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Abstract: Supersymmetry transformations are a kind of square root of spacetime
translations. The corresponding Lie superalgebra always contains the supertranslation

operator δ = caσμ,c^(εμγ. We find that the cohomology of this operator depends

on a spin-orbit coupling in an SU(2) group and has a quite complicated struc-
ture. This spin-orbit type coupling will turn out to be basic in the cohomology of
supersymmetric field theories in general.

1. Introduction

It is well known that anomalies in gauge theories can be classified as elements of the
cohomology space of the BRS operator acting on the space of local polynomials
[1,2]. Due to locality, all cohomology calculations are brought to an algebraic
form, and so all details of the space-time topology may be neglected (see, e.g.
[6]). Here we are interested in cohomology classes built by space-time independent
"ghosts," so the requirement of locality is trivial, but we shall see many common
features between our construction and cohomology classes of local polynomials. In
particular, the present computation is similar to the analysis of the cohomology of
supersymmetric theories which was commenced in [4].

We think the method describing the BRS cohomology of the supertranslation
operator in four dimensions outlined in this paper is directly applicable to problems
which lie at the heart of all four dimensional supersymmetric quantum field theories
and superstring theory. There also may be a simple connection between the present
results and the results in quantum field theory, the most recent discussion of which
one may find in [7].

Since the supertranslation operator analysed here has a direct analogue for
gauge theories, let us recall an essential point in the problem of the computation of
the BRS cohomology of Yang-Mills theory before presenting our calculations. The
golden nugget in that problem [1,3] is the cohomology of the following nilpotent
operator

δ = fabcωaωb(ωcγ , (1.1)
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where
{(ωaγ,ωb} = δb

a; (1.2)

(ωa)ϊ is an annihilation operator and fabc are the structure constants of a com-
pact semisimple Lie algebra. The cohomology space of this operator is well known
and is given by the kernel of the "Laplacian."

A = (<5 + <5t) = YaYa , (1.3)

where

γa = (γaγ = ifabcωb(ωcγ (1.4)

is the generator of rotations. The kernel consists of all solutions of

YaH = 0, (1.5)

which are just the invariant antisymmetric tensors of the adjoint representation for
the group.

By a straightforward mapping, these antisymmetric tensors in turn generate the
cohomology space of Yang-Mills theory, which determines all possible anomalies
of such theories. Gravity works in an analogous way-the relevant group there is
SO(1,D-1) for D dimensional gravity.

The supertranslation operator which will be analysed in the present paper is:

ί = cV/j^)t. (1.6)

As mentioned, (1.6) is the analogue of (1.1) for supersymmetry. Similar operators
occur in all supersymmetry theories in all dimensions, however, their cohomology
is certainly dimension dependent. Here we concentrate on the D = 4 case, and it
turns out that performing calculations in terms of two component Weyl spinors
rather than in terms of Majorana spinors simplifies the problem significantly. A set
of conventions which are particularly well suited to our problem is introduced in
Appendix A. They preserve the symmetry of the theory under complex conjugation.
This symmetry is obscure in most sets of conventions. We also give a number of
identities in this notation for convenience and ease of the present and future work.

The easiest way to see (1.6) arising is to consider the algebra of the well known
supersymmetry translation operators Q:

a =έ+r«A' (1 7)

^ ^ / (1.8)

To close the algebra of these operators we must add an anticommuting translation
"ghost" εμ and a commuting Weyl spinor ghost ca and its complex conjugate cά.
The resulting nilpotent "BRS" type operator is:

δ = c«Qa + cdQά - c«σμ

4ch^ + sμdμ , (1.9)

which summarizes the algebra of the Q's. Note than δ = δ is a "real" anticommuting
operator. The following identities hold:

{Q«,Qβ} = σμJμ. (1.10)
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Now in a field theory, the operators Qa and dμ become functional derivative oper-
ators whose action is really quite complex and the cohomology of the operator δ
becomes also quite complicated. However, the supertranslation part of this operator
remains even in field theory, and using the present results and the method of spec-
tral sequences the full BRS cohomology can now be found for chiral superfields in
D — 4, N — 1 supersymmetry [5], although there are still unsolved difficulties when
vector superfields (i.e. super Yang-Mills fields) are present.

