, whereas in other approaches
the final result usually has an integral form. It makes the quantum group approach
helpful in dealing with topology of 3D manifolds [24, 25, 26] and in knot theory
[18,23]. The main idea is to simulate the Chern-Simons theory on the lattice in
such a way that partition functions and correlators of the lattice model coincide
with those of the continuous CS model. It is important that the lattice model enjoys
the gauge symmetry with respect to the quantum group. It is worth mentioning that
a lattice simulation of the CS model has been suggested in [5]. The drawback of
this model is the absence of gauge symmetry. The gauge symmetry may be restored
if one uses the proper combinatorial description of the moduli space of flat connect-
ions [6].

Let us briefly characterize the content of each section. In Sect. 2 we review
the main facts concerning the CS theory in Hamiltonian approach and introduce
the combinatorial (or lattice) description following [6]. Section 3 is devoted to the
quantum gauge group in the lattice model. In Sect. 4 we generalize the concept of
lattice gauge fields to the case of a quantum gauge group. The algebra of observ-
ables corresponding to the Hamiltonian CS theory appears in Sect. 5 equipped with a
*-operation. We describe the Hermitian inner product in the algebra of observables
and prove the positivity theorem in Sect. 6. In Sect. 7 we generalize the theory to
weak quasi-Hopf algebras [2]. In this way we can deal with universal enveloping
algebras at roots of unity by using a procedure called ''truncation." The basic def-
inition of weak quasi-Hopf algebras and the truncation are reviewed in Sect. 7.1.
An outlook at the end of the paper is devoted to the possible perspectives of the
lattice approach.

The basic technique which we use in this paper is the theory of quantum groups.
Section 2 is supposed to play the role of the physicist oriented introduction. In the
remaining part we assume that the reader is familiar with standard definitions and
properties of such objects as co-multiplication and ^-matrix.

We want to stress that the construction we propose in the following assigns a
Chern-Simons type model to every pair of a marked Riemann surface and a weak
quasi-Hopf algebra. The latter is not necessarily given by a truncated quantized
enveloping algebra of some simple Lie algebra. It has been shown recently [8]
that a weak quasi-Hopf symmetry can be constructed for every low dimensional
quantum field theory. Combining this result with the considerations below, one
assigns a Chern-Simons type model to every low dimensional quantum field theory.
It remains unclear whether these generalized Chern-Simons theories are related to
certain moduli spaces in the same way as standard Chern-Simons theories are related
to the moduli space of flat connections.

2. Physical Motivations

In this paper we study the problem of quantization of the Chern-Simons the-
ory within the Hamiltonian approach. The moduli space of flat connections on a
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Riemann surface appears as a phase space for this model [13]. Let us briefly remind
the definition and general features of the CS system.

2.1. Chern-Simons model. The Chern-Simons theory is a gauge theory in 3 di-
mensions (in principle the CS term exists in any odd dimension). It is defined by
the action principle

CS(A) = — Tr Γ (AdA + ^A3} . (2.1)
4π J

M\ 3 y

Here M is a 3-dimensional (3D) manifold, A: is a positive integer and the gauge
field A takes values in some semisimple Lie algebra ,̂

A=Aa

lt
adxl. (2.2)

The generators ta form a basis in ^ and satisfy the commutation relations

[ta, th] = fftc . (2.3)

In this paper we concentrate on the very particular version of the CS theory when
it has a Hamiltonian interpretation. Suppose that the manifold M locally looks like
a cylinder Σ x R (Cartesian product of a Riemann surface Σ and a segment of the
real line). Then we may choose the direction parallel to the real line R to be the
time direction. Two space-like components of the gauge field A become dynamical
variables and we shall often denote by A the two component gauge field on the
surface Σ. As usual, the time-component AQ becomes a Lagrangian multiplier. After
the change of variables the action (2.1) acquires the form

S = —Ύrf(-Ad0A + 2A0F)dt , (2.4)

where the first term is just like / pdq and the second term introduces the first class
constraint

F = dA+A2 = Q . (2.5)

The first term in (2.4) determines the Poisson brackets (PB) of dynamical variables.
In particular, the Poisson bracket of the constraints (2.5) may be easily calculated:

{Fa(zιl Fh(z2)\ = — fa

c

bFc(zλ}δ(2\zλ -z2) . (2.6)

As one expects, the constraints (2.5) generate gauge transformations

A'1 — g~lAg + g~]dg . (2.7)

Thus, the phase space of the Hamiltonian CS theory is a quotient of the space 3
of flat connections (2.5) over the gauge group ΣG (2.7). We see that the moduli
space (we shall often refer to the moduli space of flat connections as to the moduli
space) appears to be a phase space of the CS theory on the cylinder. The action
principle (2.4) provides canonical Poisson brackets on the moduli space. An efficient
description of this PB was given in [6] (see also Subsect. 2.3).

2.2. Wilson Lines and Marked Points. We continue our brief survey of the CS
theory and consider possible observables. The CS model enjoys two important sym-
metries: gauge symmetry and the symmetry with respect to diffeomorphisms. The



320 A. Yu. Alekseev, H. Grosse, V. Schomerus

reparametrization symmetry appears due to the geometric nature of the action (2.1)
which is written in terms of differential forms and automatically invariant with
respect to diffeomorphisms of the manifold M. It is natural to require that the ob-
servables in the CS model respect the invariance properties of the theory. Some
observables of this type may be constructed starting from the following data. Let
us choose the closed contour Γ in M and a representation / of the algebra .̂
Apparently the following functional of the gauge field A

(2.8)

is invariant with respect to both gauge and reparametrization symmetries. Usually
the contour Γ is called a Wilson line and the expression (2.8) is called a Wilson
line observable. The connection A1 is equal to

A1=AaTI

a, (2.9)

where matrices Tl

a represent the algebra ^ in the representation /.
In the Hamiltonian formulation we may choose two special classes of Wilson

lines: vertical and horizontal.
We call a Wilson line horizontal if it lies on an equal time surface. The observ-

able corresponding to a horizontal Wilson line is a functional of the two-dimensional
gauge field and after quantization it becomes a physical operator.

The Wilson line is called vertical if the contour Γ is parallel to the time axis. In
the Hamiltonian picture we do not actually control the fact that vertical Wilson lines
are closed. They come from the past, go through the zero-time surface and disappear
in the future. The vertical Wilson line is characterized by the representation / and
the point z where it intersects the Riemann surface Σ. The choice of the time axis
produces a big difference in the role of horizontal and vertical Wilson lines in the
theory. Vertical Wilson lines do not correspond to observables in the Hamiltonian
formulation. Instead, they change the Hamiltonian system (2.4) so that both f pdq
and the constraint get modified.

As a preparation for analyzing vertical Wilson lines let us recall the correspon-
dence between co-adjoint orbits and representations of semi-simple Lie groups. Let
/ be a representation of the Lie algebra :̂

[T'a,T'b\=f^TI

c. (2.10)

One may ask the question what is the underlying classical system corresponding to
the quantum algebra (2.10). The first idea is to simulate the commutation relations
by the Poisson brackets:

{Ta, Tb} = f«»Tc , (2.11)

where Ta are commuting coordinates (on the dual space to the Lie algebra). It seems
that the information about the representation disappeared in the formula (2.11).
However, this is not quite true. The PB (2.11) is always degenerate. At this point
it is useful to introduce a coordinate matrix

T = Tat
a, (2.12)

where ta form a basis in the fundamental representation. In order to make the
bracket (2.11) nondegenerate one should fix eigenvalues of the matrix T\

T = g-lPg. (2.13)
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A conjugation class (2.13) is also called a co-adjoint orbit. Now we have a diagonal
matrix P which parametrizes the set of orbits. Quantization of a particular orbit leads
to an irreducible representation of the Lie algebra. The highest weight w/ of the
representation / represented as a diagonal matrix in the fundamental representation
is related to P by

W!=P-p, (2.14)

where p is a half sum of positive roots of Ή.
The information about the bracket (2.11) on the orbit may be encoded in the

action
Sj(g) = ΎrfPdgg~l . (2.15)

The action (2.15) is called a geometric action because it originates from the method
of geometric quantization. The family of systems (2.15) is parametrized by the set
of representations of ^ which may be obtained upon quantization.

The essence of the quantization procedure for the action (2.15) is the following
formula for a Wilson line observable:

W] == 16 ^ 'DQ . ^.z.ioj

The ordered exponent and trace are provided by the functional integral automatically.
Using the formula (2.16), one may treat the CS correlator with n vertical Wilson

lines inserted

as an expression where the gauge field is still classical, whereas some modes cor-
responding to the matrices Γ, are already quantized. The original functional integral
would be [14]

Z = fDADgι...Dgne's™ . (2.18)

The action 5ftot is defined by the formula

Stot - CS(A) + ΣGS/ΛflO + ΓTrjAo(z1)Tldt) . (2.19)
/ = !

Here the first term coincides with the standard Chern-Simons action, the second
term consists of two parts. The first part collects auxiliary geometric actions for
each Wilson line, the second part represents contributions of the Wilson lines into
the CS partition function (2.17).

We have reformulated the Hamiltonian Chern-Simons model with vertical Wil-
son lines as a theory of the 2D gauge field A interacting with a set of finite dimen-
sional systems with coordinates Tl localized at the points z, . As in the case of the
pure CS theory, the Hamiltonian (2.19) is equal to zero. The action of the modified
system may be rewritten as

( k Γ

 n Λ r ί i n ^
S = Tr -—fAdoA -f Σ JV&ft"1 + TrjA0 { ^F -f Σ Tiδ(z -zt)

V 4π /=ι / \ π i=] J
(2.20)

The first term in (2.20) is of the type / pdq of the Hamiltonian system. It is
responsible for the Poisson brackets of dynamical variables. The second term gives
the modified constraint

9 77 n

-z,) = 0. (2.21)
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The constraints (2.21) satisfy the same algebra (2.6) as in the pure CS theory.
They generate gauge transformations for the gauge field A and conjugations for the
variables Tt\

A° = g-lAg + g-ldg, T? = g(z,Γl T t g ( z t ) . (2.22)

Now the phase space of the Hamiltonian Chern-Simons theory with vertical
Wilson lines may be described. First we mark n points {z,} on the Riemann surface
Σ of genus g. Each point is equipped with a representation /, of the algebra f§ (and
corresponding orbit O/). One can choose a subspace 3(/ι,. . .,/ w ) defined by the
constraint (2.21) in the Cartesian product Cίy x O(I\) x x <9(//v) of the space
of all connections CfJ on the Riemann surface and co-adjoint orbits attached to
the marked points. The subspace 3 (/i,. ..,/„) is a natural analogue of the space
of flat connections. It is invariant with respect to gauge transformations (2.22).
The quotient of 3(/ι,. . .,/„) by the action of the gauge group may be called the
moduli space M^n(?$} of flat connections on the Riemann surface of genus g with
n marked points. The moduli space Jt^n(y) inherits the Poisson structure from the
CS theory. This structure is the subject of the next subsection.

Let us finish by a short remark concerning the structure of ^ίΛ//(^) and the
theory of orbits. Choosing a small loop Γl surrounding the marked point z,, one
can define the monodromy matrix (or parallel transport) Ml along this path. It is
easy to check that if A and {Γ,} satisfy (2.21), the monodromy matrix M, may be
diagonalized by conjugation of the exponent of P,,

/ o \
M =h-}Qxp(-^-Pi]h . (2.23)

\ k J

In the quantum case there is a one-loop correction in this formula which adds the
dual Coxeter number h* to the parameter k. The correct quantum version of (2.23)

reads as / 9 \

Mi = /Γ'exp (γ~j^pΛ h (2.24)

Thus, the monodromy matrix belongs to the exponentiated orbit assigned to the
corresponding marked point. Formulae (2.23) and (2.24) characterize elementary
monodromies. They will be quite helpful for quantization of M^n(Ή}.

