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Abstract: In the Local Potential Approximation, renormalization group equations re-
duce to a semilinear parabolic partial differential equation. Felder [8] has derived this
equation and has constructed a family of non-trivial fixed points u\n (n — 2,3,4,...)
which have the form of «-well potentials and exist in the ranges of dimensions
2 < d < 2 -f -~\ - In this paper we show that if d ^4, then these non-trivial fixed

points disappear, and if 3 rg d < 4 then we have only the u\ fixed point.

1. Introduction

Non-trivial fixed points of the renormalization group (RG) play a crucial role in
the understanding of statistical mechanical systems in the vicinity of the critical
point [1,2]. In the case of a symmetric scalar field the non-trivial fixed points
are expected to appear as bifurcating from the trivial massless fixed point as one
varies continuously the dimension d of the space [3]. These bifurcations occur
at thresholds dn = 2 -f ĵ-, n = 2,3,..., where the linearized RG acquires a zero

mode (the fixed point which appears at d — dn is called the φ^n fixed point and
it looks like a n — well potential). This pattern is not well understood from the
mathematical point of view, but some pieces of it were established in toy models
like Dyson's one [4]: Bleher and Sinai [5] proved the existence of a non-trivial
fixed point if d = dn — ε, where ε > 0 is small enough. Felder [8] showed that in
the Local Potential Approximation the φ^n fixed point exists for 2 < d < dn.

It is believed that the φ^n fixed points disappear for d ^ dn. Gawedzki and
Kupiainen [6] showed that if d ^ 4 and the potential is even and "small" (weak
coupling) then, under the flow of the RG transformation, it is driven to the Gaussian
fixed point. Aizenman [7] showed in d > 4 dimensions that the (even) φ% Euclidean
field theory, with a cut-off, is inevitably free in the continuum limit. In this paper
we show that in the Local Potential Approximation if d ^ 4 there is no non-trivial
fixed point and if 3 rg d < 4 the only non-trivial fixed point is the one which
appears at d = 4, the φ^ fixed point.
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The Local Potential Approximation (LPA) is a continuous scale version of the
hierarchical model first developed by Felder [8], where the flow of the effective
potential u(x,t) on momentum scale e~f as a function of the field x <E R is given
by the partial differential equation

where d > 2.
In the LPA the fixed points of the RG must be identified with global stationary

solutions of (1); therefore, the problem of searching for fixed points in the LPA
reduces to the study of global (defined for all x) solutions of the following O.D.E:

u" -(d- 2)xu' + 2du - u'2 = 0 . (2)

We consider only even solutions of (2) so that we may assume u'(Q) = 0. Now
for each u(Q) there is a local solution which is °̂°; however, most of these solutions
blow up at a finite x.

Felder [8] showed that a fixed n = 2,3,... and each d G (2,dn), besides u(x) = 0
and u(x) = x2 — ̂ , the Gaussian and the high-temperature fixed points, respectively,
Eq. (2) has a global even solution, u\n, having 2n — 1 critical points, the "φj1" fixed
point.

Now we state our results [9].

Theorem 1.1. If d ^ 4, then the only global even solutions of (2) are the trivial
ones, u(x) — 0 and u(x) = x2 — \.

Theorem 1.2. If 3 ^ d < 4, //*£« ίfe only non-trivial global even solutions of '(2)
flre ί/wstf having three critical points, namely, the u\ fixed points.

This paper is organized as follows: In Sect. 2 we introduce the function v,
which, up to rescaling, is the derivative of u, and the function w = v', and we
reduce our problem to a dynamical system on the phase plane vw. In these new
variables, (f,w), the initial condition is of the form (Q9w0), where w0 G R. The
initial conditions corresponding to the trivial fixed points are (0,0) and (0,Q),
where Q/ = ^ .̂ Following Felder [8], we divide the phase plane into six regions
(/,..., VI), and we conclude that a solution (υ(x),w(x)) is global if and only if it
does not enter region II at finite x. In Proposition 2.1 we give sufficient conditions
for the solution to enter region // at a finite x. In Sect. 3, we prove Theorem 1.1. To
prove this theorem we show that any solution having initial condition w0 different
from 0 or Q must enter region // at a finite x and for that we need to show that
the hypothesis of Proposition 2.1 is satisfied and the a priori bounds needed for
that are provided by Propositions 3.1, 3.2 and 3.3. The estimates in Propositions
3.1 and 3.2 follow Felder's Liapunov function and the estimates in Proposition 3.3
follow comparison theorems.