2. Laplacian

The calculation of the cohomology space is based on the simple result:

H(δ) = ker(5/im(5 « [ker^]-1 Π [ i m ^ - kerzl, (2.1)

where H(δ) is the cohomology space of δ and A is the Laplacian formed from δ:

A = [δ + (5f]2 - <5<5t + s^δ . (2.2)

Though in this paper we identify H and kerzl, in general, it is important to keep in
mind that the former is actually a factor space which is isomorphic with the latter.

Using various identities contained in Appendix A, we show that δ is an operator
in a Fock space with positive definite metric. An essential point is that this can be
done even though our spacetime in intrinsically Minkowskian. The detailed discus-
sion of this point is presented in Appendix B. After some algebra, we find that the
Hodge "Laplacian" operator for the operator (1.6) can be written in the form:

A = [n + n + 2]N + Inn + 4[JZ LZ + J ^ ] , (2.3)

where we use the abbreviations:

n = c\c*)\ ϊ = cd(cdγ, (2.4)

N = εμ(εμγ , (2.5)

Liiσtt = ^ t ε ^ Ϋ (2.7)

The operator Z,, can also be written more explicitly in the form:

Li = -^(εoίfi/)+ + ΦoΫ + iεijkεj(εkγ). (2.8)

It is easy to verify that I, and J, obey the commutation rules of the SU(2) Lie
algebra:

[J,,Jj] = iεiJkJk , (2.9)

[Li,Lj] = iε^Lt, (2.10)

and we note
[Ji,Lj] = 0. (2.11)
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Initially, it was a surprise for us to find that this operator involves only angular
momentum in the compact SU(2) algebra even though the supertranslation operator
is intrinsically defined in Minkowski space. But the result is reasonable. This hap-
pens because the Fock space is positive definite, so that any relevant group theory
for our Laplacian must necessarily also be defined in a compact positive definite
context. Anyway, regardless of the philosophy, one finds the above result. The same
kind of thing happens for the BRS operators of string theory when the problem is
formulated in this way.

3. Discussion of the Laplacian and the Cohomology Space

Since the Laplacian A in (2.3) consists solely of counting operators and coupled
angular momentum operators, finding its kernel is an exercise in the theory of
angular momentum.

It is well known that the eigenvalues of angular momentum operators J2 are of
the form j(J + 1 ) , where j = 0, ^, 1, | , 2 . . . . We rewrite the above Laplacian in the
form:

A = [n + ή + 2]N + 2nή + 2[K2 - J2 -12] + 2[K2 - f - U\, (3.1)

where we define the composite angular momentum operators

Ki=Ji^Lh Ki=Ji+Li, (3.2)

J2=JiJh L2=LiLi. (3.3)

What do the eigenvectors of these various angular momentum operators look like?
The eigenvectors of/2 are:

™ p ή α l c α 2 . . . ̂ m m^{ (3 4 )

These expressions are automatically symmetric under interchange of any pair of
indices.

The eigenvectors of L2 are best described using the variables

The L2 eigenvalue of a product of these variables is equal to the number of sym-
metrized undotted indices in the product. Since ε anticommutes, there are a very
limited number of possibilities that are nonzero:

L 2 ε μ ε v σ % = 2 ε μ ε v σ % ; ( 1 = 1 ) , (3.7)

L2eμε,σ% = 0; (1 = 0), (3.8)

(3.9)
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with

^ = 4v/ε'£J. ( 3 1 0 )
D

where we note that a vector W^ = (σp)^Wp can only have one undotted spinor
index. Finally,

L 2 ε μ ε y ε λ ε p = 0; (1 = 0 ) . (3.11)

For the complex conjugate operators the discussion is identical except that only
dotted indices are relevant.

