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Abstract: Electrically as well as magnetically charged states are constructed in the
2-+1-dimensional Euclidean Zy-Higgs lattice gauge model, the former following
ideas of Fredenhagen and Marcu [1] and the latter using duality transformations on
the algebra of observables. The existence of electrically and of magnetically charged
particles is also established. With this work we prepare the ground for the construc-
tive study of anyonic statistics of multiparticle scattering states of electrically and
magnetically charged particles in this model.
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1. Introduction

The study of the statistics of particles and fields in low dimensional Quantum Field
Theory became one of the most fruitful lines of research of the last few years, in part
due to some physically and mathematically appealing connections, like those to the
Quantum Hall effect, to the so-called exactly integrable models, to the theory of the
“Quantum Groups” and to the so called “Topological Quantum Field Theories.” The
emergence of non-trivial, i.e., non-bosonic and non-fermionic, statistics in two and
three space-time dimensions has been already described in the general framework
of the Algebraic Quantum Field Theory [2].

In the work started with the present paper we intend to exhibit in a purely con-
structive way the emergence of non-trivial statistics in a (2+1)-dimensional quan-
tum spin system, namely in a self-dual Zy-Higgs lattice gauge field theory with
a dynamics defined through the transfer matrix formalism. The vacuum expecta-
tions in this theory are given by classical expectations of an (Euclidean) statistical
mechanics model with an action given by a generalized Wilson action:

\/ﬁ > Z Bg(n)cos (—dA(p)> T > Z Bu(n)
X cos (%(d(p(b)—A(b))) , (1.1)

where ¢ and A are Zy-valued Higgs fields, respectively gauge fields, taking values
in {0,...,N — 1}. B, and B, are the gauge and Higgs coupling constants. They will
be chosen to satisfy f,(n) = By,(N —n), Pu(n) = pu(N —n). We will be mostly
interested in the so-called “free charges phase” of this model, corresponding for
instance to “large” positive values of all the {f,(1),...,H,(N — 1)} and “small”
positive values of all the {f,(1),...,Bx(N — 1)}>. In this region convergent polymer
and cluster expansions are available and are analyzed in detail here. Other phases
like the “confinement” and the “Higgs” phase may also exist, but we will not
consider them since no charged states are expected there. See [1] for a study of
these phases in the Z, case.

In [1] Fredenhagen and Marcu have shown the existence of electrically charged
states in the phase of “free charges” of the Z,-Higgs gauge model in three or more
space time dimensions. Subsequently, the existence of electrically charged particles
in this model was established in [3]. Multiparticle scattering states were constructed
in [4], combining the methods of [1] with a general analysis of particle scattering
the Euclidean lattice field theories given in [5].

In three space-time dimensions Zy-Higgs models are well known to enjoy self-
duality properties [6,7]. This suggests that there should exist magnetically charged
states as well. For Z;-model, this has been established in [8], where also a dyonic
state (i.e., electrically and magnetically charged) has been constructed.

In the present work we extend these results to general Zy-Higgs models. In
the above mentioned region of parameter space we construct electrically charged
states with Zy-charges n=1,...,N — 1 in three or more space-time dimensions,
following the lines of [1]. For the (2+1)-dimensional case we then give a detailed

3 The values of 8,(0) and $,(0) only determine additive constants to the action, which will be
fixed by convenient normalization conditions. The precise convergence region is described below.



Electrically and Magnetically Charged States and Particles 29

discussion of algebraic duality transformations, which in many aspects appear to be
more subtle than the corresponding Euclidean Lattice formulation [6,7]. The reason
for this lies on the fact that there are two choices for defining transfer matrices
from the Euclidean actions. This corresponds to the fact that in the Osterwalder—
Schrader reconstruction one may use reflection positivity for time reflection across
spatial planes of either the original lattice or of the dual lattice. Correspondingly,
the algebraic version of duality transformations maps one choice of the Euclidean
dynamics onto the other.

Among other results we are able to show that the global transfer matrices as-
sociated to dual states are unitarily equivalent. We then use these results to prove
that there is an isomorphism between the model at parameters (f,, ) and the dual
model at the dual parameter (f3;,f;), mapping electric states onto magnetic ones
and vice-versa. We finally construct unitary generators of the translation group and
prove the existence of electrically (and therefore, in 2+1 space-time dimensions,
also of magnetically) charged particles.

In a forthcoming paper [9] we will construct the dyonic sectors of this model,
i.e., sectors where electric and magnetic charge distributions are simultaneously
present. There translation invariant global transfer matrices will be constructed and
the existence of a unitary representation of the translation group, a question which
is much more subtle in the dyonic case, will be analyzed. No trace of the existence
of dyonic particles, i.c., of particles carrying simultaneously electric and magnetic
charges, was found and it remains an open problem to prove or to disprove their
existence.

Our ultimate goal is to show the emergence of anyonic statistics in this model.
Since no method is available for constructing fields generating the various sectors
mentioned above, in [9] we will address the question of the statistics through the
analysis of multiparticle scattering states of electrically and magnetically charged
particles, whose existence will be proven in the present article.

For the orientation of the reader we describe now the organization of the work.
Section 2 is devoted to the description of the Zy-Higgs gauge model as a quantum
spin system. The algebras of fields and of observables are defined, local trans-
fer matrices are introduced as well as the important concept of a ground state. In
Sect. 3 we describe how to use the transfer matrix formalism in order to reconstruct
the classical (Euclidean) vacuum expectations. In Sect. 4 we develop polymer and
cluster expansions for classical expectations in the so-called free charges phase,
combining high and low temperature expansions. A full convergence proof is given
in Appendix A. In Sect.5 we resume our algebraic analysis and consider duality
transformations from the algebraic point of view. Four different types of ground
states related by duality transformations are presented. Global transfer matrices are
defined for each of these states and their interplay is discussed. One shows in a pre-
cise sense that duality transformations keep the joint spectrum of the transfer matrix
and momentum operator invariant. Section 6 is devoted to the construction of elec-
trically and of magnetically charged states—the first following [1], the latter using
duality transformations. This method provides a natural frame for further analyses,
especially concerning the relationship between transfer matrices in magnetically and
electrically charged sectors and concerning the structure of charged particles. In this
section we also establish that our charged states are ground states with respect to
certain automorphisms generated by modified transfer matrices, a fact which will
be of relevance for our future construction of dyonic states. In Sect. 7 we define
global transfer matrices for the charged sectors and analyze the relationship between
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then, and in Sect. 8 the translation invariance of these global transfer matrices is
established. We prove that, due to the duality transformations, the existence of elec-
tric particles implies the existence of magnetic ones with masses related by dually
transformed couplings. In Sect. 9 the existence of electrically and of magnetically
charged particles is directly established through the analysis of suitably defined two
point functions. In the other appendices we complete some important proofs.

Remarks on the notation. The symbol O indicates end of statement and M end
of proof. Products of operators run from the left to the right, i.., [[._, 4, means
Ay --- A,. For an invertible operator B, adp is the automorphism B - B~!. Z denotes
the set of all functions {0,...,N —1} - C. O

2. Basic Setting and Algebraic Formulation

In this paper we use the well known transfer matrix formalism to represent the
Euclidean lattice Zy-Higgs model (N € N, N = 2) as d-dimensional quantum spin
system, rather than a (d+1)-dimensional classical statistical system. This brings us
closer to quantum field theories where relevant quantities are described in terms of
operators and states. Here the dynamics is described by a transfer matrix, which
has to be interpreted as the generator of time translations by one unit in imaginary
time direction. In a first step transfer matrices can only be properly defined at finite
volume. The associated ground state is a ground state for a finite volume system
but, if its thermodynamic limit exists, one can use the GNS construction associated
to the limit state to define a global (infinite volume) transfer matrix, in a fashion
first proposed in [1]. Translation invariance of the limit state also provides a way
for defining generators of space translations in this GNS Hilbert space, thus making
the analogy with quantum field theoretical systems even more appealing. In this
work we build up these structures for neutral and charged states associated to the
Zy-Higgs model and study some of their properties. We now start by describing
our quantum spin system.

We will consider the hypercubic Z¢*! Euclidean space-time lattice with d = 2
and particularly the case d = 2, where our main results hold. For simplicity we will
fix the lattice spacing as a = 1. We denote by /; the set of i-cells of Z¢*! with the
identification o = Z4*!. I, is the set of oriented bonds associated to Z4+!, I, the
set of oriented plaquettes, etc. The quantum spin system is defined on a Z¢ lattice,
the time-zero hyperplane. In our notation the elements of Z¢, its cells or subsets
are usually underlined.

We introduce the local algebra of time-zero Higgs and gauge fields in the fol-
lowing way. To each x € [, we associate the unitary Zy-fields Py(x) and Oy (x) and
to each b € I; we associate the unitary Zy-fields Pg(b) and Qg(b) (the subscripts
G and H stand for “gauge” and “Higgs” respectively) satisfying the relations:

Py(x)" = Pu(x)™" = Pu(x)"™, (2.1)
On(x)* = Ou(x)™" = Ou(x)" ", (2.2)
Pg(b)" = Pg(b)~" = Pe()" ", (2.3)

06(b)" = Q(b)™' = Q6(B)" ", (2.4)



Electrically and Magnetically Charged States and Particles 31
and the Zy Weyl-algebra relations

Pa(@)0u(B) = ¥ “P0 0y (B)Pu(w). (2.5)

Pe(1)0a(®) = F P 00(8)Pe(y). 2.6)

where o, f € [°: Iy —{0,...,N — 1} are O-forms with finite support; 7,0 € I
I, - {0,...,N—1} are I1-forms with finite support and Pgy(a):= H)_cG!O

Pr(—x)*® | etc. The brackets (+,+) indicate the scalar product of forms. We also
use the convention that Py(—x) = Py(x)~!, etc., where here —x indicates cell x
with reverse orientation. Operators at different sites and bonds commute. Finally the
G operators commute with the H operators.

We will generally define [00g](a) := On(da), [0*Pcl(f) = Pg(d*p), etc.,
where d is the exterior derivative on forms.

We will realize these operators by attaching to each lattice point and to each
lattice bond a Hilbert space #; = #} = €V with each Qy(x), Py(x), Qg(b) and
Pg(b) acting on #;, respectively on #, as matrices with matrix elements:

Py(x)ap = P6(b)ap = da,pr1(mod N) » 27
and .
On(x)ap = Q6(b)ap = Sape™ (2.8)

for a,b € {0,...,N — 1}.

One should interpret the operators Oy and Qg as the Zy versions of the Higgs
field and gauge field, respectively: Op(x) = e¥°®, O6(x) = e ¥4® | with ¢ and
A taking values in {0,...,N — 1}. The operators Py and P¢ are their respective
canonically conjugated momenta, in Zy version.

We denote by &o the =x-algebra generated by these operators together with
a unit 1. Denoting by & (V) the C*-subalgebra generated by 1, QOy(x), Py(x),
Q¢(b) and Pg(b) for x, b€ V C Z% a finite set, one has o = U4l <00 & (4).
The algebra § (V) acts on H#y 1= Rxcy, #x Qpey, Hp. We will denote by §F the
unique C*-algebra generated by &o. By 7, we denote the *-automorphism of &
implementing translations by x € Z¢.

The dynamics we will consider is invariant under the x-automorphism imple-
mented by the unitaries

2Ax) == Py(x)[0"Pcl(x)" . (2.9)

Note that 2(x)* = 2(x)~! = 2(x)"~!. The operator 2(x) is to be interpreted as the
generator of a Zy gauge transformation at the point x, as one can easily checks,
since it can be interpreted as exp(—2ni(divIE — p)/N).

The algebra of observables U is defined as the set of fixed points of & by
ady(y) for all x:

A= {4 € F:2(x)42(x)* = 4 for all x € Z°} . (2.10)

The norm dense sub-algebra U, is generated by 1, Pg(b), [0Qn1(B)Qc(b)* and
Pu(x),x,b € Z¢. We call A(4) := F(A)NAU.

The algebra U contains a non-trivial two-sided norm closed ideal J generated
by 2x)* -1, x€Z% a=1,...,N — 1. Since the operator 2(x) can be inter-
preted as an operator measuring a external Zy-electric charge at x the relevant
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algebra of observables in actually B := U/J. The elements of B are equivalence
classes [4] := {B € ¥, so that A — B € J}. Below we will mostly prefer the nota-
tion A+ J for [4], 4 € . We call B(A) := {4 +J, AU(A)} the x-algebra which
is generated by 1+ J, Pg(b) +J and [0Qy] (b)Qc(b)* +J, b € A. Finally we call
B = U| 4] <ooB(A4).The algebras B and B(A) can be regarded as C*-algebras with
norm ||[4]|| := inf{||4 + j||,j € J} (for a proof see [10], Proposition 2.2.19). We
will denote by

Ui() :=Ps() +J , (2.11)
Us(b) := [6Qn1(D)Q6(b)" +J , (2.12)

the generators of By.

Let us now introduce the dynamics we are interested in by defining suitable
finite volume transfer matrices. The form of the transfer matrix is justified by the
finite volume ground state we will associate to it, which is identical to the classical
expectation associated to the Euclidean Zy-Higgs model we are considering.

We will consider local transfer matrices 7y € o, V' C Z¢ defined by:

Ty = V12Pr v/ (2.13)
with
Ay =LN > i B30 1 p)"
pey; =0
%é% Z;? Br(n)([6Qu1(8)Qc(B)*)" (2.14)
and

By = TE § 1o (n)PG(b)" +\/—]\7x€zyj+ E WPy@ . (215)

where V' are the positively oriented elements of the set of i-cells of V. The relation
of these definitions with a formulation in terms of an Euclidean action will be given
below (Egs. (3.16)).

Above By, Pu, 7, and y, € Z, the set of functions {0,...,N —1} — €, and
satisfy the condition

By.n(n) = Bgn(N — n), Vg, n(n) = ygn(N — n) (2.16)

for all n e {0,...,N — 1}, with By n(N) := f44(0), 74.n(N) :=74,4(0) in order to
assure self-adjointness of 7. They are the coupling constants of the model. Later
when we treat the duality transformation we will have to restrict ourself to real
couplings. For further purposes we also define

TT = PV P12 (2.17)

Notice that transfer matrices of a classical statistical mechanics spin system are
usually defined in order to provide a way of expressing the partition function as
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Z =Tr(T}), for a system in a volume } x [0,...,n] and periodic boundary con-
ditions in “time” direction. In this particular sense it should be immaterial to use
Ty or TE, as defined above. However, from the point of view of the quantum spin
system we are constructing, both transfer matrices provide different quantum dy-
namics. Interestingly, the interplay between both will be of relevance for the study
of duality transformations in this model.

We can also write

¢ = 11 ec(p) T1 entd), (2.18)
PEY beyy

V=11 te® I L), (2.19)
beyt xeyd

where,

N—1
06(p) = exp (LN > ﬂg(n)[5QG](p)"> -~ = Z 18Im0 p)", (2.20)
n=0

m=0

N—1
ou(b) == exp <LN 20 ﬁh(n)([5QH](b)QG(Q)*)”)

\/IV EO E1Bnl(m)([6Qu1(B)Qc(B)*)" , (2.21)

1 N-l
{o(b) = exp (W Z_:O vg(n)PG(b)"> = ElrgdmPs(B)" . (222)

w5
1 N-l
{n(x) := exp <—N nZZ:O 'Yh(n)PH()_‘)”) N mX_: Eynl(m)Pu(x)”,  (223)
where, for functions a € & we define the transformations & : & — & by
8] = F [exp(F[o])] , (2.24)

where the Fourier transform & and its inverse & ~! are defined on functions p € &
by

Flplm) =N~ T p)et T (2.25)
ve{0,..,N—1}
Fplm) =N~ 3 p)eF, (2.26)
ve{0,..,N—1}
and satisfy
(Zla)) = 7 'a] = #d"], (2.27)

where, by definition, a*(n) := a(N —n), n € {0,...,N — 1} with a(N) := a(0).
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___Note that a C*-algebra, by the Gelfand transform [11], ¢ = X020 " with
a(n) = a(N — n), a(N) := a(0) is the most general way of writing a positive self-
adjoint element ¢ of the abelian sub-algebra generated by 1 and an element &
satisfying 2* = 27! = 2V~ In this way the generalized Zy-Higgs model above
represents the most general class of models with “nearest neighbors” interactions of
the sort considered.

