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Abstract: Motivated by a recent paper of Fock and Rosly [6] we describe a math-
ematically precise quantization of the Hamiltonian Chern—Simons theory. We intro-
duce the Chern—Simons theory on the lattice which is expected to reproduce the
results of the continuous theory exactly. The lattice model enjoys the symmetry
with respect to a quantum gauge group. Using this fact we construct the algebra of
observables of the Hamiltonian Chern—Simons theory equipped with a *- operation
and a positive inner product.

1. Introduction

Quantization of the Chern—Simons theory in 3 dimensions has been attracting at-
tention and efforts of many physicists and mathematicians during the last 5 years.
The most spectacular results obtained in this way are the construction of knot in-
variants [13] and exact solution of 2 + | dimensional gravity [27]. Being a 3 di-
mensional topological field theory, the Chern—Simons model is intimately related
to the Wess—Zumino—Novikov—Witten (WZNW) model of conformal field theory
in 2 dimensions and to quantum groups (one may regard a quantum group as a |
dimensional quantum system). Actually, it is this hierarchy of systems in different
dimensions which makes the Chern-Simons theory solvable. The relation between
CS and WZNW models allowed evaluation of partition functions and correlators
[13] using the methods of conformal field theory. The importance of the CS the-
ory is a motivation to look for different approaches. Among others the perturbation
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theory [16] and exact evaluation of the functional integral by means of localization
formulae [17] should be mentioned.

In this paper we develop an approach to the CS model based on its relation
to the theory of quantum groups. One of the advantages of the quantum group
approach is that we deal with finite dimensional objects only. As a consequence,
one can represent the answers in terms of finite sums, whereas in other approaches
the final result usually has an integral form. It makes the quantum group approach
helpful in dealing with topology of 3D manifolds [24,25,26] and in knot theory
[18,23]. The main idea is to simulate the Chern—Simons theory on the lattice in
such a way that partition functions and correlators of the lattice model coincide
with those of the continuous CS model. It is important that the lattice model enjoys
the gauge symmetry with respect to the quantum group. It is worth mentioning that
a lattice simulation of the CS model has been suggested in [5]. The drawback of
this model is the absence of gauge symmetry. The gauge symmetry may be restored
if one uses the proper combinatorial description of the moduli space of flat connect-
ions [6].

Let us briefly characterize the content of each section. In Sect. 2 we review
the main facts concerning the CS thecory in Hamiltonian approach and introduce
the combinatorial (or lattice) description following [6]. Section 3 is devoted to the
quantum gauge group in the lattice model. In Sect. 4 we generalize the concept of
lattice gauge fields to the case of a quantum gauge group. The algebra of observ-
ables corresponding to the Hamiltonian CS theory appears in Sect. 5 equipped with a
x-operation. We describe the Hermitian inner product in the algebra of observables
and prove the positivity theorem in Sect. 6. In Sect. 7 we generalize the theory to
weak quasi-Hopf algebras [2]. In this way we can deal with universal enveloping
algebras at roots of unity by using a procedure called “truncation.” The basic def-
inition of weak quasi-Hopf algebras and the truncation are reviewed in Sect. 7.1.
An outlook at the end of the paper is devoted to the possible perspectives of the
lattice approach.

The basic technique which we use in this paper is the theory of quantum groups.
Section 2 is supposed to play the role of the physicist oriented introduction. In the
remaining part we assume that the reader is familiar with standard definitions and
properties of such objects as co-multiplication and R-matrix.

We want to stress that the construction we propose in the following assigns a
Chern—Simons type model to every pair of a marked Riemann surface and a weak
quasi-Hopf algebra. The latter is not necessarily given by a truncated quantized
enveloping algebra of some simple Lie algebra. It has been shown recently [§]
that a weak quasi-Hopf symmetry can be constructed for every low dimensional
quantum field theory. Combining this result with the considerations below, one
assigns a Chern—Simons type model to every low dimensional quantum field theory.
It remains unclear whether these generalized Chern—Simons theories are related to
certain moduli spaces in the same way as standard Chern—Simons theories are related
to the moduli space of flat connections.

2. Physical Motivations

In this paper we study the problem of quantization of the Chern—Simons the-
ory within the Hamiltonian approach. The moduli space of flat connections on a
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Riemann surface appears as a phase space for this model [13]. Let us briefly remind
the definition and general features of the CS system.

2.1.  Chern—Simons model. The Chern—Simons theory is a gauge theory in 3 di-
mensions (in principle the CS term exists in any odd dimension). It is defined by
the action principle

CS(4) = %Trf (AdA + §A3> . (2.1)
M

Here M is a 3-dimensional (3D) manifold, & is a positive integer and the gauge
field 4 takes values in some semisimple Lie algebra 4,

A4 =A%"dx, . (2.2)
The generators t“ form a basis in % and satisfy the commutation relations

[l‘a7 lb] _ abt(' ) (23)

c

In this paper we concentrate on the very particular version of the CS theory when
it has a Hamiltonian interpretation. Suppose that the manifold M locally looks like
a cylinder ¥ x R (Cartesian product of a Riemann surface ¥ and a segment of the
real line). Then we may choose the direction parallel to the real line R to be the
time direction. Two space-like components of the gauge field 4 become dynamical
variables and we shall often denote by A the two component gauge field on the
surface >. As usual, the time-component 4y becomes a Lagrangian multiplier. After
the change of variables the action (2.1) acquires the form

k
S = 4—Trf(—A00A + 240F)dt , (2.4)
Y

where the first term is just like | pdg and the second term introduces the first class

constraint
F=dA+A4*=0. (2.5)

The first term in (2.4) determines the Poisson brackets (PB) of dynamical variables.
In particular, the Poisson bracket of the constraints (2.5) may be easily calculated:

2
(Fi(z1), F'(z7)} = ffﬁbF“(zl 0Dz —2,). (2.6)

As one expects, the constraints (2.5) generate gauge transformations
A =g ' 4g+ g 'dyg . (2.7)

Thus, the phase space of the Hamiltonian CS theory is a quotient of the space 3
of flat connections (2.5) over the gauge group X.G (2.7). We see that the moduli
space (we shall often refer to the moduli space of flat connections as to the moduli
space) appears to be a phase space of the CS theory on the cylinder. The action
principle (2.4) provides canonical Poisson brackets on the moduli space. An efficient
description of this PB was given in [6] (see also Subsect. 2.3).

2.2. Wilson Lines and Marked Points. We continue our brief survey of the CS
theory and consider possible observables. The CS model enjoys two important sym-
metries: gauge symmetry and the symmetry with respect to diffeomorphisms. The
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reparametrization symmetry appears due to the geometric nature of the action (2.1)
which is written in terms of differential forms and automatically invariant with
respect to diffeomorphisms of the manifold M. It is natural to require that the ob-
servables in the CS model respect the invariance properties of the theory. Some
observables of this type may be constructed starting from the following data. Let
us choose the closed contour I in M and a representation / of the algebra .
Apparently the following functional of the gauge field 4

Wi(I') = Tr; Pexp (f A’) (2.8)
r

is invariant with respect to both gauge and reparametrization symmetries. Usually
the contour I is called a Wilson line and the expression (2.8) is called a Wilson
line observable. The connection 4’ is equal to

A = 41!, (2.9)

where matrices 7! represent the algebra % in the representation /.

In the Hamiltonian formulation we may choose two special classes of Wilson
lines: vertical and horizontal.

We call a Wilson line horizontal if it lies on an equal time surface. The observ-
able corresponding to a horizontal Wilson line is a functional of the two-dimensional
gauge field and after quantization it becomes a physical operator.

The Wilson line is called vertical if the contour I is parallel to the time axis. In
the Hamiltonian picture we do not actually control the fact that vertical Wilson lines
are closed. They come from the past, go through the zero-time surface and disappear
in the future. The vertical Wilson line is characterized by the representation / and
the point z where it intersects the Riemann surface Y. The choice of the time axis
produces a big difference in the role of horizontal and vertical Wilson lines in the
theory. Vertical Wilson lines do not correspond to observables in the Hamiltonian
formulation. Instead, they change the Hamiltonian system (2.4) so that both [ pdg
and the constraint get modified.

