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Abstract: We study the behavior of the two-dimensional nearest neighbor ferro-
magnetic Ising model under an external magnetic field h. We extend to every
subcritical value of the temperature a result previously proven by Martirosyan at
low enough temperature, and which roughly states that for finite systems with -
boundary conditions under a positive external field, the boundary effect dominates
in the bulk if the linear size of the system is of order B/h with B small enough,
while if B is large enough, then the external field dominates in the bulk. As a
consequence we are able to complete the proof that "complete analyticity for nice
sets" holds for every value of the temperature and external field in the interior of
the uniqueness region in the phase diagram of the model.

The main tools used are the results and techniques developed to study large
deviations for the block magnetization in the absence of the magnetic field, and
recently extended to all temperatures below the critical one by Ioffe.

1. Introduction

In this paper we consider the two-dimensional ferromagnetic Ising model with
homogeneous interaction between nearest neighbors and subject to a homogeneous
external field, i.e., the statistical mechanics model on Έ2 with formal Hamiltonian

^ x,y n.n. ^ x

where σ(x) = ±1 is the spin at the site X G Z 2 , and the first sum runs over pairs
of sites which are nearest neighbors in Z2, each pair counted only once. Precise
definitions, along with notation will be provided in the next section, but below we
describe in somewhat informal terms, what will be done.
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We will be considering Gibbs measures for this model on various subsets of the
lattice (including the full lattice) at temperature Γ, and we will be mostly concerned
with the case in which the temperature is below the critical value Tc and the external
field h is different from 0, but small. In this case, the system is known to be in a
"single phase regime": there is a unique Gibbs measure in the infinite volume, and
in particular any boundary effect in the bulk of a finite subset of the lattice vanishes
as this subset grows and covers the lattice. The behavior is nevertheless expected
to be delicate, since we may be close simultaneously to the phase coexistence line
and to the critical point. Indeed, some results which were proven before in case the
temperature is low enough, or the external field is strong enough, or the temperature
is above the critical value (and the external field takes any value) seem harder to
prove in case we are close to the critical point and T < Tc. Specifically, we have
in mind two results. One of them due originally to Martirosyan in [Mar], and
strengthened in [Sch2], states that for low T, the critical linear size of a box such
that the boundary condition is still felt in the bulk is of order 1/|Λ| as h vanishes.
The other one is what we propose to call "complete analyticity for nice sets" and
which in [MO1] and [MO2] was implicitly called "strong mixing for cubes," and
proved in [MOS] to hold in most of the uniqueness region in the phase diagram
h x Γ, except precisely for the region that concerns us here, but where it was also
believed to hold. This very strong type of mixing property is by now known to
be equivalent to several desirable properties of the Gibbs measure in the form of
estimates which are uniform on a large class of finite subsets of the lattice, including
all squares. One of these properties is a uniform upper bound on the logarithmic
Sobolev constant related to the Dirichlet form associated to the Gibbs measures.
Morally speaking one can say that when "complete analyticity for nice sets" holds
the system is as well behaved as if it were in a regime of weak coupling, i.e., high
temperature or strong magnetic field.

In this paper we will provide proofs that extend the results of [Mar, Sch2 and
MOS], alluded to above, to the full part of the phase diagram where they were
expected to hold. Surprisingly maybe, the main new tool that allowed us to do
so concerns the Ising model in the absence of the external field. This tool is the
result (and also techniques) by Ioffe [Iofl, Iof2] on second order larger deviations
in the regime T < Tc, in which the rate function is computed exactly in terms of
the Wulff shape associated to the surface tension. Such a result had been derived
in [DKS] and rederived in [Pfi] for low enough 7\ using in part cluster expansions.
One way to understand the fact that large deviation results for the regime in which
h — 0 are being used to analyze the system under a small magnetic field is to think
of the latter as a perturbation of the former. The perturbation is locally (at each
site of the lattice) small, but acts globally and for this reason changes completely
the character of the set of Gibbs measures (only one phase is left); there is then
a size, which turns out to be of order l/h, for which the perturbation due to the
external field competes on equal footing with the boundary effect. The exact large
deviation estimates for the unperturbed system allow one to estimate the effect of
the perturbation. In the language sometimes used by people who work on large
deviations, the Gibbs measure under the external field is obtained from the one
without the external field by "tilting" it. One advantage of being able to carry out
this project is that the new results that we prove are not in the form of new large
deviation estimates, but rather are theorems which describe the typical behavior of
the system in certain regimes; in other words, we are not looking at the most likely
among unlikely scenarios, but at typical scenarios. This feature of the work stresses
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once again that one of the motivations for studying large deviations is in order to
analyze the probable behavior under "tilted distributions."

In the next section we will introduce most of the necessary notation and termi-
nology. The results will be presented in Sect. 3, after we review the large deviation
estimates which served as a basis for the new derivations; we will label the state-
ments of the results that will be used as tools with letters and the statements of
the new results with numbers. The proofs of the technical results will be presented
in Sect. 4. In the appendix, a simplified proof of an estimate due to Ioffe will be
presented.

2. Notation and Terminology

The lattice. The cardinality of a set Γ <zΈ? will be denoted by \Γ\. The expression
Γ CC Z2 will mean that Γ is a finite subset of Έ?. For each x e Έ?, we define the
usual norms HJCĤ  == ([xj]^ 4- |x2|p) 1 / p

? p > 0 finite, and ||x||oo = max{|xi|, |JC2 |}.
The distance between two sets A,B £ 11? in each one of these norms will be
denoted by

distp(^,5) = inf{ | | jc-^ | | p : xeA9yeB}.

In case A = {x}, we also write dist P(A,B) — άistp(x,B). The interior and exterior

boundaries of a set Γ c Έ? will be denoted, respectively by

dmtΓ = {xeΓ:\\x- y\U = 1 for some y £ Γ} ,

and
^ext^ = {x i Γ : \\x — y\\\ = 1 for some y £ Γ} .

For lattice squares centered at the origin, we will use the notation

/l(/) = Z 2 n[-//2,//2] 2 .

The set of bonds, i.e., (unordered) pairs of nearest neighbors is defined as

1 8 = {{χ>y} χ>y £ z2 a n d ll*-.y||i = U

Given a set Γ CC Z 2 we define also

BΓ = {{x,y}:x,yeΓ and | | * - y | | i = 1},

6BΓ = {{x,y} : x e Γ , y £ Γ and ||x - y\\{ = 1} .

Notions from percolation. A chain is a sequence of distinct sites x\,...,xn, with the
property that for / = l,...,/z — 1, ||x/ - x / + i | | i = 1. The sites x\ and xn are called
the end-points of the chain x\,...,xn, and n is its length. A (*)-chain, its end-
points and its length are defined in the same way, but with || | |i replaced by
II I loo. Informally this means that while chains can only move along bonds of
Z 2 , (*)-chains can also move along diagonals. A chain or (*)-chain is said to
connect two sets if it has one end-point in each set. A circuit is a chain such that
||*i — *«||i = l Similarly a (*)-circuit is a (*)-chain such that ||xi — xw||oo = l

The Configurations and Obserυables. At each site in Έ? there is a spin which can
take values —1 and + 1 . The configurations will therefore be elements of the set
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{—1,4-1 }Έ = Ω. Given σ G Ω, we write σ(x) for the spin at the site x G Έ2. Two
configurations are specially relevant, the one with all spins — 1 and the one with all
spins + 1 . We will use the simple notation — and + to denote them. The single spin
space, {—1,+1} is endowed with the discrete topology and Ω is endowed with the
corresponding product topology. The following definition will be important when
we introduce finite systems with boundary conditions later on; given Γ c c ί and
a configuration η G Ώ, we introduce

ΩΓiη = {σ G Ω : σ(x) = η(x) for all x £ Γ} .

Real-valued functions with domain in Ω are called observables. For each ob-
servable / , we use the notation ||/||oo = sup^ 6 β|/0/)|. Local observables are those
which depend only on the values of finitely many spins, more precisely, / : Ω —> 1R
is a local observable if there exists a set S CC Ί? such that f(σ) — f(η) whenever
a{χ) = η(χ) for all x G S. The smallest S with this property is called the support
of / , denoted supρ(/). The topology introduced above on Ω, has the nice feature
that it makes the set of local observables be dense in the set of all continuous
observables.

For the average spin in a set Γ CC Έ? we will use

*r{σ) = 7^ Σ Φ)

In Ω the following partial order is introduced:

η ^ ζ if η(x) S COO for all x e Έ? .

The Probability Measures. We endow Ω also with the Borel σ-algebra correspond-
ing to the topology introduced above. In this fashion, each probability measure μ
in this space can be identified by the corresponding expected values Jfdμ of all
the local observables / . A sequence of probability measures, (μn)n=ιχ..., is said to
converge weakly to the probability measure v in case

lim Γ fdμn = f fdv for every continuous observable / . (2.1)

The family of probability measures on Ω will be partially ordered by the following
relation: μ ^ v if

J fdμ ^ J fdv for every continuous non-decreasing observable / . (2.2)

Because the local observables are dense in the set of continuous observables, we
can restrict ourselves to the local ones in (2.1) and (2.2).