2.3. Combinatorial Description and Exchange Relations. In the previous subsec-
tion we have found that the moduli space Jf^n(^) appears as a phase space in the
Chern-Simons theory with vertical Wilson lines. In order to quantize the theory we
need the Poisson structure on J^^n(^). In principle one may proceed starting from
the 2D gauge fields with the Poisson bracket

, - z2) . (2.25)

The quantization of the relations (2.25) is straightforward

K'(z, ), A"j(z2)} = -|W(2)(zι - z2) . (2.26)

Observables may be described as gauge invariant functionals of A, where the con-
straint (2.21) is imposed. In this approach we deal with the representations of
the infinite dimensional algebra (2.26) and construct the quantum mechanics corre-
sponding to the CS system starting from the field theory of the gauge field A. It is
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a motivation to look for another approach. A recent progress [6] in this direction
allows to reformulate the problem. The idea is to simulate the Riemann surface
by the oriented fat graph drawn on it. Dealing with a fat graph one uses ribbons
instead of strings. It means that the cyclic order of links incident to a given vertex
is fixed.

Suppose that we have a gauge field A on the Riemann surface and a graph
drawn on it. We assume that the surface is divided by the graph into plaquettes so
that any plaquette is contractible. The graph should be chosen in such a way that
the number of marked points inside each plaquette does not exceed one. The gauge
field defines a parallel transport along each link of the graph. Let us enumerate the
vertices of the graph by letters x, y^z ... and the links by /, y, k .... It is convenient
to introduce notations s(ι) and t ( i ) for the end-points of the link /. The parallel
transport corresponding to this link may be written as an ordered exponent

£/(/) = Pexp f A . (2.27)
Vω /

As for the Wilson lines, one may introduce the set of matrices U!(i)

(2.28)

using the gauge field in different representations (2.9).
Some information about the connection A is encoded in the link variables (2.27).

The question is whether this information is sufficient to reconstruct the moduli
space </$^ /7(C^)? The answer is obviously positive. To recover the moduli space
we should factorize over residual gauge transformations and take into account the
flatness condition. Gauge transformations act on the graph connections (2.27) as
follows

) . (2.29)

It is remarkable that the gauge group becomes effectively finite dimensional because
only values of h in graph vertices enter into (2.29).

The condition of flatness may be simulated using the properties of the mon-
odromy from the previous subsection. We form the monodromy for each plaquette
and constrain it by the condition (2.23). If there is no marked point inside the
plaquette, the monodromy is simply equal to the identity.

It is proved [6] that factorizing the space of flat graph connections over graph
gauge transformations one obtains the same space M^ n(^)\ Moreover, the Poisson
structure on the space of graph connections leading to the standard Poisson structure
on Λ/y.n(y) is known. In this approach the moduli space is represented as a quotient
of the finite dimensional space over the finite dimensional group. This is the reason
to call it combinatorial description of the moduli space.

One may think that the Poisson brackets for graph connections are defined
uniquely since U(ΐ) are functionals of the gauge field A and the Poisson brackets
for A are fixed by (2.25). In fact, this is not correct. The reason is the ^-function
singularity in the brackets (2.25). Calculating the PB of two matrices (/(/) and
U(j\ where the links i and j have at least one common end-point, one has to
resolve the singularity appearing at this very point. There is no canonical way of
resolution. In general the Jacobi identity breaks down after regularization. It means
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that one can't construct the Poisson bracket applicable for both local gauge fields
A(x) and arbitrary link variables £/(/). However, it is possible to introduce mean-
ingful Poisson brackets for link variables U(i). So, the brackets for A(x) and for
U(i) are to some extent independent from each other. One calls them consistent
if they give the same answer for Poisson brackets of gauge invariant variables. In
other words, the A- and U-bracket may differ in the nonphysical sector but they
coincide when we restrict ourselves to physical gauge invariant observables.

In order to simplify the analysis of the {/-bracket, we recall here some standard
definitions and properties of quadratic Poisson brackets and Exchange algebras.

Suppose that we have a Poisson bracket defined on the matrix group. The sim-
plest form of such a bracket is quadratic in matrix elements

{£/', U2} = UlU2r , (2.30)

where we have used tensor notations

U{ = £7® id, U2 = id® ί/, (2.31)

and the matrix r is defined in the tensor product of two vector spaces. To ensure
the Jacobi identity, the following condition on the matrix r must be satisfied:

[>Ί2, ^23] + [ri2, r13] + [rπ, r23] = 0 . (2.32)

The constraint (2.32) is the classical Yang-Baxter equation. Fortunately, for any
simple Lie algebra we know two solutions to the very complicated equation (2.32).
Usually they are called r and r' and look as follows:

r = Σ Λ ' < g ) λ ' + 2 £ X < 8 ) Γ α , (2.33)
/ α

r'= Σh'®h'+2ΣΓy ®ty . (2.34)
/ α

Here the sum in the first term runs over the set of simple roots and in the second
over the set of positive roots.

The Poisson algebra (2.30) may be quantized if one knows a one parameter
family of solutions R(h) of the quantum Yang-Baxter equation

^12^13^23 = R27>R\7>R\2 (2.35)

with given asymptotics
R=\+hr+ - . (2.36)

Using R(h) we quantize the bracket (2.30) in the following way:

U1U2 = U2U1R. (2.37)

We shall denote solutions of the quantum Yang-Baxter equation corresponding to
the classical r-matrices (2.33,2.34) by R and R'. It is assumed everywhere in the
text that both of them depend on the deformation parameter h. It is worth mentioning
that

R'=PRP, (2.38)

where P is a permutation matrix in the tensor product of two copies of the same
vector space. It is important that along with ^-matrices in the fundamental repre-
sentation there exists a family of ^-matrices parametrized by pairs (/, J ) of finite
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dimensional representations of ^ so that RIJ act in the tensor product of the rep-
resentation spaces o f / and J and Eq. (2.35) holds for any triple of representations
(/, J, K) corresponding to the indices 1,2, 3.

In the class of regularizations suggested in [6] the Poisson brackets of graph
connections are quadratic. Let us first describe these brackets and then quantize.

To fix Poisson brackets for graph connections one must choose some particular
regularization of the singularity in (2.25). In practice it means that each vertex
should be equipped with a classical r-matrix (in the quantum case-quantum R-
matrix) from a certain equivalence class. Roughly speaking the class is defined by
the choice of the deformation parameter h. One also should fix a linear order of
incident links at each vertex in addition to the natural cyclic order. The latter may
be done by putting a little eyelash at each graph vertex. The eyelash determines
from where we enumerate links coming to the vertex. Concerning the choice of r-
matrices, we shall restrict ourselves to the particular regularization so the r-matrices
assigned to all vertices of the graph coincide.

There are three rules which determine the structure of the Poisson algebra of
graph connections:

1) The Poisson bracket of any matrix elements of two parallel transport matrices
corresponding to links which have no common end-points vanishes:

{t/(0', U(j)2} = 0. (2.39)

This condition brings locality into the definition of the Poisson bracket. Indeed, the
original bracket for 2-dimensional connections had a support at coincident points. If
the links have no common end-points, they do not intersect at all. It means that the
bracket of the corresponding matrix elements should vanish if we want to reproduce
the continuous theory.

2) For the matrix elements of the same matrix we have

{t/ίO1, U(i)2} = ^(rU(i)lU(i)2 - U(ί)lU(i)2r') . (2.40)

3) If the links have one common end-point, the Poisson bracket acquires the
form

{C/(0', U(j)2} = ~U(i^U(j)2r , (2.41)

if the link / is elder than the link j in the clock-wise order starting from the eyelash
(we can express it as i < j) and

{£/(/)', U(jf} = -y £/(/)'t/(7)V (2.42)

otherwise.
From the definitions of the Poisson algebra on the space of graph connections we

learn that the deformation parameter in this theory is equal to h = y. Actually, this
formula is correct only semiclassically. In the Hamiltonian formulation the Chern-
Simons integral is Gaussian. So, we should worry only about possible one-loop
corrections. Depending on the definition of the integration measure in the Chern-
Simons functional integral, one gets different results for the renormalized value of
the parameter k. In the standard scheme which we follow in this paper, k receives
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a one loop correction equal to the dual Coxeter number / :—>£ + /z*. So, the correct
value of the deformation parameter is h = -^^ .

Another one loop effect which shows up in the Chern-Simons theory is the
framing anomaly (see e.g. [20]). It appears that in order to define the renormalized
CS model one should fix a frame in the 3D manifold M and replace Wilson lines
by ribbons. Physical correlation functions depend on the choice of the framing.
The exact form of this dependence is governed by the framing anomaly. In the
Hamiltonian version of the CS theory we always have a preferred framing invariant
with respect to shifts along the time axis. We can stick to this framing from the very
beginning and in this way we do not trace the framing anomaly in the Hamiltonian
approach.

At this point we want to stress that the information about the one loop correction
of k is the only external data which we bring into the scheme of combinatorial
quantization. Further steps are quite independent of the Lagrangian formulation of
the theory and give a selfconsistent approach to the Chern-Simons model.

The relations (2.41) and (2.42) are written for the situation when both oriented
links point towards their common end-point. All the other relations may be derived
following the rules, if we assume that for the same link taken with two different
orientations the corresponding link variables are inverse to each other:

U(i)U(-i) = U(-i)U(i) = 1 . (2.43)

For example, if / < —j and the link j starts from the common end-point the Poisson
bracket (2.42) will be modified

{U(i)\ U(j)2} = -U(j)2rU(i)1 . (2.44)

So we have described the Poisson algebra for the gauge field on the graph. Now
the problem of quantization is in order. As we discussed, quadratic r-matrix Poisson
brackets admit straightforward quantization. Let us list the corresponding quantum
formulae:

(i)] , (2.45)

for links / and j which have no intersection points;

U(i)lU(i)2 = RU(i)2U(iγ(RfΓl , (2.46)

for the matrix elements of the same matrix;

U ( i ) } U ( j ) 2 = U(j)2U(i)}R, (2.47)

for two links which have a common target when / < j and

£/(»)' £/(7)2 = U(j)2U(iγ(R'Γ* (2.48)

for i > j. The quantum algebra defined by the relations (2.45-2.48) may be treated
as a noncommutative analogue of a lattice gauge field. As we see, the lattice emerges
naturally in this approach. Moreover, we do not know how to get rid of it in this
type of noncommutative gauge models. It may happen that the lattice formulation
is dictated by the noncommutative nature of the gauge field algebra.
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The next question concerns the generalization of the gauge symmetry to the
noncommutative gauge theory. As in any lattice gauge theory, gauge transformations
act at the lattice vertices:

U(i)h = h ( s ( i ) Γ ] U ( i ) h ( t ( i ) ) . (2.49)

It is easy to check that these transformations do not preserve the exchange relations
for C/'s unless we assume that h entering (2.49) are also noncommutative. More
exactly, h(x) and h(y) commute for x and y being different vertices

h(xγh(y)2 = h(y)2h(xγ , (2.50)

but form a (not co-commutative) Hopf algebra at each vertex.
The fact that the noncommutative gauge algebra is invariant with respect to the

quantum group valued gauge transformations may be expressed also in the following
way. We can treat matrix indices of U(i) as indices of the fundamental represen-
tation of the corresponding quantized universal enveloping algebra. If we consider
the Chern-Simons theory of ^-valued gauge fields with coefficient k in the action,
the quantum symmetry is an algebra U(l(^) for q being equal to exp(2πz/(& + h*)).

Here one can change the point of view and try to construct the noncommutative
gauge fields starting from some symmetry algebra placed at the lattice sites. It may
be a quantum group but one can choose also some other symmetry algebra. In par-
ticular, choosing the nondeformed Lie algebra ^ one should recover the standard
two dimensional lattice gauge theory. In this paper we explore the approach based
on the symmetry algebra and find that the gauge theory may be reconstructed if the
symmetry algebra is endowed with co-multiplication. The latter means that one can
construct tensor products of representations of the symmetry algebra and decom-
pose them into irreducible ones. In more mathematical language it means that the
symmetry algebra is considered as a Hopf algebra (see Sect. 3) or as a quasi-Hopf
algebra (see Sect. 7).