As a preparation for analyzing vertical Wilson lines let us recall the correspon-
dence between co-adjoint orbits and representations of semi-simple Lie groups. Let
I be a representation of the Lie algebra 4:

[T, 1] = fer!. (2.10)

&

One may ask the question what is the underlying classical system corresponding to
the quantum algebra (2.10). The first idea is to simulate the commutation relations

by the Poisson brackets:
{T., Ty} = f&T., (2.11)

where 7, are commuting coordinates (on the dual space to the Lie algebra). It seems
that the information about the representation disappeared in the formula (2.11).
However, this is not quite true. The PB (2.11) is always degenerate. At this point
it is useful to introduce a coordinate matrix

T =T, (2.12)

where ¢ form a basis in the fundamental representation. In order to make the
bracket (2.11) nondegenerate one should fix eigenvalues of the matrix 7'

T=g 'Pyg. (2.13)
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A conjugation class (2.13) is also called a co-adjoint orbit. Now we have a diagonal
matrix P which parametrizes the set of orbits. Quantization of a particular orbit leads
to an irreducible representation of the Lie algebra. The highest weight w; of the
representation / represented as a diagonal matrix in the fundamental representation
is related to P by

w=P—-p, (2.14)

where p is a half sum of positive roots of %.

The information about the bracket (2.11) on the orbit may be encoded in the
action

Si(g) = Tr[Pdgg™" . (2.15)

The action (2.15) is called a geometric action because it originates from the method
of geometric quantization. The family of systems (2.15) is parametrized by the set
of representations of % which may be obtained upon quantization.

The essence of the quantization procedure for the action (2.15) is the following
formula for a Wilson line observable:

W, = [e (5/(;/)+JVAST”d')Dg ) (2.16)

The ordered exponent and trace are provided by the functional integral automatically.
Using the formula (2.16), one may treat the CS correlator with »n vertical Wilson

lines inserted
Zr(ly, ..., Iy) = fDAeiCS(A)WII W (2.17)

as an expression where the gauge field is still classical, whereas some modes cor-
responding to the matrices 7, are already quantized. The original functional integral
would be [14]

Z = [DAD,, ...Dg,es" . (2.18)

The action S*' is defined by the formula
S = CS(4) + 32(S(90) + Tr [Ao(z)T,d1) . (2.19)
=1

Here the first term coincides with the standard Chern—Simons action, the second
term consists of two parts. The first part collects auxiliary geometric actions for
each Wilson line, the second part represents contributions of the Wilson lines into
the CS partition function (2.17).

We have reformulated the Hamiltonian Chern—Simons model with vertical Wil-
son lines as a theory of the 2D gauge field 4 interacting with a set of finite dimen-
sional systems with coordinates 7, localized at the points z;. As in the case of the
pure CS theory, the Hamiltonian (2.19) is equal to zero. The action of the modified
system may be rewritten as

n
Z Tio(z — z, )>
i=

(2.20)
The first term in (2.20) is of the type [ pdg of the Hamiltonian system. It is
responsible for the Poisson brackets of dynamical variables. The second term gives
the modified constraint

k n .
Sto‘ :Tl’ <—A‘—an€014+ZP/dgzgrl> +TrjAo <%F+
=1

¢(Z)=F+?kfiﬂ5(z—zi)=0. (2.21)
i=1
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The constraints (2.21) satisfy the same algebra (2.6) as in the pure CS theory.
They generate gauge transformations for the gauge field 4 and conjugations for the
variables T,:

A =g ' Ag+g7dg . T = 9(z) "' Tig(z) . (2.22)

Now the phase space of the Hamiltonian Chern—Simons theory with vertical
Wilson lines may be described. First we mark n points {z,} on the Riemann surface
3 of genus ¢. Each point is equipped with a representation /, of the algebra 4 (and
corresponding orbit O;). One can choose a subspace JI([y,...,[,) defined by the
constraint (2.21) in the Cartesian product C, x O(/;) x --- x O(Iy) of the space
of all connections C, on the Riemann surface and co-adjoint orbits attached to
the marked points. The subspace JI(/y,...,I,) is a natural analogue of the space
of flat connections. It is invariant with respect to gauge transformations (2.22).
The quotient of J3(/y,...,1,) by the action of the gauge group may be called the
moduli space .#, ,(%) of flat connections on the Riemann surface of genus ¢ with
n marked points. The moduli space .#, ,(%) inherits the Poisson structure from the
CS theory. This structure is the subject of the next subsection.

Let us finish by a short remark concerning the structure of .#, ,(%) and the
theory of orbits. Choosing a small loop I', surrounding the marked point z,, one
can define the monodromy matrix (or parallel transport) M, along this path. It is
easy to check that if 4 and {7,} satisfy (2.21), the monodromy matrix M, may be
diagonalized by conjugation of the exponent of P,,

2
M, = h'exp (%P,) A (2.23)
In the quantum case there is a one-loop correction in this formula which adds the
dual Coxeter number A* to the parameter k. The correct quantum version of (2.23)
reads as

2
M, = h~"exp <k_+n_h;P'> h (2.24)

Thus, the monodromy matrix belongs to the exponentiated orbit assigned to the
corresponding marked point. Formulae (2.23) and (2.24) characterize elementary
monodromies. They will be quite helpful for quantization of .#, ,(%).

2.3 Combinatorial Description and Exchange Relations. In the previous subsec-
tion we have found that the moduli space .#, ,(%) appears as a phase space in the
Chern—Simons theory with vertical Wilson lines. In order to quantize the theory we
need the Poisson structure on .#, ,(%). In principle one may proceed starting from
the 2D gauge fields with the Poisson bracket

27-[ N1 S
{4(z1), A(z)} = v b, 0Pz — ) . (2.25)
The quantization of the relations (2.25) is straightforward
a b 2T . s2)
[4](z1), 47(z2)] = _?0 £,0(z) — 22) . (2.26)
Observables may be described as gauge invariant functionals of A4, where the con-
straint (2.21) is imposed. In this approach we deal with the representations of

the infinite dimensional algebra (2.26) and construct the quantum mechanics corre-
sponding to the CS system starting from the field theory of the gauge field 4. It is
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a motivation to look for another approach. A recent progress [6] in this direction
allows to reformulate the problem. The idea is to simulate the Riemann surface
by the oriented fat graph drawn on it. Dealing with a fat graph one uses ribbons
instead of strings. It means that the cyclic order of links incident to a given vertex
is fixed.

Suppose that we have a gauge field 4 on the Riemann surface and a graph
drawn on it. We assume that the surface is divided by the graph into plaquettes so
that any plaquette is contractible. The graph should be chosen in such a way that
the number of marked points inside each plaquette does not exceed one. The gauge
field defines a parallel transport along each link of the graph. Let us enumerate the
vertices of the graph by letters x, y, z... and the links by i, j, £ .... It is convenient
to introduce notations s(i) and #(i) for the end-points of the link /. The parallel
transport corresponding to this link may be written as an ordered exponent

s(r)

1)
U(i) = Pexp (f A) . (2.27)
As for the Wilson lines, one may introduce the set of matrices U’(i)

(i)
U'(i) = Pexp (j' A’> , (2.28)
s(1)

using the gauge field in different representations (2.9).

Some information about the connection 4 is encoded in the link variables (2.27).
The question is whether this information is sufficient to reconstruct the moduli
space .#, ,(%)? The answer is obviously positive. To recover the moduli space
we should factorize over residual gauge transformations and take into account the
flatness condition. Gauge transformations act on the graph connections (2.27) as
follows

UG = h(s(i)™ UDA(H(D)) - (229)

It is remarkable that the gauge group becomes effectively finite dimensional because
only values of A in graph vertices enter into (2.29).

The condition of flatness may be simulated using the properties of the mon-
odromy from the previous subsection. We form the monodromy for each plaquette
and constrain it by the condition (2.23). If there is no marked point inside the
plaquette, the monodromy is simply equal to the identity.

It is proved [6] that factorizing the space of flat graph connections over graph
gauge transformations one obtains the same space .#, ,(%4)! Moreover, the Poisson
structure on the space of graph connections leading to the standard Poisson structure
on ., ,(%) is known. In this approach the moduli space is represented as a quotient
of the finite dimensional space over the finite dimensional group. This is the reason
to call it combinatorial description of the moduli space.

One may think that the Poisson brackets for graph connections are defined
uniquely since U(7) are functionals of the gauge field 4 and the Poisson brackets
for 4 are fixed by (2.25). In fact, this is not correct. The reason is the o-function
singularity in the brackets (2.25). Calculating the PB of two matrices U(i) and
U(j), where the links i and ; have at least one common end-point, one has to
resolve the singularity appearing at this very point. There is no canonical way of
resolution. In general the Jacobi identity breaks down after regularization. It means
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that one can’t construct the Poisson bracket applicable for both local gauge fields
A(x) and arbitrary link variables U(7). However, it is possible to introduce mean-
ingful Poisson brackets for link variables U(i). So, the brackets for A(x) and for
U(i) are to some extent independent from each other. One calls them consistent
if they give the same answer for Poisson brackets of gauge invariant variables. In
other words, the 4- and U-bracket may differ in the nonphysical sector but they
coincide when we restrict ourselves to physical gauge invariant observables.