The Gίbbs Measures. We will consider always the formal Hamiltonian (1.1). In
order to give precise definitions, we define, for each set Γ CC Έ? and each boundary
condition η G Ω,

HΓ,ηΛ°) = -J Σ ΦMy) -\ Σ ΦMy) - \ Σ Φ), (2.3)
1 {x,y}eBΓ

 Z {χ,y}€ dEΓ

 ι x e Γ
ygΓ

where h G IR is the external field and σ G Ω is a generic configuration.
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Given Γ CC Z2, η e Ω, and E c Ω, we write

where β — l/T. We abbreviate Zr,η,τ,h = Zr,ηχh(Ω).
The Gibbs (probability) measure in Γ with boundary condition ^ under external

field h and at temperature T is now defined on Ω as

)
j I I <T G &«ίΓ w?

,,,,
0, otherwise.

The Gibbs measures satisfy the following monotonicity relations to which we
will refer as the FKG-Holley inequalities.

Ifη^ζ and h\ ^ Λ2, then, for each Γ CC Z 2 , μr,njλ,hλ ίk μr,ζ,τ2,h2

A Gibbs measure for the infinite system on Ί? is defined now as any probability
measure, μ, which satisfies the DLR equations in the sense that for every Γ c c ί
and μ-almost all η G Ω,

μ ( - \ΩΓ,η) = μr,η,τ,h( ' )• (2-4)

Alternatively and equivalently, Gibbs measures can be defined as elements of the
closed convex hull of the set of weak limit points of sequences of the form
(μΓi,ηι,h)i=ι,2,-> where each Γ/ is finite and Γt —> Ί?, as / —> oc, in the sense that
I I00' Π°° Γ — 7 2

For each value of Γ and Λ, μA(iχ-,τ,h (resp. μA(i)Λj^) converges weakly, as
/ -» oc, to a probability measure that we will denote by μ_j^(resρ. μ+j^). If
AφO it is known that μ-j.h = μ+,τ,h, which will then be denoted simply by μτ,h' >
it is also known that this is the only Gibbs measure for the infinite system in this
case. If h — 0 the same is true if the temperature is larger than or equal to a critical
value Tc > 0, and is false for T < Tc, in which case one says that there is phase
coexistence. We use the following abbreviations and names:

μ_5r,o •'= μ~,τ = the minus phase ,

μ+,r,o := μ+,τ = the plus phase .

The notation
« = { ( i J ) e R x [0,OO):/ZΦO or T > Tc)

will be used to denote the interior of the uniqueness region in the h x T phase-
diagram, i.e, the set of all the uniqueness points, except for the critical point (0, Tc).

For the expected value corresponding to a Gibbs measure μ..., in finite or
infinite volume, we will use the notation

(/>... = Jfdμ...,

where ... stands for arbitrary subscripts. The spontaneous magnetization at temp-
erature T is defined as

m*(T)=(σ(0))+9τ.

(Here we are using a common and convenient form of abuse of notation: σ(x) is
being used to denote the observable which associates to each configuration the value
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of the spin at the site x in that configuration. This notation will also be used in
other places.) It is known that rn*(T) > 0 if and only if / i _ j Φ μ + j .

Surface Tension and Wulff Shape. The direction dependent 0-field surface tension
is defined in the following way. First consider on 1R2 x IR2 the usual inner product
(x9y) =xιyι + x2y2 Let § ' = { i G 1R2 : ||JC||2 = 1}, and for each vector n G S\
consider the following configuration, to be used as a boundary condition:

. v Λ ί + 1 , if (jc,n) > 0,
η(n)(x) = < / .r — '/ v A J \ - 1 , if (x,n) < 0.

The surface tension in the direction perpendicular to n is given by

/ \ i ^ i

τ Γ ( n ) = hm - ^ 7 7 7 77777- log

where y(ί) and z(l) = —y(l) are the points where the straight line {x G IR2 :
(x,n) — 0} intersects the boundary of the square A(l). It is known that for each
T < Tc the surface tension ττ( ) is a continuous strictly positive and finite func-
tion.

We shall use 3) to denote the set of all closed self-avoiding rectifiable curves
y C IR2 that are a boundary of a bounded region, y = dV, V C IR2. Let us recall
that a curve is called rectifiable if the supremum of the lengths of polygons, with
edges connecting sequentially arbitrary collections of points chosen on the curve, is
finite (and equals then the length of the curve), and that a rectifiable curve has a
tangent at almost every point. It is easy to verify that a curve y that is the boundary
of a convex bounded region belongs to Q). We can assign to each curve y G 3) the
quantity

iTτ(y) = f ττ(ns)ds ,

where s parametrizes the curve y according to Euclidean length measured along this
curve, and n5 is the unit outward normal vector to the curve at the point s G y (i.e.
the vector orthogonal to the tangent in the considered point and oriented outward
the region bounded by y). The functional iVj will be called the WulfT functional
associated to the zero-field direction-dependent surface tension ττ( ). Sometimes
we will refer to it also as the integrated surface tension.

To every vector n G S1 and λ > 0 we assign the half-plane

^ r , n , / - { x e R 2 : ( x , n ) ^ λττ(n)} .

Let us consider the intersection

Wτ,λ = Π Lτ,n,λ (2.5)
nes1

These sets clearly satisfy the scaling relation Wjtχ = λWτ,\. In particular they keep
the same shape, as λ varies; this shape is called the Wulff shape. The Wulff body
of volume 1 is defined as Wτ = Wτ,λ0, where XQ is chosen so that its volume is
indeed 1. Wj is clearly convex and thus its boundary dWj G 3). The following is
therefore well defined,

w = w(τ)
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For each T < Tc, the boundary of the Wulff body satisfies the following variational
principle. For all y G *3) which are boundaries of regions of volume 1,

w(T) ^ Ψ"τ(y) ,

with equality only in case 7 is a translation of dWτ.
We will want to consider the Ising model on finite subsets of the lattice Έ?

which have an approximate (due to the discreteness of the lattice) Wulff shape. For
this purpose we introduce the notation

Δ(i) = z 2 n wΓ,λo,.

Observe that the volume of this region satisfies \Λ(l)\ — I1 4- O(l) as / —>• 00.

A Few More Remarks on Notation and Conventions. We will use C,C\,C2, etc...
to denote positive finite constants, whose precise values are not relevant and may
even change from appearance to appearance.

Because of symmetry, several statements that we will make for h > 0 have
obvious analogues for h < 0, which will not be mentioned.

When we quote results from [Iof2] and other papers, we will sometimes be
applying results proven for the system on the box Λ(l) to the system on the box
Δ(l). Whenever we do this, we will be implicitly saying that the result holds also
in our case, and that the argument needed to prove it would not be different from
the one used to prove the quoted result.

The reader should also be aware that some of our conventions are distinct from
those in [DKS, Pfi, Iofl and Iof2]. Three examples are the following. Because
the external field that we apply to the Ising model will usually be considered to
be positive, we will have to consider the competing boundary condition as - for
this reason we state the large deviation results under no external field also for -
boundary conditions, rather than for -f- boundary conditions. In our definition of the
surface tension we have a denominator β in front of the logarithm of the ratio of
partition functions; this factor β will appear then in the large deviation rate functions.
We define w(T) as the value of the Wulff functional computed on the boundary
of W, which was normalized to have unit volume; this differs, for instance, from
the quantity λF which appears in [Iof2], and which is half the value of the Wulff
functional for the boundary of the body that in our notation above is Wγ,\. It is well
known that these quantities are related via w = 2y/λp, which follows from the fact
that the volume of Wj, 1 is half the Wulff functional of its boundary (this can be
obtained by an elementary direct computation, or see (2.7.6) on p. 31 in [DKS]).

3. Results

As explained in the introduction the exact second order large deviation estimates
for the model without external field and some of the methods used to derive them
will be fundamental in our analysis. We start by stating the result in the form in
which it is usually presented, then we review the heuristics behind it and state a
variant of it which will be of more direct relevance for us.
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Theorem A (Ioffe). Suppose that T < Tc and let m ^ —m* be sufficiently close to
-m*, then

lim - - \ogμΛ{i)-jfl(XΛ{l) > m) = (cc(m))1/2βw ,

with
m + m*

α(m) = .v J 2m*

The basic picture behind this theorem is that the - boundary condition selects the
minus-phase in the bulk, and the best way to produce a value for the average spin in
the box higher than the typical value —m* is by the presence of a single droplet of
the plus-phase, somewhere, on the background of the minus-phase. The only cost to
have it there is the interface, which tends then to adjust itself so as to minimize this
cost, expressed by the surface integral of the direction-dependent surface tension.
The best possible shape is therefore the Wulff shape, provided it fits into the square
box, which is the case if m is close enough to — m*. The corresponding probability
decays as an exponential of this integrated surface tension multiplied by the inverse
temperature β (present here because we introduced the factor \jβ in the definition
of the surface tension). To compute this rate of decay, observe that the volume
v(m) = v of the droplet can be computed from

Hence

v = r = α(m)
2m* v }

Because the integrated surface tension scales linearly with the linear size of the
droplet, we obtain for this integrated surface tension the value (α(m))1/2/w, which
explains the form of the rate function in the theorem above.