The φ2^ fixed point corresponds to a global odd solution v(x) having 2n - 1
zeros. To prove Theorem 1.2 we show that any global odd solution v(x) having
more than three zeros must enter region II at a finite x and this is done following
the same ideas in the proof of Theorem 1.1 and will be omitted [9].
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Finally, we have the following conjectures:

1. (Non-existence) The u\n fixed points disappear if d ^ dn, i.e., if d ^ dn,
then any even solution u(x) of (2) having 2n — \ critical points must blow-up at
a finite x.

2. (Uniqueness) For each d £ (2,dn) there is a unique u\n fixed point, i.e.,
for each d £ (2,dn) there is an initial condition u*0(d) £R such that any even
solution u(x) of (2) having 2n — 1 critical points must blow-up at a finite x,
unless w(0) = u*(d).

Theorems 1.1 and 1.2 prove the first conjecture for n = 2 and n — 3. The only
limitation of the approach of this paper concerning the first conjecture for d < 3
is a technical one - as d decreases, we have to calculate zeros of polynomials of
increasing degrees. For d ^ 3 we need to calculate the zeros of polynomials of
degrees at most three, which is straightforward. This approach can be used to prove
the first conjecture for n = 4, namely, to show that for d £ [|, 3) the only non-trivial
global even solutions of (2) are those having three and five critical points, namely,
the ι/4 and u^ fixed point, respectively. In this case we would have to calculate
the zeros of polynomials of degrees at most 4. As we go to the next thresholds
we have to calculate the zeros of polynomials of degrees bigger than four which is
algebraically impossible. We still do not know how to prove the second conjecture.
The ε-expansion [5] gives a local (for small initial conditions) proof for the second
conjecture for d G (dn — &,dn).

2. Sufficient Conditions for Blow-up at a Finite x

If we take the derivative of (2) and make the change of variables

w0, w 0 e R , (3)

and \/d — 2x —+ x, then our problem of searching for global even solutions of (2)
reduces to the one of searching for global odd solutions v(x) of the following
dynamical system on the phase plane:

' =W (4)
/ — jew — σv 4- 2σvw

with initial conditions p(0) = 0 and w(0) = w0 £ R, where σ = ^j|. Notice that
d ^ 4 is equivalent to 1 < σ £Ξ 3.

Following Felder [8], we divide the phase plane into six regions /,//,..., J7/,
which are defined by

I = {(υ,w)\w ^ 1/2, v < 0},

// = {(ϋ,w)|w ^ 1/2, υ ̂  0},

/// = {0,w)|0 ^ w < 1/2, v < 0} ,

IV = {0,w)|0 < w < 1/2, v ^ 0} ,

V = {0,w)|w < 0, υ ̂  0},

VI = {(υ,w)\w ^ 0, υ > 0} .
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The flow of the solutions of (4) in the phase plane is given in Proposition 4.1
of [8]. It is shown that a solution (v(x), w( c)) blows up at a finite x, if and only
if, it enters in region II.

Definition 2.1. Let CΊ,C2: (l,oo) x R+ x R+ -» R be defined by

Cι(σ,jc,w) =x2 - σ+ 1 + 2σw , (5)

C2(σ,x, w) = x2 - 2σ + 3 + 8σw . (6)

We note the following relation between the C\ and €2'

C2(σ,jc,w) = Cι(σ,jc,w)+ ( w- -̂ — ) 6σ . (7)
6σ

Proposition 2.1. Let (v(x),w(x)) be a solution of (4) απdi Ξ f(σ, w0) > Q be such
that υ(x) = 0 and w(f) = w > 0. 7f σ G (1,3] αwrf C/(σ,f,VP) > 0 (/ = 1,2), ί/ze«
(v(x),w(x)) blows up at a finite x.