At this algebraic level the Euclidean dynamics is given by the strong limit of
local (non-+)-automorphisms of & generated by local transfer matrices:

o,(A) := lim a;(4d)y, A€ Fo, (2.28)
vizd "

where o;( - )y is the automorphism of ¥ defined through
0(A)y = TyAT;', A€F, (2.29)

The limit in (2.28) clearly exists and defines a (non *)-automorphism of &o. Follow-
ing the notation introduced in [1] the subindex i in o, is due to the interpretation
of o, as the generator of translations of one unit in imaginary (Euclidean) time
direction. Frequently we will use the notation «;, for («; )", for r € Z.

Since o; keeps the ideal J invariant one naturally defines the action of o, on By,
which we will denote by the same symbol o;, by o;(4 +J) = a,(4) +J, 4 € Wy,
as a non-x automorphism.

For further purposes we introduce the important concept of a ground state.
According to the definition introduced in [1], a state @ of & is called a “ground
state” with respect to the dynamics defined by o; if it is o;-invariant and if

0 < w(A*w(4)) < w(d*4), A€ Fo. (2.30)

Let us generalize this concept and derive some general results from it. Let y
be an automorphism of a unital x-algebra €. A state w on € is called a “ground
state” with respect to y and € if it is y-invariant and if

0 < w(A*)(4)) < w(4*4), VA€G . (231)

Actually the y-invariance of w follows from (2.31). If one has 0 < w(4*y(4)),
VA € €, then the sesquilinear form on €, (X, Y) := o(X*y(Y)),X,Y € € is positive
and so (X, Y) = (¥,X) [10]. Therefore w(X*y(Y)) = w(p(X)*Y). Taking X = 1 the
invariance of w under y follows. Let us now introduce two important concepts.

First, the adjoint y* of automorphism 7 of a unital x-algebra € is defined through
*(4) = (y(4*))*, 4 € €. Note that y is a *x-automorphism iff y = y*. In general,
y** = 9 and note also that for the composition of automorphisms one has (x o f)* =
o* o B* and consequently «*~! = a~!*. For an invertible element 4 € € one also
has (ad4)* = ad«—:. Finally, note that if w is a y-invariant state on € then it is
also y*-invariant.

Second, we say that a state w on a x-algebra € has the cluster property for the
automorphism y if, for all 4, B € €, one has

lim w(47"(B)) = w(A)(B) . (2.32)

Using these definitions we are prepared to formulate the following lemma, which
will be very useful for proving that certain states are ground states with respect to
a given automorphism. This lemma was already implicitly used in [1].
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Lemma 2.1. Let y be an automorphism on a x-algebra € satisfying y* = y~' and

let w be a y-invariant state on & which has the cluster property for y. Actually
one just needs that, for each A € €, the sequence w(A*y°(4)),a € N, is bounded,
what follows from the cluster property. Then, for all A € €,

(4™ p(A)| £ o(4*4). O (2.33)

Proof. If we use a-times the Cauchy—Schwarz inequality and the invariance of w
we get

(A p(4))| < w(4*4) " o (4))" " . (2.34)

By the cluster property, the factor w(4*y**(4)) on the right-hand side is bounded
on g and taking a — oo we complete the proof. M

3. The Ground State, the Construction of the Path Space and
the Associated Classical Spin System

This section is basically devoted to the construction of a ground state w.r.t. o; by

means of the transfer matrix formalism as described in [1]. The ground state we

will find is given by the expectation of a classical statistical mechanics spin system.
Define for n,n’ € {0,...,N — 1},

N-—1 ,

E}ly(x) = Pu(x)" {N—l ) QH()_c)’"] P, 3.1)
N—1 ,

E;/(b) = PG(b)" {N"‘ Z_IO Qc(b)’"} Pe(b)" ", (32)

E}Izn,(g) and Ef ,(b) are unit matrices with matrix elements

(B @), , = dandsw = (EL, D)), » (3.3)

a,be{0,....,N —1}.
Let be the functions ¢:V;,—{0,...,.N -1}, 4:V,—{0,...,N —1}. Here
V C Z* is a finite set, for instance a square centered at the origin. Define

I H G
Eayorany = 11 Ep 0@ 1T Efp) a1 (B) - (34)
x€Vy bery

Since the E(, 44,4y form a basis of unit matrices we can write

Ty = Y Ty(e, 450", A)Eq 4o 1) - (3.5)

(@, 4)(9’,4")

The E(,, 1) (4, 4y are partial isometries with one dimensional range and one finds for
the expansion coefficients of Ty,

Ty(9.4:0',4') = Troy (EfpoapiornTr) - (3.6)
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Using the last equalities in (2.20)—(2.23), the relation

, N-1 - ,
7 (P VS 0 PP ) = () FO L)

m=0

and expression (2.24) we get:

Ty(g.A: ¢/, A) = exp (% ) (f[ﬁgde(p))+9«*[ﬁg](dA’(p))))

"
PEY,

X exp (2 2 (Z (Bl dop(b)— A()+ F[Brl(de'(b) - A(b))))

0 Slyl(e(x) — ¢'(x)) 1 Srg)(4(b) — 4'(0))

X AL i AL N (3.8)
We will assume 7, and y, to be such that
ETygl(m) = exp(FA1(m)) , (3.9)
Elynl(m) = exp(F ' [Bl(m)) , (3.10)

for some f8), € Z. Since in general &[ygn] = F ' [exp(F[yy,4])] this assumption
means that

v =F " [In(F [exp(Z[BD)])] > (3.11)
m=F"[In(ZF [exp(Z ' [B])])] (3.12)
=F ' [In(F7! [exp(ZIBD)])] . (3.13)

the last equality coming form (2.27). Note that, for a = 0, the Fourier transform
and the inverse Fourier transform of exp(# *'[a]) are strlctly positive since, for
instance,

el |
F -
exp(Flal) =F kE i ax---xal , (3.14)

with the convolution product defined by

1 N-l
— a(n — )b(i) . (3.15)
N &

The same can be proven for functions a with a(n) = 0 for n=0, but with
a(0) being eventually negative, which is our case of interest. For, define b € Z&
with b(m)=(—a(0)+¢)3m0, ¢ = 0. One has F ~'[exp(F[a])] = e~ (~aO+e)/ VN 71
[exp(Z[a + b])] > 0 by the previous argument since a +b = 0.

axb(n)=
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In order to have isotropic couplings in the classical expectations to be defined
below we will take ﬁg’ » = Pg.n. Expression (3.8) becomes

1
Trlp ;o' A) =oxp | 5 3 (ZIB1EAA(p) + FIB)AA (p)))
PEYy

X exp 2 > (FBlde(b) — A(D) + FBrl(de'(b) — 4'(b)))

xexp | > FZIBIADL) —A'(B)+ X FIAle' () — ox))

bevf z€lg
x NV SHETD (3.16)

where we used # ~[B,](n) = Z[B1](—n) on the last factor.

The correspondence to the Z, case of Fredenhagen and Marcu, whose cou-
plings we call ﬂgh, is found by taking f,(1) = —f4(0) = \/_B , with f,(0) =
~2-121n(2 cos BM)?) and (1) = V2BLM.

Following the argumentation of [1], since the expansion coefficients (3.16) of
Ty are strictly positive, we conclude by the Perron—Frobenius Theorem that there
exists in ) a unique eigenvector Qy of Ty corresponding to eigenvalue ||Ty ||, .
The associated vector state wy can be obtained by )

Try, (T;A T{}E_V)
wy(4) = lim —= , A€F), (3.17)
n—oeo Tr;«fV (T EV)

where Ey is any matrix with strictly positive expansion coefficients in the basis
E, A)((p/;,/). Again by the Perron—Frobenius Theorem the spectral projection asso-
ciated with Qy has also strictly positive expansion coeflicients and therefore one
has (QV,EVQVH:O In order to obtain for wy a classical expectatlon with free
boundary conditions in Euclidean time direction the choice for Ey is [1]:

Ey:= Y ey(o,Aer(9',A)E a) (o a7 5 (3.18)
(0,4),(¢",4")

where
er(@A)i=exp |+ 5 FIBIAAP) + = X FIBildob) — A®B))| . (3.19)
2 per; 2 per}

Periodic boundary conditions can be obtained with the choice Ey = 1. We have,
for VW := ¥V x {-n+1,...,n} C 23,

._H . ’A
Z(<p,A)BCI(<P,A)e yn (9:4)
Zyn

wy(B) = lim (B) ) = , (3.20)
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where,
Zyon = 3 e Hym(e:4) , (3.21)
(¢,4)

with the generalized Wilson action

n

—Hyw(p,4):= > | 2 FB)dA((p,a)))

a=—n+1 _pE_V;'

+ 22 Z1Bldo((ba)) — A((b,a)))

bery

n—1
+ X | X ZlBlU(ba)) — A((b,a+ 1))

a=—n+l | pe VT

+ 2 Flhlo((xa+ 1)) — o((x,a))| , (3.22)

x€ry
with free boundary conditions. Here (x,a) € Zt!, etc. Above B¢ is a classical
function of the classical fields ¢ and A associated to the operator B. The choice of
B¢ is generally non-unique and some prescriptions for determining it from a given
operator can be found in [1]. We will not enter into details here. The important
fact is that one can choose B as

Try (B p0),4000, (013,400 BTY)
Ty((0),4(0); (1), A(1)) ~°

B (¢, 4) = (3.23)

where @(k), A(k) refers to the variables in the k™ Euclidean time hyperplane. One
can also use the following useful rules. If B € (V) and C € F(V,) with dist
(V,,V,) = 2, then one can choose (BC)' = B/C¢. Beyond this, if B is of the

form B = oc,-a](C‘)-~-oc,-ak(Ck) with @; < --- < ag, then one can choose
k
B = [ ¥ (@(a)) Alay); pla;+1),4(a; + 1)) . (3.24)
j=

Finally we note that J¢ = 0 and so the classical function above is constant on the
equivalence classes defining the elements of By.

It is useful to change to the unitary gauge by defining the new function u,
v - 0,...,N =1} : u(b) = de — A(b) mod N, if b is a space-like bond, u(b) =
@®(¥p) — @(xp)mod N; for b time-like, where the x, and y, = x; + (1,0) are the
boundaries of the bond 5. We get for the partition function

Zyw =3 I Fhw®) TI g(du(p)), (3:25)

“ ber” pev”
with the following important definitions:

g(n) := 7B and  h(n) := F [T P))(n) = WM (3.26)
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For gauge invariant classical observables one has,

(B)ym =Zy) 2 Bw) I ZIWw®) T gdu(p)). (3:27)

beVI(n)-}- pEV;"H

The existence of the thermodynamic limit of the last classical expectation can
be established. by standard techniques, for instance, using the polymer expansion
introduced below or Griffiths inequalities. We will not enter into details here. This
limit defines a translation invariant state wq of 2[y, which we call the vacuum state.
By construction it is a ground state with respect to «; (see [1]).

An important observation is the fact that, for 2(1) := [], I(x)*®, where 1 is a

0-form with finite support in Z2, and for all F € &, one has
wo(F(2(A)—1))=0. (3.28)

This follows from (3.18)—(3.17) and from the fact that 2(A)E(, 1)y, 4/ =
E1iatdi),(o',a1y, Which by (3.19) implies 2(1)Ey = Ey. Therefore, for the pre-
viously defined two-sided ideal J one has wo(J) =0, and so we are allowed to
define wy on B by wo(4 +J) := wo(4),4 € A.

4. The Polymer Expansion

In this section we develop polymer and cluster expansions for the classical expec-
tations found in the previous section in their “free charges” phase and show their
convergence regions. Cluster expansions are the technically most important tool of
this work (see also [1]) because they provide a method for rigorously extracting
information from the classical expectations, and therefore, from the various states
we will consider on the quantum spin system.

Let ¥ C Z*! be a cubic box of the form ¥V =V x {—n+1,...,n}. To sim-
plify matters we can consider periodic boundary conditions here. Free boundary
conditions can also be treated with the polymer expansions below. Call 2y the set
of all defect-networks of V, i.e., a function D: ¥, — {0,...,N — 1} belongs to &y
iff dD =0 mod N. We write the partition function as

2 [T Zru®)). (4.1

De%y | pEsupp D w:du=D mod N pc VI+

Zy = ) [ [T 9(D(p))

Above we have chosen f,(0) so that g(0) = 1.

Let us associate to each D € %y a configuration «#” € V! so that du” = D. Then
we can write:

> 11 Zlhw®) = 3 1 FIhu"®) +dx(b))

wdu=D pc Vit 1€V0bert

=N | T AE®B)) Y exp (@ x ((u?,E) +<dx,E>w)>

Eevt \very 2€v0 N
(4.2)
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Since the sum over y above equals N "y |5d* E,0mod N W€ get:

_ipt + 2mi
Zp =Nz =R T e (W“‘D’EW')

Dey? Eev!
dD=0 mod N d* E=0 mod N

Xl: I 9(D(p))

pEsupp D

[ I h(E(b))}, (4.3)

bEsupp E

where we have chosen 4(0) = 1.
We will use the following

Notation 4.1. For 1-forms E with d*E = 0 and for 2-forms D with dD = 0, both
with finite support we define

[D: E]:=exp (%@D,E)) .0 (4.4)

Define the sets

P(V)={P eV, : P is co-connected and P = supp D,
for some D € V?,dD =0, D+0} , 4.5)

BWV)={M € V;' : M is connected and M = suppE,
for some E € V!, d*E =0, E+0}, (4.6)

and
Piowa(V) = {P € V} so that P = supp D,

for some D € V%,dD = 0}, (4.7)

Brotat(V) = {M € V' : so that M = suppE,
for some E € V', d*E = 0} . (4.8)

Above and below relations like dD = 0 mean, more precisely, that dD = 0 mod N.
Note that the sets P (V) and PBrowmi(V) contain the empty set and that the
non-empty elements of 2,/ (V) and of % (V) are build up by unions of co-
disjoint elements of 2(V'), respectively, by unions of disjoint elements of Z(V).
One has naturally (V) C Py and B(V) C Biorar(V).
We get
Zy= ¥ > > [DiE][ I1 g(D(p))} [1_[ h(E(b))] . (49)
PEPwu(V) Dev?  Eey! pEP beM
M EB5141(V') supp D=P supp E=M
dD=0  d*E=0

We recall the assumptions that g(0) = 1 and A(0) = 1.

Each non-empty set P € Pu(V) and M € Bip1i(V) can be uniquely de-
composed into disjoint unions P =Py + .-+ Py,, M = M, +-- -+ Mp,,, where
P;€ (V) and M; € #(V). Then, if D € V? is such that supp D = P, there is
a unique decomposition D = D +--- + D4, with D; € V2, supp D; = P; and re-
spectively, if E € V! is such that supp E = M, then there is a unique decompo-
sition £ = E; + --- + Ep,, with E; € V1, supp E; = M;. One can also decompose
u=1? + ... +uP% with u? € V', duP = D,.
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We get

: Ap By
Zy= > Il X S [Di:Ej]
PePiy(V) i=1j=1 D;ev?  EeV!
MEBo1q1 (V) supp D, =P supp E;=M;
dD,=0 d*E/=0

X [ [T 9(D.(p))

PEP,

[H h(Ej(b))} ; (4.10)
beEM,

with the conventions 4y =0, By =0. For P € P (V) and M € Bipiar(V) we
define the sets

P(P) := {D € V? so that supp D = P and dD = 0} , (4.11)
EM):={E € V' so that supp E =M and d*E = 0} . (4.12)

We consider now pairs (P, D) with P € 2y,,,)(V') and D € 2(P) and pair (M, E)
with M € Bip(V) and E € (M) and define w((P,D), (M,E))=w((M,E),
(P,D)) € {0,...,N — 1} as the “Zy-winding number” of (M,E) around (P, D):

w((P,D), (M,E)) = w(M,E), (P,D)) := (u°,E) mod N . (4.13)

The pairs with P € (V') and M € #(V') will be the building blocks of our poly-
mers.

With the help of w we can establish a connectivity relation between pairs
(P,D) with P € 2(V), D € 9(P) and pairs (M,E) with M € V), E € EM):
we say that (P,D) and (M,E) are “w-connected” if w((P,D), (M,E))=+0 and
“w-disconnected” otherwise.