The form of the rate function in the situation above, when m is not so close to
—m* could in principle also be computed by solving a more complicated variational
problem, in which there is an extra constraint (this will be done in [SS]). Never-
theless, for our purposes here, the following remark, that may first sound somewhat
artificial, will play a key role: if we replace the box Λ(l) with the box Δ{1\ which
has the Wulff shape, then this extra difficulty disappears. We state next the result, in
the form that we will use it. This result can be proved by combining the techniques
used to prove Theorem A above with standard arguments in large deviations theory.
The part of the result concerning values of m outside the interval —m*,+m*, are
very well known and go back to the foundations of rigorous statistical mechanics
in the 60's (see [Lan, or Oil and FO] for stronger results); to obtain a finite limit
in this case, the factor 1// in front of the logarithm would have to be replaced by

i//2.

Theorem B. Suppose that T < Tc and let - 1 ^ mx < m2 ^ + 1 , then

lim - - log^(/),_,r,0(^d(/) £ (mi, m2)) = inf ψ(m) ,

where

φ(m) = ί («(m)γ/2βw, if me [-/»*, +m*]
\ +00, otherwise.
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Next we state our first main result. The fact that the box that we are considering
has the Wulff shape may seem strange, but as we will see later on, this theorem has
corollaries which concern other shapes, which one may consider as more natural to
put the system in, e.g., rectangles. The proofs of parts (a.l) and (b.l) of Theorem 1
will be direct applications of Theorem B and this is the reason we need to consider
the system inside of a Wulff-shaped box. It is worth stressing, as we did in the
introduction, that Theorem 1 is not in the form of large deviation estimates, but
rather a statement on what is likely to happen.

Theorem 1. Suppose that T < Tc is fixed and define Bo = B0(T) = w(T)/m*(T).
Then,

a) If B < Bo, the following holds:
(1) Given ε > 0 there exists δ > 0 and C < oo such that for all h > 0,

μΔ(B/h)t-χh(χΔ(B/h) € (-7W* - ε, -m* + e)) ^ 1 - Ce~δ/h .

(2) For each local function f

(f)Δ(B/h),-,τ,h -+ (f)-j as h\0 .

b) If B > Bo, the following holds:
(1) Given ε > 0 there exists δ > 0 and C < oc such that for all h > 0,

(2) Given ε > 0 there exists δ > 0 and C < oc such that if we denote by
$kz the event that there is a chain of - spins connecting Δ(B(\ — ε)/h) to
d^tA(B/h), then for all h > 0,

(3) For each local function / ,

(f)Λ(B/h),-χh -+ (f)+,τ as h\0.

Stronger results will also be presented and discussed below (see (3.3), (3.4) and
(3.6)).

The proof of Theorem 1 will be provided in a later section. Here we just
want to explain heuristically how it relates to the heuristics behind Theorem B (in
the form explained above, after Theorem A was stated). In this heuristics, when
h — 0, one estimates the probability of a given value for the average spin in the
box A (I) (I large), by computing the integrated surface tension for a single Wulff-
shaped droplet of the plus-phase in the background of the minus-phase. In the new
problem, the size / = B/h is also large since we consider h as small (the statements
in Theorem 1 are only informative for small h). But the presence of the external field
h in the Hamiltonian favors configurations with larger magnetization. For each set
of configurations on A (B/h) with a given value of total magnetization, the external
field plays no role in modifying their relative probabilities, so that the picture with
a single WulfΓ-shaped droplet should still be the relevant one. From the way the
external field enters in the Hamiltonian and the way the Gibbs measures are defined,
the effect of the external field in enhancing situations with larger magnetization can
be easily accounted for, by multiplying the Gibbs weight (before normalization)
corresponding to the magnetization m by a factor Qxp(βhm*v(rn)), where, as before,
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v(m) = v is the volume of the Wulff droplet when the magnetization is m. The
reason for this to be the correct expression is that in a region of volume v(m)
we are replacing the average magnetization, which would be — m* in the absence
of any droplet, by m*; the modification is by an amount of 2m*, but there is a
factor 1/2 in front of h in the way we wrote the Hamiltonian. Recall from the
discussion after Theorem A that v{m) = ((m + m*)/(2rn*))(B/h)2 = ot(m)(B/h)2, so
that the logarithm of the weight mentioned above becomes

βm*B2oc(rn)/h.

Observe that this quantity is of order l/h just because the volume of the box that we
are considering is of order \/h2. The extra weight is tilting the "reference" Gibbs
measure under no external field, and we obtain that the probability of seeing the
magnetization m is now proportional to the exponential of

{-B(oc(m))ι/2w + m*B20L(m)}^ = -g((oc(m))ι/2B)^ , (3.1)

where we introduced the function g : [0, oo) —> IR, given by

g(x) — wx — m*x2 .

The behavior of this function is clearly fundamental to understand the typical way
the system should look when h is small (recall that β is fixed). This behavior is
actually very simple: g(0) = 0; g(x) grows with x up to a critical value xC9 where it
has its absolute maximum; and for x > xc, g(x) decreases as x grows, assuming the
value 0 when x = xo = w/m* and becoming negative when x > x0. This behavior
explains the dichotomy in parts (a) and (b) of Theorem 1: since α(m) runs between
0 and 1 asm runs between — m* and +m*, it follows that if B < Bo = xo = w/m*>
then the weight given by the exponential of (3.1) is maximized when m = —m*9

while if B > Bo — xo = w/m*, then this weight is maximized when m — +m*. One
can talk of a "double-well structure," with the deepest well having bottom at —m*,
or at +m*, depending on how B compares with Bo (actually if B < xc one is
left with a single "well" with bottom at —m*, rather than with two "wells," but
this is irrelevant for the problems in this paper). To see why part (b.2) of the
theorem should be expected, observe that in the case B > Bo we expect the typical
configurations to correspond to the heuristic picture of a single large droplet of the
plus-phase covering essentially the full box A(B/h). A (*)-circuit of -f spins is then
produced at the border of this droplet, and must be located close to the border of
the box; such a (*)-circuit cannot be crossed by any chain of- spins.

Informally speaking, Theorem 1 states that if B < Bo we essentially see the
system in the minus-phase when h is small, while if B > Bo we essentially see the
system in the plus-phase when h is small. The precise statements, (a.l) to (b.3),
that we made and will prove in detail are not the strongest ones that one can make.
We chose the above formulation for the theorem because it seems to us to convey
the essentials of the contrast between the two cases (a) and (b),, for simplicity
of notation and exposition of the proof and because this will be enough to prove
Corollary 2 below, on complete analyticity. For completeness we state now some
stronger results.

In case B < Bo the minus-phase prevails not only in the center of the box, but
everywhere, provided that we are not too close to the boundary, where the boundary
effect pushes the state even below the minus-phase. To make a precise statement we
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introduce the notation θx(f) for the translate by x G Έ? of the cylindrical function
/ , i.e., (θx(f))(σ) = f(θ*(σ))9 with 0*(σ)(j/) = σ(y + x). The same proof of part
(a.2) of Theorem 1 gives the stronger result: If B < Bo, then for each local function
/ and function x( ) : (0, oo) —> Z 2 , such that

dist2(Λ:(A), ΰextA(B/h)) -+ oo as h \ 0 , (3.2)

we have
(θxih)f)A(B/hi-,τ,h -+ (f)-j as h \ 0 . (3.3)

Regarding the case B > BQ we can state strengthened versions of parts (b.2) and
(b.3) of the theorem. First observe that the complement of the event <^ ε in part
(b.2) is equivalent to the presence of a (*)-circuit of spins + surrounding A((l -
ε)B/h). By partitioning ($h,ε)c according to the outermost such (*)-circuit, and using
the FKG-Holley inequalities, one can estimate from above the probability of de-
creasing events with support in Δ{{\ — ε)B/h) by their probabilities with respect to
μ+j. By using Theorem 1 from [CCS] (which states that in the plus-phase the prob-
ability of the presence of a (*)-chain of- spins connecting two sites decays expo-
nentially with the distance between these sites), and changing ε into ε/2 in the state-
ment of part (b.2) of Theorem 1, it follows in this fashion that if B > BQ, then given
ε > 0 there exists δ > 0 and C < oo such that if we denote by S\ ε the event that
there is a (*)-chain of spins - connecting A(B(l — ε)/h) to dextA(B/h), then for all
h > 0,

Regarding the extension of part (b.3) of Theorem 1, it is not as strong as that of
part (a.2) discussed above. The best result that one can obtain from the techniques
used to prove part (b.3) is the following. If B > BQ, then for each local function
/ and function x( ) : (0, oo) —» Έ2, such that

lim inf h dist2(x(/z), dQXtA(B/h)) > 0 , (3.5)

we have
(θx(h)f)A(B/hi-τ,h - </>+,r as h \ 0 . (3.6)

Observe that the condition (3.5) replaces the weaker condition (3.2). While (3.2)
cannot obviously be relaxed, if one wants (3.3) to hold, we believe that in order
for (3.6) to hold, the critical condition that should replace (3.5) should have y/h
in place of the factor h. The reason is simply that the contour at the border of the
droplet of the plus-phase should fluctuate normally over an amplitude of order of
the square root of its length. The complete picture should actually be a very rich
one, associated with metastability: over a distance of order 1 from the boundary
the distribution approaches the minus phase (boundary influence), and only at a
distance of order y/ΪJh there is a change to the plus-phase (magnetic field influence).
For each individual realization of the random experiment the interface between the
phases should be sharp, at a well defined contour, but the location of this contour
fluctuates normally from realization to realization, causing the expected value of
local functions to vary quite smoothly with the distance of their support to the
boundary of the box.