In order to simplify the analysis of the U-bracket, we recall here some standard
definitions and properties of quadratic Poisson brackets and Exchange algebras.

Suppose that we have a Poisson bracket defined on the matrix group. The sim-
plest form of such a bracket is quadratic in matrix elements

{(u', U*} =U'U%, (2.30)
where we have used tensor notations
Ul=U®id, U?=ide U, (2.31)

and the matrix r is defined in the tensor product of two vector spaces. To ensure
the Jacobi identity, the following condition on the matrix » must be satisfied:

[F12, 7231 + [F12, 73] + [713, #1231 = 0. (2.32)

The constraint (2.32) is the classical Yang—Baxter equation. Fortunately, for any
simple Lie algebra we know two solutions to the very complicated equation (2.32).
Usually they are called r and #’ and look as follows:

F=YROR+2Y PRt (2.33)
] A

Fr=ShHoh+2Y . (2.34)
i %«

Here the sum in the first term runs over the set of simple roots and in the second
over the set of positive roots.

The Poisson algebra (2.30) may be quantized if one knows a one parameter
family of solutions R(%) of the quantum Yang—Baxter equation

Ri2R13R23 = Ro3Ri3R 2 (2.35)
with given asymptotics
R=1+h+---. (2.36)
Using R(h) we quantize the bracket (2.30) in the following way:
U'U?* =U*U'R. (2.37)

We shall denote solutions of the quantum Yang-—Baxter equation corresponding to
the classical r-matrices (2.33,2.34) by R and R’. It is assumed everywhere in the
text that both of them depend on the deformation parameter 4. It is worth mentioning
that

R' = PRP, (2.38)

where P is a permutation matrix in the tensor product of two copies of the same
vector space. It is important that along with R-matrices in the fundamental repre-
sentation there exists a family of R-matrices parametrized by pairs (/, J) of finite
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dimensional representations of % so that R act in the tensor product of the rep-
resentation spaces of /7 and J and Eq. (2.35) holds for any triple of representations
(1, J, K) corresponding to the indices 1,2, 3.

In the class of regularizations suggested in [6] the Poisson brackets of graph
connections are quadratic. Let us first describe these brackets and then quantize.

To fix Poisson brackets for graph connections one must choose some particular
regularization of the singularity in (2.25). In practice it means that each vertex
should be equipped with a classical r-matrix (in the quantum case—quantum R-
matrix) from a certain equivalence class. Roughly speaking the class is defined by
the choice of the deformation parameter 4. One also should fix a linear order of
incident links at each vertex in addition to the natural cyclic order. The latter may
be done by putting a little eyelash at each graph vertex. The eyelash determines
from where we enumerate links coming to the vertex. Concerning the choice of r-
matrices, we shall restrict ourselves to the particular regularization so the r-matrices
assigned to all vertices of the graph coincide.

There are three rules which determine the structure of the Poisson algebra of
graph connections:

1) The Poisson bracket of any matrix elements of two parallel transport matrices
corresponding to links which have no common end-points vanishes:

(U@, U(jyr=0. (239)

This condition brings locality into the definition of the Poisson bracket. Indeed, the
original bracket for 2-dimensional connections had a support at coincident points. If
the links have no common end-points, they do not intersect at all. It means that the
bracket of the corresponding matrix elements should vanish if we want to reproduce
the continuous theory.

2) For the matrix elements of the same matrix we have

{U', UGy} = %(;‘U(z’)' U@y’ = UM UG ). (2.40)

3) If the links have one common end-point, the Poisson bracket acquires the
form

(U0, UGPY = U0 UG (241)

if the link 7 is elder than the link j in the clock-wise order starting from the eyelash
(we can express it as [ < j) and

(U0, UGFY = LU0 UG (242)

otherwise.

From the definitions of the Poisson algebra on the space of graph connections we
learn that the deformation parameter in this theory is equal to 4 = 2]\—” Actually, this
formula is correct only semiclassically. In the Hamiltonian formulation the Chern—
Simons integral is Gaussian. So, we should worry only about possible one-loop
corrections. Depending on the definition of the integration measure in the Chern—
Simons functional integral, one gets different results for the renormalized value of
the parameter k. In the standard scheme which we follow in this paper, £ receives
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a one loop correction equal to the dual Coxeter number & — k + 4*. So, the correct
value of the deformation parameter is 7 = ﬁ’;’;

Another one loop effect which shows up in the Chern—Simons theory is the
framing anomaly (see e.g. [20]). It appears that in order to define the renormalized
CS model one should fix a frame in the 3D manifold M and replace Wilson lines
by ribbons. Physical correlation functions depend on the choice of the framing.
The cxact form of this dependence is governed by the framing anomaly. In the
Hamiltonian version of the CS theory we always have a preferred framing invariant
with respect to shifts along the time axis. We can stick to this framing from the very
beginning and in this way we do not trace the framing anomaly in the Hamiltonian
approach.

At this point we want to stress that the information about the one loop correction
of k is the only external data which we bring into the scheme of combinatorial
quantization. Further steps are quite independent of the Lagrangian formulation of
the theory and give a selfconsistent approach to the Chern—Simons model.

The relations (2.41) and (2.42) are written for the situation when both oriented
links point towards their common end-point. All the other relations may be derived
following the rules, if we assume that for the same link taken with two different
orientations the corresponding link variables are inverse to each other:

U()U(—i) = U(=)U(i) = 1. (2.43)

For example, if i < —j and the link ; starts from the common end-point the Poisson
bracket (2.42) will be modified

(UG, UGYY==-UG)YrU@)" . (2.44)

So we have described the Poisson algebra for the gauge field on the graph. Now
the problem of quantization is in order. As we discussed, quadratic r-matrix Poisson
brackets admit straightforward quantization. Let us list the corresponding quantum
formulae:

Ui'uGy =uGgrua), (2.45)

for links 7 and ; which have no intersection points;

U@)'UG? =RUG? UG (RH™', (2.46)
for the matrix elements of the same matrix;

UN' UG = UGPUG)'R (247)

for two links which have a common target when i < j and

U@'uGy =u(irue) ®™! (2.48)
for i > j. The quantum algebra defined by the relations (2.45-2.48) may be trcated
as a noncommutative analogue of a lattice gauge field. As we see, the lattice emerges
naturally in this approach. Moreover, we do not know how to get rid of it in this

type of noncommutative gauge models. It may happen that the lattice formulation
is dictated by the noncommutative nature of the gauge field algebra.
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The next question concerns the generalization of the gauge symmetry to the
noncommutative gauge theory. As in any lattice gauge theory, gauge transformations
act at the lattice vertices:

UGY' = h(s(i)) " U@Oh()) . (2.49)

It is easy to check that these transformations do not preserve the exchange relations
for U’s unless we assume that 4 entering (2.49) are also noncommutative. More
exactly, A(x) and h(y) commute for x and y being different vertices

h(x)'h(y)? = h(y) k()" (2.50)

but form a (not co-commutative) Hopf algebra at each vertex.

The fact that the noncommutative gauge algebra is invariant with respect to the
quantum group valued gauge transformations may be expressed also in the following
way. We can treat matrix indices of U(i) as indices of the fundamental represen-
tation of the corresponding quantized universal enveloping algebra. If we consider
the Chern—Simons theory of %-valued gauge fields with coeflicient £ in the action,
the quantum symmetry is an algebra U,(%) for g being equal to exp(2mi/(k + h*)).

Here one can change the point of view and try to construct the noncommutative
gauge fields starting from some symmetry algebra placed at the lattice sites. It may
be a quantum group but one can choose also some other symmetry algebra. In par-
ticular, choosing the nondeformed Lie algebra % one should recover the standard
two dimensional lattice gauge theory. In this paper we explore the approach based
on the symmetry algebra and find that the gauge theory may be reconstructed if the
symmetry algebra is endowed with co-multiplication. The latter means that one can
construct tensor products of representations of the symmetry algebra and decom-
pose them into irreducible ones. In more mathematical language it means that the
symmetry algebra is considered as a Hopf algebra (see Sect. 3) or as a quasi-Hopf
algebra (see Sect. 7).