Now we are able to define our polymer model. A polymer y is formed by two
pairs

{(P1.D), (M'.EN)} ,

with P" € Pip1a1(V), M" € Bipsai(V') and D' € Q(P7), E? € E&(M?), so that the set
{(P},D}).... (P D)y ). (M. E)), ... (M} E} )} (4.14)

formed by the decompositions P? =P} +---+ P}, M?=M] +---+ M} with
P e 2(V), M} € B(V)and D' =D] +---+ D}, E" =Ej +--- + Ej with D] €
D(P)), E] € £&(M]) is w-connected. Below when we write (M,E) € y and (P,D) €
7 we are intrinsically assuming that M € #(Z%*') with E € &(M) and that P €
P(Z") with D € 9(P).

For a polymer y = ((P?,D"), (M",E")) we call the pair y, := (P",M") the ge-
ometrical part of y and the pair y. := (D?,E") is the “colouring” of y. Each pair
(D,E), D€ 9(P), E € &M) with P € P(Z"), M € B(Z*") is a colour for
(P,M). Another important definition is the “size” of a polymer. For reasons which
will be clear in Appendix A we define the size of y by |y| = |yg| := |P?| + |M?|,
where |P?| (respectively |M?|) is the number of plaquettes (respectively bonds)
making up P? (respectively M?).

A remark which will be of some relevance for the proof of convergence of the
polymer expansion we are going to define is the fact that the sets Z(P) and &(M)
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above have at most (N — 1)IPl, respectively (N — 1)l elements. This estimate
comes from the simple fact that the forms D and E can assume at each plaquette,
respectively, at each bond, at most (N — 1) different values. Hence y, can have
at most (N — 1)l different colourings, i.c., there are at most (N — 1)/ different
polymers with the same geometrical part y,.

The activity pu(y) € € of a polymer 7 is defined to be

A

y By
u(y):=[D":E" S TL | I 9(D}(p)) IT| IT RE®)| ¢, (415

i=1 | pepi J=1 | bem;

with u(@) = 1.

We need a notion of “compatibility” for pairs of polymers. Two polymers y and
7' are said to be incompatible, y ¢ 7" if at least one of the following conditions
hold:

o N -/ .
1. There exist M, € y, and M, € y,, so that M; and M, are connected (i.c.,
there exists at least one lattice point x so that x € db and x € db’ for some bonds

be M} and b € Mg/);

2. There exists P € 7, and PZ, € 7,, so that P} and P} are co-connected (i.c.,
there exists at least one 3-cube ¢ in the lattice so that p € dc and p’ € dc for some
plaquettes p € P; and p’ € P} );

3. There exists (M3, E;) € y and (P} ,D} ) €y, so that (M, E;) and (P} ,D} )
are w-connected. Or the same with y and y’ interchanged.
They are said to be compatible, y ~ 7', otherwise.

We denote by %(V) the set of all polymers in V' and by %..(V) the set of all
finite sets of compatible polymers. Having these definitions at hand we can write
(4.10) as:

Zy= ¥ (4.16)
Feg(‘()”l
in multi-index notation. We will often identify the elements of %, with their
characteristic functions.
We want to express the expectation of classical observables (3.27) in terms of
our polymer expansion. We consider the following

Definition 4.1. Let o and f§ be a 1-form, respectively a 2-form with finite support.
Define

B(, ) := exp {-%(a,@] HM O (4.17)

»  g(du(p))

Since any classical observable can be written as a linear combination of such func-
tions we consider

(B(ot,ﬁ))y—L > X [D—ﬁ:E—oc][ Il g(D(p))J

- 71
ZV Dev? Eevl pEsupp D
d(D—B)=0 d*(E—7)=0

x[ 11 h(E(b))] . (4.18)

besupp E



Electrically and Magnetically Charged States and Particles 43
One has the following positivity properties:
(B(0,B))y 20, (B(x,0))y 2 0. (4.19)

The first one is obvious from (4.17) and the second follows from the first using
the duality results proven in Proposition B.1, Appendix B. Both follow also from
Griffiths inequalities. Expectations like (B(a, )}y are generally complex numbers
but one can easily check that the following relations hold:

(B, )y = (B(— B))v = (B(a, —P))v = (B(—, —f))v - (4.20)

The forms D above can uniquely be decomposed in such a way that D = Dy + D,
with d(Dy — f) =0 and dD; =0 and so that supp Dy is co-connected and co-
disconnected from supp D;. If df = 0, we choose Dy = 0. The forms E above, in
turn, can be decomposed uniquely in such a way that E = Ey + E, with d*(E, —
o) = 0 and d*E; = 0 and so that supp E; is connected and disconnected from supp
E,. If d*o = 0, we choose Ey = 0.

We denote by @;(a) the set of the supports of all such Ey’s, for a given o and
by %,»(f) the set of the supports of all such Dy’s, for a given f. For d*a =0 we
have % (o) = and for df = 0, we have %,(f) = 0. We define the sets of pairs

Conn;(a) := {(M,E), so that M € € (o) and E € vl
with supp £ = M and d*E = d"a} (4.21)

Conny(f) := {(P,D), so that P € () and D € V7,
with supp D =P and dD =df} . (422)

We then write

Bl.p)y= 5 [D=p:E—a
(M,E)E€Connj (%)
(P,D)€EConny ()

Zfe%om a{M»E)s“b{PyD)aﬁﬂr
x| [T g(D(p))| | [T HED)) T , (423)
pEP beM Zregcom’u
for
0, if M7 is connected with M,
A £)al7) = { [D" . E —a], otherwise ’ (4.24)
and

0, if P? is co-connected with P
ber.oy.p(7) = { [D—B:E"], otherwise ) (4.25)

It is for many purposes useful to write (4.16) in the form

re9 (v

Z) :exp{ 3 cruf} . (4.26)

Let us explain the symbols used above. Our notation is close to that of [1]. Z.p(V)
is the set of all finite clusters of polymers in V, i.e., an element I' € ¥, is a fi-
nite set of (not necessarily distinct) polymers building a connected “incompatibility
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graph.” An incompatibility graph is a graph which has polymers as vertices and
where two vertices are connected by a line if the corresponding polymers are in-
compatible. We will often identify an element I' € %, with a function I' : ¥ — N,
where I'(y) is the multiplicity of y in I' € %.y,s. The coefficients ¢ are the “Ursell
functions” and are of purely combinatorial nature. They are defined (see [1] and
[12]) by

1)n+1

o0
Z N (), (4.27)
where A7,(I") is the number of ways of wrlting I'inthe fom I'=0I1+---+ 1T,
where 01T, € Goom, i = 1,...,n.

Relation (4.26) makes sense provided the sum over clusters is convergent. As
discussed in [1] and Appendix A, a sufficient condition for this is ||u|| < ||ullc,

where ||u|| := sup,cq|u(y)|"!, and ||g||. is a constant defined in [1] (see also
Appendix A below). By (4.15),
)] = [max{g(1),...,g(N = 1), h(1),....h(N = D}, (4.28)

and by the condition g(0) = 1 and A(0) = 1 we have #[f,](0) = 0 and F[y,)(0) =
0, from which it follows that, for n € {1,...,N — 1},

FB,)n) = NZ::;ﬁg(m) (cos (27;';'”) - 1) VN <0, (4.29)
and N
Flynl(n) = Zoy;,(m) (cos (2’;\’;"’) - 1) VN <0, (4.30)

if fy(m) > 0 and y,(m) > 0 for all m =1,...,N — 1. Therefore one has ||u|| =
e~?, where this b can be chosen to be arbitrarily large, for each N fixed, by choosing
for instance min{fy(1),..., Bg(N — 1),y4(1),...,7a(N — 1)} to be large enough. All
results concerning charged states presented below hold inside of the convergence
region above.

We also write

B, )y = > [D=B:E—aol|]]9(D(p)) [ I1 h(E(b))}
(M,E)€Conn () pEP beM
(P,D)EConny(f)
X exp ( > cr(a{Al,E),abg’,D),ﬁ - l)ur) . (4.31)
re%.,s(vV)

5. Duality Transformations. Algebraic Aspects

In this section we will review and extend some results of Gaebler [8] on duality
transformations and apply them in the definition and study of algebraic properties
of global transfer matrices in the vacuum sector.

Let us start defining Sy = exp(By/2)exp(4y/2), Ay and By defined in
(2.14)<(2.15). Defining the automorphism of &

Br(4) :=SydS;', A€F, (5.1)
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one has o,( + )y = ,*,—1 o By(-). The adjoint y* of an automorphism y was previ-

ously defined through y*(4) := (y(4*))*. The limit ¥ T Z¢ of By exists on §y for
the same reason why it exists for o, and defines a non-x automorphism we will
denote by f. One has o; = f*~! o f. Since B keeps the ideal J invariant one nat-
urally defines the action of  on B;, which we again denote by the same symbol
B, by p(A+J) = p(4)+J,4 € Uy, as a non-* automorphism.

Below we will also be considering the dynamics defined by the automorphism
o« := fop*~!, which is obtained by interchanging Ty by T/ in the definition of
0.

The automorphism f has been introduced in [8] and plays an important role in
the study of duality transformations. At algebraic level duality transformations are
introduced by a *- endomorphism 4 of the observable algebra which, in the model
we are considering, is defined on the generators of 2y by

A1) =1, (52)

A(Ps(b)) = [00n1(— * b)Qc(— * b)", (5:3)
A([6Qr1(8)Q6(b)") := Pg(xb), (5.4)
A(Py(x)) = 6Qc(xx), (5.5)

where the geometric duality transformations on Z? and its cells are presented in
Fig. 1.

Above x,"p € ly;b,*b € [ and D*x € [,. With these definitions one has on
the a-cells ** = (—1)7f(1,1), where f(.,) is a shift of the cells by (x,y) in Z2.

Definition 5.1. Consider a 1-form y. Define (xy)(b) := y(—f—u,1)(*xb)) and the
translation on forms (g(a,5)y)(0) := Y(f —(a,6)(2)). The operation * is analogous to
the Hodge-+ operation. One also has (x *y)(b) = —(ga,ny)b). O

Since 4(Q(x)) =1, A annihilates the ideal J, and therefore the action of 4
on B is a *-automorphism. We denote this action by the same symbol 4. On the
generators of By it acts like

A +J) =1+, (5.6)
A(U1(7)) = Us(—(x7)), (5.7)
A(Us(y)) = Ui(*y) (5:8)

for a 1-form 7. One can check that on B one has 4% = 11 ).

In order to analyze the interplay between A and f let us define the duality
transformations of the couplings. Let & be the set of all functions {0,...,N — 1} —
T, let D and D! be the transformations & — 2 defined by

Dia] := ' [In(F [exp(Z [a)]], (5.9)

“Hexp(#[aD)])]

D7 'al:=F""[In(F
F ' [In(Z [exp(F '[a])])] - (5.10)

Il
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/

b / / N * £

/

z

b

Fig. 1. The transformations b — *b, x — *x and p — *p.

One easily checks that really Do D~! = D~! o D = id. Let (a,b) be a pair of func-
tions in Z. We call the map

(a,b) — (a,b) := (D7'[b], D[a]) (5.11)

a duality transformation. Note that, in general, (a,b)’/ = (a,b) and that, according
to (3.11)~(3.13), for the coupling functions f,, 5 the duality transformations are

simply
(Bo> Br) = (Bgs Br) = (a7 - (5.12)

We extend this notation to arbitrary functions of the couplings with values
in C. For amap f:Z xZ — C we define f/: Zx% —C by f'(a,b):=
f(D~[b],D[a]). In particular f’ (Bg» Bn) denotes f(yn,74). We also generalize this
notion to operators, states and automorphisms in . For this, denote by E; a gen-
erator of o, i.e., E; is a finite product involving 1, Qy(x), Pu(x), Oc(b) and Pg(b)
for x,b € Z¢. Writing for 4 € &, A = > GE, as a finite sum, where the ¢,’s even-
tually depend on the couplings, we define 4’ := ", c/E; as a mapping o — &o.
One easily sees that this definition is independent of the basis of generators chosen,
if the elements of the base do not depend on the couplings. For states we de-
fine w'(4) := (w(4")), ie., @'(4) = >, ci(w(E;)), with w(E;) taken as a function
of the couplings. Finally we define for an automorphism y : y'(4) := (p(4")), i.e.,
V(4) =23, ;adi, E,, where y(E,) = }_,d;; Ej, the d; ;’s being eventually functions
of the couplings. Since this duality map keeps the ideal J invariant these definitions
extend to By as well. Finally note that for all objects a above one has d' =a.

With these definitions at hand and assuming f,, B, 7, and y; to be real couplings
one can easily verify the following relations (c.p. [8]):

Ady +J) =B,y +J, ABy+J) =4,y +J,
ASy +J)=(SLy) +J, ATy +J)=(Th) +, (5.13)

which justify calling 4 a duality transformation. They imply the following relation
between A and f3, as automorphisms on By:

dof=(f""Yod, (5.14)
from which we derive the following useful relations on By:
Aot =pod, (5.15)
Aoay=al o4, (5.16)
(B od)ou =l o((f1Y 0 4), (5.17)

(B otyoas=vjo((B7") 0 4). (5.18)



Electrically and Magnetically Charged States and Particles 47
We also remark that, generally

‘Booc,:alToﬁ, (5.19)

Brow =al of*. (5.20)

In order to establish some properties of duality transformations we need a general
abstract result. Let {w,} be a finite set of states on a unital *-algebra € and let us
assume the existence of automorphisms y,, of € such that, for all pairs (a,b),

Wg = Wp O Vpa = WpOVp s (5.21)
Vb =The and e =id. (5.22)
Define
%a,b = Va,b © Vhoa > (5.23)
0 h = Vhp O Vba = U - (5.24)

Clearly one has w, 0 0 p = W, 0 Yap © Vha = Wb OV} 4 = Wy The following theorem
generalizes a result of [8].

Theorem 5.1. For a fixed pair (a,b) the statements
0 = wa(A% 04 5(A4)) < Kwo(A4™4), VA€ G, (5.25)

and
0 < wp(d*; [(4)) < Kop(A4"4), YA€E , (5.26)

for some K > 0, are equivalent. [
Proof. (Taken in adapted form from [8]). i) (5.25)== (5.26). First note that
0 = 0 (ap(A)) 7as(A)) = @5 © 75, o((76(A)) V0 5(4)) = wp(Aa; }(4)) . (5.27)
the first inequality to be proven. Beyond this one has
wp(A"A) = g © Ya,p(A"A) = 0a(74,5(4)" %a,b © V5,5(4)) - (5.28)

By the hypothesis this shows that w,(44) = 0 and that wy(4*4) = Kwa(y; ,(A4)*
74 5(4)). The right-hand side equals @ © y4,5(4* 6,47} 5(4)) = @p(A* b o(4)) and
we arrive at

wp(A*A) = Kaop(A op,a(A)) . (5.29)

Assuming without loss that wb(A*oc,:;(A)))#:O we get by the Cauchy—Schwarz in-
equality that

wp(A* a5, 1(A)) £ wp(A"A) (o, 2(A) oy 1 (A)) (5.30)

< Kop(A*A)op(oy, (4)*4) = Kap(A*A)wop(4% 0, L(4)),  (531)
by (5.29) ? ’

that means:
wp(A*a;, 1(4)) £ Kap(4*4), (532)

completing the proof of the statement.
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ii) (5.26)==(5.25). This proof is analogous to the previous one. We can get to
it through the replacement a «—— b and by interchanging y «— y*, because these
automorphisms play a symmetric role by (5.21). W

Using the automorphism f we can consider four possible dynamics:
== of; o =of =Fop
o =0 =B op; a=o =po"Y. (5.33)

From Theorem 5.1 we get the following

Corollary 5.1. Consider the following four states on By:

wg, 0 ;= woo Y, wyi=wgoflod, wii=awgod. (5.34)
Then the claims that, for all j =0,...,3, w, is a ground state w.r.1. oc,’ , are equiv-
alent claims. 0O

Remarks. Actually, since we are assuming that g is a ground state w.r.t. af, this
corollary says that w; is a ground state w.r.t. o« for j=1,2 and 3 as well [8].
Note also that w; is really a state, i.e., a positive linear functional, since 0 <
wo(B1(A) o (B~1(A))) = wg o f*~1(4*4). For w; and w; the proof is analogous,
since 4 is a *-automorphism. Finally remark that w, is a ground state w.r.t. o for
the whole algebra &y and therefore the same holds for w;,. O

Proof. We need a family of automorphisms v, satisfying (5.21) and (5.22) for all
these w;’s. A possible choice can be represented in matrix notation as

Yoo 7Yo,1 Yo2 Yo3
Y0 Y11 Y12 Y13
Y20 Y21 Y22 V23
Y30 V31 V32 V33

id ﬂ*—l ﬁ*—l oA A

| B id A B* o A
Ao 4! id Aoproa] s 3
A1 A1 Oﬂ*_l A1 oﬁ*-—l oA id

The reader is invited to check that (5.21) and (5.22) are satisfied by this choice.
From this, using (5.14) and (5.15) we get for the a-automorphisms

oo ol Oo2 %3 id p=top plop id
g oy oz oz | _ | fropt id id p*op!
wmo oy 0ap o3 | | Bl op™ id id ptop
030 O3] 032 033 id plop*=t pop*t id
: 0 .0 id o o id
ldl IR A ldl —1 r-1 ici ié -1
_ )i id @) e % (5.36)
(2)~' id id (a?)7! ' id id o '
id o o id id o« o id

1 1
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Now applying Theorem 5.1 and looking at the matrix of a-automorphisms above,
we get the following chain:

o is a ground state w.r.t. oc? = o, <= o) is a ground state w.r.t. cxl'ol = oc,l,
wp is a ground state w.r.t. o’ = 0y <=> w, is a ground state w.r.t. Ly 01 =a?,
oy is a ground state w.rt. o = oc1_31 <= 3 is a ground state w.rt. o3 = o,

w; is a ground state W.r.t. of = 0y, <= w; is a ground state w.r.t. op3 =0o;. W

Let us now investigate the properties of the transfer matrix associated to the
states w,. Call (74, #,,, Q) the GNS-triple associated to the state w, and the
algebra of observables By.