It is natural to ask how the threshold quantity Bo(T) — w(T)/m*(T) behaves as
T / Tc. It is well known that τn*(T) vanishes as (Tc - Γ) 1 / 8 , while w(T) vanishes
as (Tc - Γ) 1 (since T^(n) has this behavior for each n e S; see [AR]). Therefore
B0(T) ~ (Jc - Γ) 7 / 8 and in particular B0(T) vanishes a s Γ / Tc.
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We state next two corollaries to Theorem 1. The first one deals with questions
which are similar to those treated in Theorem 1, but this time for square boxes (as
the reader can easily guess, analogous results hold for any non-degenerate convex
boxes). We present this corollary here as a simple consequence of Theorem 1,
but observe that it is not an optimal result. With substantially more work, one
can strengthen this result and this will be the content of a companion paper, [SS].
Observe that there is no analogue in this corollary of part (b.l) of Theorem 1;
indeed, even for large values of B the sharper results in [SS] will show that close
to the corners there will be a fraction of the box where the minus-phase persists.

Corollary 1. For each T < Tc there exists positive and finite constants B\,B2 and
#3, which satisfy B\ < B2 and B3 < B2 and such that

a) IfB < Bu the following holds:
(1) Given ε > 0 there exists δ > 0 and C < 00 such that for all h > 0,

μΛ(B/h),-,τ,h(χΛ(Bβ) e (-m* - ε, -m* + ε)) ^ 1 - Ce~δlh.

(2) For each local function f,

(f)Λ(B/h),-,τ,h -* {f)-,τ as h \ 0.

b) IfB > B2, the following holds:
(1) There exists δ > 0 and C < 00 such that if we denote by 8h the event

that there is a chain of - spins connecting Λ(Bi/h) to δQXtΛ(B/h), then for
all h > 0,

(2) For each local function /,

(f)λ(B/h)-χh -> (/)+,r as h \ 0.

The proof of the statements above is very simple. Besides Theorem 1, essentially
the only other ingredients are the FKG-Holley inequalities. We hint the ideas and
leave the details to the reader. For part (a), simply take B\ so small that there is
a Wulff shape of volume B2 < (BQ)2, which contains the square of side B\. For
part (b), take B2 so large that a Wulff shape of volume B2 > (Bo)2 fits inside the
square of side B2 and choose £3 so small that a square of side B' > B^ fits inside
this Wulff shape.

It clearly follows from the proofs sketched above that BX(T\ B2(T) and B3(T)
can be chosen to vanish as (Tc - Γ) 7 / 8 as T / Tc.

Corollary 1, in spite of its non-optimality, as pointed out above, is a strength-
ening, in the two-dimensional case, of Theorem 1 in [Mar], which states that part
(b.l) of this corollary holds at low enough temperatures. On the other hand [Mar]
deals with the case of arbitrary dimension d, which even at low temperatures is
very difficult. Martirosyan's result was reproven in [Sch2], with somewhat simpler
methods in arbitrary dimension and with greatly simplified methods in two dimen-
sions; the proofs given in [Sch2] also imply that the constants B\ and B2 can be
taken arbitrarily close to the common value 2d, provided the temperature is low
enough. This last statement (and the analogue for 2?3) can also be obtained, when
d = 2, from the methods in the present paper; observe that the value 2d = 4 is the
limit of w(T)/m*(T) as T \ 0, when the Wulff shape approaches the shape of a
square.
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The main reason this problem was studied in [Sch2] is because of its relation to
the metastable behavior of the stochastic Ising models treated in that paper. Actually,
as emphasized in Theorem 2 in [Sch2] one can see the behavior described in part (a)
of Corollary 1 above as a manifestation of metastability in equilibrium for systems
which are not too large and the behavior described in part (b) as the absence of
metastability in equilibrium for larger systems. An immediate consequence of the
extension of Theorem 2 in [Sch2] up to Tc is that also some of the results concerning
the dynamical metastability of the stochastic Ising models are extended, with no
extra effort up to Tc\ these results are specifically those related to upper bounds on
the relaxation time, i.e., parts (ii) of Theorem 1, Theorem 4 and Corollary 1 in that
paper. On the other hand it is worth mentioning that further strengthenings of the
results in [Sch2] are being obtained and will be the subject of another publication.

The next corollary to Theorem 1, can actually be seen as a corollary to Corol-
lary 1. Its proof is based on Corollary 1 and a more-or-less standard "blocking" (or
maybe we should say "renormalization") argument. We will present this proof in
Sect. 4.

Corollary 2. For each value of T ^ Tc and h > 0 there are positive and finite
constants C\ and C2, such that for all I > 0,

(σ(0))Λ(i),+χh ~ (σ(0))Λ(i),-χh ^ Cλe~c*1. (3.7)

Moreover, for T < Tc, C2 can be chosen independently of h.

Combining Corollary 2 with the FKG-Holley inequalities amounts to saying
that influence from the boundary in the bulk decays exponentially with the distance
from the boundary. Inequality (3.7) is actually equivalent to the notion of "weak
mixing" of [MO1, MO2 and MOS] (see part (a) of Theorem 3.3 in [MOS]), defined
by saying that for an arbitrary finite subset Γ of Z 2 , if we compare the Gibbs
measures with any two boundary conditions, then the distance in total variation
between the restrictions of the corresponding Gibbs measures to an arbitrary set
Γ ' c Γ decays exponentially with the Euclidean distance between Γ' and dextΓ. As
far as we know, (3.7) had not been proven before in case T is smaller than but
close to Tc and h is small. On the other hand it had been proved to hold in the
following cases:

(1) For large values of /z, by checking for instance that the single-site Dobrushin
uniqueness condition is satisfied in this case.

(2) For low enough T and arbitrary h > 0; see Corollary 5.1 in [MO1].
(3) For T > Tc and arbitrary h. This is a particular case of part (i) of Theorem

2 of [Hig].
(4) For T — Tc and h > 0. A proof in this case was available to the authors of

[MOS], who nevertheless did not present it in that paper, because it seemed
of minor relevance, given the lack of a proof at the time that paper was
written in the case now treated in Corollary 2 of the present paper.

Because (3.7) was already known to be true for T > Tc and all h, we conclude
that this property of weak mixing holds for the two-dimensional Ising model in the
whole interior % of the uniqueness region in the h x T plane.

The fact that we are dealing with a two dimensional lattice system, allows us
to draw a much stronger and very relevant conclusion: thanks to the main result
in [MOS] - Theorem 1.1 there-we know that the weak mixing condition implies
also the condition implicitly called "strong mixing for squares" in that paper, and
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from results in [MO1], and [MO2] several nice consequences follow. To explain
the precise form of the conclusions that can be obtained, would require a great deal
of notation and definitions. Since this is all already done in [MOS], we will limit
ourselves below to giving a brief and somewhat sketchy description of the results
and their connections to previous work.

The notion of "strong mixing for cubes" is a modification, in an important
fashion, of that of "complete analyticity." "Complete analyticity" was introduced
in [DS2] and [DS3] for lattice systems which are much more general than the
Ising model that we are considering, and can be defined (in arbitrary dimension) by
saying that for an arbitrary finite subset Γ of 7Ld, if we compare the Gibbs measures
with two boundary conditions which only differ at a single site y, then the distance
in total variation between the restrictions of the corresponding Gibbs measures to
an arbitrary set Γ c Γ decays exponentially with the Euclidean distance from y to
Γ'. Observing that Γ' could be close to the boundary of Γ, but far from y, one
sees why this condition is stronger than the notion of "weak mixing," as informally
described above. Indeed, in dimensions higher than 2 it is known (see [Shi]) that
"weak mixing" can hold while "complete analyticity" fails. In the papers [DS2 and
DS3] complete analyticity was shown to be equivalent to several properties of the
Gibbs measures restricted to finite subsets of the lattice. All these properties were
in the form of some estimates which were uniform over all the finite subsets of
the lattice. More recently, Stroock and Zegarlinski showed in [SZ] that complete
analyticity is also equivalent to some statements about the corresponding Glauber-
type dynamics (i.e., reversible spin flip dynamics) and their corresponding Dirichlet
forms-including logarithmic Sobolev inequalities, and exponential convergence to
equilibrium. Again all the statements were uniform over all finite subsets of the
lattice.