Down to earth, along with the matrix U(ί) in the fundamental representation of
the symmetry algebra we introduce a bunch of matrices for any representation as
in formula (2.28). It is not difficult to generalize quadratic exchange relations for
this case. For example, instead of (2.47) we get

U!(i)lUJ(j)2 = UJ(j)2Ul(i)λRIJ . (2.51)

Matrices U!(i) are not independent. They form a closed algebra so that a prod-
uct of any two matrix elements may be decomposed into a linear combination of
matrix elements. Formula (2.43) gives a simplest example of such relations. The
algebra of matrix elements of U!(i) is closely related to the algebra of functions
on the finite dimensional group G. The structure constants [. . .] which appear in the
decomposition

for the matrix elements of G are usually called Clebsch-Gordan coefficients. They
are defined as invariant tensors in the triple tensor product of representations /, J
and K and parametrized by an integer α. In formula (2.52) the summation over
e, /, K and α is assumed. Generalizing such relations, the Hopf (or quasi-Hopf)
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structure of the symmetry algebra enters in practice. The algebra of ί/7(/) looks
exactly like (2.52) but the structure constants C must be replaced by the Clebsch-
Gordan coefficients for the corresponding quantum algebra.

Let us give a simple example to clarify the definition of the exchange algebra
for graph connections. We pick up an elementary plaquette on the Riemann surface
and enumerate the links from 1 to s in the counter-clockwise order. It is conve-
nient to choose the orinetations so that all the arrows are also directed against the
clock rotation. We choose the eyelashes at all vertices to be directed inside the
plaquette. Under these conditions link variables U(\)...U(s) may be treated inde-
pendently of the rest of the graph. The corresponding exchange algebra looks as
follows:

U(iYU(iY = RU(iYU(iY(R'Γ (2.53)

for any link /;

U(i)lU(i + I)2 = £/(/ + \YR~lU(i)1 , (2.54)

where we assume that by definition U(s -f 1) — £/(!). As usual, the matrix elements
of £/(/) and U ( j ) commute if / and j have no common end-points.

Actually, the graph connection algebra does not know if there is a piece of
surface inside the plaquette or, perhaps, there is a hole there and the links which
surround the plaquette lie on the boundary of the surface. So one can try to de-
scribe the boundary in the Chern-Simons theory using the algebra (2.53,2.54). The
theory living on the boundary is the chiral WZNW model. It is not topological
and we cannot hope to describe it in an adequate way using our rough lattice ap-
proximation. On the other hand, if one increases the number of lattice sites so that
the distance between them becomes smaller and smaller, the lattice exchange al-
gebra (2.53,2.54) admits a nice continuous limit. Under certain assumptions it is
possible to prove that this continuous limit coincides with the Kac-Moody alge-
bra which governs the WZNW model assigned to the boundary. It was the rea-
son to introduce the lattice exchange algebra (2.53,2.54) as lattice current algebra
in [19].

So, for an appropriate choice of ciliation the graph connection exchange algebra
includes lattice Kac-Moody algebras for particular plaquettes as its subalgebras. It
is one extra check of consistency of our lattice model.

We have described the basic structures that we are going to investigate in this
paper. Let us remark that the lattice simulations of the Chern-Simons theory and of
the moduli space of flat connections are expected to give exact results because the
Poisson structure and the phase space may be reproduced exactly on the semiclas-
sical level. The quantum theory on the graph appears to be a lattice gauge theory
associated to the quantum group. This theory enjoys the quantum gauge symmetry
and this is the main difference between our model and the model [5] where the rela-
tions (2.47-2.48) are replaced by the commutative relation of the type (2.45). It is
remarkable that the quantization of the Chern-Simons theory leads to the quadratic
algebra which uses R-matrices as structure constants. It makes the theory efficiently
finite dimensional and this is the reason to call this approach combinatorial quan-
tization of the Chern-Simons model.

Now we change the language to a more mathematical one and turn to the
systematic treatment of the algebra of observables of the Hamiltonian Chern-Simons
theory.
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3. The Algebra (̂  of Gauge Transformations

This section is devoted to a precise formulation of local gauge symmetries on
the graph or lattice. Gauge transformations ς will be assigned to the vertices of
the graph. The algebra ^ of all gauge transformations comes equipped with the
structure of a ribbon Hopf-*-algebra.

3.1. The Algebraic Structure of<&. To be specific, we consider a graph G formed
by the edges and vertices of a triangulation of a given oriented Riemann surface
Σ. For every oriented link ί of G there is an oriented link — / which has oppo-
site orientation. The set of oriented links /, -/, y, -y, &, —&,... will be denoted
by L. For elements in the set S of vertices we use the letters x, y, z. We
introduce the map t : L H-» S such that t ( i ) — x, if the oriented link i points towards
the vertex x.

We describe the local gauge symmetry by assigning a ribbon Hopf-*-algebra
&X to every vertex x G S. Ribbon Hopf-algebras were introduced in [28]. Their
definition is based on the algebraic structure of quasitriangular Hopf-*-algebras, so
that the algebras &x come equipped with a co-unit ελ-, a co-product AX9 an antipode
yx and an ^-matrix Rx. While we assume that the reader is familiar with the defining
properties of a quasitriangular Hopf algebra, we want to make some more detailed
remarks on the *-operation. In a Hopf-*-algebra co-product, co-unit and antipode
have to be consistent with the conjugation *. In detail this implies that εx and Δx

are *-homomorphisms, i.e.

Since A x ( ξ ) is an element of yx 0 ̂ x, the second equation requires an action of *
on <£x 0 <&x. This action is not unique. One can either define (ξ 0 η)* = ζ* 0 η* or
(cp. [2])

(ξ®ηY = τ ? * Θ Γ . (3.1)

Throughout this paper we will consider the second case (3.1). The main rea-
son is that this type of *-operation appears in many interesting examples, e.g. in
Uq(sl2\ qp = 1. Readers interested in the first case can easily rewrite everything
below. The construction of a scalar product on the space of physical states simplifies
dramatically.

It is consistent to demand that the antipode ̂  is a *-anti-homomorphism [12],

xσ
In a quasi-triangular Hoρf-*-algebra, unitarity of the Λ-matrix Rx = Σπ

 r

x

% = Er%®r£=R-1 (3.2)
(7

is assumed to hold. Again these properties can easily be checked in the example
Uq(sl2)9 qP = l.

Now let us proceed towards a description of ribbon Hopf-* -algebras [28]. Given
the /?λ -element, we build ux G &x from its components,
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The standard properties of the element ux are

ux^
l(ξ) = ,9>x(ς)ux , < - u~} , (3.3)

Δx(ιιx) = (Uλ Θ ux)(R^RxΓ
l = (RxRλΓ

l(ux ® "*) (3-4)

Moreover, the combination ux<%(ux) is in the center of ^x. To obtain a ribbon
Hopf-*-algebra we postulate the existence of a central "square root" vx of this
element which is supposed to obey

υ2

x = uxyx(ux) , <Sτ(υx) = υx, εx(vλ) = 1 , (3.5)

l , Δx(vx) = (R'xRxΓ\vx ® »*) 0-6)

Such elements are known to exist for the quantized universal enveloping algebras
of all simple Lie algebras [28].

One could demand that all the algebras ^x are isomorphic as Hopf algebras.
But this is more than we need. To prepare for a weaker statement let us recall
the notion of twist equivalence. ^x is said to be twist equivalent to another ribbon
Hopf-*-algebra ^* with co-unit ε*, co-product zJ*, antipode ,9 ,̂ ^-matrix R* and
ribbon element υ*, if there is a *-isomorphism ιx : & ι— » $* such that

ε γ(ζ) = ε»(ι x(ς)),

(/Λ. 0 /.)(#,) = F'~R*FX , /,fe) = ^* (3.7)

holds for all c G ̂ Λ. Here Fx G ίί* 0 ^^ is unitary, i.e. FΛ* = F~1

9 and F/ denotes
the same element with exchanged components in the tensor product. If we would
restrict ourselves to Fx = e 0 e, we would end up with the usual notion of isomor-
phic Hopf-*-algebras. For the moment we assume that both coproducts Ax, Δ* are
co-associative. This amounts to a severe restriction on Fx. However one can check
that Fx = R~} is related to a non-trivial twist, which gives (ιx ® ιx)(Rx) = R'~] .
Using this weak notion of equivalence of Hopf-* -algebras it is natural to demand
that all the algebras ^Λ- are twist equivalent to the same ribbon Hopf-*-algebra
Ή*. In other words we assume the algebras ^x of local gauge transformations to
be pairwise twist-equivalent. Let us mention that the element ux introduced above
is independent of the twist in the sense that

The full gauge symmetry ^ is obtained as a product over all local gauge sym-
metries ^γ,

The algebraic structure of the local symmetries induces a co-product A, a co-unit
ε, an antipode .¥ and a /^-matrix for the full gauge symmetry ^ such that ($ be-
comes a quasitriangular Hopf-*-algebra in the sense discussed above. Ribbon ele-
ments vx £ yx furnish a ribbon element v for ($.
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3.2. Representation Theory ofΉ. We start a discussion of the representation the-
ory of ^ with some general remarks. Given two representations τ, τ' of a Hopf-
algebra C^, their tensor product τ Ξ τ' is defined with the help of the co-product A

The co-unit ε is a one-dimensional representation of ^ . It is a trivial representation in
the sense that (ε Ξ τ)(ξ) = τ ( ξ } = (τ Ξ ε)(ξ) holds for all c e .̂ A representation
τ on a Hubert space F is called unitary, if τ(£*) = τ(ί)* for all ς G ̂ . Note that
the tensor product of two unitary representations τ, τ' is not unitary in general
(provided that we use the standard scalar product on the tensor product of Hubert
spaces). Instead we have

The (nonunitary) matrix (τ®τ')(R) furnishes an intertwiner between the represen-
tations (τ 0 τ') o A' and (τ ® τ') o zl.

There are two natural "contragradient" representations which come with the
antipode <9". They are obtained as

(1) τ(ξ) = 'τ(y-}(ξ))9 (3.8)

(2) τ(c) = 'τ(.^(O) , (3-9)

for all ξ G ̂ . Here ' denotes the transpose of matrices. The relations (3.3) assert
that τ and τ are equivalent but non-equal unless u = e. Unitarity of τ results in the
unitarity of both contragradient representations. The tensor products τ Ξ τ, τ Ξ τ
contain ε as a subrepresentation (hence the name "contragradient"). These properties
can be abstracted from the relations

Eΐab(ξl

σ)τac(ξ2

σ) = c(0^,c ,Σ^b(ξl

σ)τab(ξ2

σ) = c(ξ)δatC , (3.10)
σ a

which are a direct consequence of the definition of the antipode ϊf . Here ξ'σ are
defined via the decomposition of the coproduct:

Representations of the algebra ^ of gauge transformations are obtained as fam-
ilies (τx)xςs °f representations of the symmetries &x. We are mainly interested in
those representations of ^ which come from the same representation of '̂ v At
this point let us assume that ^ is semisimple and that every equivalence class
[J] of irreducible representations of ^* contains a unitary representative τ^ with
carrier space VJ . For the moment, the most interesting examples of gauge symme-
tries -e.g. Uq(sl2\ qp = 1 -are ruled out by this assumption. This will be revisited
in Sect. 7. Tensor products τ[ Ξ τ^ can be decomposed into irreducibles τf . This
decomposition determines the Clebsch-Gordon maps C"[IJ \ K] : V1 (g) VJ *-* Vκ ,

Cl\lJ \ K}(τ( m τ J J ( ξ ) = τf (c)C:[Z7 | K] . (3.12)

The same representations τf in general appear with some multiplicity Nj/ . The su-
perscript a = 1,. . .,Nχ keeps track of these subrepresentations. It is common to call
the numbers Nj/ fusion rules. Normalization of Clebsch-Gordon maps is connected
with an extra assumption. It will be central for the positivity later. Notice that the
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ribbon element v* is central so that the evaluation with irreducible representations
τ[ gives complex numbers v1 = τ*(ι;*). We suppose that there exists a set of square
roots KJ, KJ = v1, such that

Cl[IJ I K](τ( 0 ri)(RM[IJ \ I]* = δa,bδκ,L . (3.13)
KK

Here R^ = Σr>*σ®r*σ' Let us analyse this relation in more detail. As a conse-
quence of intertwining properties of the Clebsch-Gordon maps and the ^-element,
τ * ( ζ ) commutes with the left-hand side of the equation. So by Schurs' lemma, it is
equal to the identity eκ times some complex factor ωab(IJ K). After appropriate
normalization, coab(IJ \ K) = δa^ω(IJ \ K) with a complex phase ω(IJ \ K). Next
we exploit the *-operation and relation (3.6) to find ωab(U \ K)2 = vIvJ /vκ. This
means that (3.13) can be ensured up to a possible sign ±. Here we assume that
this sign is always +. This assumption is met by the quantized universal enveloping
algebras of all simple Lie algebras because they are obtained as a deformation of
a Hopf-algebra which clearly satisfies (3.13).