Down to earth, along with the matrix U(7) in the fundamental representation of
the symmetry algebra we introduce a bunch of matrices for any representation as
in formula (2.28). It is not difficult to generalize quadratic exchange relations for
this case. For example, instead of (2.47) we get

Ul = UGy u)'RY (251)

Matrices U’(i) are not independent. They form a closed algebra so that a prod-
uct of any two matrix elements may be decomposed into a linear combination of
matrix elements. Formula (2.43) gives a simplest example of such relations. The
algebra of matrix elements of U’(i) is closely related to the algebra of functions
on the finite dimensional group G. The structure constants [...] which appear in the
decomposition

Jadia = S [105105, [115] (2.52)

for the matrix elements of G are usually called Clebsch—Gordan coeflicients. They
are defined as invariant tensors in the triple tensor product of representations /, J
and K and parametrized by an integer «. In formula (2.52) the summation over
e, [, K and o is assumed. Generalizing such relations, the Hopf (or quasi-Hopf)
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structure of the symmetry algebra enters in practice. The algebra of U’(i) looks
exactly like (2.52) but the structure constants C must be replaced by the Clebsch—
Gordan coefficients for the corresponding quantum algebra.

Let us give a simple example to clarify the definition of the exchange algebra
for graph connections. We pick up an elementary plaquette on the Riemann surface
and enumerate the links from 1 to s in the counter-clockwise order. It is conve-
nient to choose the orinetations so that all the arrows are also directed against the
clock rotation. We choose the eyelashes at all vertices to be directed inside the
plaquette. Under these conditions link variables U(1)...U(s) may be treated inde-
pendently of the rest of the graph. The corresponding exchange algebra looks as
follows:

UH'UG)Y? = RUGUG)' (R)™! (2.53)
for any link i;
UDUG+ 1) =U@G+ 1D)*RTUG)", (2.54)

where we assume that by definition U(s + 1) = U(1). As usual, the matrix elements
of U(i) and U(j) commute if i and ; have no common end-points.

Actually, the graph connection algebra does not know if there is a piece of
surface inside the plaquette or, perhaps, there is a hole there and the links which
surround the plaquette lie on the boundary of the surface. So one can try to de-
scribe the boundary in the Chern—Simons theory using the algebra (2.53,2.54). The
theory living on the boundary is the chiral WZNW model. It is not topological
and we cannot hope to describe it in an adequate way using our rough lattice ap-
proximation. On the other hand, if one increases the number of lattice sites so that
the distance between them becomes smaller and smaller, the lattice exchange al-
gebra (2.53,2.54) admits a nice continuous limit. Under certain assumptions it is
possible to prove that this continuous limit coincides with the Kac—-Moody alge-
bra which governs the WZNW model assigned to the boundary. It was the rea-
son to introduce the lattice exchange algebra (2.53,2.54) as lattice current algebra
in [19].

So, for an appropriate choice of ciliation the graph connection exchange algebra
includes lattice Kac—Moody algebras for particular plaquettes as its subalgebras. It
is one extra check of consistency of our lattice model.

We have described the basic structures that we are going to investigate in this
paper. Let us remark that the lattice simulations of the Chern—Simons theory and of
the moduli space of flat connections are expected to give exact results because the
Poisson structure and the phase space may be reproduced exactly on the semiclas-
sical level. The quantum theory on the graph appears to be a lattice gauge theory
associated to the quantum group. This theory enjoys the quantum gauge symmetry
and this is the main difference between our model and the model [5] where the rela-
tions (2.47-2.48) are replaced by the commutative relation of the type (2.45). It is
remarkable that the quantization of the Chern—Simons theory leads to the quadratic
algebra which uses R-matrices as structure constants. It makes the theory efficiently
finite dimensional and this is the reason to call this approach combinatorial quan-
tization of the Chern—Simons model.

Now we change the language to a more mathematical one and turn to the
systematic treatment of the algebra of observables of the Hamiltonian Chern—Simons
theory.
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3. The Algebra 4 of Gauge Transformations

This section is devoted to a precise formulation of local gauge symmetries on
the graph or lattice. Gauge transformations ¢ will be assigned to the vertices of
the graph. The algebra 4 of all gauge transformations comes equipped with the
structure of a ribbon Hopf-x-algebra.

3.1.  The Algebraic Structure of 4. To be specific, we consider a graph G formed
by the edges and vertices of a triangulation of a given oriented Riemann surface
3. For every oriented link 7 of G there is an oriented link —i which has oppo-
site orientation. The set of oriented links 7, —i, j, —j, k, —k,... will be denoted
by L. For elements in the set S of vertices we use the letters x, y, z. We
introduce the map ¢ : L — § such that #(i) = x, if the oriented link i points towards
the vertex x.

We describe the local gauge symmetry by assigning a ribbon Hopf-x-algebra
4. to every vertex x € S. Ribbon Hopf-algebras were introduced in [28]. Their
definition is based on the algebraic structure of quasitriangular Hopf--algebras, so
that the algebras %, come equipped with a co-unit &, a co-product 4,, an antipode
< and an R-matrix R,. While we assume that the reader is familiar with the defining
properties of a quasitriangular Hopf algebra, we want to make some more detailed
remarks on the x-operation. In a Hopf-x-algebra co-product, co-unit and antipode
have to be consistent with the conjugation *. In detail this implies that ¢, and 4,
are x-homomorphisms, i.e.

6(&) = ed&) ) ALE) = A&

Since 4,(&) is an element of %, @ ¥,, the second equation requires an action of *
on %, ® %,. This action is not unique. One can either define (¢ ® n)* = &* @ n* or
(ep- [2])

e =nedl. (3.1)

Throughout this paper we will consider the second case (3.1). The main rea-
son is that this type of x-operation appears in many interesting examples, e.g. in
U,(sl3), g’ = 1. Readers interested in the first case can easily rewrite everything
below. The construction of a scalar product on the space of physical states simplifies

dramatically.
It is consistent to demand that the antipode .%; is a x-anti-homomorphism [12],

S = L)
In a quasi-triangular Hopf--algebra, unitarity of the R-matrix R, = >__r! ® P2,
R =3 ri; ®ry =R (32)
rr
is assumed to hold. Again these properties can easily be checked in the example
U,(sl), ¢” = 1.

Now let us proceed towards a description of ribbon Hopf--algebras [28]. Given
the R,-element, we build u, € ¥, from its components,

2 1
Uy = Z<%(rxa)rxa .
a
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The standard properties of the clement u, are

weS T NE) = SOy, uf =u ", (3.3)
A(uy) = (t, @ u (RUR) ™ = (RIR) ™ (uy ® 1) (34)

Moreover, the combination u,. % (u,) is in the center of %,. To obtain a ribbon
Hopf-*-algebra we postulate the existence of a central “square root” v, of this
element which is supposed to obey

vl = uS(uy),  Lvy) =o, ev) =1, (3:5)
vi=urt, Al = (RRO) (v @ o) (3.6)

X X >
Such elements are known to exist for the quantized universal enveloping algebras
of all simple Lie algebras [28].

One could demand that all the algebras ¢, are isomorphic as Hopf algebras.
But this is more than we need. To prepare for a weaker statement let us recall
the notion of twist equivalence. ¥, is said to be fwist equivalent to another ribbon
Hopf-+-algebra 4, with co-unit ¢,, co-product 4., antipode %, R-matrix R, and
ribbon element v., if there is a x-isomorphism 1, : 4 — %, such that

6(6) = eu(1:(0)), 1 (AUE)) = L(1(E)) s
(1 @ L NA(E)) = FT AL (1 (O))Fy
(y © )R = F'U 'Ry, 1(0y) = v. (3.7)

holds for all ¢ € %,. Here F, € %, ® %, is unitary, i.e. ¥ = F~', and F/ denotes
the same element with exchanged components in the tensor product. If we would
restrict ourselves to F, = e ® e, we would end up with the usual notion of isomor-
phic Hopf-+-algebras. For the moment we assume that both coproducts 4, 4. are
co-associative. This amounts to a severe restriction on F,. However one can check
that /. = R is related to a non-trivial twist, which gives (i, @ 1,)(R,) = R’, g
Using this weak notion of equivalence of Hopf-x-algebras it is natural to demand
that all the algebras 4. are twist equivalent to the same ribbon Hopf-x-algebra
%.. In other words we assume the algebras %, of local gauge transformations to
be pairwise twist-equivalent. Let us mention that the element u, introduced above
is independent of the twist in the sense that

() = uy .