It is natural to ask in the case of concrete models, like the Ising model that we
are considering, for which values of the parameters one has all these properties. It
was realized that the notion of complete analyticity as originally defined, uniform
over all finite subsets of the lattice, is actually too strong to hold in certain cases in
which one still expects the system to have a very decent behavior. An explicit two-
dimensional counterexample, due to one of us, was described in [M0S1], where the
Hamiltonian considered is just slightly more complicated than the one treated in this
paper. We will not reproduce any counterexample here, but simply stress the fact
that if one considers arbitrary subsets of Z 2 , then pathologies are not unexpected,
since the subset may have a boundary which is comparable in size to the set itself.
From the point of view of the physics involved in such problems, one would be
satisfied with a condition of complete analyticity restricted to "reasonable" subsets
of the lattice, including rectangles, say. A project of this type was carried out by
Martinelli and Olivieri in [MO1, MO2] and related results appeared also in [LY].
In these papers results similar to those of Stroock and Zegarlinski were proven, in
the form of equivalences between statements of complete analyticity, properties of
reversible spin-flip dynamics and logarithmic Sobolev inequalities, uniformly only
over certain subsets of the lattice, including all cubes.

In dimension 3 or higher, the counterexamples in [Shi] show that even if we
restrict the definition of complete analyticity, admitting only sets Γ CC TLd which
are cubes, it still does not follow from weak mixing. On the other hand, in [MOS]
it was shown (as already mentioned above) that in two dimensions this restricted
form of complete analyticity does follow from weak mixing. Therefore we can state
now the following theorem.
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Theorem 2. For each (h, T) e % the equivalent statements (i)-(vi) of Theorem
3.2 of [MOS] hold

We refer the reader to [MOS] for the precise statements and the various neces-
sary definitions, but we can summarize here the six statements as follows:

(i) - Weak mixing.
(ii) - Restricted complete analyticity, in the sense that the set Γ in the definition

that we reviewed above is restricted to the squares.
(iii) - Exponential convergence to equilibrium of the associated Glauber dynamics
uniformly over the squares of the lattice, uniformly over boundary conditions and
over initial conditions.
(iv) - Positive lower bound for the spectral gap of the generator of the associated
Glauber dynamics, uniform over the squares of the lattice with arbitrary boundary
conditions.
(v) - Finite upper bound for the logarithmic Sobolev constant of the generator

of the associated Glauber dynamics, uniform over the squares of the lattice with
arbitrary boundary conditions.
(vi) - A constructive condition for uniqueness of the Gibbs measure in infinite
volume which was introduced by Dobrushin and one of us in [DS1] is satisfied.

Moreover the equivalent nice properties obtained are valid not only for squares,
as explicitly stated in [MOS] and above, but for a much larger class of subsets
of the lattice, including the sets which are disjoint unions of translates of a large
enough square and also all rectangles.

We comment now on the statement in the last line of Corollary 2. It may seem
surprising at first sight that the constant C2 there depends on T but not on h > 0,
since this means that it does not vanish when one approaches the transition line.
A little thought, though, indicates that this should actually be expected. One can
think of the optimal value of C2 there as the inverse of a "correlation length,"
and correlation lengths are not expected to diverge as one approaches a first order
transition, which is the case here.

4. Proofs of Theorem 1 and Corollary 2

Proof of part (a.l) of Theorem 1. Given —1 ^ rn\ < m2 ^ 1, we estimate
μA(B/h),-,τ,h(^Δ(B/h) £ (m\,m2)) as follows, where δ\ > 0 is arbitrary,

I^Δ(B/h),-,T,h(ΛΔ(B/h) £ \™>\>>™2)) =

eβ(h/2)m2\Δ(B/h)\

-m*-δx)\Δ{Bih)\

eβ(h/2)m2\Δ(B/h)\

μΔ(B/h),-,τ,o(χA(B/h) e ( - ^ - ^ - /
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From Theorem B, the fact that \Δ(B/h)\ = (B/h)2 + O(l/h), and the arbitrariness of
δ\, it follows that

lirnmf -h\ogμΔ(B/h),-,τ,h(XΔ(B/h) e (mum2))
h\0

inf ψ(m))B- β * ' BL. (4.1)
me(mι,m2) J 2

For each m G [— 1,-fl] we can take an interval (mι,rri2) centered at m, with
the property that the right-hand side of (4.1) is as close as desired to \j/{m)B—
β((m + m*)/2)B2. This is the case even if m £ [—m*,+ra*], in which case this
expression is identical to +00. On the other hand, if m G [—m*,+m*], then this
expression is identical to β{w(ot(m)){/2B - ((m +m*)/2)B2} = β{w(ot(m))ι/2B-
m*α(m)52} = βg((oc(m))ι/2B). Because B < B0(T) = w/m* and α(m) G (0,1] when
m G (-/w*,+/w*], it follows that g((ot(rn))ι/2B) > 0 for m G (-/«*,+/«*]. We can
conclude that for each m G [— 1, — rn* — ε] U [—m* + ε, +1] we can take the interval
(m\,m2) centered at m, small enough, so that the right-hand side in (4.1) is positive.
By compactness, we can now select a finite set J of such intervals (m\,m2) which
covers the set [—1, —m* — ε] U [—m* + ε,-hi]. Part (a.l) of the theorem clearly
follows now from (4.1) with any positive δ smaller than

min { ( inf φ(m)\ B - β((m2 + m* )/2)B2 \ . D
x - ' \me{mx,m2) J J

Proof of part (a.2) of Theorem L We will first consider the particular case of the
observables defined by f(σ) — σ(x0), for some xo £ Z 2 A direct application of the
fact that the Gibbs measures are increasing with the external field h gives

liminf(σ(xo))zi(5/Λ),-,r,/ί = liminf (σ(xo))A(B/hi-χo = (σ(xo))-,r = -m* .
h\0 h\0

So it remains to show that

limsvφ(σ(xo))ΔiB/h)t-,τ,h S -m* . (4.2)
Λ\,0

We will argue by contradiction, and so we suppose that

limsup(σ(xo)>j(s/Λ),-,r,Λ = m > -m*. (4.3)
h\0

Since B < BQ we can take B1 G (B,B0). Then from part (a.l) of the theorem and
the Dominated Convergence Theorem, we know that

V^(XΔ{B'lh))Δ{B'lh),-Xh = - " * * ( 4 4 )

By elementary geometric arguments, it is clear that there is δ > 0, small enough,
so that for all x G Λ(δ/h), the translate by x of A(B/h) is contained in A(Bf/h).
By translation invariance of the Hamiltonian and the FKG-Holley inequalities, it
follows that for all x G xo + Λ(δ/h),

(Φ))Δ(B'/h),-,T,h ̂  (Φθ))A(B/h)-J,h. (4.5)
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Look now at A(Bf/h)\[xo + Λ(δ/h)] = Γ(h), and observe that if we define
Γ(h) = {yeΓ(h):distoo(y9dexXΔ(B'/h))> y/ϊ/h}9 then using the FKG-Holley
inequalities,

),-,τ,h ^ liminf(Aτ(A))j(57Λ),-,7;o

= limmf(XΆh))Δ{B,/h)^Q ^ \im(σ(0))Λ^_T0 = -m* . (4.6)immf(XΆh)

But together (4.3), (4.5) and (4.6) imply that

( j ( 5 / Λ ) ) j ( 5 / Λ ) f f 7 ; Λ -m*

in contradiction with (4.4), completing the proof for this choice of / .
To show that (4.2) must hold for arbitrary / , one could invoke the fact that it

is enough to prove it for increasing / and for those one could imitate the complete
argument above, by first proving the analogue of part (a.l) with XΔ(B/II) replaced
with the similar average over Δ(B/h) of translates of / . Alternatively, we will use
a standard type of coupling to show that the result for arbitrary / follows from the
particular case treated above.

Because μA(B/h),-,τ,o ύ μ>Δ(B/h),-,τ,h> there exists a probability measure P on
Ω x Ω, with the properties that

(1) Φ(stf,Ω) = μΔ{B/h)-,τ,o(*t) for each event si C Ω.
(2) F ( Ω , J ^ ) = μΔ(B/h)-τ,h(^) f o r e a c h e v e n t ̂ C Ω .
(3) )

Using this coupling we can write

),-χh - {f)A(Bβ),-,Tfi\ = \ff(ζ)dP(η,ζ) - Jf(η)dΨ(η,ζ)\

ύ 2||/||ooP({07,O : ̂ (x) + «x)for some x e supp(/)}).