We wish to combine the phases KJ into one element K* in the center of ^*, i.e.
by definition, K* will denote a central element

/ c * < Ξ ^ * with τ ί ( κ * ) = κ j . (3.14)

Such an element does exist and is unique. It has the property K* = jc"1.
The antipode ^ furnishes a conjugation in the set of equivalence classes of

irreducible representations. We use [J] to denote the class conjugate to [J]. It is
defined such that the two equivalent contragradient representations τ^ τ^ of the
representative τ^ G [J] are elements in the conjugate class [J].

Let us finally mention that the trace of the element £f*(u*)v~l in a given rep-
resentation τj computes the "quantum dimension" dj of the representation τj [28],
i.e.

dj = dim,(F7) = Ύr(τJ(^Mυ-1)) .

Representations and intertwiners of ^* are now transported to the algebras yx.
This is accomplished with the help of isomorphisms ιx and twist elements Fx,

τ'x(ξ) = τi(αθ) for all ξ e

C°[IJ K] = Cl\IJ I K}(τ(

The representations τl

x act on the space Vx — V1 . It is immediately checked that the
new maps Cγ satisfy the standard intertwining relations

τ?(ξ)C;[IJ K] = Ca

x[IJ I K](τ!

x 0 τ ( ) ( Δ x ( ξ ) ) for all ξ e &x . (3.15)

Similar relations hold for the adjoint intertwiners

C°[IJ I K]* = (τ{ ® rί)(FT')C2[A/ | K]* ,

C°[IJ I KYτ*(ξ) = (τ'x ® ^)(Δ'x(ξ))Ca<(U K]* for all ξ e 9X .

Finally, the central element K* G ̂ * introduced in Eq. (3.14) is transported to cen-
tral elements in ^r with the help of the formula κx = ι~λ(κ*\
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So far we have only described the represenation theory of the ^x. Among all
the representations of the total algebra ^ of gauge transformations which can be
built from representations of the ,̂ we need only one family (V'O/ei assigned
to the links of the graph. The representations τ / 5 / of *& will later describe the
transformation properties of the basic quantum variables U!(i), i.e. of the parallel
transporters along the link /.

( τ ' y ( ξ ) i f ξ e Z y

τ 7 ' ' (0=< τ'x(ξ) ifξ£$x

(εx(ξ) else

for x = t(—i\y = t ( i ) . To decompose tensor products of representations τ7'', τj''
assigned to the same line /, we use the following intertwiners:

ca[u\κγ = ca

y[ij\κ] ® '(c uJiK]*) . (3.16)

As usual, ' denotes the transpose. Ca[IJ\K]1 is a map from (F7 0 VJ

y) 0 (F/ 0 F/)

to Vγ 0 V^ which enjoys the intertwining property

τ κ > ' ( ξ ) C a [ I J \ K ] 1 = Ca[IJ\K}\τl1 0 τ J ' l ) ( A ( ξ ) ) for all ξ e & . (3.17)

There are further relations between representations on the same link, which
involve both orientations /, — /. In fact, there is an equivalence between the repre-
sentations τ Λ / and τ7'"'. Let us describe this explicitly. By rel. (3.3), the element
yy(uy) furnishes intertwiners η!

y = τ!

y(^y(uy)) with the property

From this equation one deduces that

with η1*1 =e!

x® V y . (3.18)

Here e^ is the identity on F/ — F7. A similar equivalence appears between the
representations τ;'-/ and τ7 ' '. This time the intertwiner is constructed from the
Clebsch Gordon maps. We introduce it according to

where t2 means transpose only with respect to the second component and n1 = n1 is a

normalization determined by μ7-'//'"' = id. The element //'z enjoys the intertwining
property

4. Quantum Group Valued Gauge Fields

In this section we plan to introduce our basic lattice algebra 3$. It is an algebra
generated by the quantum lattice connections U1 together with the quantum gauge
transformations ξ G ^ discussed in the preceding section. Relations between the
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elements Ul and the gauge transformations ξ G ̂  are determined by the covariance
properties of the quantum lattice connection. All other relations among elements
U!(i) are postulated in the spirit of Sect. 2.

4. 1. Definition of the lattice algebra $. To define the lattice algebra $ We have
to introduce some extra structure on the graph G. The orientation of the Riemann
surface Σ determines a canonical cyclic order in the set Lx = {i <G L : t ( i ) = x} of
links incident to the vertex x. Writing the relations in $ we are forced to specify
a linear order within Lx. To this end one considers ciliated graphs Gc/ / . A ciliated
graph can be represented by picturing the underlying graph together with a small
cilium cx at each vertex. For ij £ Lx we write i ^ y, if (cx, /, j) appear in a
clockwise order.

Definition 1 (Lattice algebra ^). The associative algebra ffi = $(GCI\) is generated
by elements U^(i) = L^ i i/2(/), i £ L, α = 1,. . . ,dim(τ7''), and the elements of f$

such that
1. The unit element e of ^ acts as a unit element of $, i.e. U%(i)e = Uy(i) =

eUί(i).
2. The tuples ( U [ ( i ) ) transform coυariantly according to the representation

ξUί(i) = U I

β ( i ) ( τ I ^ ^ i d ) ( A ( ξ ) ) for all ξ e & . (4.1)

3. "Functoriality" holds on the links

7 J K=ΣX (θcβ

β
(4.2)

υ'ab(i)u'cb(-i) = δa,c , ubu(-i)υ'hc(ί) = δa,c . (4.3)
Here C[..] are matrix elements of the Clebsch Gar don intenvίners (3.16) intro-
duced in the last section.

4. Elements U^(i) satisfy braid relations

for i ^ j or if i, j have no common endpoints.

This definition is rather central and requires some thoughtful discussion. Intu-
itively, we prefer to think about the generators U^a2(i) as elements of a matrix.

Nevertheless proofs often simplify if we regard them as vectors in a dim(τ / ' /)-
dimensional vector space. Whenever we adopt the second point of view, we use the
multiindex α instead of its components a\, a^_.

The covariance relation in 2 can be written in a more explicit form if we insert
the expansion A ( ξ ) = ^ξl

σ 0 c£,

This tells us how to shift elements ξ G ̂  through factors U%(i) from left to right.
We note a simple consequence of this fact.

Proposition 2. Every element of J* is a complex linear combination of elements
of the form

UΪ(il)...U%(in)ξ with n ^ Qι,ξe&.
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The relations (4.1) appear as a special case of a more general notion of covari-
ance.

Definition 3 (^ (right-) covariance). Let τ = (τα^)α^6/ be a representation matrix
of a n-dimensional representation of <&. An n-tuple F = (Fα)αe/, Fy G ̂ , is said
to transform (right-) covariantly according to the representation τ of $ if

ξFx=Fβ(τβ3ί®id)(A(ξ)) (4.5)

for all ξ £ &. F € $ is called ^-invariant if it transforms according to the trivial
representation ε of ,̂ or equίvalenΐly, if

ξF = Fξ (4.6)

for all ξ G 0.

Indeed this is an appropriate notion of covariance. Assume for a moment that
ζ is an element of a unitary group rather than a general Hopf algebra. Then the
co-product and the *-operation act according to A ( ξ ) = ξ 0 c and ς* = c"1. So the
covariance relation (4.5) simplifies to ξF^ξ* = Fβτβχ(ξ).

After this preparation we see that the covariance (4.1) can be regarded as a
quantum version of the classical relation (2.29). The latter means that the variable
Ua{a2(i) transforms covariantly according to the representation τl

y in the second

index while it transforms according to the representation lτl

x o <fx in the first index
(if / points from x to y). This is encoded in the definition of τ / 5 / .

We will often have to move elements ξ G G from right to left. According to
the following proposition, this is always possible.

Proposition 4 (left covariance). Suppose that the tuple (Fα), Fy G $ transforms
covariantly according to the representation τ of <&. Then we have

(4.7)

for all ξ G ($. In other words, every right-covariant tuple in 3$ is also left-covariant.

Proof. We write the covariance relation for the components ζ2

σ in the expansion of

Multiplication with τ^,(^~l(ξ]

σ)).) summation over σ and the co-associativity of A
lead to

= F 7 ε ( ξ l

σ ) ξ 2

σ = F,.ξ .

The left-hand side of this equation is equal to τyα(

This concludes our discussion of item 2 above. Let us turn to functoriality
next. At the end of the preceding section we described a number of equivalences
between representations assigned to the link /. The relations in 3 mean that all these
equivalences reflect themselves as equalities among the variables U^(i). While this
explains the term "functoriality" it is much instructive to check that the postulated
relations are consistent with the covariance. This is done by comparison of the
definitions in 2, 3 with the intertwining relations (3.17) of Ca[IJ\K]1 and property
(3.10).



336 A. Yu. Alekseev, H. Grosse, V. Schomerus

Equations (4.2) should be regarded as a kind of operator product expansions.
They can be written in a form which comes close to the classical relations (2.52), if
the definition (3.16) of Ca[IJ\K]1 is inserted. The set of relations (4.3) reflect the
behaviour of U!(i) under / — > — / . In the formulation given in 3 they look exactly
like their counterparts (2.43) in Sect. 2. In the quantum algebra $ we would like
to substitute (4.3) by a new set of relations which is manifestly covariant. Using
the operator product expansions (4.2) one derives

(4 8)

(The element μ1*1 was defined in (3.19)). In fact, relations (4.2, 4.8) are equivalent
to the pair (4.2, 4.3) and thus furnish a new definition of 8&. The latter implies that
every product of elements t/7(/) and £/»(—/) is a complex linear combination of

UJ

β(i).
We can now proceed to the discussion of item 4. Of course braid relations

substitute for the commutation relations of classical lattice connections. The braid
relations between the components of U*'(/), UJ(j\ ί ^ y, are almost uniquely de-
termined by the consistency with the transformation law and with the associativity
of the product in 3$. Since (τ7'' <g) τJ*J)(R) furnishes an intertwiner between the rep-
resentations τ7 '7 \E\ r7'7 and r7'7 Ξ τ7'', both sides of the braid relations transform
according to the same representation τ7'' IE1 τj'7. Consistency with the associativity
relies on the Yang Baxter equation for R. One should also notice that these braid
relations require the introduction of eyelashes.

Actually the braid relations in the definition of $ are identical to the correspond-
ing relations in Sect. 2. If /, j have no common endpoints then (τ7'' ®τJ*i)(R) is
the identity matrix so that the corresponding variables U!(i), UJ(j) commute. Sup-
pose next that the links /', j point towards the same vertex Λ: while their second
endpoints are disjoint. Then (τ / 5 / 0 r 7 ' 7 ) (R) = (τ!

y 0 τJ

y)(Ry) and this matrix acts
only on the second component of the indices y = (c\9 CΊ\ δ = (d\, d^)- So we end
up with the relations (2.47) if i < j. Finally we come to the case i = j, where the
/^-matrix in 4 picks up contributions from both endpoints of the link /. More pre-
cisely (τ7'' (8) τJ'J)(R) is equal to the matrix (τ7, 0 τ^X^X'τ7 0 l τ J

x ) ( R x ) acting on
both components of the indices y,δ. To see this one uses that (£fx ® ^X)(RX) = Rx.
Consequently, the braid relations (4.4) can be written in the form of relation (2.46).