The full gauge symmetry % is obtained as a product over all local gauge sym-
metries %,
G=QRY .
xev
The algebraic structure of the local symmetries induces a co-product 4, a co-unit
¢, an antipode - and a R-matrix for the full gauge symmetry % such that 4 be-
comes a quasitriangular Hopf-+-algebra in the sense discussed above. Ribbon ele-
ments v, € %, furnish a ribbon element v for %.
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3.2, Representation Theory of 4. We start a discussion of the representation the-
ory of % with some general remarks. Given two representations 7, 7" of a Hopf-
algebra @, their tensor product 1 X1 1’ is defined with the help of the co-product 4

() = (e )(4(0).

The co-unit ¢ is a one-dimensional representation of %. It is a trivial representation in
the sense that (¢ X1 7)(&) = ©(&) = (r X ¢)(&) holds for all ¢ € 4. A representation
7 on a Hilbert space V is called wunitary, if ©1(&*) = ©(&)* for all ¢ € %. Note that
the tensor product of two unitary representations 7, T’ is not unitary in general
(provided that we use the standard scalar product on the tensor product of Hilbert
spaces). Instead we have

(@ TNA(E)) = (@ T )A()" .

The (nonunitary) matrix (t ® t')(R) furnishes an intertwiner between the represen-
tations (t® t')o 4’ and (t® ') o 4.

There are two natural “contragradient” representations which come with the
antipode &. They are obtained as

() (=", (3.8)
() #(H =T, (3.9)

for all ¢ € 4. Here ' denotes the transpose of matrices. The relations (3.3) assert
that 7 and 7 are equivalent but non-equal unless u = e. Unitarity of t results in the
unitarity of both contragradient representations. The tensor products X1 7, T [X] t
contain ¢ as a subrepresentation (hence the name “contragradient”). These properties
can be abstracted from the relations

S Tab(ENTac(E2) = (E)0p e » > Ten(EDNTan(ER) = e(E)a e (3.10)

which are a direct consequence of the definition of the antipode . Here ¢ are
defined via the decomposition of the coproduct:

M =3¢ e, (3.11)

Representations of the algebra 4 of gauge transformations are obtained as fam-
ilies (7),cg of representations of the symmetries %,. We are mainly interested in
those representations of ¢ which come from the same representation of ¥,. At
this point let us assume that ¥4, is semisimple and that every equivalence class
[/] of irreducible representations of %, contains a unitary representative v/ with
carrier space V7. For the moment, the most interesting examples of gauge symme-
tries—e.g. U,(sly), g¢” = 1 —are ruled out by this assumption. This will be revisited
in Sect. 7. Tensor products 7/ Xl t/ can be decomposed into irreducibles 7. This
decomposition determines the Clebsch-Gordon maps C[LJ | K]: V! @ V/ s VK,

CUlIT | K1(<h B o])(&) = K (&) | K. (3.12)

The same representations 7% in general appear with some multiplicity N~ . The su-
perscript a = 1,...,NY keeps track of these subrepresentations. It is common to call
the numbers N7 fusion rules. Normalization of Clebsch-Gordon maps is connected
with an extra assumption. It will be central for the positivity later. Notice that the
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ribbon element v, is central so that the evaluation with irreducible representations
! gives complex numbers v/ = t/(v,). We suppose that there exists a set of square
roots k;, k7 = v/, such that

CA[lT | K)(<. @ ¢ )(RL)CP[LT | LY = o‘u.haK,L";i . (3.13)
K

Here R, =Y r2, @rl . Let us analyse this relation in more detail. As a conse-
quence of intertwining properties of the Clebsch—-Gordon maps and the R-element,
8(&) commutes with the left-hand side of the equation. So by Schurs’ lemma, it is
equal to the identity eX times some complex factor w.(LJ | K). After appropriate
normalization, wy,(IJ | K) =, pw(LJ | K) with a complex phase w(lJ | K). Next
we exploit the *-operation and relation (3.6) to find wu(4J | K)* = v'v’ /oK. This
means that (3.13) can be ensured up to a possible sign +. Here we assume that
this sign is always +. This assumption is met by the quantized universal enveloping
algebras of all simple Lie algebras because they are obtained as a deformation of
a Hopf-algebra which clearly satisfies (3.13).

We wish to combine the phases k; into one element k, in the center of %,, i.e.
by definition, k, will denote a central element

Ky €9, with t/(k,) =K. (3.14)
Such an element does exist and is unique. It has the property k% = ;!

The antipode ¥, furnishes a conjugation in the set of equivalence classes of
irreducible representations. We use [J] to denote the class conjugate to [J]. It is
defined such that the two equivalent contragradient representations 7 7/ of the
representative t/ € [J] are elements in the conjugate class [J].

Let us finally mention that the trace of the element %, (u, )v ' in a given rep-
resentation 1/ computes the “quantum dimension” d; of the representation v/ [28],
Le.

d; = dimy(V’) = Tr(«/ (L (ua ;")) .

Representations and intertwiners of %, are now transported to the algebras %,.
This is accomplished with the help of isomorphisms 1, and twist elements F,,

(&) = L (1(8)) for all ¢ € %, ,
COLJ | K] = COlJ | KI(L @ T))(F") .

The representations 1/ act on the space V! = V!, It is immediately checked that the

new maps C, satisfy the standard intertWining relations
T (OCIL | K] = C{I | K)(t) © 1 )(4(¢)) for all & € %, . (3.15)
Similar relations hold for the adjoint intertwiners
CUJ | KT = (L @ e )(F)CL | KT
CT | K1* 25 (&) = (L @ T )(AUE))CAT | K1* for all ¢ €9, .

Finally, the central element x, € ¥, introduced in Eq. (3.14) is transported to cen-
tral elements in %, with the help of the formula x, = 1 '(k.).
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So far we have only described the represenation theory of the ¥,. Among all
the representations of the total algebra % of gauge transformations which can be
built from representations of the %,, we need only one family (t"),c;, assigned
to the links of the graph. The representations t/' of % will later describe the
transformation properties of the basic quantum variables U’(i), i.e. of the parallel
transporters along the link i.

(&) ifées,
O =S ) ifEe g,

e(&) else
for x = t(—i),y = t(i). To decompose tensor products of representations t/', '
assigned to the same line i, we use the following intertwiners:
CUJIKY = Ci1JIK] © "(CIIJIKT") . (3.16)

As usual, * denotes the transpose. C*[/J|K}' is a map from (V] @ V)@ (VI @ V])
to Vf ® VK which enjoys the intertwining property

RUOCUTIKT = CUUIIK] (H @ ) (A(E)) forall E€ 9. (3.17)

There are further relations between representations on the same link, which
involve both orientations i, —i. In fact, there is an equivalence between the repre-
sentations t/' and "7, Let us describe this explicitly. By rel. (3.3), the element
& (uy) furnishes intertwiners n’, = t/,(#,(u,)) with the property

TS = TS ),
From this equation one deduces that
(g = <O
with "' =el® 'n). (3.18)

Here e/ is the identity on V! = V!. A similar equivalence appears between the
representations t” ' and t"/. This time the intertwiner is constructed from the

Clebsch Gordon maps. We introduce it according to

,ULI — n[ tzc[ll_|0]1('/’[,1)—l ,

where 2 means transpose only with respect to the second component and n’ = n’ is a

normalization determined by u/'u/>~ = id. The element y"' enjoys the intertwining
property )
phih ) =t (3.19)

4. Quantum Group Valued Gauge Fields

In this section we plan to introduce our basic lattice algebra #. It is an algebra
generated by the quantum lattice connections U’ together with the quantum gauge
transformations & € 4 discussed in the preceding section. Relations between the
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elements U’ and the gauge transformations ¢ € % are determined by the covariance
properties of the quantum lattice connection. All other relations among elements
U'(i) are postulated in the spirit of Sect. 2.

4.1. Definition of the lattice algebra A. To define the lattice algebra % We have
to introduce some extra structure on the graph G. The orientation of the Riemann
surface ¥ determines a canonical cyclic order in the set L, = {i € L : #(i) = x} of
links incident to the vertex x. Writing the relations in % we are forced to specify
a linear order within L,. To this end one considers ciliated graphs G.;. A ciliated
graph can be represented by picturing the underlying graph together with a small
cilium ¢, at each vertex. For i,j € L, we write { < j, if (c,, i, j) appear in a
clockwise order.
Definition 1 (Lattice algebra #). The associative algebra B = #(G.;) is generated
by elements UJ(i) = Uy ., (i), i € L, x=1,...,dim(z""), and the elements of 4
such that

1. The unit element e of % acts as a unit element of A4, i.e. Ul(i)e = Ul(i) =
eUl(i).

2. The tuples (UL(i)) transform covariantly according to the representation

UL = Uj(iN(tyy @id)(AC)) for all (€. (4.1)

3. “Functoriality” holds on the links

UL UL =X UK (1) {i f} ﬂ , (42)
U({b(i)U({b(_i) = 5(1. [ Ub[u(_i)U[!p(i) = 5(1,(' . (4.3)

Here C[..] are matrix elements of the Clebsch Gardon interwiners (3.16) intro-
duced in the last section.
4. Elements U!(i) satisfy braid relations

UNDUJ()) = UL(DUS G5 @ T )R) (44)
for i < jor if i, j have no common endpoints.