Proof. From Proposition 4.1 of [8], we may assume that w < ^ and as long as

w(x) < ^, v G (<ί00 and it is straightforward to get its derivatives. In fact, from (4),
we have the following relations:

w' = (x -f 2σv)w — σf , (8)

w" = (x + 2σu)w' + (1 - σ + 2σw)w , (9)

w/x/ = (Λ: + 2σι;)w// + (2 - σ + 6σw)wx , (10)

w"" = (x + 2σt;)w//; + (3 - σ + 8σw)w;/ + βσw'2 . (11)

Since 1 < σ ^ 3, it follows from (11) that v(x) ^ 0 and w(k\x) > 0 (k =
0, 1,2,3) implies w(4)(;c) > 0. Notice that by definition v(x) = 0 and w > 0, and
so by relations (8 )-(!!) and the hypothesis of Proposition 2.1, w;(f) = x w > 0,
w"(x) = Cι(σ,;t,w) w > 0,w^3^(;c) — C2(σ,^,VP)xVP > 0. Hence, for x > x as long
as (v(x),w(x)) is in region IV, w^k\x) > w(A:)(f). In particular, w(x) > w+xw

i-w
(x — x) and (f(x),w(x)) enters region II at some finite x < x + ^= -̂ and by
Proposition 4.1 of [8], we are done. D

For σ G (3,5] or equivalently d G [3,4), the analogue of Proposition 2.1 requires
two additional conditions [9].

In Proposition 4.2 of [8], it is shown that a solution of (4) with initial condition
w0 < 0 and \w0\ sufficiently large blows up at a finite x. This proposition is related
to our estimates for large initial conditions given in Sect. 3 and Lemma 2.2 below.

Lemma 2.1. Let 1 < σ < oo and (v,w) be a solution of (4) with w0 G (0,c</),
where Cd — -^ = ^^Γ' ^en it enters in region VI at a finite x.

Proof. From (4), we have

w' — jew — v + (w — Cd)2σv , (12)

w" = (x + 2σv)w' + (w - cd)2σw . (13)

Since t (O) = 0 and 0 < w0 < cd, then (12) and (13) imply that w"(0) < 0.
From (13), w"(jc) < 0 whenever v(x) ^ 0,0 < w(x) < cd and w'(x) ^ 0. There-
fore, w/7(;c) < 0 for all c as long as v(x) > 0 and 0 < w(.r) < Q, which implies
that w(x) is strictly concave and (v(x),w(x)) enters in region VI at a finite x. D
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This lemma generalizes Proposition 4.3 of [8] in the following way: in this
proposition it is assumed that σ > 3 and w0 small. Combining this lemma and
Proposition 4.1 of [8] we conclude that any solution of (4) with initial conditions
w0 G (0,^) has at least two positive zeros. Also, from Proposition 4.1 of [8], any
solution of (4) with initial condition w0 < 0 has at least one positive zero.

Lemma 2.2. Let (v(x),w(x)) be a solution of (4). If for some x0 ^ 0 we have
w(jc0) > Q/, then (v(x),w(x)) blows up at a finite x.

Proof. Same arguments given in the proof of the previous lemma imply that w(jc)
is strictly convex for all x > x09 then (υ(x\w(x)) enters region // at a finite x and
by Proposition 4.1 of [8] we are done. D

From now on we may assume that w(x) < cj.

3. Estimates

In this section, we prove Propositions 3.1, 3.2 and 3.3, which provide the bounds
we need to prove Theorem 1.1.