The braid relations spelled out in 4 do not determine the commutation relations
for arbitrary choice of the links z, j. For example if z, —j point towards the same
endpoint x, the commutation relations for UI(i),UJ(j) are not stated explicitly.

However they can be derived from the relations among £/7(z), UJ(-j). The reason
is that (4.8) provides a complex linear relation between U!(i) and U!(—i). As an
example we give the relations for -/, —j if / g j,

Uί(-i)UJ

β(-j) = (τj*-' 0 τ^(R')U^-j)U^-i) . (4.9)

The reader is invited to verify this relation explicitly. We arrive at the rather im-
portant conclusion that any two variables U!(i), UJ(j) can be (braid-) commuted.

Proposition 5. Suppose that i\,i^...in is a maximal ordered set of oriented links
with the property that every link appears only once and only in one orientation,
i.e. dbz v=Mμ/0r all vφμ. Then any element of $ is a complex linear combination
of elements

Uί\(iι)...U^(ia)ξ with n^Q,ξeV. (4.10)
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The following proposition asserts that the functoriality is consistent with the
braid relations.

Proposition 6 (braid relations for composite operators). Suppose that F = (F%),
F' = (Fβ) and F" = (F") transform covarίantly according to representations τ, τ'

and τ" of <&.
(i) Suppose that the braid relations

hold true. Then F and F'F" satisfy braid relations

FtF'pFf = Ftf'Fp(τpx Θ (τ' Ξ τ")μVtβ7)(R) . (4.1 1 )

The proof of this proposition is a standard application of the quasi-triangularity
relation of R (cp. [1] for details).

Before we finish our discussion on Definition 1 we want to remark that an
algebra similar to $ was proposed by Boulatov [5]. In his approach, variables
assigned to different links commute. We see that this is in general not consistent
with the local quantum symmetry of the model, i.e. by the consistency with the
transformation law under local quantum symmetry transformations one is forced to
use braid relations instead of ordinary commutation.

4.2. The ^-operation on 38. We will obtain the observables of Chern-Simons as a
subalgebra of 38. In quantum physics, observables come with a * -operation. This
*-operation will be reminiscent of a *-operation in $. The construction of the latter
is the main topic within this subsection.

Proposition 7 (anti-homomorphism θ). There is a unique anti-homomorphism
θ : & K^ $ with the properties

θ(ξ) = Γ , (4.12)

In particular, θ extends the ^-operation on & C 38.

"Conjugations" of this type were first proposed in [2] (cp. also [9] for a simple
example). If the R-matήx would be trivial (as it is for group algebras), the action of
θ would simplify to θ(Uy(i)) = U^(—i). This is the familiar unitarity of the lattice
connection. The formula (4.13) looks more convincing, if we use the elements
Rx,Ry instead of R. One can check that

0(^(0) = (τί ® iVab(Rx)Ubc(-Wy ® idM*;1 ) - (4.14)

We start the proof of the proposition with the following lemma.

Lemma 8. With v\ — τ ! ( v * ) the expression (4.13) for 0 can be rewritten according
to

θ(ί/α'(0) = v^ηfrtf-' 0 id)(/Oί//(-0 - (4.15)
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Proof. To prove this relation we apply the covariance relation (Proposition 4) to
move the 7^-matrix from the right to the left and insert the definition of τ!'~l ,

0 id

id)/T '(^(

The last step uses the quasi -triangularity of 7? and the definition of u (3.3).
Now (^®id)R-\6f(u-])®e) = (^(u-*)® e ) ( S f - } ®id)R-} = (^(ιΓ} ) 0 e)R
and with the definiton (3.18) of η1*1 this finally gives the formula anticipated in the
lemma.

Proof of Proposition 7. Since the action of 0 is specified on all generators of ,̂
uniqueness is obvious. We have to show that the extension of θ to 2$ is consistent
with the relations in .̂ The simplest part is the consistency with the covariance
relations. We apply θ to the right-hand side of the covariance relation (Definition
1.2) and use a series of intertwining relations,

The reader is invited to check this calculation carefully. The consistency with the
covariance relations provides the main motivation for the definition of θ. The factor

which appears in 0(t//(/')) is designed to match the different transformation laws of
0(ί/α'(0) and Uft-i).

Let us turn to the braid relations next. If ij have no common endpoints, the
relations which result after the applications of θ are obviously identical to the
commutation relations for U!(—i\ UJ(—j). So let us concentrate on the case / ^ j.
We have to check that

θ ( U J

β ( j ) ) θ ( U ί ( i ) ) = (τί>τ^)(Λ/-1)θ(ί/J(0)0(£//(7)) .

To do this we insert the formula for Θ(U) given in the lemma above. After dividing
by v^~2η!'1 we obtain
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We apply the transformation law (Proposition 4) to move all factors involving R
to the left,

= (ήσ

 / 0 τ1:'1 0 ιά)(R-2

lR23(ιά 0 A)R)UI

p(-i)U^(-j).

The quasi-triangularity of 7? helps to simplify the product of R matrices. More
precisely, we apply

(id 0 A)(R-])R-3

1R12R\3R23R\2 = R'n

to end up with the formula (4.9). Consistency of θ with the relations (4.2, 4.8) is
left as an exercise.

One is tempted to guess that θ gives a *-operation on ,̂ but this is not quite
true. In fact it turns out that θ o θ is non-equal to the identity unless Rf = R~l. This
is the content of the following calculation:

Θo0(£/ α

7 (0) =

id)(Λ)ί/, (0

The result gives a concrete idea how θ can be improved to obtain an involution.
Recall that we have introduced central elements κx £ ^x such that τ j

x ( κ x ) = i j. The
set of κx, x G S, determines an element K £ C^ having the properties

Conjugation with K gives an automorphism of ffi which can be used together with
θ to construct the desired * -operation on .̂ To formulate the result we define
σh : ffl ̂  $,

σκ(B) = κ~]Bh for all BeOS.

Theorem 9 (*-operation on $\ The anti-automorphism σκ o θ : $ ̂  $ determines
a ^-operation on $, i.e. (σh o θ)2 = id. We will write B* = (σκ o Θ)(B) for all
B £ ̂ .

5. The *-Algebra <<rf of Observables

We now come to the central part of this paper. The algebra j/ of observables,
i.e. invariant elements generated by the gauge field, will be constructed. The
*-operation on ί% can be restricted to <v#. Even though the gauge fields depend
on the position of cilia, the *-algebra ^ is essentially independent and thus
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). To avoid confusion about the term "observables" we should stress
that the observables of the Chern Simons theory are only obtained after imposing the
additional flatness conditions. This will be discussed in a forthcoming publication.
The true observable algebras of Chern Simons will be identified as factor-algebras
of j/ and all statements we make about ^ in the following - in particular about
the *-structure and positivity - imply corresponding results for Chern Simons ob-
servables.

5.7. The definition of s$. The elements Ufa), i G L generate a subalgebra of .̂
It will be denoted by (Ufa)).

Definition 10 (algebra of observables). The algebra s$ of observables is the in-
variant subalgebra of (Ufa)), i.e.

d = {A <E (U!

y(i)) C ^\ξA = Aξ for all ξ G ̂ } .

j/ is spanned by elements of the form

C,,..̂ ! (/,)...£/£(;„) n ^ O , (5.1)

where C is supposed to possess the following intertwining property:

CX?'1''1 m Ξ f7"' '")(£) = ε(ζ)C for all ξ e & .

Before we state our first result in this subsection we want to introduce the
following shorthand notation:

Δ(n+\] = ({dn ^ AχA(n)) for M „ ^ l ?

A(n+l} = (id 0 A(n})(A)A(n} for all n ^ 1 . (5.2)

Here A is an arbitrary element in ̂  0 ̂ .

Theorem 11 (*-operation on ,£/). The ^-operation σ> o θ : $ ^> $ restricts to a
^-operation on the algebra stf of observables.

Proof. We show that 0 maps all elements of the form (5.1) to elements in j/

Here we used the definition (5.2) for (Λ~') ( n ). Factors f/ / ! / have been absorbed in
the complex coefficients C'β ^. C' has again a "good" intertwining property,

C'ε(ξ) for all ξ&f3.
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Since (R~])(f^ has n + 1 components and we apply representation τL~l only to the
first n components, the above linear combination still has coefficients in .̂ However
one can show (e.g. by drawing a picture),

so that the image of elements of the form (5.1) under θ is indeed an invariant
element generated by the U(i)'s. Since K is in ,̂ it commutes with all invariant
elements in $ and in particular with all the observables. Hence σh(A) =A for all
A G $0 to that the assertion about σ* o θ follows from what we said about θ.

5.2 Independence of the eyelash. The braid relations in & and hence ,̂ *,,$/
depend on the choice of the cilia at the vertices x. While this should not disturb us
as far as the "unphysical" algebra 3ft is concerned, we want the observable algebra
j/ with * -operation * to be defined on the graph G rather than on a ciliated graph

Gcil-

Proposition 12. Suppose that Gcιι and Gcι]ι are two ciliated graphs which differ
only by their dilations. Then stf(Gcl{) ~ ,c/(G f///) as ^-algebras.

Proof. Let us consider an elementary move when the eyelash position changes at
one vertex x G S for one step. This means that the smallest link incident to x (in
the ciliated graph G c//) becomes the largest link incident to x in GΓ ///. This link will

be denoted by /. We agree to use £/7(y) for generators in ^(GΓ//) = & and U ^ ( j )

for generators of &(Gclj/) = & . If F G $ we write F to denote the corresponding

element in &' where all generators U^(j) have been replaced by U y(j\ The only
effect of the different position of eyelashes is that the relations

Uί(i)UβU) = U!(j)U'ό(i)(τ'£ (8) τJ;/)(Rx) ,

which hold for all links j φ / on Gc,ι incident to x are substituted by

ϋ((i)UJ

β(j) =

Observables in $ are obtained as linear combinations of

Here Fμ is a tuple of elements in & generated by U^(j\ ±yφ/, and Fμ is supposed
to transform covariantly according to the representation τ of (§. Cμoί are complex
numbers chosen in such a way that A is invariant. Let A' be a second observable
in $ which is written in the same form with a tuple F'v transforming according to
the representation τ', i.e. A' = F(,Ui(i)C'vo. The product of AA1 defines coefficients

Cvz such that

If we perform the same calculation in 2$' we obtain

AA = FU,(ί)UJ(i)( ® τ')(Rx
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This basically follows from Proposition 6 and the influence of the different positions
of the eyelash. Using the intertwining properties of the coefficients C, the equation

(&* 0 id)R = R~\ relations (3.6) and functoriality on the link / the product AA can
be rewritten as

AA = FμF
!

vϋ[(i)UJ

δ(i}(τ^ 0 τJ^)(R(Rx)Cμvyβ

In the last line v/ — τ ( ( v x ) etc. In other words, the map E : .$4 ι—» stf1 given by

is an automorphism, i.e. E(AA'} = E(A)E(Af). Let us finally check that this auto-
morphism is compatible with the *-operation on observables,

E(A)*=(Fμϋ[

The last row is again meant to define the coefficeints C and the tuple F . On the
other hand we have

E(A)* =

Λ / Λ /"

= FvUχ

So we conclude that E(A*) = E(A)*, i.e. E defines a * -automorphism between the
algebras stf and ,β/7. Since two arbitrary ciliations of the graph G can be obtained
from each other by a series the elementary moves considered in this proof, we
established the independence of the eyelash. Let us add that the isomorphisms be-
tween algebras constructed starting from the same graph with different ciliations are
canonical. They are completely defined by the pair which consists of the graph and
the symmetry Hopf algebra.

6. The Regular Representation

Let us finally construct the regular representations of the lattice algebra $ and the
subalgebra stf of observables. Both will act by multiplication operators on a space
$*. Elements in 3F have an interpretation as "functions" on the (noncommutative)
space of lattice connections. As an algebra, 3F is generated by a set of "coordinate
functions" u^(i). The elements of the gauge symmetry ^ act on & as generalised
derivations. Using the *-operation on $ and a generalized multidimensional Haar
measure we will be able to define a scalar product on 3F.
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6.1. The definition of ^ . In our present context it is obvious how to define the
algebra 3F of "functions" on the space of lattice connections. So instead of giving a
lengthly construction which work also in the more general cases considered below,
we present an ad hoc definition for 3F and check that it carries the announced
representation of 2$.