This definition is rather central and requires some thoughtful discussion. Intu-
itively, we prefer to think about the generators U‘f]az(i) as elements of a matrix.
Nevertheless proofs often simplify if we regard them as vectors in a dim(z')-
dimensional vector space. Whenever we adopt the second point of view, we use the
multiindex o instead of its components a, a;.

The covariance relation in 2 can be written in a more explicit form if we insert
the expansion A(¢&) = >_¢l @ &2,

CUL(I) = Ui (E)Es -
This tells us how to shift elements ¢ € % through factors U!(i) from left to right.
We note a simple consequence of this fact.

Proposition 2. Every element of B is a complex linear combination of elements
of the form
L‘f}(il)"'Uy(,,;(in)é with n=0,E€% .
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The relations (4.1) appear as a special case of a more general notion of covari-
ance.

Definition 3 (¥ (right-) covariance). Let © = (T,4)ype; be a representation matrix
of a n-dimensional representation of 4. An n-tuple F = (Fy)eq, Fy € B, is said
to transform (right-) covariantly according to the representation t of 9 if

CFy = Fy(tp, @1d)(A(C)) (4.5)

forall £ € 4. F € B is called G-invariant if it transforms according to the trivial
representation ¢ of 4, or equivalently, if

¢F = F¢ (4.6)
forall £ € 9.

Indeed this is an appropriate notion of covariance. Assume for a moment that
¢ is an element of a unitary group rather than a general Hopf algebra. Then the
co-product and the *-operation act according to 4(¢) = ¢ ® ¢ and &* = ¢!, So the
covariance relation (4.5) simplifies to &F,C* = Fytp,(&).

After this preparation we see that the covariance (4.1) can be regarded as a
quantum version of the classical relation (2.29). The latter means that the variable
Uél(,z(i) transforms covariantly according to the representation rﬁ, in the second
index while it transforms according to the representation 't/ o %, in the first index
(if i points from x to y). This is encoded in the definition of t/'.

We will often have to move elements ¢ € G from right to left. According to
the following proposition, this is always possible.

Proposition 4 (left covariance). Suppose that the tuple (F,), F, € # transforms
covariantly according to the representation © of 4. Then we have

Fué = (T, @1d)(A(E)Fy (4.7)

for all ¢ € G. In other words, every right-covariant tuple in 4 is also left-covariant.

Proof. We write the covariance relation for the components ¢2 in the expansion of
A6, 2 21 222
é(;Fy = F/f‘c/fj((c.n'r) o1 *

Multiplication with 7,.(%~'(¢})), summation over ¢ and the co-associativity of 4

lead to 2 1/ g1 12 Trgllyy 2
CGFJ(TO(}'((yi (éﬂ)) = F/)'T/f}'(éa{y_ (C,(rz))gg

= F.o(Ep)é = F.¢.
The left-hand side of this equation is equal to 7.,(El)E2F,.

This concludes our discussion of item 2 above. Let us turn to functoriality
next. At the end of the preceding section we described a number of equivalences
between representations assigned to the link i. The relations in 3 mean that all these
equivalences reflect themselves as equalities among the variables U!(i). While this
explains the term “functoriality” it is much instructive to check that the postulated
relations are consistent with the covariance. This is done by comparison of the
definitions in 2, 3 with the intertwining relations (3.17) of C“[/J|K] and property
(3.10).
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Equations (4.2) should be regarded as a kind of operator product expansions.
They can be written in a form which comes close to the classical relations (2.52), if
the definition (3.16) of C9[IJ|K]' is inserted. The set of relations (4.3) reflect the
behaviour of U’(i) under i — —i. In the formulation given in 3 they look exactly
like their counterparts (2.43) in Sect. 2. In the quantum algebra % we would like
to substitute (4.3) by a new set of relations which is manifestly covariant. Using
the operator product expansions (4.2) one derives

Ul(—1) = Ui, - (4.8)

(The element p’' was defined in (3.19)). In fact, relations (4.2, 4.8) are equivalent
to the pair (4.2, 4.3) and thus furnish a new definition of %. The latter implies that
every product of elements U!(i) and U,ﬁ(—i) is a complex linear combination of
U;{ ().

We can now proceed to the discussion of item 4. Of course braid relations
substitute for the commutation relations of classical lattice connections. The braid
relations between the components of U’(i), U’(j), i < j, are almost uniquely de-
termined by the consistency with the transformation law and with the associativity
of the product in 4. Since (t*' ® t//)(R) furnishes an intertwiner between the rep-
resentations t/' X1 t*/ and t%/ [XI t%*, both sides of the braid relations transform
according to the same representation ¢/ [X] /. Consistency with the associativity
relies on the Yang Baxter equation for R. One should also notice that these braid
relations require the introduction of eyelashes.

Actually the braid relations in the definition of # are identical to the correspond-
ing relations in Sect. 2. If 7, j have no common endpoints then (t"' ® t/)(R) is
the identity matrix so that the corresponding variables U’ (i), U’(j) commute. Sup-
pose next that the links #, j point towards the same vertex x while their second
endpoints are disjoint. Then (t' @ t*/)(R) = (¢}, ® t/)(R,) and this matrix acts
only on the second component of the indices 7 = (ci, ¢2), & = (d\, d2). So we end
up with the relations (2.47) if i < j. Finally we come to the case i = j, where the
R-matrix in 4 picks up contributions from both endpoints of the link i. More pre-
cisely ("' @ t"/)(R) is equal to the matrix (¢, ® v )(R,)('tL ® 't])(R,) acting on
both components of the indices 7, 9. To see this one uses that (%, @ ¥, )(R,) = R,.
Consequently, the braid relations (4.4) can be written in the form of relation (2.46).

The braid relations spelled out in 4 do not determine the commutation relations
for arbitrary choice of the links i, j. For example if i, —j point towards the same
endpoint x, the commutation relations for U’(i), U’(j) are not stated explicitly.
However they can be derived from the relations among U’(i), U’ (—j). The reason
is that (4.8) provides a complex linear relation between U’(i) and U’(—i). As an
example we give the relations for —i,—j if i < j,

Uy~ U (=) = (&5 @ T3 (RYUS(=))U (~i) . (4.9)

The reader is invited to verify this relation explicitly. We arrive at the rather im-
portant conclusion that any two variables U’(i), U’(j) can be (braid-) commuted.

Proposition 5. Suppose that iy,iy,...i, is a maximal ordered set of oriented links
with the property that every link appears only once and only in one orientation,
ie. xiy=Fiy, for all v . Then any element of # is a complex linear combination
of elements

Upl(iy)...Ur(in)é with n 2 0,&€%. (4.10)
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The following proposition asserts that the functoriality is consistent with the
braid relations.

Proposition 6 (braid relations for composite operators). Suppose that F = (Fy),
F' = (Fy) and F" = (F}') transform covariantly according to representations t,t’
and " of 4.

(i) Suppose that the braid relations

FxF}; = F;:E'(T\'D( ® T;L[f )(R) £
FdE,-// = F;:/Fp(fpx ® T::/f)(R) >
hold true. Then F and F'F" satisfy braid relations

FFJF! = FIFFy(ty, @ (¢ B ") J(R) . (@.11)

The proof of this proposition is a standard application of the quasi-triangularity
relation of R (cp. [1] for details).

Before we finish our discussion on Definition 1 we want to remark that an
algebra similar to # was proposed by Boulatov [S]. In his approach, variables
assigned to different links commute. We see that this is in general not consistent
with the local quantum symmetry of the model, i.e. by the consistency with the
transformation law under local quantum symmetry transformations one is forced to
use braid relations instead of ordinary commutation.

4.2. The x-operation on 9. We will obtain the observables of Chern—Simons as a
subalgebra of #. In quantum physics, observables come with a x-operation. This
x-operation will be reminiscent of a x-operation in #. The construction of the latter
is the main topic within this subsection.