Definition 3.1. Given a solution (v(x\w(x)) of (4) with initial condition w0, let
N — 1 if w0 < 0 and N = 2 if 0 < w0 < cd. It follows from remarks in Sect. 2
that v(x) has at least N zeros 0 < x \ < ...XN =x. Define

Wmm = min >ΦO (14)
O^λ-^f

and
λ = (H-2|wm i n |)σ. (15)

Let x0,Xmm £ [0,# ] be defined such that xmm < x0 ^ x , w(xmjn) = wmin and
v(x0) = φ;min).

It is clear from the above definitions that v(x) = 0 and w(f ) > 0. We note from
Lemmas 2.1 and 2.2 and Proposition 4.1 of [8], that any solution (v(x\ w(x)) having
nonzero initial condition w0 < Q enters in regions VI and V, hence wmιn < 0. On
the other hand, since w(x) is strictly decreasing in VI and is convex in V, we
conclude that wmin G V. For w0 < 0, x will be the first zero of v(x) and wmin = w0.

Definition 3.2. (see Proposition 4.2 <?/[8]) Let

J(v,W) = - - e2^" . (16)

Then J(v, w) is a non-decreasing Liapunov function for all x ^ 0.

Definition 3.3. Let /: (0,oo) -> (0, 1) and g: (0, ̂ ) -> (0, 1) be the monotone de-
creasing functions

f(z) = (l+2z)e-2z, (17)

g(z) = (l-2z)e2z, (18)

we have
g(w(x0)) ^/(|w(^m in)|). (19)
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Indeed, since x0 > xm[n then from the non-decreasing property of J and the
definitions of / and g, we get

to obtain (19), we notice that v(x0) = v(xm[n).

Proposition 3.1. If wmin| < ^, then

-2|wmin |

Proof. We claim that

2|w

-2|w(*min)|

(20)

(21)

and since w ^ w(x0\ this implies (20). Next we prove (21). In fact since x0 > xmin

and v(x0) = v(xm{n), then from (16) and the non-decreasing property of the Liapunov
function J, we have

w^ ^ w(Xπάn) _
(22)

multiplying (22) by -2e~2w(x°\ using the fact that έ ? - ' g l - f + y , with
ί = 2(|w(jcmin)| H- w(jc0)), subtracting 1 — 2w(x0) from both sides of the inequality
we get and dividing the result by 2(|w(xmin)| + W(Λ:O)), we are done. D

Proposition 3.2. Suppose σ G (1,3] and let

( —x -\ / -I r\ >-\ \x) ^ w/(z = 1,2,3).

The next lemma implies Proposition 3.2.

Lemma 3.1. Given any β G (0, ^), let α > 0 <
X*min)| ^ α fλ<?« w(J) ^ ft

solution of f(z) — g(β). If

Assume |w(jcmin)| ^ α then from (19), the monotonicity of /(z) and the defi-
nition of β, we have 0(w(jc0)) ^ /(|w(JCmin)|) ^ /(α) — 0(/0 Since ^ is monotone
decreasing, it follows that w(;c0) ^ jS. To conclude we note that w(x) ^ w(z0)- D

Proo/ (o/ Proposition 3.2). Let ft = |, ft = |, ft = ^, then w, ^ βl and
/(m/) < g(βi)(ί = 1,2,3), where w/ are defined in Proposition 3.2. Let α/ be the
solution of f(z) — g(βι), then /(/w/) < ^(ft) = /(α/), and since / is monotone
decreasing, it follows that m/ > α/. By Lemma 3.1 if |w(#mm)| ^ α/ then
w( c) ^ ft. Since jβz ^ wr and m/ > α ί ? we conclude that if |w(xmin)| ^ mt then
w(^) ^ w/. D



Renormalization Group Fixed Points 535

Proposition 3.3. Let λ be given by (15), andx\ andxi be the first and the second
zeros of v(σ,w0,x), respectively.

1. I f λ e ( l , 3 ] thenx\ ^ 3.

2.1fλe (3, 5] then x \ ^ 5 - A/TO > f .

3. / / Λ e ( 3 , 5 ] thenx\ > j^ .