But

Λ\,0 ' ' '

And

Ψ({(η,ζ): η(x)Φζ(x) for some x e supp(/)})

g Σ ff({(f/,O:»7(x)<C(x)})

xGsupp(/)

= Ϊ Σ

1
Σ) {{<?(x))A{B/h),-,T,h - (σ(x))Δ(B/h),-,T,θ) J

which we already know goes to 0 as h \ 0. D
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Proof of part (b.l) of Theorem 1. The proof of part (b.l) of the theorem is similar
to that of part (a.l). We start by estimating, μA(B/h),-,τ,h(χΔ(B/h) € (^1^2)) f° r each
— 1 ^ πi\ < m2 S 1, in a way which is close, but not identical to the one used for
part (a.l), with <5i > 0 again arbitrary,

μ>Δ(B/h),-,T,h\AΔ(B/h)

ZΔ(B/h),-,τ,h(XΔ(B/h) G ( + r a * - δ\9+m* + δ\))

(+m* - δu+m* + δ,))

eβW2)m2\Δ{B/h)\

From Theorem B, the fact that \Δ(B/h)\ = (B/h)2 + O(l/h), and the arbitrariness of
<5i, it follows that

liminf -h\ogμΛiB/h)-Xh(XΔ{B/h) e (mum2))
h\0

inf ψ(rn)) B - φ(m*)B - β™2 ~ "**B2 . (4.7)
() ) 2

For each m G [—1, + 1] we can take an interval (m\,m2) centered at m, with the
property that the right-hand side of (4.7) is as close as desired to [φ(m)B — β((m +
m*)/2)B2] - [ψ(m*)B - βm*B2]. This is the case even if m £ [-m*9+m*]9 in which
case this expression is identical to +00. On the other hand, if m G [—m*9+m*]9 then
this expression is identical to

[β{w(oί(m))ι/2B - {{m + m*)/2)B2}] - [β{w(oι(m*)γ/2B - m*B2}]

~ β { [w(α(m))1 / / 25 — m*θί(m)B2] — [w(cc(m*)γ^2B — m*α(m*)i?2] }

= β {g((oc(m))ι/2B) - g((a(m*))ι/2B)} .

Because B > B0(T) = w/m* and α(/w) G [0,1) when m G [-m*9+m*)9 it follows
that g((a(m)xl2B) > ^f((α(m*))1/25) for m G [-m*9+m*). We can conclude that for
each m G [—l,+m* - ε] U [+m* + ε,+1] we can take the interval (mum2) centered
at m, small enough, so that the right-hand side in (4.7) is positive. By compactness,
we can now select a finite set J of such intervals (m\,m2) which covers the set
[—l,+m* — ε] U [+m* + ε, + 1]. Part (b.l) of the theorem clearly follows now from
(4.7) with any positive δ smaller than

min ( ( inf φ(m)) B - φ(m*)B - β((m2 - m*)/2)£ 2 l . D
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Proof of part (b.2) of Theorem 1. For this proof we will need, besides of the results
from [Iof2] also techniques from that paper as well as from [DKS]. Motivated by
part (b.l), proved above we write:

(+m* ~ δ\,+m* + δ\))

+ μΔ(B/h),-,τ,h(χΔ(B/h) £ ( + m * - δ u + m * + δ x ) ) .

The first of these two terms will be estimated by writing

δ\))

Δ(B/h),-,T,h

δ\))

Θ

+m* + δ\))

Combining the two previous inequalities with part (b.l) of the theorem yields

~ δu+m* + δ\)) \Δ{B/h)\βhδ

- δu+m* + δ{))

(4.8)

where Ci and C2 depend on the choice of δ\9 but are positive and finite for each
5i > 0.

The denominator of the ratio of probabilities in (4.8) can be estimated using
Theorem B by

lim -hlogμA{B/h)-Aθ(XΔ{B/h) € (rn* - δum* + δ})) = B(a(m* - δι))ι/2βw

= B(l -δι/(2m*))ι/2βw.

(4.9)

To estimate the numerator of this ratio, we will split the corresponding event
into three parts. In order to define this splitting, we will need now to recall several
notions from [DKS and Iof2]. We suppose that the reader is familiar with the notion
of contours on the dual lattice Z2 + (1/2,1/2), which separate spins —1 from 4-1,
and we adopt here the splitting rules used in [DKS] (see Sect. 3.1 there), which
allow one to take the contours as self-avoiding closed curves (when the boundary
conditions are —, which is our case). We will denote by |JΓ| the length of the contour
Γ and by V(Γ) the number of spins that it surrounds, which we call the volume
of Γ. In what follows b is a fixed but arbitrary number in (0,1/4). A contour Γ
will be said to be large if V(Γ) > (\/h)2b, otherwise Γ will be said to be small. A
basic tool to deal with the large contours is the notion of "skeleton." To introduce it
we choose a second arbitrary number v G (0,6). Given now a large contour Γ one
can associate to it, in an algorithmic way, a sequence of sites, (x\9...,xj) of the
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dual lattice Έ? + (1/2,1/2). We think of the sites xu... ,xj as the ordered vertices
of a closed polygonal curve, with possible self-intersections (see Fig. 5.3 on p. 166
in [DKS]); we will denote this curve by y in what follows and call it the skeleton
of Γ. For the construction of y9 given Γ, the reader is referred to Chapter 5 of
[DKS]; here we will limit ourselves to reviewing some of the basic properties that
we can guarantee the skeleton to have:

(1) Xi e Γ for each /.
(2) The length of each edge of y is bounded between C3(\/h)v and C4(l//z)v,

where 0 < C3 < C4 < 00 are fixed appropriate constants.
(3) The Hausdorff distance between Γ and y satisfies

(4.10)

The length, \y\ of a skeleton y is defined as the sum of the Euclidean lengths
of its edges. To each skeleton y we associate its Wulff functional, W(y), defined
by summing over the edges of y the product of the Euclidean length of each edge
by the surface tension in the direction defined by the edge, i.e., ττ(n), with n
perpendicular to the edge. Observe that from the fact that the surface tension t ^ n )
is bounded away from 0 and 00 uniformly in n,

^ \γ\ g C6iT(y) . (4.11)

As usual, a contour is called an external contour if it is not enclosed by any
other contour. To each configuration σ € ΩΔ(B/h),~ we can associate the collection
G = {ΓΊ,...,Γn} of external large contours. To this collection we can associate the
collection S — {y1?... ,yn} of their skeletons. The Wulff functional associated to the
configuration σ is then defined as

with the convention that #"(0) = 0. Next we want to consider the volume sur-
rounded by the external large contours Γ\,...,Γn and say that it has to be close to
the volume surrounded by the collection of skeletons y\,...9yn A difficulty lies in
the fact that while the volume surrounded by the contours is easily defined as

the fact that the skeletons can self-intersect and also intersect with each other, makes
the notion of the volume that they surround more delicate. Fortunately the notion
of "phase volume," as defined in Sect. 2.10 of [DKS], solves our difficulty. This
definition is as follows (a look at Fig. 2.5 on p. 37 of [DKS] will probably lead the
reader to guess correctly the definition). The set R 2 \ U yz splits up into a collection
of connected components Qa with exactly one unbounded component among them.
A component Qa will be called a minus-component if any path that connects its
interior points with points of the unbounded component and intersects the curves
from S in a finite number of points, intersects them in an odd number of points
(counted with multiplicities). The phase volume of S9 denoted by V(S), is defined
as the joint volume of all the minus-components.

Motivated by (4.10), we want to show that V(G) and V(S) have also to be
relatively close. If we remove from IR2 all the points which are at a distance not
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larger than (l/h)v from UΓ/? then the remaining set also splits up into connected
components with exactly one unbounded component among them. It is easy to see
that all the bounded components are subsets of minus-components in the splitting
produced by £, while the unbounded component is a subset of the unbounded com-
ponent in the splitting produced by S. It is also clear that the bounded components
in this splitting are inside contours of G, while the unbounded component in this
splitting is completely outside the contours of G. Hence

\V{G) - V(S)\ ̂  CΊ (j2 \rΛ (l/h)2v . (4.12)

We are now ready to define the following exhaustive set of events:

(1) #i will be the event that Ψ*(S) > (1 + δ2)βwB/h, where the constant δ2

will be chosen later.
(2) #2 will be the event that iΓ{S) ^ (1 + δ2)βwB/h and V(S) < (1 - δ^m*)

{B/hf.

( 3 ) # 3 will be the event that iT(S) ^ (1 -t- δ2)βwB/h and V(S) ^(l-δx/m*)

(B/h)2.