Proposition 7 (anti-homomorphism 0). There is a unique anti-homomorphism
0: % — A with the properties

0 =¢, (4.12)

0(UL(0)) = Ul(=i)(zly " @id)R™ g, - (4.13)

In particular, 0 extends the x-operation on 4 C A.

“Conjugations” of this type were first proposed in [2] (cp. also [9] for a simple
example). If the R-matrix would be trivial (as it is for group algebras), the action of
0 would simplify to O(U!(i)) = U!(—i). This is the familiar unitarity of the lattice
connection. The formula (4.13) looks more convincing, if we use the elements
R.,R, instead of R. One can check that

O(UL(1)) = (14 @ id) (R ) Up (i), @ id)ea (R} ) - (4.14)

We start the proof of the proposition with the following lemma.

Lemma 8. With v; = t/(v,) the expression (4.13) for 0 can be rewritten according
to

0ULi)) = v;zng/;’(fj:,;' ® id)R)UI (i) . (4.15)
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Proof. To prove this relation we apply the covariance relation (Proposition 4) to

~l—1

move the R-matrix from the right to the left and insert the definition of 797/,
O(ULG)) = (el @ 25" @ id)((id @ AR~ )U (i)

= (7 @ @id) (¥ ®id © id)(id © 2)(R™")UL(—inj;

= (T, @id)( @ IR (S (™) ® ) UL~ .
The last step uses the quasi-triangularity of R and the definition of u (3.3).
Now (¥ @id)R (L (u " Y®e)=(Lu " )@e) s '@id)R™' = (L (u ")®e)R
and with the definiton (3.18) of #"! this finally gives the formula anticipated in the
lemma.
Proof of Proposition 7. Since the action of € is specified on all generators of 4,
uniqueness is obvious. We have to show that the extension of 0 to # is consistent
with the relations in 4. The simplest part is the consistency with the covariance

relations. We apply 0 to the right-hand side of the covariance relation (Definition
1.2) and use a series of intertwining relations,

O(Uj(i)(xp, @ id)A(E))
=0, (el @ id)A' (¢ (Bl @ id)R)US (1)
=0, 0y (F @ Id)RY(E, " @id)A(E U (i)
= v (F @ id)R)UL (=D = 0(EUL)) -

The reader is invited to check this calculation carefully. The consistency with the
covariance relations provides the main motivation for the definition of 0. The factor

(e @ id) R g,

which appears in 0(U!(i)) is designed to match the different transformation laws of
O(U!(i)) and U/ﬁ(—i).

Let us turn to the braid relations next. If 7,/ have no common endpoints, the
relations which result after the applications of € are obviously identical to the
commutation relations for U’(—i), U/(—/). So let us concentrate on the case i < ;.
We have to check that

O(UF(NBUL()) = (thy @ T R'™HOUNOUL () -

To do this we insert the formula for O(U) given in the lemma above. After dividing
by v, 2n"" we obtain

(@ @ id)R)U (=) (#h" @ id)R)U! (—i)

= (&, @ T NRHE @R (-D(E @ id)R)UZ (=)

20
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We apply the transformation law (Proposition 4) to move all factors involving R
to the left,

(T @ 27 @id)(Ras(id @ HRYU(=)U] (i)
= (2, @ 25, @id)(R)y Rys(id © HRYUN(~D)UL(—) .
The quasi-triangularity of R helps to simplify the product of R matrices. More
precisely, we apply
(id ® A)R™R'RR3R1R], = R,

to end up with the formula (4.9). Consistency of 6 with the relations (4.2, 4.8) is
left as an exercise.

One is tempted to guess that 6 gives a x-operation on 4, but this is not quite
true. In fact it turns out that 0 o 6 is non-equal to the identity unless R’ = R~'. This
is the content of the following calculation:

000U, (i) = (U (=i)(zly " e id)(R™ g,
= (e @ )R (1)
= 1y (v @ id)(R Yoyl (2] @ id)R)U()
= v, (25 @ id)(R'R)U! (i)
= oUl (™" .

The result gives a concrete idea how 0 can be improved to obtain an involution.
Recall that we have introduced central elements x, € %, such that t/(k,) = v,. The
set of Ky, x € §, determines an element x € ¥ having the properties

Conjugation with x gives an automorphism of # which can be used together with
0 to construct the desired *-operation on #. To formulate the result we define
o, B — B,

o (B)y=x"'B, forall Be #.

Theorem 9 (x-operation on #). The anti-automorphism ¢, 0 0 : 8 — % determines
a x-operation on A, ie. (a,00) =id. We will write B* = (a, 0 0)(B) for all
B e R

5. The x-Algebra .o/ of Observables

We now come to the central part of this paper. The algebra .o/ of observables,
i.e. invariant elements generated by the gauge field, will be constructed. The
x-operation on # can be restricted to .o/. Even though the gauge fields depend
on the position of cilia, the =*-algebra .o/ is essentially independent and thus
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A (Geyy) = <Z(G). To avoid confusion about the term “observables” we should stress
that the observables of the Chern Simons theory are only obtained after imposing the
additional flatness conditions. This will be discussed in a forthcoming publication.
The true observable algebras of Chern Simons will be identified as factor-algebras
of o/ and all statements we make about ./ in the following — in particular about
the *-structure and positivity — imply corresponding results for Chern Simons ob-
servables.

5.1. The definition of .«/. The elements U.(i), i € L generate a subalgebra of .
It will be denoted by (U/(i)).

Definition 10 (algebra of observables). The algebra o/ of observables is the in-
variant subalgebra of (UL(i)), i.e

of = {4 € (ULi)) C BIEA=AE  for all &€ G},

2/ 1s spanned by elements of the form
Coy Ul ). Uliy) n 20, (5.1)
where C is supposed to possess the following intertwining property:
CEI .. Ry E) =e()C forall €@,

Before we state our first result in this subsection we want to introduce the
following shorthand notation:

AV =4, AV =4,
A = (id" @ A)(A4™)  for all n

v

AY = (id @ AMYA)A™  for all n

1\%

(52)

Here A is an arbitrary element in ¥ ® .

Theorem 11 (x-operation on .oZ). The x-operation oy o0 : B — A restricts to a
x-operation on the algebra </ of observables.

Proof. We show that ) maps all elements of the form (5.1) to elements in .o/
0(Cuy..2, U3 (i1) .. Uph(in))
= 0(U (i) .. 0(U}(i1))Cy o,
= Uli(=in) - U (=i © ot @ iR )G, -

Here we used the definition (5.2) for (R~')"). Factors 5"’ have been absorbed in
the complex coefficients Cj , . C’ has again a “good” intertwining property,

(¢ ® R TYEC = Cle(¢) forall E€ G
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Since (R™')" has n + 1 components and we apply representation "~ only to the
first n components, the above linear combination still has coefficients in 4. However
one can show (e.g. by drawing a picture),

n—n ] —i 1 -
(z {,,/f,,l @y @id)((R DTy g

= (et R NC, g,

/n Bn

so that the image of elements of the form (5.1) under 6 is indeed an invariant
element generated by the U(i)'s. Since k is in ¢, it commutes with all invariant
elements in 4 and in particular with all the observables. Hence o,(4) = 4 for all
A € .o/ to that the assertion about o, o f) follows from what we said about 0.

5.2 Independence of the eyelash. The braid relations in 4 and hence %,x,.9/
depend on the choice of the cilia at the vertices x. While this should not disturb us
as far as the “unphysical” algebra % is concerned, we want the observable algebra
o/ with x-operation  to be defined on the graph G rather than on a ciliated graph
GCII'

Propeosition 12. Suppose that G.; and G are two ciliated graphs which differ
only by their ciliutions. Then Z(G.y) ~ A (G.p) as *-algebras.

Proof. Let us consider an elementary move when the eyelash position changes at
one vertex x € S for one step. This means that the smallest link incident to x (in
the ciliated graph G.;) becomes the largest link incident to x in G,;». This link will

be denoted by i. We agree to use U!( ) for generators in Z(G.;) = # and U,I((j)
for generators of B(G.p) =% If F € # we write F to denote the corresponding

element in %’ where all generators U/( j) have been replaced by U i( j). The only
effect of the different position of eyelashes is that the relations
ULOUJ(j) = U (HULGEh © < (R

which hold for all links j#i on G, incident to x are substituted by

U, (l)U/;(J) -0 (J)Uo(l)(fm ®T )(R,'C')~
Observables in # are obtained as linear combinations of
A=FUNi)Cpy .