4.1fλe (1,7) then x\ > 1 and x2

2 > 3.

Before proving this proposition, we need some lemmas. By definition x(σ,w0)
is a positive zero of v(x) — v(σ, w0,x). In order to estimate jc, we compare the
solution v(x) of the nonlinear problem (4) to the linear one, vχ(x\ defined below. In
Lemma 3.5 we show that the zeros of vχ give a lower bound for the zeros of v,
and so need to estimate the zeros of vχ. In the proposition of the appendix [8], is
given the number of the zeros of vχ(x) as a function of λ and, in Lemma 3.4, we
show that its zeros are monotone decreasing functions of λ. Moreover, if λ is an
odd integer, then vχ(x) is a Hermite polynomial of degree λ. We take the advantage
of the monotone decreasing dependence of the zeros of vχ(x) on λ and we bound
its zeros by the zeros of a Hermite polynomial of degree k, where k is the smallest
odd integer ^ λ, and in Lemma 3.3 we give estimates for Vk(x) for some values of
k which we need. The general idea is to use the properties of v/(x) as a function
of λ to bound its zeros by the zeros of some polynomial.

Definition 3.4. Let u^(x) and v^(x) be the solutions of the equation

u"-xuf + λu = Q (23)

with initial conditions vλ(0) = 0, z^(O) = 1 and uλ(Q) = 1, W;(0) = 0.

We have the following recursion relations:

u'λ(x) = -λvλ^(x) , v'λ(x) = uλ^(x} (24)

whose proof is based on the fact that if u is a solution of (23 ) then uf is a solution
of (23) with λ replaced by λ — 1.

Lemma 3.2. Let vχ(x) be defined by (23) with 3 < λ ^ 5 and x\(λ) be the first
positive zero of vχ(x). Then

Proof. From Taylor's Theorem, we have

where R5(λ,x) = A

5, *5 for some ξ G (0,*). We claim that if 3 < λ ^ 5, then
) > 0 for all x. In fact, from the recursion relation (24), we have

and from the Proposition of the appendix of [8], ι^_5(jc) > 0 for all c if
λ<5.Ώ
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Lemma 3.3. Let υχ(x) be defined by (23) x\(λ) and X2(λ) be the first and the
second zeros of f;.(jc), respectively. Then

jcf(5) = 5 - VTO, jcf(5) = 5 + λ/ΪO,

*ι(7) = 7 - 2\/Ϊ4sin ( ̂  + -arctan

*22(7) ̂  7 -

/ If λ is an odd integer, then vχ is a Hermite polynomial of degree λ. In
particular,

JC3

v3(x) = χ- — 9

2 x5

vs(x) = x - -x3 + — ,

.3 X'
,5

ι;7(*) = x - x" + — -
5 105 '

from the above expressions this lemma is straightforward. D

Lemmas 3.4 and 3.5 below say that the (positive) zeros of υχ are monotone
decreasing functions of λ and that the zeros of vχ give a lower bound for the zeros
of v. Since the proofs of these lemmas are similar, we give only the proof of
Lemma 3.5.

Lemma 3.4. Let v^(x) be defined by (23) with λ > 1, then the positive zeros of
vχ(x) are monotone decreasing functions of λ.

Lemma 3.5. Let v(x) be the solution of (4) satisfying ι (O) = 0 and ι/(0) = w0, N
and λ(σ,w0) be as in Definition 3.1, then

xt > xi9 i= 1 ,2, . . . ,7V, (25)

where xl and xt are the /th positive zero of v and v^ respectively.

Proof. We may assume that XN < \/3 for 1 < σ ^ 3; otherwise, by Proposi-
tion 2.1, we are done. On the other hand, as long as 0 ^ x ^ XN, w(x) is °̂°,

in particular, #ι(.x) = (1 — 2w(x))σe~^ is continuous for 0 rg x ^ x^. From the

definitions of wmin(σ, w0) and λ(σ,w0), it follows that g \ ( x ) < λe~~ΐ = 02(x), for

all 0 < x < XN, but xm[n. Let p(x) = e~τ, then p(x) > 0 and p, p',g\ and 02 are
continuous in (0,%).