Definition 13 (Algebra ^). The algebra 3F — J^"(Gα/) is an associative unital al-
gebra with unit Ω. It is generated by elements u[j(i\ i £ L, subject to the relations

«ί(/)(τίv' ® τ ' K Λ ) , (6.3)

for i rg j or if ίj have no common endpoints.

We immediately recognize 3F to be our old algebra ( U y ( i ) ) . However, this
isomorphism is a mere coincidence. In the more general framework of quasi-Hopf
algebras, the analogue of 3F turns out to be non-associative and consequently cannot
be isomorphic to any subalgebra of the associative algebra 88. This remark might
seem too prospective, but it should at least explain why we decided to give an
independent definition of 3F .

Because of their interpretation as functions in the non-commutative coordinates
u = ( u y ( i ) ) , we will often use symbols \jj(u\φ(u) for elements in 3F . A represen-
tation of π of ̂  on ̂  is defined by the following relations:

(6.4)

π(ξ2

σ)ιl/2(u) , (6.5)

π(ξ)4(i) = 4θ>//α(0 , π(ξ)Ω = Ωε(ξ}

for all \jj(u\-φ ι (w) ,^2(w) £ 3? . The first equation means that elements Uy(i) act as
multiplication operators on 3F . The last two lines specify the action of the gauge
symmetry (& . Because of relation (6.5) one says that elements ς of the quantum
symmetry act as generalized derivations on the algebra J^.

We see that the operators π(L^(/)) generate ^ from the "constant function"
Ω. In particular u!

y(i) — π(Uy(i))Ω. Given an element ψ(u) £ ̂ , its "generator"
Ψ(U) e 2ft (i.e. ψ(u) = π(Ψ(U)}Ω) is nearly unique. The only freedom in the
choise of Ψ(U) comes from the possibility to mulitiply from the right by factors
C £ C^, ε(ξ) = 1, without changing the generated element ψ(u) £ 3F .

A tuple ψ y(u) of elements in ZF is said to transform covariantly according to
the representation τ of ^ if

φ(u) £ 3F is invariant, if π ( ξ ) φ ( u ) — φ(u)ε(ξ). Invariant elements φ(u) G ̂  gen-
erate a subalgebra r^

inv of .̂ This subalgebra carries a representaion of the algebra
,δ/ of observables (the restriction of π to the algebra of invariants stf). Jnnv is the
"algebra of functions" on the moduli space of connections.
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6.2. A scalar product on 3F . It is our aim to construct a scalar product on ,̂
i.e. for "functions" on the space of connections. The procedure mimics the clas-
sical situation. The main ingredient is a multidimensional Haar measure ω, which
allows to compute integrals of arbitrary functions on the space of connections.
The scalar product of two functions ψ /(w) = Ψt(U)Ω, i = 1,2 is then obtained as

Instead of defining a functional directly on the algebra .̂ Γ, we prefer to work
with a linear map ω : $ ι— » C. The relation to the multidimensional Haar measure
will be apparent. By Proposition 5, a linear functional on ω is specified when we
prescribe that values it has on elements of the form (4.10). In the case of ω we
want ω(e) = I and

ω(UI

Λ\(il)..M^n)ξ) = ε(ξ)δIltQ...δInβ. (6.6)

For this to be well defined it is essential that every link appears only once and only
in one orientation among the links iv. Some properties of ω are obvious. We state
them here without proof.

(6.7)

ω(F) = ω(F*) (6.8)

for all ξ G &, F G J*.
The interpretation of ω as a multidimensional Haar measure uses the correspon-

dence between elements \j/(u) G 3F and their generators Ψ(U). Since ω depends on
ξ only through the value ε(ζ), a>h(ψ(u)) = ω(Ψ(U)) does make sense. Relation
(6.7) is the usual invariance a)h(π(ξ)ψ(u)) — ωh(ψ(u))ε(ξ) of the multidimensional
Haar measure.

Definition (6.6) has a fundamental drawback. Usually it requires an enormous
calculation to bring an arbitrary element in $ into the form (4.10). However there is
a recursive way to calculate ω. Once all elements assigned to a given link z, — / are
gathered, integration over these variables can be performed. The formal expression
is

= ω(FG)ω(ί/α

7(/)) = ω(FG)δ/β (6.9)

for all F, G generated by Uί(j\j^i,—i and elements ξ G ̂ .

Let us practise the calculation of the functional ω in a simple but fundamental
example.

Lemma 14. With the quantum dimension dj = Ύr(τJ(y*(u*)v~1)) and v/ = τ!(v*)
we have

Proof. The simplest proof for this formula makes use of the invariance (6.7) of
ω. The latter can be reformulated into the following intertwining property of the

matrix Ω% = ω(θ(C/ί(/))£//(/)):

= τ'ξ) for all ξ & <3 .
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Since τ7'' is irreducible, we obtain that Ω7',j = λltlδ^β. To calculate the complex

number λ1*1 we multiply this equation with (rf'~')^ and sum over α,β. The result

'

In this calculation we used the formula (4.15) for 0, the invariance (6.7) of ω and
the functoriality on the link / (4.3). δ/ is the ordinary dimension of the representation
τi, i.e. δ/ = dim(F7). Since Tr^fy7'-7')"1) = ^/Tr(τ7(y?*(^1))) = v^δfd/ we infer

that A7 '7 = ί^/W/
After this warm up we can address more complicated examples. Recall that we

plan to evaluate ω ( ( Ψ 2 ( U ) ) * Ψ \ ( U ) ) for elements Ψ V ( U ) G J*. This motivates to
calculate

) . . . ( ^ ; ; ( / j ) * o 1 ) . . . ( θ , ) ) (6.10)

for a set of links iv which satisfies the assumption of Proposition 5. We write
the * -operation as σκ o θ. The conjugation with K effects the value of expression
(6.10) in a simple way. The κ~] to the left gives a factor ε(κ) — 1 because of
Eq. (6.7). So there remains only one K in the middle. It can be removed from
the argument of ω by means of the covariance relation (4.1) and invariance of
the generalized Haar measure ω. After these manipulations σκ is seen to contribute
with a factor K evaluated in the tensor product of representations τ7 l > 1 1 through τ7"'''7.
Now we are left with θ. Since θ is an anti-automorphism, we find that all variables
attached to the link i\,—i\ are already gathered in the middle of the functional. So
the "integration" can be performed and results in an expression where variables on
*2> ~h appear together. This continues until everything is reduced to the unit element
e. Evaluation on a single link is an application of the lemma. All one has to care
about are the factors involving the 7^-matrix which come with the anti-automorphism
θ. The value of (6.10) is

where the ' means that one uses A' instead of A in definition (5.2)

Theorem 15 (scalar product). Let Ψv(U),v = 1,2 be elements in & which generate
the states ψ v(u) in the sense that ψ v(u) = π(Ψv((U))\Q). The bilinear form

defines a scalar product on 3F if and only if the quantum dimensions dj satisfy
dι > 0 for all labels I (and provided that the condition (3.13) is satisfied}. In
particular, the assumption on d\ guarantees that ω is a positive linear functional
on s$ .

Remark, ω does not define a positive functional on $ or (C/7(/)) C J*. For $ this
is due to the fact that V C .̂ The properties of ω show ω(£*c) = ε(ζ*)ε(ξ) = 0,
whenever ε(ξ) = 0. If Ή is not trivial, it has nonzero elements ξ with ε(ξ) — 0 and
this obviously violates positivity. On the other hand, F* ^ (£/7(z)} can happen, even
if F G (Uy(i)}. Consequently, the *-operation on 36 does not restrict to (£/7(/)} so
that there is no way to formulate positivity of ω on (£/7(/)).
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Proof of the Theorem. We remarked before that (|) is well defined. It is linear in
the second argument and anti-linear in the first. The property

holds due to relation (6.8). Positivity is a consequence of the formula (6.11) and

ί »our assumption (3.13). If cί » has the intertwining property

r-rl 'Ί Γvl Γvl ~In4n ( ϊ\r* _ ι- ( £\Γι

(τα ι / j ] i x j LxJ τynβn(ς)Cβ} ^ - τ / j α(ς)Cα ι / j ]

with τ being some irreducible representation of ^, relation (3.13) implies that (no
summation over α)

Here we used κτ = τ(κ) and KJ — vj . We see that the complex phases υ/v in the last
expression cancel the phases in (6.1 1), while the factor κτ~

l cancels the contribution

from Δ(n~l\κ). With F = uί\(iι) . . . U^(in)C*} 7n we obtain

This is positive, if the quantum dimensions are.
There is one important remark we have to make at this point. Everything we

did so far works for Uq(^) at generic values of the deformation parameter q, since
Uq(^) is semisimple in these cases. So it may seem that we just quantized Chern-
Simons for arbitrary (non-integer) values of the level k. However, the positivity
of the scalar product is conditional on the positivity of the quantum dimensions
dj. The latter fails to hold for many representations of Uq(^\ so that we recover
the usual quantization condition. In the next section we will deal with the roots of
unity. It is shown that Chern-Simons can be quantized only for primitive roots of
unity, i.e. for integer values of k.

7. Generalization to Quasi Hopf Algebras

In this section we want to generalize our theory to cases in which the local symmetry
^γ is a quasi-Hopf algebra. There are at least two motivations to do this. When we
discussed the twist equivalence of the symmetry algebras ^Λ- we saw that the co-
associativity of AX led to a severe constraint on the possible twist. One is tempted
to remove this constraint and admit all possible unitary twist elements Fx without
caring about co-associativity. This is precisely what quasi-Hopf algebra are designed
for. We will see that our observable algebra depends only on the "twist class" of the
symmetry ^Λ. To understand the second motivation we recall that the assumption
about semisimplicity does not apply to the most interesting cases, e.g. UC{(sΪ2),qp =
1. However, working with the semisimple "truncated" symmetry algebra 6^(^/2)
introduced in [2], we can bypass this problem. By construction, the representation
theory of Uc^(sl2) coincides with the "physical" part of the representation theory

of Uq(sl2\ There is a price we have to pay for this: U^(sl2] is no longer a Hopf
algebra but only a (weak) quasi-Hopf algebra.
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7.1. Short Reminder on Quasί-Hopf Algebras. At this point we want to recall
some of the defining features of (weak) quasi-Hopf algebras. Quasi-Hopf algebras
have been introduced in [11]. The axioms stated there can be weakened to allow for
"truncation" in the tensor product of representations. The resulting structures were
called "weak quasi Hopf algebras" [2].

In comparison to DrinfeΓd, we want to admit that A(e)ή=e®e, where e is the
unit element in an algebra .̂ It still follows from the homomorphism property of
Δ,Δ(ξη) = A ( ξ ) A ( η ) , that A(e) is a projector P in ^® ̂  and that this projector
commutes with Δ ( ξ ) for all ξ E <& . Consequently, the linear map (τ ® τ')(P) projects
onto a subrepresentation of τ Ξ τ' . if (τ (g) τ/)(P)φid, the tensor product τ \E\ τ' is
said to be truncated.

The generalization of DrinfeΓds axioms to the "weak" case is almost straight-
forward. As in [11] we demand that an element φ £ ^ C*) ̂  C*) ̂  is given which
implements (weak) quasi-co-associativity of the coproduct,

φ(Δ <g> id)J(ς) - (id 0 Δ)Δ(ξ)φ for all ξ G # . (7.1)

Because of the truncation, this element φ cannot be invertible in general. So invert-
ibility is substituted by a weaker assumption on the existence of a quasi-inverse,
still denoted by φ~], such that

φφ~] = (id <g> A ) A ( e ) , φ~l φ = (Δ ® i ά ) A ( e ) ,

J(e). (7.2)

The statement that φ"1 is a quasi-inverse of φ means that φφ~]φ — φ. Evaluated
with the representations τ, τ7,!77, the re-associator φ furnishes an intertwiner between
the representations (τ ED τ 7) \E\ τ" and τ Ξ (τ7 Ξ τ77). This means that the tensor
product of representations is associative up to equivalence.