For a fixed pair (a,b) we will assume that o, is a ground state w.r.t. agp.
Define Us—p : #Ho, — Ho, bY

Upa a0y (), = Ty © 7304 - (537)

U,—. is densely defined and is actually well defined since, in case 7, (4)Q,, =0,
one has

0 = WA Y4, 0 5,4(4)) = 0p(15,o(A) 73,o(A)) = |7, © 75, oDy |I* . (538)

Analogously, if n,, o7} ,(4)2,, = 0, then

0 = 0p(75,(4) 15,a(4)) = 05(75,a(474)) = We(A"A) = |70, ()R, 1P, (539)

and so KerlU, ., = {0}. One also has Ran U, ., = #,, since y;, is invertible.
One easily sees that U, is bounded since, by the hypothesis,

”Ua_'bnwa(A )Qwalizfﬁ)b = wb(Vb,a(A*)VZ,a(A)) = wﬂ(A*aa,b(A))
< @a(A*4) = [T, (R0, 1%, - (5.40)

Since 7; , is invertible U, is also invertible and the inverse is Uj_,q, Which is
densely defined. Note that this inverse is not, in general, bounded since w; is not
a ground state w.r.t. o, but wir.t. ocb‘}l. One can also easily check that

(Uaﬁb)*nwb(B)wa = T, © ya,b(B)Qwa . (541)

We can now define two transfer matrices 7, , and wa ,—1» acting on the
*Tb,a

% b

spaces #;,, and #,, respectively, by

T(Ua,“a,b = (Ua—+b)*Ua—>b and wa,ab_l = Uaﬁb(Ua%b)* . (542)

and one easily sees that the natural definitions for such transfer matrices (as pro-
posed in [1]), namely: Ty, o, , T (4)Q0, := Mo, © %4 5(4)€2,, and wa o1 Ty, (A) R0,
> >ha

= T, oocl:;(A ),, hold. These two transfer matrices are positive and bounded

(since U,_,p is bounded) and have densely defined inverses. We now establish the
following propostion:
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Proposition 5.1. The transfer matrices T,,,,,, and T opa=] defined above are uni-
? >Tb,a

tarily equivalent. [

Proof. By the polar decomposition one has U,_, = %a_qu(},{f% ,» where %, . :
Heoy — Hw, 1S a unitary map. By (5.42) one has U,—pTy,, T _Ussp,

Gg b = a)b,ocb a
and using the polar decomposition above one easily verifies that %, .yTo, 0, , =
wa,a[;;%a—’b' |

From this it immediately follows the

Corollary 5.2. The transfer matrices T

Twl,a,"Twz,ulz and Tw3,a3 acting on the

a0
1 1
spaces Hy,, j =0,...,3, respectively, associated to the states w,, and defined by

Twa,ozf.'ncoa(A)-cha:= T, (0(4))R0,, A € Bo, are unitarily equivalent. [

We will simplify the notation and call 7o, := Tp,,qa. If 74 is the *-automorphism
group generating translations by x € Z¢ we can define the unitary operators

Uw,, (Lc)nwn (4 )ng (= Ty, (Tgr_(A))Qwa (5.43)

implementing the translations on J#7,,. Since 7, commutes with all y,, and with

all o/ one easily verifies that U, U, (x) = Uiy (x)Us—p and that Uy, (x)Tw, =
T, Uw,(x). Using the polar decomposition above for U,_., we get U,—.pU,, (x) =
Uvy, ()% 4—p. Define the momentum operators by U, (x) = ePvax splP, = (—m,m]4.
Since the unitary operators intertwining the operators U(x) are the same which
intertwine the transfer matrices we have established the following

Corollary 5.3. The joint spectrum of the transfer matrix and the momentum
operator, sp(Te,sPw, ), is the same for all a. O

It is interesting to see that the operators Uy and Uj_,, are related to the al-
gebraic duality transformations in a simple way. One has namely Uy_37,(4)20, =
%0—67%)0 = nw3(A‘l(A))Qw3 and U1—>2nw|(A)Qw, = U127, (A) R0, =
Ty (47 (4)) Q-

At this point of our analysis an important question rises. Since w; and w,
are ground states w.r.t. the same dynamics, namely o/, one could suppose that the
identification wj = w, holds. However, this is by no means a trivial statement since
the ground state w.r.t. a given dynamics must not be unique. In spite of this, for the
Z, case, this identification has been proven to be true in the region of convergence
of the polymer expansions [8]. We have the following

Theorem 5.2. For the Zy model considered here one has the following relations for
states on By, valid at least in the region of convergence of the polymer expansions
already described:

i) wy=w and i) j=w;. O (5.44)

Note that i) and ii) are equivalent. We are going to present a proof of i) for the Zy
case in Appendix B. We remark that this theorem holds as far as one can establish
the existence of a unique thermodynamic limit for the classical expectations.

Theorem 5.2 shows that the states w, and wj;, originally defined on By, have
natural extensions to Bg, namely w{, and wj, respectively.
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Corollary 5.4. Under the assumptions of Theorem 5.2 the operators T, and T,
are, for all pairs (a,b), unitarily equivalent. The same holds for the operators
Uy (x) and Uy, (x) and so the joint spectra sp(T,,IP,) and sp(Ty,, Py, ) are
identical for all pairs (a,b). O

Actually, under Theorem 5.2, we can identify T, o, = To,, ng = T,, etc. This

last corollary describes in which sense duality transformations are a symmetry of
the quantum spin system. The corollary says in particular that the particle content
of the sectors described by all w, and ) is the same. A generalization of this
corollary to the charged sectors constructed below will also be found.

6. The Construction of Electrically and of Magnetically Charged States

We start defining some operators which will naturally emerge in the discussion
presented below and show some useful relations among them. Defining X ™( X)l/ 2=

B (Qu(y))Qnu(y)”" € Uy, one has

N-1 an .
XO(y) = exp {\/Lﬁ e - I)PH(X)-/} — YOG+, (61)
for

J=0

(n) A (o * i
Y™ (y):=exp Wi > ()N = 1)(6*Ui(y)) ¢ € By . (62)
From this we notice that X")(y) and Y(y) are self-adjoint and therefore one has

X@)'? = 0u(x)"B(Qu(x)"™) . (6.3)

Definition 6.1. Let s be an a-cell on Z*. Then § denotes (—1)° f(—1,—1)(*s), where
Sy denotes translation by (x,y) € Z*. O

Define also, for y € Z2,

Z0(Y = 47 (Y (p)) € By , (6.4)
that means
1 N—-1 2nyn .
Z"(F) = exp i ZO ByU)e™ — (SUs(H)) ¢ (6.5)
J=

which is also self-adjoint. In (6.4), the symbol ’ refers to the duality transformation
among the couplings, as defined before, mapping i, — y», and has been used there
for further purposes.

The following operators from 2, are also important:

Fx) = (O ()0 )™, (6.6)
) = 0 (OnE))Qu(x)™ . (6.7)
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Define also in B the operators,
@) =27 P + ) and f0E) =47V @), (68)

for x € Z2. Clearly all ff,") are invertible. We will frequently assume f( and f, as
elements of By. As such one can establish that:

I = Y™o), (6.9)
FPGY = aw(ZM(5)z05) V2, (6.10)

as well as the identities
(10) = 279wy,
(@) =2/ P@) - 6.11)

For all x,y,n and m, one can see that the operator Z(£) commutes with
Ym(yp), with f*=!(Y"™)(y)) and with f='(Y")(y)). This in particular implies that
f 8’”(1) and f ;m) (£)’ also commute.

It is interesting to compute the classical functions of some of these operators.
One has

mgy1et — 9(dulpo) —m)
27O == oy (©12)
9@ = exp (- 20 (613)

in the unitary gauge, where pq is the plaquette 0 placed at the Euclidean time
hyperplane zero and b, is the bond spanned by (0,0) and (0,1) oriented in this
direction. One can say that Z(™)(0Q) creates a m-frustrated plaquette at po, or a
magnetic vortex with charge m and that £{”(0)~"' creates a frustrated bond at the
vertical bond b with charge n. All the operators above appear naturally in our
construction.

Now we go over to the construction of charged states. Following [1] an electri-
cally charged state on gy with a Zy-charge n can be produced as the limit of the
following sequence of “dipole” states:

w0 (Fg")(r)*AFé")(r))

oo (F0) F{"())

wF(4) = . A€, (6.14)

for r € N, with F((,")(r) = F(()")(r,r), where F(()")(a,b), a,b € N, is defined as

F§™(a,b) == Qu(0)" Qn(x, )" %s(Qa(L,)") € Ao , (6.15)

where x, has coordinates (24,0,...,0),L, is a finite set of bonds with dL, = {0,x,}
and Qg(L,) = [I,c; Qc(b). The number a measures the distance between the
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charges of the dipole and b the Euclidean time evolution applied to the Mandelstam
string connecting both charges. As an element of B, we write

r—1
F(r) = { I o (/7@ 7)) } w(Us(L)™) . (616)

for Us(L,) = [Ty, Us(h).

For all elements of §, the states B converge in the considered region of
the phase diagram to a state which we denote by w”™. We omit the proof since
it is analogous to the case of [1]. The interpretation of w®™ as a charged state is
confirmed by the following. Let ¥ € Z¢ be a finite set of lattice sites, say, a cube
centered at 0 and let ®F(V) = HieV[(S*PG](“E) = nga*VPG(Q) be the operator

measuring the Zy-electric flux through 8V, where 0*V is the set of all oriented
bonds b so that b NV consists of only one element. Then

wor (V) om

lim lim o (6.17)

yizdr—oo wo(PE(V))

Using our polymer expansion the proof is again essentially analogous to the corre-
sponding one in [1]. We present this proof together with the proof of Theorem 6.2
(below) in Appendix C.

Since the F{"(r) are gauge-invariant one has @f™(J)=0, and hence
(A4 T) == oF(4), A € Wy, defines @™ on By,.

Important for the physical interpretation of these dipole states is the fact that

their energy remains bounded for increasing values of r. Precisely one has that for
all m € N,

wo (F((,")(r)*oLim (Fg”)(r))) Joo (Fg”)(r)*Fg”)(r)) < m, (6.18)

where ¢, is a positive constant independent of r. The proof is found in [1]. The
“perimeter law” of the Wilson loops, needed for that proof, also holds in our model
(see [13]).

Before we introduce the magnetically charged states we need some results on
states with external electric charge which can be constructed from ™. Defin-

ing the *-automorphism po(4) := Oy(0)40u(0)*, A € §, we can define a state

on § with an external electric charge n located at 0 through w-() := @wf® o on.

Note that, for any x, y, p; o adg(yy = adg(yy: © p§ and for this reason weEx(,") is gauge

invariant.
Let us now define the following states on &y (to keep the notation as simple as
possible we will often omit the reference to the charge »n and to the point 0):

Jo =y, (6.19)
A= Ao ph. (6.20)

Note that the 4, is indeed a state for the reasons explained in the remarks after the
statement of Corollary 5.1. We have the following important theorem.
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Theorem 6.1. For the states iy and 1, above the two following statements hold:

I) For a=0 and a =1, A, is a ground state with respect to the dynamics of
and the observable algebra Ay, i.e.:

0 < Ao(4%0i(4)) £ Ao(4"4), VA4 €Uy, (6.21)
0 < M(A* ) (4)) £ M(4*4), VAeA,. (6.22)

1) For the field algebra &y we have the following generalization of the in-
equalities above: there exists a finite constant K, = 1 so that

0 < A(F 0i(F)) < Kedo(F*F), VF € §o, (6.23)

0 < M(F*a\(F)) < K.(F*F), YFeg. O (6.24)

Proof. We will prove the statements only for Ag. Then for 1; they will follow from
the general Theorem 5.1.

Proof of I By the definition one has, for all 4 € A,

wo((eur(Qa (L, )" )" A 0i(A)(2ir(Q6(L,)")))
o((2ir(Q6(L, ")) tir(Qa(L,)"))

_ im Q@ (QoL ) A (A QoL ) D)) 5 (625

r=oo g ((4(Q6(L, ")) tur41)( Q6 (L))

from the fact that wy is a ground state for §y. The second equality is crucial and
follows from the representation of the states in terms of classical expectations and
from the cluster expansions using the fact that, for a local observable A4, the classical
function [4]¢ is also local in the unitary gauge, i.e., has finite support. This last
fact is not true in general for elements of ¥ and for this reason we have in that
case only bounds like II (see below).

In order to complete the proof we need to show, according to Lemma 2.1, that
Ao has the cluster property for o; and . This again follows, using (3.24), from
the representation of the state 1y as

Ao(A" o, (A)) = lim

(B(oy, 0)[A]'[B!(k))
(B(ay,0))

(B(o,0) is defined after (6.47)—(6.48) and [B]/(k) is the function [B]* translated
by k € Z in time direction), and from the cluster expansions, using again the fact
that, for a local observable 4, the classical function [4]¢! is also local in the unitary
gauge, i.e., has finite support.

Ao(dek(B)) = lim (6.26)

Proof of Il. Call Gy the group of all gauge-transformations inside of a finite vol-
ume V € Z%; for 1 € Gy, call g; := adg(;) and Eg = lim_VTZzlG_VI_1 Z/:eGV g, the

projector of &, onto Wy. Since Ay is gauge invariant one has g o Eg(F') = 2o(F),
VF € §o. Hence, using the same trick as in (6.25) we have, for F € &,

wo ((r(Qa(L,)"))* Apatir1)(Qa(L,)"))
W(r,r+1) ’

Ao(Frou(F)) = lim (6.27)
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where Ar := Eg(F*o;(F)) € Uy and, to simplify the notation, we used, for a,b € N,
W(a,b) := wo((%a(Qc(L,)")) (2up(Qac(L,)"))) - (6.28)

Now we write this, using the gauge invariance of wy, as

@o ((ir(g:(Q6(L, Y N F* u(F) (011 (91(Q6(L,)"))) )

1
lim — ¥ lim

nz? |Gyl iea, r=ee W(r,r+1)
oo (@ (Q6 (L)) F*ou(F) (0115 (Q6 (L)) )
= r1—1—>rgo Wor D) s (6.29)

because, in general, g;,(Q¢(L,)") = 0Q¢(L,)", for some 0 € € with |0| = 1. From,
this and from the fact that wg is a ground state for o; and & it follows that

0 = A(F a(F)) = Kido(F'F), (6.30)

with I
W bl . {7 v "
Ky = lim 5D iy I|:/r;0(a Qe N 631y
e W 1) oo || To oy (ar( Qo (L))

Note that by the last equality K; = 1. This constant K already appears in [1]. The
existence of the limit in the definition of K can be seen with the cluster expansions.
We do not enter into details. (K also depends on the path L, connecting 0 and
x.) The constant K, of the theorem is the infimum over all constants satisfying
Ao(A*0(A)) = Kw(4*A4) for all 4 € Fp. Clearly K, = 1 (take the case 4 = 1) and
in particular we have seen that K, is finite. W

Now we want to define the magnetically charged states using the electrically
charged ones and duality transformations. Consider now the following four states:

o = o0 pg" = ™ | (6.32)
= dio pg” = " o B o adyinye (6.33)
P, (6.34)
P (6.35)

where y and p; are states on &y and u, and puj are states on By, which are well
defined, since po(J) = pui(J) =0. Above we used the identify p’) o pto py" =

B*~" o ady,y2. The automorphism f*~' o ady 2 is naturally defined on B,

since X (y) is gauge-invariant.