For the combined operator K2 the eigenvectors have spin k, where 2k is the
number of symmetric (and consequently uncontracted) free undotted indices in the
eigenvector. These indices may come from either cα or εα». So the eigenvectors of

K2 are of the form (for example):

K2εμσ
μ

aβc« = 0; (h = 0 ) , (3.12)

K 2 ( S a β C β + E β β C * ) = 2 ( S * β C β + εββc*)'> ( k = l ) > ( 3 1 3 )

etc.
As is known from the theory of angular momenta, the eigenvalues of K2 run

from \j — l\ to (/ + /). Now, finding all the possible combinations of eigenvalues
that can give zero for the value of the Laplacian above allows the identification
of the cohomology space. We do this simply by examining the various cases as a
function of N = N(ε) for N = 0,1,2,3,4. The analysis yields solutions

1. tf = 0, nn = 0.
2. N = 1, n = ή=\.
3. N = I, k — ^ — | , ή = 0 (and the complex conjugate of this).

4. N = 2, k = % — ϊ, ή — 0 (and the complex conjugate of this).

To summarize, we have shown that the following set of polynomials constitute all
the vectors in the cohomology space of the operator (1.6).

c « i c « 2 . . . c α m m ^ i 9 ( 3 . 1 4 )

ε^σ^cαcα icα 2 cαw m ^ 0, (3.15)

ε μ ε v σ μ j β c a c β c ^ c ^ - - c a m m ^ O , (3.16)

and their complex conjugates:

cάicά2--cάm m ^ 1, (3.17)

ε μ σ ^ β c ά c ά ι c d 2 ' " C d m m ^ O , (3.18)

ε μ ε v σ r c d c h ά ^ ά 2 -'Cάm m^O. (3.19)

Finally, there is one more polynomial in the cohomology space which is equal
to its complex conjugate:

e^σ^cϊ. (3.20)
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4. Projection Operators for Supertranslations

Since our actual interest is in the use of these results in finding the cohomology
space for supersymmetric field theory where the use of spectral sequences will be
necessary, we have found the orthogonal projection operators which project onto
the space H. These operators all satisfy the relations

77 = 7 7 t = 7 7 2 . (4.1)

The projection operator onto (3.14) has the form i7Λ/=o^«=o^«=r('* ^ 1)> where

π~=Fϋhwn" (42)

and we remind the reader that n is an operator defined in (2.4). The operators n\
are defined recursively by

=(n- l)m (4.3)

and are distinguished by the fact that they are normal ordered operators. For
example,

n2 = cacβ[cacβγ. (4.4)

This operator satisfies the relation

nΠn=r = nxΠn=r = rΠn=r r = 0,1,2,... . (4.5)

Next, we find the projection operator onto (3.20) εμc
aσμ cβ. Here we must first

take the combination of three operators of type (4.2) ΠN==\Πn=\Πn=\ which selects
the subspace N = n = n — 1. Equation (3.20) is the totally contracted vector from
this subspace. We find that the following operator performs the task of picking out
the contracted part:

Π = Q -J Λ Q - J L\ ΠN=λΠή=ιΠn=λ , (4.6)

where

J L = JtLi. (4.7)

The third projection operator is the one onto the vector εμσ
μ -c^c^c*3 cα r,

for r ^ 1. As above, first we project onto the space where 7V= 1, n = r9 n = 0.
Then in this subspace we need

J LΠ = - V- + I ] Π. (4.8)

The operator which accomplishes this is:

]WΓ«lZ_ (4.9)
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For the vectors εμεvc
ασ^c^cα i car~2 for r ^ 2, we must first project onto the

relevant subspace with ΠN=2fn=r,ή=o, then onto the subspace in which I? = 2. This
can be accomplished with the operator:

where
# = 2iε//ifefioβίεtεJ[. (4.11)

To see that this has the desired properties, we note that

L2ΠL2=2 = ί l + 1(R + rf)1 77L2==2 = 277 l 2 = = 2 . (4.12)

This can be shown using the results that

RR^ΠN=2 = 16ε0εlπN=2 , (4.13)