The following inequality is a particular case of (4.3) in [Iof2], which is based
on ideas in [Pfi] (in its derivation properties (1) and (2) of the skeletons are used),

l i m i n f - M o g μ ^ / ^ ^ o ^ i ) ^ (1 + δ2)βwB .
«\,o

Combining this inequality with (4.9), we obtain

liminf -hlog c

( ) ( / ) e (m* - δum* + δι))

^ [(1 + δ2) - (1 - δYl{2m*))χl2}βwB - βB2δλ . (4.13)

The right-hand side of (4.13) is positive for <5i small enough, provided δ2 =
with a large enough constant Cs

Next we will show that

( - δu+m* + δλ)^2) ^ C9exp (-

(4.14)

where Cg and C\o depend on δ\ and δ2, but are positive and finite. Because b < 1/4,
this estimate is more than enough for our purposes, since in combination with (4.9)
it yields

lim — h\θg rayninh-ayK-rw-nyBin) *- \™ Ol,™ + 0\ ), ̂  Δ , ^ Δ { β / n m d ] _ ^ ^ ^

h\° μA(B/h),-,T,θ(^Δ(B/h) ^ (w* — ̂ i , m * + (5i))

(4.15)

We will prove (4.14) by imitating the proof of Lemma 4.1 in [Iof2]. Because our
setting is somewhat different from that in that lemma, we will have to reproduce
the argument here, rather than being able to just quote the lemma.
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We will denote by Ω(Γ\,...,Γk) the set of configurations belonging to #2,
in which the set of large external contours is {Γu...,Γk}. To prove (4.14), it is
enough to show

μΔ(B/h%-Xθ(XA(B/h) ^ + ^ * ~ <5l \Ω(Γ\9.. ., Γk)) ^ Cg QXp(-C\0(\/h) ~ ) ,

(4.16)

for each Ω(Γu...,Γk) e #2-
Given G = {Γ\,..., Γk}, let d-G(resp.δ+G) be the set of sites where each con-

figuration with the set of external contours equal to Γz is doomed to be-(rasp.-f-).
Let Λext and Λ[nt be the components of Δ(B/h)\(d-G U d+G) which are, respec-
tively, external and internal to the contours Γz. Observe that using (4.11) and the
fact that we are on #2 we have

^ Cn/h.

From (4.10) it follows now that

Σ \Γt\ ύ Cl2(l/hfv Σ \γi\ S C 1 3(l/A) 1 + 2 v , (4.17)
i=\ i=\

and hence

| d _ G U θ + G | S 6 E | Γ , | ^ C 1 4 (l/A) I + 2 ϊ . (4.18)
1=1

Because on J ^ we have V(S) < (1 - (^i/m*))(5//ί)2, it follows from (4.12),
(4.17) and the fact that v < 1/4 that as h \ 0,

Mint I ̂  V(G)^(l-δι/m*+o(l))(B/h)2. (4.19)

Because 1 + 2v < 2, it follows from (4.18) that for small h,

^ ^* — δ\\Ω(Γ\,. . .,

2
Ω(Γl9...,Γk)) . (4.20)

Using (4.19) one can check that for the event whose conditional probability is
being computed in the right-hand side of (4.20) to happen, one of the following
must occur. Either

XΛm ^ m*+δ]/4 and |Λint| > (m* - δχ)\Δ(B/h)\ ,

or
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Therefore

^ rn* -δ\\Ω(Γ\,...,Γk))

Jf)(XΛmi ^ m* + δ\/4\Ω(ΓU . . ., Γk))

Observe that conditioning on Ω(Γ\,...,Γ}C) amounts to conditioning on-spins in
d_G, to -f spins in d+G and on the absence of large contours in Λext. Therefore

^ rn* - δι\Ω(Γu...,Γk))

Lt,-Xθ(^4ext ^ -™* + ^i/4) , (4.21)

where the superscript b on a Gibbs measure is being used to mean that this Gibbs
measure is conditioned to the set of configurations with no large contours.

At this point we can simple use two results in [Iof2]. The first term in the
right-hand side of (4.21) is estimated from above, when δ\ < m*, by C\scxρ(—C\β
(l/h)2), thanks to inequality (4.8) from the proof of Lemma 4.1 in that paper.
The second term is estimated from above by Ci7exp(-Ci8(l//02~4 6), thanks to the
fundamental Lemma 3.1 in the same paper (to be able to use this lemma we note
the fact that for small h, \Λcxt\ ^ (δι/m* - o(l))(B/h)2, which follows from (4.18)
and (4.19)). (A substantially simplified proof of Lemma 3.1 of [Iof2] is given in
the appendix to the present paper.) This completes the proof of (4.14).

Finally we will consider #3 and show that given ε > 0, we can choose δ\ and
c>2 small enough, so that

4, ε n ^3 = 0 , (4.22)

when h is small. To prove (4.22) we will use the stability theorem for families of
curves, with possible self-intersections, proven in Sect. 2.10 of [DKS]. Informally
speaking, this theorem assures that if we have a family of curves which surround a
total phase volume larger than or equal to 1, and whose Wulff functionals add up
to an amount that is not much larger than the minimum possible, βw, then there
must be a curve in this family which, modulus a translation, is close in Hausdorff
distance to a Wulff curve which surrounds a volume 1. To be able to use this
result, we scale down the objects we are studying by a factor (1 — δ\/m*y/2B/h,
and use tilde to denote the objects so obtained, i.e., S = {y\,...,γn} is transformed
into S = {γl9..., γn}. On #3 we have

^l and

Theorem 2.10 in [DKS] tells us then that for some x £ JR2 and some / G {1,...,«},
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Blowing the scale up, back again to the original one, we obtain that for some
2

1/2

= C,9(l + δ2 - (1 - δι/m*γ'2γ

Using the triangle inequality for pH{ , ) and (4.10), it follows that for small h,

S2 - 0 - δ i / « * ) I / 2 ) I / 2 + C 2 0(l - (1 - δi/m Ϋ

<52 - (1 - δi/m )1'2)1'2 + C 2 1(l - (1 - δi/m γ'2)]{B/h).

A little thought convinces one also that before being translated by j>, Γ, could also
not be too far from dextA(B/h). More precisely, that

^ 2[C19(1 + δ2 - (1 - 5,/m*)'/ 2) 1^ + C 2 1(l - (1 - δ!//«*)1

Observe that the quantity which multiplies l/h in the right-hand side of the last
inequality vanishes as δ\ and 62 both vanish, and that (4.22) must hold in case this
quantity is small enough (depending on ε), since a chain of-spins cannot cross a
contour.

Part (b) of the theorem is obtained by combining (4.8), (4.13), (4.15) and
(4.22), and choosing ^1 and 62 small enough, satisfying the conditions pointed out
after (4.13), and in the last paragraph above. D

Proof of part (b.3) of Theorem L Part (b.3) follows from part (b.2) by a well
known argument. First observe that it is enough to prove it for increasing / . By
the FKG-Holley inequalities, for each hι > 0,

/ W ) _ j ; Λ / = {f)τ,h>
λ\,0 h\0

Letting now h! \ 0 gives

h\0

since μτ,h —* μ+j weakly, as h \ 0. To obtain the complementary bound, observe
that for each configuration in ((^,ε)

c, with ε = 1/2, say, there is a (*)-circuit of
spins + which surrounds Λ(B(\ - ε)/h), which for small h contains the support of
/ . Partitioning this event according to the outermost such (*)-circuit, and using the
Markov property and the FKG-Holley inequalities, one obtains the desired inequality
from part (b.2). D

Proof of Corollary 2. We will first consider the case when T < Tc and leave the
case T — Tc for the end of the proof.
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Let $ be the event that there is a chain of-spins connecting 0 to <3extΛ(l). The
statement that we want to prove is reduced to an upper estimate on μΛ(i\-j,h(β\
via a standard argument, which we reproduce next. If J* fails to happen, then
there is a (*)-circuit of spins -f which surrounds 0. Partition ffi according to the
outermost such circuit and use the notation {#α} to denote this partition. Using
a self-explanatory notation for conditional expectations, from the Markov property
and the FKG-Holley inequalities, we obtain for each α

τth £ (σ(0))Λ{ιι+χh .

Therefore

Hence

(4.23)

In order to bound μΛ(i),-,τjι(&) from above we will tile Λ(l) with square blocks
of side B^/hl', with #3 = B^(T) having been defined in Corollary 1, and hi to be
chosen later conveniently from the interval (0,/z]. To be precise (because the lattice
is discrete), say that Ny is the side of the square Λ(Bτ)/h/), and for i G Έ1 use the
following notation for the blocks

Observe that these blocks form a partition of Έ?. As usual in blocking arguments,
we will think of the blocks as sites of a "renormalized" lattice Έ?. In our case
we will have to consider percolation on this renormalized lattice, and we will use
terminology of the type "a chain of blocks" in a self-explanatory way.

We will use 1(1) to denote the set of renormalized sites / for which Γ; Π Λ(/)Φ0.
Observe that /(/) is a lattice square.

It will be important to consider also larger squares, concentric with the Γim These
new squares will be translates of Λ(B/hf), where B is a constant larger than the
quantity B2 = Bi(T) defined also in Corollary 1. We will denote the corresponding
square concentric to Γ; by Γ;.