Here F, is a tuple of elements in % generated by U!(j), +j =i, and F, is supposed
to transform covariantly according to the representation t of 4. C,, are complex
numbers chosen in such a way that 4 is invariant. Let A’ be a second observable
in # which is written in the same form with a tuple F transforming according to
the representation t/, i.e. A’ = F UJ 3 (1)C)y. The product of AA’ defines coefficients

C wap Such that
AA" = FyFL UL D URC s -
If we perform the same calculation in Z’ we obtain

A nl

Al
A4 = «,(Z)U/f(l)(TI ! @ Tp\ )(R R/) C/Mt/i
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This basically follows from Proposition 6 and the influence of the different positions

of the eyelash. Using the intertwining properties of the coefficients C, the equation
A Al

(¢ ®id)R = R, relations (3.6) and functoriality on the link i the product 44 can

be rewritten as

VRN ~J . : ~
A = BB 0005 (5 @ w3 RIROC g

A oAl AK . vivy
= ZF;lF\' - (l )Cd [ !‘/]ff}l(ﬁw//ﬂ .
K ' vk

In the last line v, = ri(v,v) etc. In other words, the map E : .o/ — .o/’ given by

NN _
E(F,UN(i)Cpy) = F1,U,(i))Cypv; !

is an automorphism, i.e. E(44") = E(A)E(A’). Let us finally check that this auto-
morphism is compatible with the *-operation on observables,

* AT — 1 \*
E(4)" = (F,uU;{(l)C/tzU/ l)

= Cou U, ()0F,)

The last row is again meant to define the coefficeints C and the tuple }3‘;‘. On the
other hand we have

E(4)" = E(FUj(iX(t}, @ 1), (RR)C i)
= E(F;,/ (]j(j)ém( )U%
NN
= F,U,(i)Cpyvr -

So we conclude that £(4*) = E(A4)*, i.e. E defines a x-automorphism between the
algebras .o/ and .o/’. Since two arbitrary ciliations of the graph G can be obtained
from each other by a series the elementary moves considered in this proof, we
established the independence of the eyelash. Let us add that the isomorphisms be-
tween algebras constructed starting from the same graph with different ciliations are
canonical. They are completely defined by the pair which consists of the graph and
the symmetry Hopf algebra.

6. The Regular Representation

Let us finally construct the regular representations of the lattice algebra # and the
subalgebra o7 of observables. Both will act by multiplication operators on a space
7. Elements in .7 have an interpretation as “functions” on the (noncommutative)
space of lattice connections. As an algebra, .7 is generated by a set of “coordinate
functions” ul(i). The elements of the gauge symmetry % act on .# as generalised
derivations. Using the x-operation on % and a generalized multidimensional Haar
measure we will be able to define a scalar product on 7.
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6.1. The definition of 7. In our present context it is obvious how to define the
algebra 7 of “functions” on the space of lattice connections. So instead of giving a
lengthly construction which work also in the more general cases considered below,
we present an ad hoc definition for .# and check that it carries the announced
representation of 4.

Definition 13 (Algebra 7). The algebra 7 = F(G.y) is an associative unital al-
gebra with unit Q. It is generated by elements u'(i), i € L, subject to the relations

w, (i) - ug(i) = Souf ()C 1T (6.1)
ul(—i) = uf}(i)/tf;,,’ ; (6.2)
wh (i) () = w(j) - ul (D) @ Ty )R) (6.3)

for i < j oor if i,j have no common endpoints.

We immediately recognize # to be our old algebra (U!(i)). However, this
isomorphism is a mere coincidence. In the more general framework of quasi-Hopf
algebras, the analogue of .7 turns out to be non-associative and consequently cannot
be isomorphic to any subalgebra of the associative algebra 4. This remark might
seem too prospective, but it should at Icast explain why we decided to give an
independent definition of 7.

Because of their interpretation as functions in the non-commutative coordinates
u = (ul(i)), we will often use symbols y(u), p(u) for elements in F#. A represen-
tation of = of # on # is defined by the following relations:

r(UL )W) = ul (i) - p(u) (6.4)
AW 1) - Yra(u)) = Y& 1 (u) - m(Ea(u) (6.5)
(i) = up(i)T (&) 5 w(E)Q = Qe(&)

for all y(u), (1), y2(u) € 7. The first equation means that elements U!(i) act as
multiplication operators on .#. The last two lines specify the action of the gauge
symmetry %. Because of relation (6.5) one says that elements ¢ of the quantum
symmetry act as generalized derivations on the algebra 7.

We see that the operators n(UI’(i)) generate .7 from the “constant function”
Q. In particular u!(i) = n(U!(i))Q. Given an element y(u) € .7, its “generator”
Y(WU)Ye A (e Y(u)=n(P(U))Q) is nearly unique. The only freedom in the
choise of Y(U) comes from the possibility to mulitiply from the right by factors
¢ € 9,¢(¢) = 1, without changing the generated element Y(u) € 7.

A tuple ¥, (u) of elements in .7 is said to transform covariantly according to
the representation 7 of 4 if

(W () = Yp(u)tp(<) .

¢(u) € 7 is invariant, if 7($)Pp(u) = Pp(u)e(E). Invariant elements ¢(u) € # gen-
erate a subalgebra .Z ™ of .7 . This subalgebra carries a representaion of the algebra
./ of observables (the restriction of 7 to the algebra of invariants .o7). Z " is the
“algebra of functions” on the moduli space of connections.
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6.2. A scalar product on F. It is our aim to construct a scalar product on #,
i.e. for “functions” on the space of connections. The procedure mimics the clas-
sical situation. The main ingredient is a multidimensional Haar measure w, which
allows to compute integrals of arbitrary functions on the space of connections.
The scalar product of two functions Y ;(u) = P, (U)L2, i = 1,2 is then obtained as
W21 () = (P2 (U) ¥1(U)).

Instead of defining a functional directly on the algebra %, we prefer to work
with a linear map w : # — C. The relation to the multidimensional Haar measure
will be apparent. By Proposition 5, a linear functional on o is specified when we
prescribe that values it has on elements of the form (4.10). In the case of w we
want w(e) = 1 and

o(UN) ... U (in)E) = e(2)81,0- - 01,0 - (6.6)

%n

For this to be well defined it is essential that every link appears only once and only
in one orientation among the links #,. Some properties of w are obvious. We state
them here without proof.

(SF) = o(F)e(&) (6.7)
o(F) = o(F") (6.8)

forall t€e 9, F ¢ 4.

The interpretation of @ as a multidimensional Haar measure uses the correspon-
dence between elements Y(u) € # and their generators ¥ (U). Since » depends on
¢ only through the value &(&), wp(Y(u)) = w(¥P(U)) does make sense. Relation
(6.7) is the usual invariance wp(n(E)WY(u)) = wp(P(u))e(¢) of the multidimensional
Haar measure.

Definition (6.6) has a fundamental drawback. Usually it requires an enormous
calculation to bring an arbitrary element in 4 into the form (4.10). However there is
a recursive way to calculate w. Once all elements assigned to a given link 7, —i are
gathered, integration over these variables can be performed. The formal expression
is

o(FUL()G) = o(FGYo(UL(i)) = o(FG)drg (6.9)

for all F, G generated by U/{(j), j=*i,—i and elements ¢ € 4.
Let us practise the calculation of the functional @ in a simple but fundamental
example.

Lemma 14. With the quantum dimension d; = Tr(t’ (S (u )v7")) and v; = ' (v.)

we have
—1

w(O(ULO)U()) = o7 20l ULHUG)) = 51‘,,”;_] ,

Proof. The simplest proof for this formula makes use of the invariance (6.7) of
. The latter can be reformulated into the following intertwining property of the

matrix Q) = o(0(U;(i)Uj(i)):

THOQ = Qiri(E) forall (€@
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YA

Since 7! is irreducible, we obtain that Qiﬁ = b 0,p. To calculate the complex

number A"’ we multiply this equation with (17’*")/;l and sum over «, f. The result

is ‘
AT ) = S0 (UL ))USG))

= Y0 (U= Ug(i)) = v} %5, .

In this calculation we used the formula (4.15) for 6, the invariance (6.7) of w and
the functoriality on the link 7 (4.3). J; is the ordinary dimension of the representation
oL, ie. 0; = dim(V"). Since Tr((n"~)~") = &, Tr(z/ (L. (u;"))) = v; '6;d; we infer
that 2* = v;7'/d,.

After this warm up we can address more complicated examples. Recall that we
plan to evaluate w((¥2(U))*¥1(U)) for elements ¥, (U) € #. This motivates to
calculate

(U (1) . Uy (i)) Ut (1) -+ (U (i) (6.10)

for a set of links i, which satisfies the assumption of Proposition 5. We write
the *-operation as g, o ). The conj