Similarly we do not demand that the element R be invertible. Instead it should
have a quasi-inverse R~l such that

RR-1 = A'(e) , R~1R = A ( e ) . (7.3)

This is sufficient to implement the equivalence between representations τ Ξ τ7 and
τ 7 Ξ τ .

Following Drinfeld we postulate several relations between Δ,R9 and φ\

(id 0 id 0 Δ)(φ)(Δ ® id (g) id)(φ) = (e 0 <p)(id 0 Δ Θ id)(φ)(φ ® e) ,

(id 0 Δ)(R) = (pu\Ri3(p2uRi2(p~} ,

(A 0 id)(R) = φ^Ruφ^iφ . (7.4)

We used the standard notation. If s is any permutation of 123 and φ = Σ 9σ ®
φl®φl, then

Σ 5 ~ ' ( l ) ^ S~l(2) _ 5~'(3) /π e\
ψσ ®ψσ ®φσ - (7.5)

σ

Equations (7.4) imply validity of quasi Yang-Baxter equations,

\2 , (7.6)
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and this guarantees that R together with φ determines a representation of the braid
group [1].

It is assumed that (id 0 ε 0 id)(φ) = A(e). Similar relations for the action of
the co-unit ε on other components of φ and the components of R follow from this.

All relations for the antipode ^ can be copied from DrinfeΓd. It is supposed
that there is an anti-automorphism y and two elements α, β G ̂ , such that

Moreover, the following relations are required to hold:

= e. (7.8)

Here φ = φ~} = ΣΦσ ® Φl ® Φl
Everything we said about *-structures in Sect. 3 remains true. But we have to

add two more requirements which describe the behaviour of the elements φ and
α,jS with respect to conjugation. One can check that the equations

are consistent with the other relations which involve φ or α,j8.
For Hopf-algebras it is well known that Δ(φ) = (&* ® ̂ )Δ'(^~\φ)). A gener-

alization of this fact was already noticed by DrinfeΓd [11]. To state his observation
we introduce the following notations:

with Σ Tσ <g> Uσ <g> Vσ 0 Wa = (φ 0 e)(Δ (g) id (g) i

/ = ̂ (^ 0 y\Δ\φ\))yΔ(φ2

pβy(<pp)) , (7.10)

with 0-φ- 1 =Σ,Φ}p®Φ2p®Φ3

P

DrinfeΓd proved in [11] that the element / satisfies

for all ^ G ^ ,

(7.11)

The first equation asserts that / "intertwines" between the co-product A and the
combination of A and ̂  on the right-hand side.

Nontriviality of φ, α effects the expression for the element u £ .̂ The relations
(3.3) now hold for (cp. [22])

with φ = φ~l — Σ Φσ ® Φ2σ ® Φl Altschuler and Coste also introduced the concept
of ribbon quasi-Hopf algebras. As before, u^(u) is central and a "square root" υ
with properties (3.5,3.6) is called ribbon element.

Examples of weak ribbon quasi-Hopf algebras ^ are canonically associated with
Uq(sΪ2) with q a root of unity. As an algebra ^ = Uq(sl2) = Uq(sl2)//, where / is

the ideal which is annihilated by all the physical representations τ1,21 — 0 . . . p — 2,
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of Uq(sl2) - Uq(sl2) is semisΐmple, its representations are fully reducible, and the
irreducible ones are precisely the physical representations of Uq(sl2). Let

w(7, J) = min {|7 + J|, p - 2 - I - J} (7.13)

and let P\j be the projector on the physical subrepresentations K9 \I — J\ ^ K ^
u(I,J) of the tensor product τ7 \E\ qτ

j of Uq(sl2) representations. There exists P G ̂
such that PU — (τ1 0 τ J ) ( P ) . The coproduct in U^(sl2) is determined in terms of
the coproduct Δq in Uq(sl2) as

^(0 = ̂ (0, (7-14)

hence A(e) = Pή=e® e. This coproduct specifies a tensor product \E\ which is equal
to the truncated tensor product of physical Uq(sl2) representations. Thus

τ!mτj= 0 τκ . (7.15)
|/-J|^^^w(/J)

There exists an element φ G U^(sl2)^ such that </)7J7< = (τ7 <g> τy <8>τ*)(φ) im-

ply truncated tensor products τ7 Ξ (τy [x] τ^) and (τ7 Ξ τ j) [SI τ^. The map φ/J/:

can be specified by its action on Clebsch-Gordon intertwiners, together with the
condition φ — (id 0 A)A(e)φ, viz.

C(IP\L)C(JK\P)23φ
IJK^^{κ/L

P}qC(IJ\Q)C(QK\L)l2, (7.16)
Q

where C(.. .) denote the Clebsch-Gordon maps and {} the 6J-symbols of Uq(sl2),
qp = \9 evaluated for physical labels I,J,K. Summation over Q is restricted to the
physical representations.

The 7?-element of U^(sl2) ® U^(sl2) is given in terms of the J?-element Rq for

Uq(sl2) by
R = RqΔ(e) = Δ'(e}Rq, (7.17)

while antipode, * and co-unit are the same as in Uq(sl2). One can show (cp. ref.
[2]) that the defining properties of a weak quasitriangular quasi Hopf-*-algebra are
satisfied. The *-operation is of the type discussed above, i.e. A is a *-homomorphism
provided that (c 0 η)* = η* <g> ζ* . The ribbon element υ in Uq(sl2) survives the

truncation and gives a ribbon element in U^(sl2).
The truncation procedure described here can be generalized to other quantized

enveloping algebras. We emphasize that the assumption (3.13) holds for all trun-
cated quantized universal enveloping algebras associated with simple Lie algebras.

7.2. Results on Quasi- Quantum Group Gauge Fields. Our exposition will be re-
stricted to the main results and those parts which deviate from the above theory for
Hopf algebras.

A formulation of twist-equivalence involves the additional relations

)(e <g) A,)(F~] )φ*(A* 0 e)(Fx)(Fx 0 e) ,

with fl

xσ defined through Fx = Σ fxσ ® fxσ Observe that the element ux introduced
in (7.12) is independent of the twist, i.e. ιx(ux) = u*. The same holds for the ribbon
element vx.



350 A. Yu. Alekseev, H. Grosse, V. Schomerus

The discussion of gauge symmetry remains unchanged except from some minor
points in defining the intertwiners at the end of Sect. 3. First of all, while the
definition of Clebsch-Gordon maps C%[IJ\K] at the sites x G S remain as before,
the element / constructed in Eq. (7.10) appears in the definition of the intertwiners

Ca[IJ\K]' = Ca

y[IJ\K] eg. '((τ[ ® τ J

χ ) ( f ' x ) C « [ I J \ K T )

which are attached to the links / £ L. Of course we use the element (7.12) now
to obtain the intertwiner η1'1. The change in μ1'1 is slightly more subtle. In the
quasi-Hopf case the right substitute is

The last change we have to mention concerns the definition of quantum dimensions
d/. Their definition gets modified according to (cp. [22])

Elements κλ G &x and the corresponding element K 6 $ are defined as before.
The construction of the lattice algebra 3β is seriously effected by the general-

ization. To understand the major changes which occur when passing to quasi-Hopf
algebras, it is crucial to notice that due to the lack of co-associativity, products
of covariant elements are not covariant in general. This motivates the definition of
"covariant products" [2].

Suppose that an algebra $ contains a quasi-Hopf algebra ^ as subalgebra and
that (Fα)αG/, (Fβ)βξ.// transform covariantly according to representations τ and τ' of

^ with dimensions n and n' (in the sense of Definition 4.5). Define the x -product
of the components by

τόβ
> ιd)(φ) e rf . (7.18)

Using the expansion φ — Σ φl

σ ® ^σ ® Φσ me defining Eq. (7.18) takes the form

(Fa x Ffi = Y.F,FlτΓί(φl}τ'δ)(φl)φl . (7.19)

This exhibits the fact that the (Fα x Fό) are complex linear combinations of terms

coefficients φ\ G ̂ .

Proposition 16 (Properties of the x -product). Let (Fα), (Fβ) be specified as above

and suppose that the unit e G ^ is a unit element in $. Then the x -product (7.18)
has the following properties:

1. Eq. (7.18) can be inverted to recover ordinary products from covariant ones,
viz.

' ) (7 20)

2. The tuple F x F' = (Fx x Fβ) transforms covariantly according to the tensor

product representation τ\E\τ' of <&. Hence \ve will often use the term covariant
product instead of x -product.
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3. The x -product is not associative. But it is quasi-associative in the following
sense. If F" — (F!f) transforms coυarίantly according to representations and τ"
of ^ and F, F' as above, then

(i) ((Fα x F/) x F:!) = (F, x (Ft x

(11) (F, x (F; x F!!)) = ((Fd x F;.) x F'^(τό, 0 τ^ 0 τ^Xφ- 1) .

4. 7f G G ̂  w ^-invariant then

G xF α = GFα, F7 x G = FyG . (7.21)

All items in this proposition follow from the properties of the re-associator φ.
Proofs are spelled out in [1].

Armed with the notion of covariant products the definition of the lattice algebra
$ is straightforward. We basically follow the rule to substitute all ordinary products
between generators U^(i) by x -products. So only functoriality and braid relations
are concerned. To implement functoriality on the link we divide by the new relations

t/α'(z) x [#(/) = E UΪ(i)C° [ J , J

β

κ ] ' , (7.22)

Uί(-i) = Ufμ(i)μ'lx , (7.23)

while the braid relations become

Uί(i) x U J

β ( j ) = U J . ( j ) x £/d'(/)(τ£ g> 4')(Λ) (7.24)

for / ^ y or if /, j have no common endpoints. These relations can be written in
an alternative form involving again the ordinary (associative) product in J*. For
example the braid relations can be formulated as

U Λ ( i ) U β ( j ) = U7(j)Uό(i)(τ'dx 0 τί.β 0 id)(^) , (7.25)

where ^ = φ^ 13^12 φ"1 is the element which is used to build up the representation
of the braid group in the quasi-Hopf case [1].

Proposition 5 carries over to the more general case but it is often more con-
venient to use another set of linear generators built with the help of the covariant
product. By Proposition 16, elements

U%(in) x (... x (t/£(z 2) x C / a

7 J O ' i ) ) . . - X with n ^ 0, ξ e <S .

span ^. The brackets in this expression are necessary since the x -product is not
associative if φ is non-trivial.

Observe that the possibility to move elements ξ G ^ was an important ingredient
in the Hopf-algebra case. However, the proof of Proposition 4 relied on the co-
associativity. Analogue formulas in the context of quasi-Hopf algebras are more
complicated.

Proposition 17 (right convariance). Let the element w G ̂  & ̂  be defined by
™ = Σ <P2

σy~l(<Plσβ) ® vl aγld m £<$&<& similarly as m = Y^ ^(φl

σ)ocφ2

σ 0 φ3

σ
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with the components φl

σ of φ — φ~λ . Suppose that the tuple (Fα),Fα G 3fi trans-
forms (right-) coυarίantly according to the representation τ of ($. Then the linear
combination

8)id)(w) (7.26)

has the following properties:
1. J? transforms left-coυariantly according to the representation τ,

yFξ = (τ,β®id)(A(ξ})βF (7.27)

for all ζ e$.
2. The transformation from right- to left- covariant elements can be inverted,

FΛ = (τΛβ®id)(m)βF. (7.28)

3. The passage (7.26) from right- to left covariant elements is consistent with
braid relations. Suppose that Fβ is a second right- covariant multiplet transforming

covarίantly according to the representation τ' and that Fa, Fβ satisfy braid relations

F,F'β = F^F7(τya 0 τ'δβ 0 e)(φ2l3R[2φ-}) .