We will say that the block Γ/ is bad in case there is a chain of- spins connecting
it to the complement of Γz ; we will use the notation ^ to denote this event. A
crucial observation is that if & happens, then there must exist a chain of bad blocks
connecting the origin of the renormalized lattice to the boundary oϊ 1(1). To avoid a
problem that would affect our estimate if we considered blocks close to the boundary
of 1(1), we will introduce the notation ^ r e n for the event that there exists a chain of
bad blocks connecting the origin of the renormalized lattice to some block outside
of 1(1/2), and write

) . (4.24)

When / is large, all the squares Γl9 i € 1(1/2) are contained in A(l) (this is the
reason for using 1(1/2) rather than / ( / ) in the definition of JVen) This allows us
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to use the FKG-Holley inequalities to say the following. Say that the renormalized
sites i and j are far from each other if Γ/ Π Γy = 0. Given a set {/Ί,... ,7^} C 1(1/2)
and another renormalized site i e 1(1) such that / is far from j r for all r e {1,..., k},

βΛ(l),-,T,h (4-25)

r=l

where the notation used in the last expression comes from Corollary 1. For arbi-
trary h' ^ h, we can once more use the FKG-Holley inequalities to write the first
inequality below; the second inequality is part (b.l) of Corollary 1,

μ W n - J , A ( * ) ^ μΛ{Bih'),-jΛ*h>) ύ Ce-δ'h' . (4.26)

Inequalities (4.25) and (4.26) allow us to use a type of estimate for finite-range-
dependent percolation. First note that each square Γi intersects only a fixed number
C\ of other such squares, where C\ may depend on T (through B and £3), but is
independent of l,h and h!. Given a set of renormalized sites {/I,...,/*} C 1(1/2),
there is therefore a subset of it with cardinality at least k/(C\ -f 1) = &/C2, so that
every one of these sites is far from the others. It follows that

There are no more than 4 3^ chains of k renormalized sites having the origin as
one of its end-points, and if ^ r e n happens, then such a chain must be present, with
length at least k0 = (l/2)(l/2)/(B3/ti), when / is large. Putting the pieces together
we obtain the bound

oo

k=lίQ

This is the moment when h' has to be chosen. For small enough h\ this series is
summable and yields

/ βji \ ^» fi —OKQ / yC^n ) fi _ — Cζ I / Λ n)Π\
r^/l(/) T hv^'^ΓGn / ^= ^ 3 ^ — \s^e , ^T 1 .^ / j

where C5 = <3/(4^3C2) does not depend on hf and hence does not depend also on h.
The combination of (4.23), (4.24) and (4.27) completes the proof in case T < Tc.

Our final task is to address the case T — Tc. The proof in this case is essentially
the same used above, and was left to the end only to simplify the exposition. It
should be clear from the proof above that it is enough to verify that given h > 0
there exists T < Tc and hf

0 > 0 such that for all 0 < h! S h'o,

T,hf S βΛ(l),-,Tc,h

That this is indeed the case is a direct consequence of the lemma below. D

Lemma 1. For an arbitrary A CC Έ? and arbitrary boundary condition ξ € Ω, if
(A + hi)/Tx S (A + h2)/T2 when A = - 4 and when A = 4, then
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Proof of Lemma 1. We follow Holley's approach to prove inequalities of this type
by running spin-flip time evolutions. The possible time evolutions that we could
use are the well known stochastic Ising models (in the terminology of [Lig]), also
known as Glauber dynamics. The spin at each site x e A flips at time t with a
rate which depends on the configuration σ where the system is at that time, and
is denoted by c(x, σ). More precisely, the evolution is a continuous time Markov
process with generator L which acts on observables in the following fashion:

where σx is the configuration that is identical to σ except at the site x, where
they do differ. The rates c(x, σ) are supposed to satisfy certain conditions which
assure convergence of the process to the Gibbs measure and moreover allow the
comparison that we want to make to be carried on. There are several choices which
have these two features, and for no special reason we will take

φr,σ) = cTih(χ9σ) = e x P ( -^(HΛ,ξAσX) ~ HΛ,ξAσ))

= exp - - σ ( x ) Σ
V λ \lb-*lli=i

This choice assures reversibility of the Gibbs measure, and by irreducibility the
desired convergence to this measure. To obtain the comparison in the lemma, we
quote Corollary III. 1.5 to Theorem III. 1.5 in [Lig]. This corollary states that the
desired inequality holds, provided that for all pair of configurations η < ζ and
each x,

cτλihλ(x,n) ύ cT2th2(x,η), if η(x) = ζ(x) = - 1 ,

cτhhx(x,η) ^ cT2ih2(x,η), if η(x) = ζ(x) = +1 .

By translation invariance of the underlying Hamiltonian, there are only finitely many
conditions that have to be verified. The inequalities in the last display are actually
clearly equivalent to

A + h\ A + h2

T\ T2

for A — —4, —2, 0, 2, 4, which are the values that Σιιy-x\\ =\ σ(y) c a n assume. The
inequalities with A = - 4 and A = 4 imply the other ones by averaging them with
appropriate positive coefficients. This completes the proof. D

5. Appendix

In this appendix we provide a simplified proof of Lemma 3.1 of [Iof2]. This lemma,
which is stated below as Lemma Al, refers to Gibbs measures without external field,
but conditioned on the absence of large contours. The definition of large contours
that we are adopting in this paper is that their volumes are larger than (l/h)2b,
so that h plays a role here. This role is nevertheless just in the form of a scale
of length, and we will be using the notation / = l/h below. We will also use the
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notation Ωb

Λ _ to denote the set of configurations in Ω&- in which no large contour
is present.

While the proof below seems substantially simpler than that in [Iof2], it was
nevertheless inspired by Ioffe's ideas. The main difference is that we do not use
the Fortuin-Kastelein random cluster model. The approach in [Schl] was also an
important input for our proof.

Lemma Al. Given α,ε > 0, there exist positive and finite constants Cγ.Ci such
that if Γ CC TL1 satisfies \Γ\ ^ α/2, then

μbr,-χo(
χr ^ -m* + fi) ^ Ci e x p ( - C 2 / 2 ' 4 * ) .

Proof. Set r — \2llb\, partition Έ? into the following r2 sublattices:

£>j = rΈ2+j, 7 e { 0 , . . . , r - l } 2 = J ,

and partition Γ accordingly:

In case Xp ^ —m* + ε, there must exist a j G J such that \Γj\ ^ (εα/4)(/2/r2) and
XΓj ^ —m* -f ε/2. To see this, suppose otherwise and note that then

= Σ \Γj\XΓj < (-m* + e/2) Σ \Γj\ + Σ(
jeJ jβJ jβJ

which implies

Xτ < (-m* + ε/2) + (εα/4)/2/|Γ| ^ -m* + 3ε/4 .

Our estimate will therefore be based on

ti,-jfl(Xr ^-m*+ε)^Σ hwzWWWti.-jfliXrj * ~m*+ε/2).

(5.1)

To estimate each term in the right-hand side of (5.1), we will show that, for
each j eJ, the probability measure μr,-r,o restricted to { — 1,+1}ΓJ is bounded
from above, in the sense of (2.2), by a homogeneous product measure P, with
marginals that satisfy / σ(x)dΨ = —m* for each x e Γj. For this purpose it is well
known that it is enough to prove that for all n, all distinct x,y\,...,yn G Γj, and
every choice of α, G {-1,-1-1}, for / = l , . . . ,π,

μbr,-,τMχ) = +ι\σ(yi) = ai> ί = l , - . . , » ) ^ M * ( 0 ) = + l ) ) . (5.2)

With «,x,7i,...,yw and a\,...,an fixed, associate to each configuration σ the set
^(σ) of sites which can be connected to some site in {>>i,...,.y«} by a chain of +
spins in σ. Let {#ά} be the partition of Ωb

Γ _ according to what %> is, and for each
α set

where σ is any representative of ^ α . Our choice of r was made having in mind
that now we can assure, due also to the definition of large contours, that for each
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α we have x G Γ(α). Moreover there is a sort of "screening phenomenon" taking

place; informally speaking the spin at x cannot see any spin +1 which we may

possibly have put in some of the sites y^ when we chose the #;. More precisely, a

direct computation based on the definition of the Gibbs measures gives for each α,

μbr,-,τ,o(Φ) = + l k O O = ««, i = l, . .,«,^α) - μr(«)f-,τ;o(*(*) = + 1 ) ( 5 3 )

Given a set Λ. CC Z 2 , to check whether a configuration is in Ωb

Λ_ it is, of course,

enough to verify that none of the exterior contours is large. Using this remark it

is clear that if σ G Ωb

Λ _ and σ1 is obtained from σ by flipping some spin that was

+ 1 in σ, then also σr G Ωb

Λ _. Therefore we can use the FKG-Holley inequalities

to write

/#(«),-,7;o(tf(*) = +1) ^ μr(α),-χo(σ(x) = + 1 ) . (5.4)

From (5.3), (5.4) and another application of the FKG-Holley inequalities we obtain

now for each α,

, χ = ««, 1 = 1 , . . . , ^ , ^ ) ^ μ-,r(σ(0) = + 1 ) ,

which implies (5.2)

The fact that for each j G J, the probability measure μb

Γ _τo restricted to

{—\,+\}ΓJ is bounded from above, in the sense of (2.2), by a homogeneous prod-

uct measure F, with marginals that satisfy J σ(x)dΨ = —m* for each x G Γ), leads

to the following standard large deviation estimate

^lOi^ίεα^κ/z/^^μΓ.-xoί^O ^ "W* + ε/2)

^ C3 exp(-C4/2/^2) = Q exp(-C5/
2~4Z7) . (5.5)

Combining (5.1) and (5.5) we finish the argument, since the cardinality of the set

J grows only as a power of /. D
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