The states pg and p are electrically charged, u; and u3 are magnetically charged.
The precise meaning of this claim is explained in the next theorem. Notice that the
magnetic states are the duals of electric ones, what makes the definitions (6.34)
and (6.35) very natural. The definition (6.33) is also natural since A, is, as already
discussed, a state with an external electric charge.

In order to understand in which sense the states above are charged we need
some definitions. For ¥ C Z2, finite, define the charge measuring operators

(V)= [] 6"Pg(x) and @M(7):= [] oUs(p), (6.36)

xey § 254
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both being unitary and related through &Y (7) := A~1(®F(V)). They are interpreted
as operators measuring the Zy-electric flux through 6*V, respectively the Zy-
magnetic flux through V. We use these operators in the next theorem to justify
why the states above deserve the interpretation of being (electrically or magneti-
cally) charged states.

Theorem 6.2. If V C Z? is e.g. a square centered at the origin, one has:

pe(PE)) o ms(@M()
P @) T R @) @7

im 2@ (@)
B o @H(F)) iR o @) (6.38)

and

oMV PE(Y
lim @) "3(—;)) -1, (6.39)
nz wo(PM(V)) iz o3(PE(V)
(Y 4

fim 2@ m@ )

nz2 o PEY)) iz o (PM(V))
The proof of this theorem is found in Appendix C. An interesting and important
point is that it shows that the different states are charged with respect to different
ground states of different dynamics. In particular one sees that there is a special
interest on the states uo and p), since they are, respectively, electrically and mag-
netically charged states with respect to the same state: wp.

For this reason we turn back until the end of this section to the previous notation
and call wf™ := py and OM™ := ).

Theorem 6.3. In analogy with (6.14) and (6.16), one has:
oo (FL () AFS(r))
oo (F ) FS"(r)

with FSP(r) := F\"(r,r), where, for a,b € N,

(6.40)

M M(4) = A€ Fo (6.41)

b—1 .
F{(a,b) = { o (@ @) }
J=0

x o (Z(0)'2ZN &)U (L)) (6.42)

The operator Fé")(a,b) creates a “dipole” of magnetic vortices separated by a and
connected by a magnetic vortex string translated by & in Euclidean time direction.

Proof. To simplify the notation we frequently drop the reference to the ideal J. Let
us look more closely at state u,. By definition one has, for 4 € By,

opo Bt o 4[4 0 B (ES () ad gy ()4 B ()]
00 Bt o 4 (471 o pr(FE (r)y YA~ 0 B (FS (1)) '

fo(4) = lim

(6.43)
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Using the representation (6.16), (6.9), (5.14) and the fact that A lo B* ooy =
Uiy 0 (BN 047!, we get 471 o pr(F3(r)) = H

»r_1» Where, for general
p,qg €N,

Hpq = Z0(0) 22N ) " (p,q) . (6:4)
Since
Ao R = (5047 0 BUEY) = @],
= (Z0@©) "'z @) He) (6.45)

it is possible to write the state y) in the form

/ g (Fg”’(r)*AF§">(r,r— 1)) g (Fé"’(r)*AFé"’(r))
U(4) = lim = lim

= o (FOGYFP 0= 1) o (FPGYFP)

(6.46)

The last equality in (6.46) comes from the polymer and cluster expansions. B

Considering Fé”)(r) as an element of A, the last expression above also defines
an extension of yy on &y, provided the limit exists, what can also be proven using
the polymer expansion.

One can express w”(4) and @™ (4) in terms of classical expectation values.
Using Definition 4.1 one has

Boyg g g (B, 0)[A])

W) = lim S (647)
Moy, gy pen (B0, =B AT

O = B 0y (648)

where of and 7 is a 1-form, respectively a 2-form, with d*« = 0 and dff} =0,
as indicated in Fig. 2. In this figure we indicate the support of the forms. The
value that the form f] (respectively o) assumes at a plaquette p of its support
(respectively, at a bond b of its support) is n for p (respectively, b) oriented in the
sense indicated by the curly arrow.

The functions [4]% and [4]¥ are given (in the unitary gauge) for r large enough

by

U i= e (DD [0 ) a6
-1
1 = (LI ) 1z Rz (6:50)

where b; and b, are the bonds spanned by (0,—1) and (0,0) and by (0,0) and
by (0,1), respectively, po is the plaquette O at Euclidean time 0. Actually a
straightforward computation shows that, for 4 € s, [4]F = [Q5"(0)40%(0)] and
(M = (4]
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Fig. 2. The supports of the forms /" (left) and o (right). po is the plaquette 0 at Euclidean time
0. The horizontal axis indicates the x-direction and the vertical the Euclidean time-direction.
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Remark. We warn the reader that, due to the appearance of other factors in the
expectation values in the right-hand side of (6.47) and (6.48), relation (3.24) cannot
be used for the functions [4]F and [A]M. O

Let us now study some properties of the states w® and w™. We start with a
simple lemma:

Lemma 6.1. i) For any p € N and for both a =0 and a =2 we have
P AR ooFur) APy + )
r—oo Wo(Fa(r)*Fa(r))  r—oo wo(Fu(r)*Fa(r,r + p)) ’

iiy One has wo(Fo(r) Fo(r,r +2)) = wo(Folr,r + 1) Fo(r,r + 1)) and
Wo(Fa(r)* Fo(r,r + p)) 2 0 for any pe N. O

A€F. (651)

Proof. The equality in part ii) is evident from the representation as classical ex-
pectations and translation invariance. The other claim follows from (4.19) or from
Griffiths inequalities. Part i) can be proven with the polymer and cluster expansions,
as one can see from the proof of the existence of the limit states. We do not repeat
the details. M

Now we establish some important properties of the electrically and magnetically

charged states. We will denote by w:™ := wf™ o t_, and wAyf[(”) =oMMor_,

the electrically and magnetically charged states with charges centered at x and J.

Theorem 6.4. For the states w)f(") and coﬁ,ff(") defined above the following invariance

properties and inequalities can be established:

1. For the charged states one has wf(") oo™ = cof(") and wl}ﬂ") o 1;4(") =
w’}l("), where the automorphism 5. and 51;4 ") are defined by
SEM = ad o, = o, oad (6.52)

-1 © Wyt
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85/ :=ad o = 0ad (6.53)

GGyt ° 7@yt

* —1 * —1
Note that (3£)" = (887) " and (s)™)" = (s¥) .
2. For all A,B € By the following cluster properties hold in the region of
convergence of the polymer and cluster expansions:

lim @£ (A (55”)“(3)) = EM(U)EM(B) (6.54)
Tim o) (A (5"24(“) (B)) = oY)} "(B) . (6.55)

3. For all A € By the following inequalities hold:

0 < f(A4* 55N (4)) £ f(4*4), (6.56)
0 < o) V(467" (4)) < o} (474), (6.57)
that means, wf(") is a ground state with respect to 55(") and wg(") is a ground
state with respect to 5'}4 ),
4. For all A € By we have the following inequalities:
0 = 0f® (40 /@) (6:58)
0 < of® (A*oc,(A)fg”)(j)’) . O (6.59)

Proof of Theorem 6.4. We present the proof for the magnetic states w™™. The
generalization to cu];](") is trivial. The case of the electric states is similar.

Part 1. Invariance of the states already follows from the first inequality in (6.57).

We give another more direct proof, which follows from the fact that, by (6.51),
oMOD(4) = Tim wo(Fa(r)* AF(r,r +2)) ’

r=oo wo(Fo(r)*Fao(r,r +2))

A€ B, (6.60)
from the fact that

Farr+ D = (20 @) aeFar +2)), (661
and from the fact that wo(Fa2(r, 7 + 1) Fo(r,r + 1)) = wo(Fa(r)* Fa(r,r + 2)).
Part 2. Writing o™ as the limit (6.41), using
and using (3.24) we get, after some simple manipulations,

" M) _ o {BO,—BIATM (0)[B]Y (a))
oM@ (A (5Q ) (B)) = rll{l;lo (B, —B1) , (6.63)

UMy O 0 8, )ty © e > (662)
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where [B](a), is the classical function [B]¥ translated to the a™ Euclidean time-
slice. The desired cluster property is obtained writing the expectation values above
in terms of the polymer and cluster expansions and using the standard techniques.
From the same expansions one sees that the clustering is exponential.

Part 3. We consider oM™ (A*éAg(")(A)> and write the state as in (6.60). A com-
putation then shows that B

Mn) [ 4% sM(n) s wo(L* (L))
M) (475N 4)) = tim T B iy 20 669

where L := ZW(0)4ZWV ~M(£,)F,(r). The second inequality follows from the cluster
property and Lemma 2.1.

Part 4. Again by (6.51) we can write

My o 1o Q0F2(r)*BFy(r,r + 1))
o) = Y Falror 4 1))

VB € By . (6.65)

Using (6.42) and taking B := 4*a;(4 )fg")(Q)’ the operator F,(r)*AF(r,r + 1) can
be written as F*o;(F), for F := AZW=™)(Z )F,(r) and the result follows from the
ground state property of w,. B

We finish this section with some observations concerning the automorphisms
55(") and 51\(;1(»;). As automorphisms acting on 2y we can write then as the limit

vi1z? and_adTV(n,o) and adry,(o,m) respectively, where we introduced the finite-
volume modified transfer matrices:

Ty(n,0) := Ou(0)" Ty Qu(0)™" , (6.66)
Ty(0,m) := Z™(0)" 2Ty 2™ (0)'* . (6.67)

Recalling relations (2.13)—(2.15) one easily sees that 7y(n,0) differs from Ty by

the replacement Py (0) — e‘z'%PH(Q) and Ty(0,m) by the replacement [6Qc]( 0) —
e [6061(0). This means that these modified transfer matrices differ from the usual
one by the introduction of a “shift” in a vertical bond starting at 0, respectively, in
a horizontal plaquette located at 0. A generalization of this idea will be used in the
construction of dyonic states with multiple electric and magnetic charges located at
different points.

7. The Global Transfer Matrices on the Charged Sectors

In this section we are interested in defining transfer matrices on the sectors de-
fined by the electrically and magnetically charged states constructed before and in
studying the relations among them. The question of the translation invariance of the
global transfer matrices will be discussed in Sect. 8 below.

Let us first consider the electrically charged states Ag,A;,uo and p;. Call
(745 #2591, ) the GNS-triple associated to the states 4, and the algebra (. Based
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on our experience with the vacuum sector we define the operator Ky_,; : #;, — H#,
by
Ko—1m35(B)s, =13, (B(B))bs, » B € o, (7.1)
with
K17, (BYbs, = mi(B* ' (B))iy» BE Bo . (7.2)

This operator Ky_,; is analogous to the operator Uj_,; previously defined. Using

Theorem 6.1, part 11, one easily checks that ||Ko_|| = Ko/
We then define transfer matrices on #7;,, and # , respectively, by

Ty = Ky Kot s (7.3)
T), = Ko-1Kg_ » (74)
with the result that, as expected, one has
T s0(B)ig = iy (4)(B))bsy » B € &o (7.5)
Ty, i, (B)s, = m;,(,(B))¢s, , B € Fo, (7.6)

Analogously to the previously treated case T;, and T are unitarily equivalent
but ||7;, || = K., @ =0,1. Next we want to define transfer matrices on the gauge
invariant sectors generated by the states pp and u; and the relevant algebra of
observables By. Let us first consider the GNS triple (n,,, #},,$,, ) associated to
the states up (b= 0,1) and the larger algebra .

Define the unitary operators L,: #;, — #,, Rq: #y, — #3, and Sg: Hy, —
H,, a=0,1, by

Lom; (A)s, = 1;,(Qu(0) "IN (A)gs,» A€ o (7.7)
Ramy (A)py, = 13, (A0u(0)") s, . A€ o, (7.8)
Samu (A Pu, = 5, (pg "(ANP1,» A€ Fo , (7.9)
with S, = LoR,. Define also, Wy_: #),, — #,, by
Wo—1 = RiKo—1Ro , (7.10)
with
We then define the transfer matrices associated to yg; and & by
Ty = Wy Wot = Ry Ty Ro , (7.12)
and
Ty, = WoaWs_,, =R{T;R: . (7.13)

The operator R, defines a canonical map between the GNS Hilbert spaces #,
and ', ,whatmakes the definitions aboveparticularlynatural. A simple computation
shows that

T (o = Ty (RST©) B> A € B (7.14)

Ty ()b, = iy (3 DSQ) by s A€ o (7.15)
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The inverses of the transfer matrices are given by

T M ()b = iy (0% (AS0))) b, A€ Fo - (7.16)

a=0,1, and are densely defined.
Inspired in the previous construction consider also Xo_,i: 5, — H#), by

Xo—1 == S7Ko—150 (7.17)

with
Xoy =S K5_1Sh - (7.18)

We then define the global modified transfer matrices associated to pg; and &o
by

Vi = Xg1 Xo—1 = S5 T3y So » (7.19)
and
Vi = XonXgy = S{T5,S) . (7.20)
As one easily checks, one has for a = 0,1,
Vi e D, = 1, (857(4)) By A4 € Bo - (721)
Clearly
Vie =R;TyRa s (7.22)
and
Vo = T ( fg")(g)”) T, . (7.23)

Observe that Vy, ~ Ty ~ Ty ~ T; ~ Ty ~Vy,.
As in the vacuum sector case the definitions (7.12)—(7.13) imply # 9T, =
Ty, W o1, where #°o_,, is the unitary operator defined through the polar decom-

position of Wy_,; : Wy_,; = “/Vo_,lT,,lgz. Note that by (6.3),

Wo Mg (A)briy = T (BDX Q) )y, A € Fo - (7.24)

Hence Wo_.#%, C #7%,, where #7, = {n,,(A)du,, A € Wy} is the subspace
without external charges. This holds also for #y_,1, since T}, keeps #, invariant
for both @ = 0,1. Defining 75, := T, | #7}, we conclude that

Woi TS =TS W . (725)

Since po(J) = p1(J) = 0 there is, for both b= 0,1, a canonical identification

between the GNS-triple associated to 2, and the GNS-triple associated to By. For
this last we have

Wom1 g () = 1, (BA)Y Q)™ , 4 € By, (7.26)

TS 7o (A) iy = i (22(A) 170y » A € By, (7.27)

T4 iy ()b, = T (2 (A) £1(0)) by, A € By . (7.28)
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Now we treat the magnetic states. Call (r,, Ay, du,) the GNS-triple associated

to the states up, b = 2,3 and the algebra By. There are natural unitary maps #7j, —
H, and A, — A7, given by

Wos3 Ty (A) Py = M, (A7 (A)) gy, , A € By, (7.29)
Wiy (A)y, = 1y (47 (A)) Py, , A€ By . (7.30)

This naturally invites the following definitions for the transfer matrices on the mag-
netic sectors associated to u, and uj:

TY = Wi_,T W', and Ty, = Wo-sT;,

2 n Ho

Wyls, (7.31)

which leads to

T8 1, (A y, = M, (02(A) £57(0))y, . A € By, (7.32)
T¢ 1y (D ebyy, = 1, (3 (A) £57(0)Byy . A € By . (7.33)

The inverses are given by

(T9) ™ e (D) bry = 7 0 (AL N, A€ By,  (7.34)

a = 2,3, and are densely defined.
From (7.25) and (7.31) we conclude T} ~ T}, ~ T, ~ T}, where ~ means
unitary equivalence. After a simple computation one can see that

—1 * _a
(m s T, 7 (B) (T8) ™' (O, ) = A E(BYC)  (7.35)
for all a € {0,...,3}, and for all 4,B,C € By.