RΪRΠN=2 = 16(1 - ε0εl)ΠN=2 . (4.14)

The next step is the projection onto the subspace where the eigenvalue k(k + 1) of
K2 is k = I — 1, or equivalently, we need:

[£ ] 7 . (4.15)

The necessary operator is:

Π = \ Λ

r \ Λ - r \ j ^ + , 2 ,^,7-Λ/i ΠN=2Πn=oΠn=rΠL2=2 , (4 .16)
[4(r + 1) r ( r + l ) r ( r + l ) Ĵ

where we define the normal ordered expressions Jυ and Lzy by:

JiJj = -nδij -f- -iεijkJk + ^ , (4.17)

I*/,,- = -7V(5z7 + - ^ 4 + Lij , (4.18)

and explicitly

Jij = c"cP(σiγa(σj)δ

β(cV)\cδγ. (4.19)

The total projection operator for the cohomology space of the supertranslation
operator in D = 4 is the sum of (4.2), (4.6), (4.9), (4.16) and the complex conjugates
(where necessary).

5. Conclusion

The Laplacian operator for the supertranslation operator can be written in a very
simple and transparent form (2.3) which contains only counting and angular mo-
mentum operators. Then it is straightforward, though somewhat involved, to deduce
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the form of the kernel of this Laplacian and so the cohomology space. The coho-
mology space is described in Eqs. (3.14-3.20). Its complexity is a reflection of the
complexity of the cohomology of supersymmetric theories in general.

Surprisingly, the cohomology calculation involves only the compact Lie algebra
SU(2) even though supersymmetry is a Minkowski space algebra. This is a conse-
quence of the positive definite metric on Fock space. Very similar things happen for
the general BRS cohomology of the chiral superfield in supersymmetric quantum
field theory, and we intend to treat various such theories in forthcoming papers.

The cohomology space of super Yang-Mills involves vector superfields as well
as chiral superfields, and we have not yet been able to find the cohomology of
that theory. The difficulty is that in the cohomology problem for super Yang-Mills
theory, the gauge transformations and the supersymmetry transformations seem to
become entangled in a complicated way, even though they are rather well separated
in the relevant δ operator.

The BRS cohomology of supergravity is, of course, a separate problem and
a very complicated one. But the supertranslation operator treated here naturally
appears in supergravity and we hope that the present results will be helpful there.

A. Conventions and Useful Formulae

Though many different sets of conventions exist in literature (see the useful discus-
sion in [8]), we do not quite follow them because of our desire to have symmetry
under complex conjugation. Our Lorentz metric is defined by the relation:

XμXμ = ημvXW = ~*o + χ2l + 4 + X3 ' (AΛ)

Lorentz transformations Λμ are real matrices which preserve this quadratic form
when they are used to transform the vectors:

xfμ = Λμxv, (A.2)

so they satisfy:
ΛμΛσ

τημσ = ηvτ. (A3)

Another way to preserve this quadratic form is to consider the following action of
the group SL(2, C) of all of 2 x 2 complex matrices M of determinant 1 on a 2 x 2
complex hermitian matrix:

σμx'μ = MσμxμM
], (A.4)

where σμ are a basis of the set of 2 x 2 complex hermitian matrices, which are cho-
sen to be Pauli matrices. The transformation (A.4) defines a Lorentz transformation
on the four vector

xtμ = Λμx\ (A.5)

since the determinant is preserved by this transformation and it is equal to (minus)
the quadratic form (A.I):

det[Mσ%M f ] = d e t [ σ ^ ] = det[σ%] = x'ox'o - xft = xoxo - */*,-,. (A.6)

n

We will write the indices of the matrix M as Af« and its complex conjugate as

(Af«j?)* = Aff. The hermitian conjugate has the form (Aft?)*7" = (Af«j?)+ = (MT)β