Then the corresponding left covariant multiplets obey braid relations of the form

ΛFβF
f = (τa), 0 τ'βδ ® e)(φ2l3Rl2φ-] ) δF

r

 7F . (7.29)

4. On covariant products, the transformation (7.26) acts according to

Fa x F'β((τ^ m τ'βδ) 0 e)(w)) = (τf

όβ 0 τya Θ e)(fl2φ~l)ΛFβF
f , (7.30)

where f is the element (7.10). Note that the expression on the right-hand side of
the equation can be regarded as a linear combination of "left co-variant products."

We do not want to prove this proposition here. Details can be found in [8].
Especially the last two items are cumbersome. Note that the theorem establishes a
complete symmetry between left and right. It implies that it was just a matter of
convenience to write all the relations defining $ in terms of the right covariant
product. They can all be rewritten in terms of a "left covariant product" and even
in a mixed form, where φx appears on the right and φy to the left of the product

UI(i)UJ(j). In spite of this left-right symmetry, there is now an algebraic difference
between components U^(i) and the "matrix-elements" of a quasi-quantum group
valued gauge field. Matrix elements should be identified with aU

!

b(i) and the latter
differ from U!

ab(i\
Now we can proceed exactly as in the Hopf-algebra case. We define an anti-

homomorphism θ by θ(ζ) = ζ* and its action on left covariant elements,

')»/ . (7.31)

On right covariant elements, 0 acts according to

θ(Uί(i)) = v^η'^'iήβ1 ® id)(Λ) ΊU'(-i) . (7.32)
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Although this second formula looks very familiar, it is hard work to derive it
from the definition of θ. Consistency with the transformation law is a word by
word repetition of the above arguments. To check the compatibility with the braid
relations, we start from Equation (7.29) and apply θ. The rest is straightforward.
Conjugation with K G ̂  improves this anti-automorphism θ so that it furnishes a
*-operation σκ o θ on &.

The observable algebra j/ is obtained as an algebra of invariants again. Let
(Uχ(i\ x) denote the linear space generated the (right-) covariant product x. Ob-
serve that this space is not closed under ordinary associative products in 3$. Within
(Ufa), x) only the quasi-associative multiplication with the covariant product x is
possible. We define Λ/ to be the subspace of invariants, i.e.

j^ = {stf e (Ufa), x)\ξA = Aξ for all ξ e $} . (7.33)

Obviously j/ is closed under covariant multiplication and since (by Proposition 16)
the covariant product and the associative product coincide for invariants, <stf comes
equipped with an associative product.

Theorem 18 (algebra stf of observables). Let Ή = 0 λ̂- be a ribbon quasi- H op f al-
gebra. Then the associative algebra stf of invariants in the vector space (Ufa), x)
is a ^-algebra with ^-operation A* = (σ# o Θ)(A). If the quantum dimensions dj
are positive and assumption (3.13) is satisfied, the linear functional ω : & ι-> C
defined by (6.6) restricts to a positive linear functional ω on stf , i.e. ω(A*A) ^ 0
for all stf G ,90. The algebra s$ is independent of the position of eyelashes.

To construct the regular representation one can follow a recipe given in [1]. We
do no want to repeat the individual steps here. Instead let us sketch the main results.
The analogue of 3F is non-associative unital algebra with unit Ω. The generators
ufa) of 3F can be braid commuted with (6.1) (i.e. the braid relations of elements

Uy(i) contain no φ). One can prove that Eq. (6.2,6.3) continue to hold. To define a
representation π of $ on 3F one uses Rel. (6.4,6.5). This provides us with a notion
of covariance and invariance in 3F in the same way as before. Invariant elements
in 3F form an associative subalgebra ^ιnv. Finally, the functional ω can be used
to define a scalar product on ̂  as this was done before.

The non-associativity of ̂  is relatively harmless. As one may guess by now,
2F turns out to be quasi-associative in the sense that products with different posi-
tions of brakcets are linear combinations of each other. The "re-association" can be
performed with the help of

, = d - Λδ βp

which hold whenever ι/^, i/^, \\t" transform covariantly according to the represen-

tation τ, τ7, τ" of Ή . In the title of this subsection we suggest the name "quasi-
quantum group" for the algebra generated by the u^(ί) on a given link /. Because
of the quasi-associativity of the multiplication in ̂  , there is now a dramatic dif-
ference between "quasi-quantum groups" and quasi-Hopf algebras. At least for a
special choice of the twists Fx in the endpoints, the algebra generated by the u^(i)
is dual to the quasi-Hopf algebra C^* . Since co-associativity generically fails to hold
in ^*, this duality gives another "explanation" why the algebra of "functions" on
the space of connections becomes quasi-associative.
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As a corollary of the above theorem and the remarks we made before, it is
finally obtained that

Corollary 19. Hamίltonίan Chern-Simons theory can be quantized for all integer
values of the level k and for every simple Lie algebra <&.

This corollary needs some explanation because there are many senses of the
word "quantization." Here to quantize is treated in the sense of deformation quan-
tization. Namely, one should construct an algebra of observables supplied with a
*-operation and a positively defined trace functional. Consistence with the Poisson
brackets is required in the classical limit. In this sense we obtained a quantization
of the algebra of lattice gauge observables. In order to make the same statement
about the whole Hamiltonian Chern-Simons theory, we should impose the quan-
tum flatness conditions in a way consistent with the *-operation. We postpone this
question to the next paper.

7.3 Twist Equivalence. We are now prepared to show that the algebra of observ-
ables actually does only depend on the "twist class" of <&x. Let us make this state-

ment precise. Suppose that ^λ is a second set of quasitriangular quasi Hopf-*-
algebras which are again twist equivalent to the ^* but with possibly different twist
elements Fx G ̂ *. Then one can follow all the steps described above to build a
lattice algebra @& with * -operation *, an algebra of invariants ^ , etc. In general
these structures will depend on the choice of ^x. The observable part of the theory,
however, does not change.

Theorem 20 (twist independence of <*/). Suppose that (^x)xes and (^x\es are
two families of gauge symmetries and that ($x as well as Φx are twist equivalent
to the quasitriangular quasi Hopf-*-algebra ^* for all x G £f. Then there is a

^-isomorphism i \ .$$*-* stf .

Proof. We denote the ratio of the twist elements by hx =F~1FX. With the help
of the isomorphism ιx this family is lifted to an element h e & (8) 0. There is an

isomorphism / : $ ι— » 3& defined by z(c) = ι~* o ΐx(ξ) for all ξ G ̂ x and

/(#£(/)) - UfaXτfc ® id)(A) . (7.34)

With all the experience we gained in prior calculations, the homomorphism property
is now almost obvious. So let us directly proceed to the consistency with *. To prove
that / is a * -homomorphism, one has to know, how the element w behaves under
twists. The answer is

w = Δ(h2

σ)h(i (8) i)(w)(<S-\h\) ®e)9 h = Σhl

σ®h2

σ.

Let us agree from now on to identify elements in ^ and ^ with the help of the

isomorphism /, so that, for example, w can be regarded as an element in ^ <8) ̂
without the extra action of (/ ® /). The twist dependence of w yields the action of
ί on left-covariant elements,
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The element η is independent of the twist, and consequently ή' ' and η1'1 can be
identified in the following calculation:

So / is compatible with the anti-automorphisms θ, θ and hence with the *-operations

on $9 &. The proof of twist independence is complete if we can show that ί restricts

to a map between the observable algebras <?/ and j/. To see this we recall that
observables are linear combinations of elements

(7.35)

where C is supposed to possess the usual intertwining properties,

(τ/n'ln El(. . . El(τ/2'/2 [Eh'1'7'1 ) . . . ) ) ( ξ ) C = Cε(ξ)

for all ξ G G. To evaluate / on such elements one uses the following compatibility
of / with covariant multiplication

A)(h)h23φ)

= U!:(ϊ)UJ

σ(j)(ήl

y

When we act on multiple x -products we obtain a similar expression in which the
argument of (τ7'"'" 0 ® τ7 ' '7 1 0 id) splits into two factors. The right factor essen-
tially annihilates by the multiplication with C while the left factor is trivial in the
last component and consequently gives rise to a complex linear combination of

l/£(/n) x (. . . x (£/£(/2) x U'y\ (/, )) . . .)Q,,.,,2. „ . (7.36)

Since the image /(G) of an invariant element G G & is automatically invariant, this
proves the proposition.

8. Outlook

In the first part of our work we discussed a new notion of quantum group lattice
gauge models. The algebra of observables in such a model has been constructed.
Our definitions were motivated by the Fock-Rosly discussion of classical Chern-
Simons theories. From our initial remarks on this topic it is almost clear that there is
a deep connection between quantized Chern-Simons theories and our lattice gauge
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models. Let us sketch here the main points that we are going to discuss in detail
in the second paper devoted to the same subject.

The first important step towards the quantum Chern-Simons theory is to imple-
ment the flatness condition in the lattice gauge theory. The idea is the following.
Let us introduce a monodromy matrix for each plaquette so that

M = U(il)...U(is), (8.1)

where the links i\ ... is surround the chosen plaquette. Our purpose is to fix somehow
the eigenvalues of the matrix M as we did in Sect. 2 (see formulae (2.23,2.24)).
From the very beginning it is not clear that there exists a quantum analogue of
this procedure. It might happen that operators corresponding to eigenvalues of M
do not commute and it would cause serious problems. Fortunately, these operators
commute with each other and moreover they belong to the center of the algebra
of observables. So one can find a set of central projectors which efficiently fix
eigenvalues of monodromy matrices for all elementary plaquettes. One of such
projectors has been introduced in [5] and called a quantum ^-function. Having
imposed the condition of flatness we obtain the quantum algebra of functions on the
moduli space of flat connections (moduli algebra) or, in other words, the algebra of
observables of the Hamiltonian Chern-Simons theory. The moduli algebra enjoys an
important property. It does not depend on the graph on the Riemann surface which
we have started with [6]! It is possible to prove that the moduli algebras constructed
starting from different graphs are canonically isomorphic to each other. Thus, the
algebra of observables is defined by the symmetry algebra, Riemann surface with
marked points and by the set of representations of the symmetry algebra assigned to
the marked points. After the graph independence of the construction is established
we have a good chance to prove that the lattice gauge model defines the same
theory as the continuous Chern-Simons model.

The important question which we face at this stage is how to construct the
representation theory of the moduli algebra. There are two different approaches to
this problem. The first of them (let us call it algebraic) is based on the graph
independence of the moduli algebra. One can choose the simplest possible graph
and consider the moduli algebra in some explicit coordinates given by the algebra
of graph connections on this chosen graph. For generic values of the deformation
parameter q this method has been applied in [21]. There the graph is chosen to be
a bunch of circles on a Riemann surface of genus g with n marked points. The
first g circles represent a- and 6-cycles winding around the handles of the surface
and n cycles which surround the marked points. Using this particular graph one can
describe the representation theory of the moduli algebra quite efficiently. We shall
fulfill this program for q being a root of unity.

The second approach to the representation theory (let us call it geometric) is
based on two simple observations. First of all we already know the desirable an-
swer. The algebra of observables of the Hamiltonian Chern-Simons theory must
act in the Hubert space of this theory. The latter is isomorphic to the space of
conformal blocks in the corresponding WZNW model or, more technically, to the
space of solutions of the Knizhnik-Zamolodchikov equation satisfying certain con-
ditions [13,29]. The second observation concerns the nature of structure constants
which we use to define the algebra of graph connections. Basically we use two
objects, ^-matrix and the associator φ. Both of them may be regarded as certain
monodromy matrices for solutions of the Knizhnik-Zamolodchikov equation [11].
These two facts enable us to represent the observable algebra directly in the space
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of conformal blocks. Particular operators act as combinations of monodromies of the
Knizhnik-Zamolodchikov equation. Let us mention that the idea of the geometric
approach is essentially borrowed from the combinatorial description of Vassiliev-
Kontsevich knot invariants [18,23].

The geometric construction of the representation theory of the moduli algebra
will provide the representations which are realised directly in the Hubert space of the
continuous Chern-Simons theory. This will be a final check of the conjecture that the
lattice gauge model presented in this paper indeed coincides with the Hamiltonian
Chern-Simons theory.

The ideas which we have shortly described in this section will be considered in
detail in the forthcoming paper.
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