For completeness and further uses we also write down the explicit definitions
of the operators Wy_.,, Wi_,3 and W,_,3:

Wo-attyg (A = 1 (471 0 BA) (20D 7)) ¢y 4 € Bo (7.36)
W1_>37r,,,(A)¢u, = Ty (A_l o ﬂ_l(A) (ﬂ* (Z(n)(g)_l/z))/) ¢;t3 , A€By, (7.37)

Wostyy (A) by, = T, (ﬁ*' (A (Z<">(Q)—‘/2)’)) b, A€ By. (7.38)

We close this section mentioning without proof an elementary proposition we
will use.

Proposition 7.1. Using the definitions given above one has:

(72" b = e (@51 (FOQ) -0 (fP(Q) £9(0)) by, (7.39)
for all a, and for all B€ N, B = 1, and finally

B ~ ~ ~
(7%) iy = mg (a1 (20D o0 (2D ) 2D ) gy, (740)

for all BEN, B = 1, where W =Ty (z™(0)'2) b O
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8. The Translation Operators on the Charged Sectors

So far, we have not discussed the question of the translation invariance of the global
transfer matrices defined above. Let us first analyze this question for the GNS triple
associated to the electric state py and By.

Our task is to exhibit a unitary operator acting in #°}, implementing the trans-
lations and to show the translation invariance of the global transfer matrix Tﬁo. We
will be following the steps of [1] with some adaptations. We remember that the
state po and all GNS objects associated to it have been constructed with a charge
“located” at 0. For an arbitrary point x € Z2, we have to show the existence of
vectors in #}, implementing the states pg o 7_,, the electrically charged state with
charge “sitting” at x.

Let us start defining the following operator on #7,:

Voo ()by = o (35(4)) B 4 € By (8.1)

This operator is well-defined, bounded with ||Vy|| = 1, self-adjoint and, by (6.56),
positive. Clearly ¥y coincides with V), | #7%,, defined in the previous section.
Boundedness follows from the Cauchy—Schwarz inequality and from the cluster

property of py with respect to 55("). The same cluster property also implies the
uniqueness up to a phase of the eigenvector of ¥, with eigenvalue one. Note that
this operator has been defined here only for the point 0. Later we will extend the
definition to arbitrary x.

Let L, ,, denote a finite connected set of bonds in Z? having a and b as end
points, oriented from g to b. We will call these sets of bonds transporter bonds.
For such transporter bonds and for p € N define the operator

p—1 p—1 ( -
Ap(Ly_p) = [H ocm(fé”@‘l)] o pi (Us(L,ﬁl_,)"*) [H cxb,(fo”)@*‘)} :

a=0 b=0
(8.2)
The idea behind this definition is that the operator A ,(L, ./ )t(Fo(r)),p <,
is associated to a classical function described in Fig. 3. S

Proposition 8.1. For fixed Ly_,, the sequence defined by

‘pp(LQ-»)_c) =Ty, (AP(LQ—az)) ¢#o/“n#0 (AP(LQ—n_c)) ¢ﬂ0” , PEN, (8.3)

is a Cauchy sequence in #,,. Call y(Ly_,,) the limit vector of the Cauchy

sequence above. Then Y (L,_,, ) is independent of the transporter bonds
Ly.. O o

Proof. Call Y, :=yYp(Ly_,). By (4.19), (Yn,Yw) = 0 and can be written as

[(Whs Y1 )Y, Ui )]V, Expressing this in terms of cluster expansions one sees,
for n and m large, that the only clusters which contribute are of size larger
than 2 min(n,m) and that for [In[(Yn,Ym)]| we have the bound (const.) (|Lg_.|)

e~ (const) min (mm) Qo (. i) — 1, for n,m — oo and this implies convergence. Now
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L-z—-'z' ]

r

oo L

Fig. 3. Semi-loop of bounds associated to the classical function of 4 p(Ly )T (Fo(r)). The arrow

indicates the orientation sense of the corresponding 1-form.

we are going to prove the independence of the limit vectors on the transporter
bonds. The argument is analogous to the previous one. Consider

(eRo)s (L) )
= tim [ (B Boo UL (Lo tpBs)] (8.4)

Expressing this in terms of cluster expansions one sees that, for p large the only
clusters which contribute are of size larger than 2p and that for 'ln (%(1_29_,{),

x//P(LQﬁE))‘ we have the upper bound (const.) (|Lg_|+ |EQ_U_C|)e“(“’"S")P -0
for p—00. W

Definition 8.1. Call ¢,(x) = Yx(Lo_.,) for any Ly with ¢u(0) := ¢

Proposition 8.2. i) One has for all A € By,
(Pro()s o (A by (x)) = pto(T—(4)) - (85)

ii) ¢y, (x) is a cyclic vector with respect to m, (By). O

Proof. The proof of part i) is easily obtained using the definitions and the cluster
expansions. We omit the details. Part i) holds if there exists a sequence

Y = nuo(Bn)¢uo()£)/”nuo(Bn)¢u0()£)” s (8.6)

B, € By, n €N, converging to e/ ¢y f € R which is cyclic, by construction.
Write ¢, (x) = Ya(Ly_.,)- We will show that one has such a sequence for a choice
like B; = A,(R, ), in f;articular with R, _,, = —L,_,,. The fact that, for this choice,
Y, is a Cauchy sequence can be proven similarly to the previous case using part
i) of this proposition. In order to show the convergence to e/ ¢y, we observe that,
for arbitrary x,L and R, one has

55" (Ag(Ry-0)4p(Ly—y)) = Ags1 ReM psi(Lyy) (8.7)

since, in general
SEM (4 (L = ") fPB) (L 8.8
a p(._g—-»é) fO (2) f(] (_) p+1(_g——>é)n ( . )

and
55" (L)) = ApriLy-p) /@) () (8.9)
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This implies that

v l// li 1i I'nl‘-o (Aq+l(_LQ"§)AP+1(LQ_>£)> d)l‘O
o = hm him
g—00 p—00 Hnuo (Aq(_]_aQ_,JI)Ap(LQ_){)> Buo

v, (8.10)

where  is the limit of the sequence ¥,. In Appendix D we will prove that the
factor inside of the brackets converges to one in the limits above. Therefore, ¥ is
an eigenvector of ¥, with eigenvalue one and has to be equal to e/ Oy, M

Now we are able to generalize the definition of the operator ¥, on #7},. Define

Vittug () o (1) = T (35 (A)) by (x), A € By . (8.11)

This operator is well-defined, densely defined, bounded with ||V | = 1, self-adjoint
and, by (6.56), positive. Boundedness follows from the Cauchy—Schwarz inequality
and from the cluster property of yy with respect to 65("). The same cluster property
also implies the uniqueness up to a phase of the eigenvector of V; with eigenvalue
one.

Let us now introduce the generators of the translations. Following [1], define

U/to(Z)n;to(A)¢;to = n;to(‘C{(A))d)ﬂo(Z) , A€B (8.12)

for all z € Z? and 4 € By. This is a densely defined isometry with dense range
and so it defines a unitary operator. The family {U,,(z), z € Z*} defines a unitary
representation of Z* in #7%,. This follows from the same arguments as in [1] and
we will not repeat the details. As we will discuss in [9], the corresponding situation
in the dyonic case is more complicated, since the positivity argument used in [1]
does not hold for expectations involving loops of bonds and of plaquettes.

With this definition we easily check that U, (z)V; = V4, U, (z) and U, (2)T, .
T,U,,(z) where, for x € 72, we define the operator

Ty = 1 (S5 (X)W - (8.13)

As one sees, this is a self-adjoint operator and, by (6.58), one has 0 < T, <

¥2 (()")(J_C)H. Clearly To = Tj;, and we want to show that 7, = 7} for all x. For,
observe that
e (41 L)) @)l
T, = | lim Ty, » (8.14)
amee ”nllo (Aq(L)_(—»(_))) ¢l¢0(£)“

what can be seen applying the definitions on the dense set {m,,(4)d,,, 4 € By}
and using (8.8) and (8.9). Using arguments analogous to that used in Appendix D
we can see that the factor between parentheses in (8.14) is equal to one. This can
be also more directly seen from the fact that 7, and 7}, have the same norm since
U, (x) is unitary and intertwines both. From this it follows that U, (z) and Tj
commute for all z € Z2.

Now we present the definitions of the translation operators in the GNS-sectors
associated to the states puj,up and p3. We simply define, for all z € Z? and
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a=1,2,3:U,(2) := Wo—qU,(2)W,; . Let us look at each case more closely. Us-
ing the previously discussed polar decomposition of the operator W,_,; one has

Uy, (2) 1= Wo Up@ Wy = W oot (T) U )T 2w sl . (8.15)

and since Uy, commutes with Ty, we conclude that, for each z, Uy, (z) and Uy (z)
are unitarily equivalent. Analogously we conclude that U, (z) and U, (z) are uni-
tarily equivalent since Wy_,, = W_,;Wy_, and W;_,; is unitary. Finally U, (z)
and Uy, (z) are unitarily equivalent because Wy_.3 is unitary. Note that the unitary
operators intertwining U, (z) and U, (z) are the same intertwining 7, . and T, as
found in the previous section. In this way we have found an equivalent to Corollary
5.3 for the charged sectors:

Corollary 8.1. The joint spectrum of the transfer matrix and the momentum
operator, sp(Tffa,IPﬂ(, ), is the same for all a. O

This in particular says that, if there exists an electrically charged particle in the
sector associated to o there must be a magnetically charged particle in the sector
associated to p, with the same mass and dispersion relation.

It is interesting to study in more detail how Uy,(z) acts. We will in particular
derive a result which will be useful in the proof of the existence of magnetic
particles.

Definition 8.2. Let Ly_.;, z € Z* be transporter bounds. Define for p € N,

/ ~1 ’ ’ ~
By(Ly—z) == (Z"(&)'"?) [pn o, (Z"(2)) } oy (ﬁ*“‘ (Ui (LH)"))

a=1

b=1

-1
x {pﬂl %, (Z(”)(Q)’)] (Z™ D~ . (8.16)

Call

U, (2) = li ((Z(n)(5)1/2)/3p(LQ_,£)) by
\Z) = hm

p—o0 “( ,12)1/2@2( (n)(Q)l/z)'Bp(LQ_)Z» bn > (8.17)

with Y, (0) := 7, ((Z(")(Q)‘/Z)/) ¢u, as in Proposition 7.1. [
In (8.17) we used the fact that

a2, (2)2)") b1

= (7 (@7@)")) 9y
T (Z7')) ) = 1. (818)

The existence of the limit in (8.17) can be established with the same methods
used in the electric case. Analogously to Proposition 7.1 one can show that

T (@) =1, (2707")) o2 - (8.19)
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Theorem 8.1. With the definitions above
U (), (AW (0) = 7, (2(A4) Wy (2) (8.20)
for all A€ By, z€Z? O

Proof. Using the definition U, (z) := WO_QUMO(g)WO;l2 one can show that

Ty (DKL) b

U, (@), (A)$y, = lim — (8.21)
=2 (4p(Loms)) g
with
KoLy ;) = (ZM@)) 47V 0 B p(Ly_,)) (Z27(D)77)" (8.22)
A lengthy but straightforward computation shows that
Kp(Ly) = (Z0@"7) o (Z70@)"2) BprLy-)) /D). (823)

Hence, the numerator in (8.21) can be written as

Ty (2:(4) (20@')) Ty, (Z0@)2) BporLg-)) b1 - (824)

Concerning the denominator in (8.21) one can show that it equals

T2 2, (20@'2) BpoiLy-)) i (8.25)
Therefore, after the limit is taken we get
Vo), =, (52 (4 (Z0(0)'2)") ) T g 2)
=, (= (4 (Z2@©))) e @) (8.26)

where here we used (8.19). To finish the proof, replace 4 — A4 (Z(")(Q)l/z)/. u

9. The Existence of Electrically and of Magnetically Charged Particles

The existence of an electrically charged particle in the Z, case in d = 2 was
established in [3] using methods previously developed by Schor and collaborators
in the vacuum sector (see references in [3]). Here we will use the same techniques
to show the existence of N — 1 electrically and magnetically charged particles in our
3-dimensional Zy model. We will restrict ourself to present only the basic results
concerning the existence of electric charged particles in the Zy case. Further details
for the proof of existence of the one-particle states can be inferred from the basic
discussion found in [3]. By duality, or more precisely, by Corollary 8.1, we conclude
the existence of N — 1 magnetically charged particles as well. Nonetheless a direct
proof of the existence of magnetic particles can be found repeating the steps of the
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electric case. As in the previous sections our results are restricted to the region of
couplings with max{g(1),...,g(N — 1),A(1),...,A(N — 1)} small enough.

Due to some special problems already observed in [3] we have to represent
(B(a, B)) in a slightly different way form (4.31). Here we write

(B(a, B)) = > [D—B:E—a] | I] 9(D(p)) [ I1 h(E(b))]
(M, EyeConn (2, X) PEP beM
(P, D)eConny(#,C)
o bh —1)u 9.1
xexp | 30 er (@ogmyax Oy pe = 1) R O.1)
regclus(V)

We used the following definitions:

e Conn;(a;X) equals Connj(a) if da=0 and otherwise equals the set ¥y of all
polymers whose geometric part is formed by a simple connected set of bonds
which are connected to at least one point of the finite set X C /o = Z>. One also
has () € Gy.

e Conny(f; C) equals Conny(f) if d*f+0 and otherwise equals the set % of all
polymers whose geometric part is formed a simple co-connected set of plaquettes
which are co-connected to at least one cube of the finite set C C /5. One also
has ) € Y.

® A E),.x(Y) equals agy g () but is zero in the case do = 0 if there are bonds
composing y connected with at least one point of X.

o bp,p),p;c() equals bp py p(y) but is zero in the case d*f = 0 if there are pla-
quettes composing y co-connected with at least one cube of C.

The convergence of this representation can be proven by the same methods. We
note that (9.1) does not depend on X and C, which can be chosen arbitrarily. We
indicate the choice of X and C by writing (- - -)x.c. This representation only differs
from (4.31) if da =0 or d*f = 0.

Starting from the states pg and pj on the algebra By we associate via the GNS
construction the objects

Mo — Qg g, g, Te, Up(x) ; 9.2)
Wy — Pats Tas o, Tar, U (x) 5 (9.3)

where we introduced the new notations ¢r = ¢, etc, and ¢y = ¢u§’ etc.

We will always be assuming that these states have (electric or magnetic) charge
n. We will analyze the following two-point functions of vector states with charge

(n):

GE’(")(X(),J_C) = (d)E’ UE(-&)TIL‘X()'(]&E) , (94)
GM* (x4, %) = (T;ZZVM,UM(E)TEOITAI/ZW) ) 5)

for (x,x0) € Z*, with
Wi == m(Z(0) ) s - (9.6)
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The factor T} my(Z™(0)"/2) was introduced for convenience. The results we are

going to establish say that the vectors ¢p and Tnll/zt/M have non-vanishing com-
ponents on one-particle subspaces. The same holds for the vector yis since T
commutes with the momentum operator. Note that

G0, 2) = (mr(ZP@ Db, (Un T ) (20 )gar) - 07)

We now introduce a convention frequently used below.

Notation 9.1. I/ y is a form in Z* with finite support we will denote by y[x] the
form y translated by x € Z*. Clearly y[0]=1y. O

We represent these two two-point functions as the square root of the Green
functions of two infinitely separated charges. Having (7.39) in mind we write, for
two fixed points x = (xo,x) and y = (o, y) € Z°,

B e ((BOAx1,0)) )
o )”rlir&<<B<a¢[)_c],0)> ’ e
P T\ BO B '

where the forms 77 and «! are defined in Fig. 4 (see also Notation 9.1). The forms
o and ! are the analogues of the forms y” and o, respectively, on the dual lattice.

In the method we follow we consider configurations of complex space-time
dependent coupling constants k := {h(1)(d),...,A(N)(b),g(1)(p),...,g(N)(p), b€
1, p € I}. The configurations we will consider are invariant under space transla-
tions. We denote by ( - )(k) the classical expectations associated to the configuration
of couplings k.

0 o o o o ... G C].0z)

T

Fig.4. The forms ] = y![0] (left) and o = «[0] (right).
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We define the Green functions for space-time dependent couplings for xp < yo
by

Em) o @@ﬂﬂﬂ»mMM>m
o= (o) G0
) (B0, =3 x D) g, ()
¢ (“”””'3&<<mm~mumw) ’ @10

where we have chosen X = {y,y,} and C = {¢,,cy,}, where ¢, the cube spanned
by the plaquettes (7, yo) and (3, yo + 1). In [3] another representation of G% for
variable couplings has been used. Both lead to the same results.