Suppose φ and ψ are real solutions in (0,^) of (puf)f + g\(x)u = 0 and
(pu')' -f g2(x)u — 0, respectively. Since #2 CO > ^i^) on (0,^)? i f** an(i */+ι
are successive zeros of φ on (0,x^), then by [10] ι/f must vanish at some point of
(*ι,*2) To conclude we make φ(x) = v(x) and ι/^(x) = v^(x). D
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Proof (Proposition 3.3). Lemma 3.2 implies Item 3 and Lemmas 3.5,3.4 and 3.3
imply Items 1,2 and 4. D

4. The Proof of Theorem 1.1

The Gaussian and the high-temperature fixed points correspond to v(x) — 0 and
v(x) = CdX, respectively. Therefore, the following statement implies Theorem 1.1:

Let σ G (1,3], then any solution (v(x\w(x)) of (4) satisfying the initial con-
dition (j;(0),w(0)) — (0,w0) must blow-up at a finite x, unless, w0 G {0,QJ.

In this section we prove this statement. First, we note from Lemma 2.2 that
if w0 > Cd, then (v(x),w(x)) must blow-up at a finite x. Hence, we may assume
w0 < Q. If 0 < w0 < Cd, then v(x) has at least two positive zeros and by Proposi-
tion 4.1, below, and Proposition 2.1, (v(x\ w(x)) must blow-up at a finite x. Finally,
if w0 < 0, then v(x) has at least one positive zero and by Proposition 4.2, below,
and Proposition 2.1 (v(x),w(x)) must blow-up at a finite x.

Proposition 4.1. Let (v,w) be the solution of (4) with (σ,w0) G (1,3] x (0, q~-],
x > 0 be the second positive zero of v, then

Ci(σ,x,w(x)) > 0 ( ί = l , 2 ) . (26)

Proof Let wmin and λ be defined as in Definition 3.2, and x > 0 be the second
positive zero of v. We note that if x2 ^ 3 or w(x) Ξ> -̂, then Ci(σ,x,w(x)) > 0

(z — 1,2). However, if wmin G (~oo, — |] then by Proposition 3.2, we have

w(x) > *j±, and if wmm G (-f ,0), then (15) λ G (1,7) and by Proposition 3.3,

Item 4, x2 ^ 3. D

Proposition 4.2. Let (v,w) be a solution of (4) with (σ,w0) G (1,3] x (-00,0) and
x > 0 be the first positive zero of v, then

C/((7,Jc, w(*)) > 0 (/ = 1,2). (27)

Before proving Proposition 4.2, we state Lemma 4.1, whose proof we postponed
until the end of this section.

Lemma 4.1. Let (v,w) be a solution of (4) with (σ,w0) G (1,3] x (—^,0) and
x > 0 be the first positive zero of v, then

C/(σ,Jc,w(Jc)) > 0 (i= 1,2). (28)

Proof (Proposition 4.2). Let x > 0 be the first positive zero of v,wm{n and λ be as
in Definition 3.2. Then wmm = w0 and λ — (1 + 2|w0|)σ.

We first show that C\(σ,x,w(x)) > 0. We note that if one of the following
conditions (i) w(x) > ^- or (ii) w(x) > ^^ and x > 1 or (iii) w(x) > 5σ

1~σ

14

and x2 > |, holds, then C\(σ,x9w(x)) > 0.