ά.
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The notation 4̂* is interchangeable with the notation A. Both mean simply complex
conjugation. It follows that the position and kind of indices of the matrices σμ are
now determined σμ • — (l,σΓ)α^, and since the σ matrices are hermitian, the complex

conjugate matrices are (σμ

ό)* — σμ

R — σμ

R..
J & V aβJ zβ βa

Contrary to the usual convention, we do not reverse the order of (anticommuting)
spinors when taking the complex conjugate. Such a change of order spoils the natural
symmetry of supersymmetry under complex conjugation and makes all computations
more tricky. (Reversing the order of commuting spinors makes no difference of
course.) Indices are raised and lowered as follows:

\j/* = εaβψβ, φa = -**βΨβ, (A.7)

{// = s<xβιj/ni ιj/ά = —εάόij/ , (A.8)

where the ε tensors are real antisymmetric matrices with:

where δΛ

β = 1 if α - β and δ«β = 0 if otφβ (Same for δp. We take:

ε*β = i(σ2γβ. (A. 10)

We also have:

ff*θβ = -\e2s^, θaθ
β = -\θ2δβ

a , (AM)
2 2

where θ2 — θaθa. Using this rule for raising and lowering indices, we get:

ϊμ = (1 —σι)άβ (A 12)
δy

so that:

σf = -{\,σψ, (A.13)

where we use σ2(<^)*σ2 = ~σi The well known relation for Pauli matrices

Oiϋj = δijl + iεijkσk (A. 14)

results in a number of other relations such as:

which yields

ε^ (j (jVβ~dμdv = — ε α β D , (A. 16)

We define:
μv μv vμ v μ -vy v -μy-\ /A 1 O\

σaβ = σβa = ~σxβ = ϊlσzyσβ ~ σayσβ J ( A 18)
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Then,

2i(σκ% , (A.20)

(A.21)

- 2 ί 7 v V % + [ημY ~ nμτrfλ) + i£μvλτK7 • (A.22)

Note that σ°! is not independent of σij:

(σOit = -(σ')f = -\i^k{σ'Jt, (A.23)

(a ' ) f (^)^ = 2δδ

aδζ - δiδδ

y. (A.24)

Formulae involving products of invariant tensors can be reduced using the basic
relations:

σμ σv σλ + σλ . σv σμ - 2>fV - 2ι/^σλ - 2 ^ V , (A.25)

σ^ σv σA - σ̂  σv σ^ - -2ierλpσp , (A.26)

where we define βOl# = e1^ and, for example, (σ" σv σA)α(5 = (σ^)^(σ v )^(σ i )^,

(A - σμ B)* =B - σμ - A=A - σμ B, {All)

and, in particular,

(Λ σμ I)* =^( σμ . I = i σμ ^ (A.28)

is a real quantity. The Fierz identity takes the form:

A σμ - BC - σμ - D = -2A CB D (A.29)

for commuting spinors, with appropriate change of sign for the anticommuting case.

B. Inner Product

Here we discuss the inner product used in the text. It is at first surprising that a
positive metric in the Fock space can be defined while preserving the non-compact
Lorentz invariant metric. The reason this can be done is that the two metrics are
not connected in any way. One is a Fock space metric defined for arbitrary poly-
nomials, and the other is a restriction on the space of polynomials. Here are some
examples.

We define the adjoint spinor (caγ to satisfy:

[ ( c « ) V ] = # [(cάγ,cϊ] = δβ

ά, [ ( ή V j ^ O . (B.I)
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Now consider for example the following expression:

(o\(c°a»/Y(cw/)\o) = ( < p V ^ = (-**>;, = +2δ;. (B.2)

Writing the indices in this way enables one to see that the positive definite inner

product preserves the Lorentz invariance of Lorentz invariant expressions.

Another example is the following. The Minkowski metric controls the way that

indices are contracted and this is preserved by the operators. The Fock space metric

assigns a positive number to each vector. Take for example the state

(PμPμ\PvPv) = (0\(pμΫ(pμΫPvPv\0) = 2ημvη»v = 8 , (B.3)

where we use

[p\,PΛ = δζ. (B.4)
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