We identify bonds, plaquettes, and cubes with their geometric central points
(which are points in Z>/2). For a < b we call by ¥, the subset of %,;,; composed
by clusters whose bonds and plaquettes are contained in the time-slice a < xp < b.
We also define ¥}, , := G 1us\Z —c0a U Db, 00)-

To handle with (9.10) and (9.11) we need some abbreviations and call

A, By (?) = A0 E) 12 (V) 5 (9.12)
b, p),x.y(V) = bp. D)~ 1x1e, (V) > (9.13)
a, () = aguz10(7) (9.14)
b(y) = by —prrz10(7) - (9.15)

From now on we concentrate on the analysis of G, The treatment of GM™ is
analogous. Before the limit » — oo, the right-hand side of (9.10) can be written as

)y hﬁ@wmkm S ertt (@en,) — @)
(M.E)€E beEM re%y.co ’ B
Conny (:71[21.X)

+ gZ CI"#/C ((GEM,E);x,y)F‘(ag)F)"' > Cﬂul{ ((an,E);x,,v)r - (a;)r) >
red o4,

9.16)

where u(y), etc, means that the activity is defined on the configuration of couplings
k. We have

S e (@) =1) = ¥ eruf (@) 1) (9.17)

re%y). oo re%y) o

because the sum is convergent for finite » and the result is translation invariant. An
analogous argument implies that

> e (@ =1)= X eruf (@) 1) (9.18)
regy ., - regy, -

for an arbitrary x’ € Z2. The limit » — oo of this expression is also convergent.
Using now these facts and applying the polymer and cluster expansion machinery
we can control the limit above and get, for x,y € Z°,
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G,y = % [HhmmﬂmWJmJy (9.19)
(M,E)e beM

Conny (Mx ], v)
where y"[x] = lim,_, s y/[x] and
(M, E); x, y) = exp (D((M, E); x, ) , (9:20)
with
D((M, E);x,y) = A (M, E);x,y) + A_((M, E); x, y) + B(M, E);x,y) ,  (9:21)

where, finally,

AMESxy) = 5 erif (@uman) = @) ), (922)
re%y.co
A_((M, E);x,y) := - %Z CFN/{ ((a(M.E);X.y)r - (ag)r) > (9.23)
€ —00,%
BUMEY %)= % ernf ((apusnn) —(ag)),  (924)
reg:o,yo

for arbitrary x’ € Z?, as described above and with the definition a,(y) := lim,_

a;(y) and, for (M, E) € Conn;(y"[x];x, y), With awgyx,y = imy—oc@y gry. ., for
some (M', E') € Conn;(y"[x];x, y) containing (M,E).
Using the polymer expansion techniques we can prove that
ID(M,E);x,p)| < kilM| + ko, (9.25)

for positive constants ky,k;.

Now we start to collect the results concerning these Green functions which lead
to the proof of the existence of one particle states. We omit the proofs since they
can be established in the same way as in [3]. First for the Green function with
constant couplings one can show that

GE,(n)(xO =1, x=0) = kh(n), (9.26)

for some positive constant & and 4 small enough.

For the Green functions with variable couplings we have to use a special sort
of configurations k. We will namely consider g(a)(p) = g«(a), a=1,...,N — 1 for
all plaquettes lying on the plane xo = ¢, h(a)(b) = h(a) for all time-like bonds
connecting the planes xo = ¢ and xo = ¢ + 1. For all time-like plaquettes and space-
like bonds we fix g(a)(p) = g(a), h(a)(b) = h(a).

The next step is to study the analytical dependence of the Green function on the
variable couplings, which lead to analytical properties of the original Green function
in momentum-space. We performed this analysis using the techniques of [3] and
the results are captured in the following

Theorem 9.1. For the electric Green function with charge n and variable couplings
as defined above one has the following facts:



Electrically and Magnetically Charged States and Particles 73

1. At h(1)=---=h(N — 1) =0 and for xy £t < yg, one has
G, %0); (3, y0) )k =0 . (9.27)
2. At g(D)=h()=---=g(N—-1)=h(N-1)=0, for xo £t < yo one
has: .
O G0 ) = exp (f111) g G (x; a) GH(a + eo; y)i » (9.28)

where A, is the plane xo = t, ey is the unit vector in positive time direction and f
is a holomorphic function of the couplings.

3. At h(1)=---=h(N — 1) =0, for xo £t < yg one has:
Wy OGP Y = 0, (9:29)
in the case 22’:_11 ab,+n mod N.
4. At g(1)=---=g(N — 1) =0, for all t one has:
Oy OGPy =0, (9.30)

in the case 0" ac,+n mod N. [

An analogous result can be proven for GM by interchanging g, < h; above.
According to the methods explained in [3] the results above lead to the following

Theorem 9.2. For a given n, for max{g(1),...,g(N — 1),h(1),..., k(N — 1)} small
enough and under the condition

h(n) > max { I #(a)be, ¥b,,0 < b, € N with 5 ab, = n mod N}, (9.31)
a*n

the Fourier transform of the 2-point function GE"((xo,x) can be analytically
extended, for each p € (—m, n)?, to a meromorphic function of py in the re-
gion Im py < ﬁE’(")(P) with an isolated simple pole at py = iv®"(p), where
vEU(p), the energy-momentum relation of the particle, is smooth and pEm( P)
is continuous with V="(p) > vVEM(p) = mEM™ | mE™ being the mass gap. The
group velocity grad vE™(p) is nowhere constant. For GM"((x,x) one has the
same results with dispersion relation V" (p), etc. Concerning the dependence
on the couplings one has vV'"")(p)(g,h) = vE’(—”)(_p)(g,h)’ = vEM(p)(h,g), ete, ie.,
dual particles have dispersion relation related by dual couplings. One also has
VEI(p)(g,h) = v (p)(g, k), etc. ie., particles and anti-particles have the
same dispersion relation. [

Remark. The condition (9.31) is for technical reasons necessary in order to guaran-
tee that we have an upper mass gap, i.e., the “mass shell” related to the particle with
charge n is isolated from the absolutely continuous spectrum associated to scatter-
ing states with fotal charge n, since it essentially says that the mass of the particle
with charge » has to be smaller than the sum over all masses of particles whose
charges sum up to » mod N. But the particles may exist without this condition.
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Note that condition (9.31) can be satisfied simultaneously for all n, for instance if
all A(a), a=1,...,N — 1, are approximately equal. O

This theorem implies the existence of closed subspaces #'} C #g, #H\ C Hu
(the single particle subspaces) on which the relations (TE/M e )) )
JK}E/M =0, hold. Here P is the momentum operator. # ) and #}, are the clo-

sures of the linear spaces @f,;) and @ﬁ? , where

supp f Nsp(Hg, P) C {(V*(p), p). p € (—m, 7}, f € @(R3)}, (9.32)

and @ﬁ}) is defined analogously replacing £ — M and with Y, replacing ¢g. Hgy
are the Hamiltonians defined as Hgp =: —InTg.

Appendices

A. The Convergence of the Cluster Expansion

In this appendix we will present a proof of the convergence of the cluster expansion
together with some useful estimates. Out proof uses some ideas contained in [1],
Appendix A.3, but we organize the material differently. Adaptations to our case have
been done in the proof of Lemma A.2 below. We made no attempt to find optimal
estimates and so, no concrete numerical predictions for the size of convergence
regions for the couplings will be presented. We refer the reader to [1] where this
has been performed for the Z, case.

Let I" be a cluster of polymers. We say that a polymer y is incompatible with
I, e,y T, if there is at least one y/ € I' with y # y’. For two clusters I', I’ we
have I' ¢ I'" if there is at least one y € I' with y £ I'.

For the polymer system discussed in this work we are going to prove the fol-
lowing result:

Theorem A.1. There is a convex, differentiable, monotonically decreasing function
Fo : (ap,0) — Ry, for some ay = 0, with lim,_,.Fo(a) = 0 such that, for all sets
of polymers I', and for all a > ay,

S e < Foa)|Il (A1)
1728
where||T'|| =S T()|Y|, I'(Y') being the multiplicity of v in I'. O

Once inequality (A.l1) has been established, it has been proven in [1],
Appendix A.1, that the two following results hold:

> lerlle”| € Fu(~=n|lulD|| ol , (A2)
regvlm
1'761'0
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n
S ferflnf] = ( i ) IToliFo(ae) (A3)
e s Il,uc”
rgr,
Irifzn

where a. and |g|| > O are constants defined in [1], F; : (a. + Fo(ac),00) — Ry

is the solution of Fy(a + Fy(a)) = Fo(a) and ||y := supyly(y)ll/m. For a proof we
refer the reader to [1].

The inequalities (A.2) and (A.3) are of central importance in the theory of
cluster expansions and are often used in this work. This makes it relevant to prove
Theorem A.1.

Since, in general

Ze_aly[ < Z Ze——am < E F(})/)Ee_am ) (A4)

2l v E€lypy’ ver e

it is enough to prove (A.1) for the case in which I' is composed by a unique
polymer 7/, i.e.,, I' =y’. This will be performed in Theorem A.2 below. We first
need some definitions:

Definition A.1. Let the sets
Co(M) := {M' € B(Z*") so that M’ is connected with M}, (A.5)
M € Biowal(ZH),
Cy(P) :={P' € Z(Z°") so that P’ is co-connected with P}, (A.6)
P € Piu(Z%+YY; and the sets
Wy(P) = {M' € B(Z*") so that w(M',P)+0} , (A7)
P € Prowa(Z*),
W, (M) :={P' € Z(Z*") so that w(P', M) %0}, (A.8)
M € Broar(Z*),
W (PY = {M’ € Bioa(Z°*") so that w(M’, P)+0} , (A9)
P € Pioa(Z**),
W (M) = {P" € P(Z**") so that w(P', M)+0} , (A.10)

M € Bioiat(Z4YY), where, for M € Bipa(Z9+") and P € Pioia(Z4H"),w(M, P) =
w(P, M) € {0,...,N — 1} is the “Zy-winding number” of M around P:

w(M, P) = w(P,M) = max w((M, E), (P, D)) = | max ((uP, Eymod N) .
ECEM) E. supp E=M

(A.11)

For M € Bioia(Z%t") and P € Pipiai(Z4*") we define |M| as the number of
bonds contained in M and |P| as the number of plaquettes contained in P. [
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Proposition A.l1. Let two polymers (P,D) with P € P(Z%") and (M,E)
with M € B(Z%+') be given. Then there are convex, differentiable, mono-
tonically decreasing functions Fp, F), : (ag,00) — R, for some ay = 0, with
lim, oo Fp, p(a) = 0 such that, for all a > ay,

%%;D)e—“lﬂ < Fy(a)|P| (A.12)
v f
and
ﬁ(%Ee—”'V' < Fya)M|. O (A.13)
¥ LE)

The proof of Proposition A.l is given immediately after the proof of Corol-
lary A.1. We now establish the main result of this appendix:

Theorem A.2. There is a convex, differentiable, monotonically decreasing function
Fy : (ag,©) — R, for some ay = 0, with lim,_,Fo(a) =0 such that, for all
Y €%, and for all a > ay,

z_:,e_“m < Fa)ly]. O (A.14)
Viads

Proof of Theorem A.2. Let {(M" ,E™) )}, and {(P”, D" )} be the set of mutually
disconnected sets of bonds, respectively the set of mutually co-disconnected sets of
plaquettes and their colours which make up y’. Then

Se Ml <y S el s oy el

v RGN Sy’ )
v ’
< FOXIP |+ F@YM!| < Fo@ly|. (A1)
i j

where the second inequality comes from Proposition A.1 and where Fy := F}, + F),
is differentiable, convex and decreases monotonically to zero. W

As mentioned, this proves Theorem A.l. To prove Proposotion A.1 we need
two lemmas and a corollary.

Lemma A.1. There are convex, differentiable, monotonically decreasing functions
g%, 9?7 : (ap,00) — R, for some ay = 0, with lim,_g>P(a) =0 such that for
all a € R, , a large enough,

i
,Z e~ M < g(a) M|, (A.16)
M'eCg(M)

for all M € Bpiai(Z") and

el < gr(a)lP|, (A.17)
P/€Cp(P)

for all P € Prp(Zt"). O

Lemma A.2. There are convex, differentiable, and monotonically decreasing func-
tions f°, f7 : (ay,00) — R, for some ay = 0, with lim,_,, f>?(a) = 0 such that
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for all a € Ry, a large enough,

e~ Ml < fha)|P|, (A.18)
M EW,(P)
for all P € Ppa(Z%*") and
el < rr(a)M|, (A.19)
PIEW (M)

for all M € Bip(Z4HY). O

To avoid breaking the stream of the argument we postpone the proof of these
lemmas to the end of this appendix.

Corollary A.1. [f Lemma A.2 holds one has:

> e—alM'i < efb(a)lPl , (A.20)
M’GWé”m](P)

Pe ?@total(z(ﬂ-l), and

D e—lP'l < ofP@IM| , (A21)
P’ewionl (M) B

M e e@total(Zd-H)' O

Important Remark. To avoid misunderstandings we stress that in (A.20), (A.21)
and all below we will always be assuming that in the sums over all subsets M’ €
w/iel(P) and, respectively, over all subsets P’ € W (M) the terms corresponding
to the empty sets M’ = () and, respectively, P’ = () are being included. O

Proof of Corollary A.1. For (A.20) one has, as one casily sees

m
—a’| < 1 —alu”| rh@iel
Y oeley L Y e < SOF (A2
M’EW;;O'“](P) m=0M: M eWy(P)

where the factor 1/m! has been introduced to compensate overcountings and where
the last inequality follows from Lemma A.2. We used the fact the non-empty el-
ements of W/°“/(P) are built up by disjoint unions of elements of W,(P). Note
also that m = 0 is included in the sum over m because the empty set is included
in the sum of the left-hand side, as already remarked. The proof of (A.21) is
analogous. W

Proof of Proposition A.1. We prove (A.12), the proof of (A.13) being analo-
gous. To prove (A.12) first note that if y o4 (P, D) then either there exists at least
one connected subset of bounds My € y, with M, € W,(P) or there exists at least
one co-connected subset of plaquettes Py € y, with Py € C,(P). Keeping this in

mind, one can, after some thought, convince oneself that the following inequality
holds:

S e M < Jo(a—In(N — 1)) +Jy(a — In(N — 1)), (A23)
y#(P,D)
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where

Je(a):= lim 33 e @l 52 a5y manil

I—»OOPOEC;)(P) MIGWéomI(PO) PIGW;;””](Ml)
o el el (A24)
M|€Wé‘m’](f’[_1) P[EW;,O'”](M[)

and

Jy(a) == lim 3 e @Ml v emadnl s el

1_’°°M0€ Wy(P) P EW;""](M()) M€ Wbmm,(Pl )
b e~abill S emalMil (A25)
Plengll(MI—l) M1€W;70"’I(P1)

The idea is the following. If, for instance, there exists a Py € y, with Py € C,(P)
then, since y is a polymer, there exists M; € Wb"”"l(Po) contained in y,, P; €
w 1’,"’“’(M1) contained in y, and so on. Since all polymers are finite this chain
has to break somewhere, what is considered in (A.24) and (A.25) since M; =0
or P, =0, i, j+0, are allowed to occur in the sums and since W,ff’l’f’(@) = (). The
factors (N — 1)el and (N — 1)IP«l, which are intrinsically present in (A.24) and
(A.25) for a — a — In(N — 1), as needed for the left-hand side of (A.23) are, as
already observed, upper bounds on the number of different colourings associated to
each geometric object M, and P, appearing in the sums.