Let w0 < 0 be given. If w0 G (—oo, — |) then by Proposition 3.2, w(x) > ^~

and (i) holds. If w0 G ( —|, —|] then by Proposition 3.2, w(x) > ̂  and since λ G

(1,7), then by Proposition 3.3, Item 4, x2 > 1 and (ii) holds. If w0 G (~!?~π>] ?
then by Proposition 3.2, w(x) > 5σ

1~σ

14 and since λ G (1,5], then by Proposition 3.3,

Items 1 and 2, x2 > | and (iii) holds. Next we note that if w0 G (—~,0), then by
Lemma 4.1, Cι(σ,3c,w(;c)) > 0.
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Next we show that C2(σ,jc,w(;c)) > 0. By Lemma 4.1, if w0 G (— -^j,θ), then

C2(σ,Jc,w(Jc)) > 0, and by Proposition 3.2, if w0 G (-00,-^] , then w(x) > ̂
and since C\(σ,x,w(x)) > 0, then from (7), we are done. D

Next, we prove Lemma 4.1 and for that we need the following definition.

Definition 4.1. Let ω: (0, ̂ ] -> R+ and τ: (1,3] x (0, ±] -> #+ &? ίfe/friέ?rf 67

(29)

The following result is straightforward:

dCj(σ9x9ω) dCj(σ,x,ω)

-j-Ci(σ9τ(σ9t),ω(t)) < 0 , (32)
c σ

C f(3,τ(3,0,ω(0)>0. (33)

Proof (Lemma 4.1). Assume (σ,w0) G (1,3] x (-^,0) and let Jc > 0 be the first
positive zero of t>,wmjn and λ be defined by (14) and (15), respectively. Then
Wmin = WQ and λ — (1 H-2|w0 |)σ, which implies λ G (1,5]. If λ G (1,3], then by
Proposition 3.3, Item I,*2 ^ 3, which implies C/(σ,x,w(^)) > 0(z — 1,2). There-
fore, we may assume λ G (3,5]. From Proposition 3.3, Item 3, it follows that

;c>τ(σ,K|), (34)

and from Proposition 3.1
w(*)>ω(K|). (35)

From (31)-(35), we have

Ct(σ9x9w(x)) > Ci(σ9τ(σ9\w0\)9ω(\w0\)) > C, (3,τ(3,|w0|),ω(|w0|)) > 0,

which implies Lemma 4.1. D

Acknowledgements. Thomas Spencer introduced me to the problem discussed in this paper. I thank
him for many valuable conversations and several important suggestions.

References

1. Wilson, K.G.: Renormalization group and critical phenomena I, II. Phys. Rev. B4, 3174-3183
(1971)

2. Wilson, K.G., Kogut J.B.: The renormalization group and the ε-expansion. Phys. Rep. 12,
76-199 (1974)



Renormalization Group Fixed Points 539

3. Wilson, K.G., Fisher, M.E.: Critical exponents in 3.99 dimensions. Phys. Rev. Lett. 28, 240-
243 (1972)

4. Dyson, F.: Existence of a phase transition in one-dimensional Ising ferromagnetic. Commun.
Math. Phys. 12, 91-107 (1969); An Ising ferromagnetic with discontinuous long range order.
Commun. Math. Phys. 21, 269-283 (1971)

5. Bleher, P.M. and Sinai, Ya.G.: Investigation of the critical point in models of the type Dyson's
hierarchical model. Commun. Math. Phys. 33, 23-42 (1973); Collet, P., Eckmann, J.P.: The
c-expansion for the hierarchical model. Commun. Math. Phys. 55, 67-96 (1977); A renor-
malization group analysis of the hierarchical model in statistical mechanics. Lecture Notes in
Physics, Vol. 74, Berlin, Heidelberg, New York: Springer, 1978

6. Gawedzki, K., Kupiainen, A.: Renormalization group for a critical lattice model. Commun.
Math. Phys. 88, 77-94 (1983)

7. Aizenman, M.: Geometric analysis of φ4 fields and Ising models. Part I and II. Commun.
Math. Phys. 86, 1-48 (1982)

8. Felder, G.: Renormalization group in the local potential approximation. Commun. Math. Phys.
Ill, 101-121 (1987)

9. Lima, P.C.: Ph.D. thesis, Courant Institute of Mathematical Sciences, N.Y.U., 1990
10. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Robert E. Krieger

Publishing Company, 1955, Theorem 1.1, p 208

Communicated by G. Felder