Making alternate use of (A.20) and (A.21) one gets:

b
Jo(@) € lim 3 e @k @Rl (A.26)
1—00 peCy(P)
and ,
Jp@@) € lim Y e @ L @Ml (A27)
=00 Moewy(P)

where L2” is defined inductively by L?(a) = f(a — fP(a)),L}"\(a) = f"(a— f?
(pr (a))), and analogously for L " with the upper indices b and p interchanged.
Define L?(a) = lim/_ooL?”(a) and LP%(a) = lim;_,oL?"(a). These functions
satisfy
L%(a) = fP(a— fP(L%(a))),  L™a)= fP(a—fP(L"(a))).  (A28)
Using Lemma A.1 for (A.26) and Lemma A.2 for (A.27), we get
Je(a) £ g”(a—L"(a))|P| (A29)

and
Jw(a) £ fP(a—LP(a))|P|. (A.30)

Hence it is natural to define F,(a) :=g”(a’ — L?(a’)) + f(d’ = LP*(d'))
and, correspondingly, Fy(a) := g®(a’ — LP’(d’)) + fP(a' — L*(a’)), where
a :=a-In(N-1).
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The proof of the lemma is then finished showing that the function g?(a —
L%(a)), f*(a — LP*(a)), g"(a — LP*(a)) and fP(a — L*(a)) are, for a large enough,
positive, differentiable, convex and decay monotonically to zero for a — co. We es-
tablish this separately in Proposition A.2 and Corollary A.2 at the end. M

Proof of Lemma A.1. The proof of this lemma is a standard piece of the literature
of cluster expansions and relies in the solution of “Konigsberger Briickenproblem”
(see f.i. [12], Lemma 3.11). Let us show the proof of (A.16). The proof of (A.17)
is analogous. Let by be an arbitrary bond of M. Since there are |M| such bonds we
have

’ ’ x m
oMl iM] e M= M e G (b0l (A3D)
M'eCy(M) M'eCy(by) m=1

where Cl(,'")(bo) :={M"' € Cp(bg) such that |[M’| =m}. We can find an estimate
for |C,()m)(b0)| in the following way. Starting from by one can move through
M' € Cp(bp) in a path that meets each bond in M’ at most twice. So, one can
find a geometry-dependent constant Gj 441 (for sets of bonds one can choose, for
instance, Gp, 441 = 2d + 1) so that |CS(bo)| < (Gpap1)*", since (Gpaq1)™™ is the
number of connected paths of length 2m starting from a fixed point. Returning
to (A.31) the proof is completed by choosing g’(a) := Gy ar167%/(1 — Gpur1677)
with @ > InGj 4.1. One easily checks that this g° is convex and decays monotoni-
cally to zero. For the proof of (A.17) one has to replace Gy 441 by an other constant
Gpar1. N

Finest estimates for the general case of i-cells in d + 1 dimensions can be found
in [1].

Proof of Lemma A.2. This lemma is analogous to Proposition A.3.3 in [1] but our
proof is a little different, since we were not able to reproduce all estimates used in
that proof for the kind of polymers we deal with here. In spite of this our proof
seems to be simpler, although our estimates may not be optimal.

Let us prove (A.18), the proof of (A.19) is analogous. We have

’ x m
S e M = S emem (P, (A32)
M’ EeW,(P) m=1

where Wb(m)(P) = {M' € Wy(P) so that [M’| = m}. In order to find an estimate
for ]Wlfm)(P)l we note that if M’ € Wlf"')(P) then there exists at least one pg € P so
that D( pg)S(po)+0, where S € (Z9+')? is such that supp d*S = M’ with minimal
(S,8)ga+1y2- All M" € B(Z*"),|M’| = m eventually satisfying such a condition
for a given pg are contained in a (d + 1)-dimensional cube, K, of size (2m)*+!
centered at pg. The total number of sets M’ € B(Z4*"),|M'| = m, contained inside
of K, is bounded by (2m)?*!(Gy,411)*™", since there are (2m)?™! starting points
in K,, for a path of length 2m in Z*! and since there are at most (Gp gy1)>"
such paths for a fixed starting point (see proof of Lemma A.1). Hence IWIS'”)(P)I <
|P|(2m)** 1 (Gp,q11)*™, the factor |P| coming from the fact that there are |P| possible
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choices for pg. Therefore, choosing a > In Gj 411,

’ o0
e Ml < PR S (m) e = PRI -1 V), (A33)
M'EW(P) m=0

where ¢ = a — In(Gp 441), hp(c) = e ¢/(1 — e~ ) and hgk) is the k™ derivative of hj.

Defining Hp x(c) = (—l)khgk)(c) we complete the proof of the lemma showing
that the function Hp,:R. — R is, for all k€N, positive, convex,
monotonically decreasing with lim,_,.oH} ¢(c) = 0. But this is clear since Hp i(c) =
Z;o:lmke_"’" >0 for all k& and by the definition (Hpi) = (—)Hp ki1
< 0 and (Hpt)" = Hp k2 > 0. The fact that lim._,ooHp k(c) = 0 follows from

Hpi(c)=e¢ <1 + §(m + 1)"e—c'") , (A.34)
m=1

which implies, using m + 1 < 2m, H.;(c) < e¢/(1 — 2ke™°) for c large enough.
The proof of the lemma is then completed by choosing f* = Hy 4. W

Let us now complete the details for the proof of Proposition A.1.

Proposition A.2. The functions L*(a) and LP*(a) are positive, differentiable,
convex and decay monotonically to zero for a — co. R

Proof. We will proof the proposition for L%, the proof for L?” is identical. To sim-
plify the notation we call L(a) := L?(a) and h(a) :=a — fP(L?(a)). By (A.28),
L=ftoh.

First note that, since f7 is bounded, lim,_,A(a) = co. Hence lim,_,ocL(a) =
limg_o, /2(h(@)) = 0. Now L' = ((f*) o k) - &' and since &' = 1 — ((f*) oL) - L’
one gets
_ (f*) oh
CLH((PY oh) - ((fPY oL)
since (f?)Y < 0 and (f?) < 0. Analogously L” = ((f2)" oh) - (W)* + ((f?) o
h) - k" and using the fact that A" = —((f?)’oL) - (L' — ((f?)Y oL) - L", one
gets

Ll

<0, (A35)

= ((f?Y oh) - (WY = (") o h) - (S*)'oL) - (L) >
L+ ((f?Y oh) - (fP) oL)

since (f°)Y < 0, (fP)Y <0,(f?)’ >0and (f7)’ >0. A

Corollary A.2. The functions g°(a — LP*(a)), f?(a — L (a)),g”(a — L (a)) and
f?(a — LP*(a)) are positive, differentiable, convex and decay monotocinally to zero
fora—oco. W

Proof. We establish this for G(a) := g”(a — L (a)). The proof for the other
cases is identical. Define k(a) := a — L?(a). Since L is bounded, lim,_,.,G(a) =
lim,_,00g”(k(a)) = 0. Now G’ = ((g?) ok) - k' = ((g?) ok) - (1 — L"). Since, by
the previous proposition, L' < 0 and (g9”)') < 0 one concludes G’ < 0. Analo-
gously one has G” = ((g?)" ok) - (k')* —((g?) ok) - L" > 0, since L"” > 0, by
the previous proposition, and (g?)” > 0, (¢?) < 0.

With this, the proof of Proposition A.1 is now complete. W

0, (A36)
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B. Classical Duality Transformations and the Proof of Theorem 5.2

This theorem has been first proven for the Z, case in [8] using polymer expansions.

Let us first study duality transformation for the classical expectations of the
Zy-Higgs model. Let us consider the sets of oriented 1- and 2-cells in Z3, which
we call /; and [, respectively. Let us define a geometric duality map & between
[/, and [, mapping oriented bonds in oriented plaquettes and oriented plaquettes in
oriented bonds as described in Fig. 5. These transformations can be described in
words in the following way. Considering the cells as points in Z>/2 the transfor-
mation § translates the cells by (1/2,1/2,1/2) and reverses their orientation. The
transformation ¢ induces naturally a transformation between 1- and 2-forms. Let
I' and /2 be the linear spaces of 1- and 2-forms on Z3, respectively, with finite
support. Define

21" P G(a)(p) =ad(p)),
D P11 DPYb) = a((b)), (B.1)

forall x € /', € I? and all b € /), p € I,. Note that 6 and & are invertible and
that 6 is a translation by (1,1,1) in /; and .
The following important relations can be established:

onl': Qod=d* 09,
onl?: Dod* =do9. (B.2)

This in particular means that, if « € [', B € I* satisfy d*a =0 and dff = 0, then
d(27'a) =0 and d*(2~!B) = 0. With this we are able to establish the

Proposition B.1. With the definitions above and for all o € I', B € I?,

(B(o, BY)y = (B(Z'B, 27 ') (B3)

where the prime denotes the previously discussed duality transformation on func-
tions of the couplings, and V* =V + (1/2,1/2,1/2). O

4
T

Fig.5. The geometric durality transformation ¢ acting on oriented bonds and plaquettes.
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Proof. This proposition follows directly from (4.18) using also the fact that, for
acl', e’ with d*a =0 and df =0, then [B : o] =[2 'a : 27!f], which,
in turn, comes from the fact that (a,y);, = (Za, DY), with o,y € I', from the
symmetry of this scalar product and from relations (B.2). B

If y is a 1-form defined in Z?> we denote by 7y, the embedding of 7 in /!
defined in the following way: if b € [, is a space-like bond at Euclidean time n € Z
then y,(b) = y(z5),zp € [, being the projection of b on the time-zero hyperplane.
Otherwise y,(b) = 0. In words: y, is a copy of y at time n. For such a y and
a € Z one can also associate an element y, .1 € /? in the following way: if p € I
is a time-like plaquette spanned by the oriented space-like bonds b, and b,
at Euclidean times a and a + 1 € Z, respectively, then v, ,41(p) = y((z,)) (note
that zp, = —z;, ). Otherwise we define y, q1(p) := 0. Using Definition 5.1 we
can establish the following two facts:

D7 (po) = (*7)=1,0 5
P2 (9o.1) = ~(*)o - (B4)

Now we are able to complete our task. Without loss we consider an element of
By of the form A := Us(y)B*~1(U1(8)), where y and J are 1-forms with finite sup-
port in Z2. For such operators one has f*~! o 4(4) = B*~ (U1 (*7))o(Us(—(x9))).
We have to show that wg(4') = wg o f*~! o 4(4), i.e., that

(A1 = (1B o A7) . (B.5)

For the classical functions we have [A'] = B(—7y0, —dp,) and [B*~! o A(4)] =
B((*6)1, —(*)0.1)- In face of (4.20), (B.3) and (B.4) the proof is completed if the
classical expectations have a unique translation invariant thermodynamic limit, what
can be proven, for instance, in the convergence region of the polymer and cluster
expansions. W

C. Proof of Theorem 6.2

In order to prove Theorem 6.2 notice first that the equalities

po(PE(V)) _ (@YD)

wo(PE(V)) — w3(@M(P))’ ©h

ﬂZ((pM(l;)) _ lll(qu(l/)) (C2)

oA BM(T)) oy (PE(Y)) '
and

po(PM (7)) _ (@51 (€3)

a(PM(V))  o3(PE(YY))’ ‘

p(BE(VY))  u(@M(7)) (C4)

o (PE(VY))  an(8M(V))

follow trivially from the definitions. Above V! is simply V translated of (—1, —1).
Using polymer expansions we will prove that the left-hand side of both (C.1) and
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(C.2) converge to the factor e# and that the left-hand side of both (C.3) and
(C.4) converge to 1.

Case (C.1). This first case has to be analyzed with more detail because its proof
differs slightly from that of the simple Z, case, as found in [1], due to some
additional effects present in the Zy case.

First consider wo(®F(V)). The classical function associated to (V) is

g(du(p) — 1) <9f'[h]<u<b) - 1))‘/2 ’ C5)

pGPo*_V g(du(p)) be(s* I/’O) ‘g’-[h](u(b))

where b € (6" V, n) is the set of bonds 6"} placed at Euclidean time »n and Py.

is the set of plaquettes spanned by (6*F, 0) and (6*V, 1). Introducing this function
in the expectation values we get

H(0)o" Y1

on(#F(1)) ==,
14

> > [D-py:E]

pev?  Eevl
d(D—Py o d¥E=0

X[ IT 9((DXp))

pEsupp D

l I1 h((E)(b))

besupp E\(6* V ,0)

X[ [T As(E)e)| (C.6)

ce(* V.0

where By is the closed two form which takes the value —1 on Ps«y and hs(n) :=
H(n)/H(0), with

H(n) := F~'[HiH)(n) (C.7)

and
Hi(m) = (F[h](m — 1))"*, (C8)
Hy(m) = (F[h)(m))"* . (C9)

Repeating the steps which led to (4.23) we get

(@ (1)) = H(0)""Y 'exp( > er (bé;,ﬂyzé—uf)) : (C.10)
re%.s -

where

A4
us(y) :=[D":E"IT | T1 9(D](p))

=1 | pep!
B:
X T wE®G)Y| | TT hsEle)]| ¢ - (c.11)
j=1 beMj?'\(é* Vo ce@* V0
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First we have to show that (C.10) makes sense. For that we have to prove that
llus|| can be chosen small and for this it is enough to prove that hg(m), for m =0,
can be chosen small. This is the content of the following lemma.

Lemma C.1. For the function hg defined above one has

_ Omp +c(m)
hs(m) = =5~ 0y

(C.12)
where c(m), m=0,...,N — 1, are analytical functions of h(1),...,h(N — 1) and
converge to zero when |h| := max{|a(1),...,|A(N — 1)|} goes to zero. O

Remark. In the Z? case has hs(n) = 8,9. O

Proof. Since h(0) = 1 one has (Z[h](n))"> = N=Y2 4 a(n), where a(n), n =0,...,
N — 1, are analytical functions of A(1),...,A(N — 1) and go to zero for |h| — 0. In
this way we can write Hj(n)Hy(n) = N~! + b(n), where b is again analytical and
goes to zero for |h| — 0. Therefore, if we compute the Fourier transform of H;H,,
we get H(n) = N™2(8, + c(n)), where c is analytical and converges to zero for
|A| — 0. m

If we now compute uo(PE(V)) we get

po(P5(V)) . n
———= = lim tol | ex crv(l, r, V R C.13
@7y ~ A Prelen| 3 entn 1) (€12
where
W1 V) = ag by, s — agu” — by g+t (C.14)

Above we used a simplified notation and called a, for ap , and by for by z.

For r large enough one concludes after a careful inspection that the only clusters
for which v(I', , V') is non-zero are those which simultaneously have polymers with
a non-trivial winding number with o and polymers which have either a non-trivial
winding number with ; or have bonds contained in (6*V, 0) or both. Since such
I’s are clusters their size has to be at least dist (B", (6*V, 0)). By (A.3) their
contribution disappears after taking the limits » — oo and ¥ 1 Z¢, in this order.

The factor [By : ] remains and equals e$. This proves (6.37). ®

Case (C.2). This case is simpler. Using the fact that w, = w{, and using (6.48)
we write the left-hand side of (C.2) as

lim [—f : aylexp ( > er (aofybiﬁn —af;V - bl_:ﬂn + 1) ,u'r> ,  (C15)
rmee - red ;s - ' - '

where oy is a closed 1-form and takes value 41 on its support *6*}) (which
is a closed loop). By an analogous argumentation to the previous case one sees
that the sum over clusters converges to zero and we get the final factor from

[=BF :op]. W
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Case (C.3) For the left-hand side of (C.3) we have

lim exp < > er (agVan - agy - ag;: + 1) ,ur> , (C.16)

rmee red s - -

which analogously converges to 1. B

Case (C.4) For this case we have to deal with

lim exp{ > erl(I,rV)|, (C17)
reo T'eY s
where
ur,rv) =b" B;,bg_V pg — bl - bg_y g+t (C.18)

which analogously converges to 1. M

D. Finishing the Proof of Proposition 8.2

We want to show that
ll7,,0(4 p+1(&_c_>g)Ap’+l(LQ—>)_c))¢uo I
ll7u, (Ap(ﬂy_c—»(_) A (Lg—u_c))d’ﬂo Il
converges to one when the limits p’, p — oo are taken. There are many ways to
show this fact using cluster expansions. The one we present is perhaps the quickest.

In terms of cluster expansions the expression above is given by the limit r — oo
of

(D.1)

‘ (D2)

where in the figure above we represented schematically the terms corresponding to
winding numbers of clusters with respect to four loops. The limit », presents no dif-
ficulties. As for the limits p’ and p — oo, we argue as follows. The contributions of
the clusters incompatible with the boxes v; and v, in the first and second loops are
canceled by the corresponding ones incompatible with the boxes v; = v; — (1, 0, 0)
and v4 = v, + (1, 0, 0) of the third and fourth loops, except for some cluster which
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are simultaneously incompatible with, say, v; and v,, and for this reason have sizes
larger than p. Other clusters are either canceled exactly or have sizes larger than
p- Hence, the expression above converges quickly to 1. W
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