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Abstract: The paper contains an explicit description of genus 0 conformal block
bundles for Wess-Zumino-Witten models of Conformal field theory. We prove that
an earlier construction due to the second and the third authors gives a map of these
bundles to certain de Rham cohomology bundles.

1. Introduction

1.1. Let g be a simple finite dimensional complex Lie algebra; let ( , ) be an
invariant scalar product on g normalized in such a way that (θ, θ) — 2, θ being the
highest root. Fix a positive integer k. Let L\,...,Ln+\ be irreducible representations
of 9 with highest weights Λ\,...,Λn+\. Suppose that (/L/, θ) ^ k for all i.

Consider a complex affine ^-dimensional affine space An with fixed co-
ordinates z — (zj, . . . ,zn). Consider the space Xn = An - (J^. zl//, where A^ —

{(z j , . . . , z n )\Zi•= Zj} are diagonals. According to Conformal field theory, one can
define a remarkable finite dimensional holomorphic vector bundle ^(Aι,...9An+\)
over Xn equipped with a flat connection (with logarithmic singularities along Zl/7).
(We imply that the last representation "lives" at the point zn+\ =00.)

More precisely, consider a trivial bundle over Xn with a fiber (L\ ® (g> Ln+\ )g.
Here we denote by MQ the space of coinvariants M/a^M of a 9-module M. Let us
denote this bundle by $(Λ\,...9Λn+\)\ it is equipped with a flat connection given
by a system of Knizhnik-Zamolodchikov (KZ) differential equations, [KZ]. The
bundle ^(A\,...,An+\) is a certain quotient of 3$(A\9...9An+\) stable under KZ
connection.

Classically this quotient is described in terms of certain coinvariants of the tensor
product LI ® •• φLfl+i, where L/ is the irreducible representation of the affine
Kac-Moody algebra 9 corresponding to L/ and having the central charge k (see for
example [KL] or Sect. 2 below). The first goal of the present paper is a precise
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description of &(Λ\,...,Λn+\) in terms of finite dimensional representations Z,/.
More precisely, the fiber of this bundle at a point z = (z\,...9zn) may be described
as follows.

Let fβ G g be a root vector of weight —θ. Consider an operator

z fθ = ί>«/0(/) : £ι Θ Θ£π -» £ι Θ ΘIΛ , (1)
ί=l

where f^ denotes operator acting as fβ on iih factor and as identity on the other
factors. For a weight λ let Mχ denote the weight component of a g-module M. The
map (1) induces an operator

(z - /β)*-<>WHϊ : (I, (g, . . . ® LH)So(/i/!+|) - (I, ® ®Ln)λa+ι , (2)

where Λn+\ is the highest weight of the dual module L*+l, and so(Λn+\) = /iπ+ι 4-
(& - (ΛΛ+ι, 0) -f 1)0. Let us denote this operator by T(z). We prove (see 2.10):

Theorem. One has a canonical isomorphism

7.2. The second goal of this paper is a construction of a natural map from
^(Λi,.. ,,Λn+\) to a certain bundle of "geometric" origin.

More precisely, let Λn+\ = Σ"=l Λs - Σr

i=l &, α/, α, being simple roots of
g. All ki are non-negative integers (otherwise (L\ ® - ® Ln+ι)Q = 0). Set N =

Σr

i=l ki. Let us consider the space Xn+N = <£n+N - U"y=ι ^if, let us denote coordi-
nates in Xn+N by zι,...,zn, t\9...9t^. We have a projection to the first coordinates
PN ^«+/V — ̂ ^n

Following [SV], define the flat connection on the trivial one-dimensional vector
bundle over Xn+N by the 1-form

i>j K -\r g

where g is the dual Coxeter number of g, π : {!,..., TV} —> {!,..., r} is any map
with card(π~1(/)) = λ/ for all /. Let us denote the trivial bundle equipped with
this connection by ^ = <Sf(Λι9...,Λn+\). The product of symmetric groups Σ =
Σk{ x x Σkr acts naturally fiberwise on the pair

For each z € Xn consider the De Rham cohomology HN(p^l(z), & ~l(z

spaces form a vector bundle RN p^^^ over JΓn equipped with a flat Gauss-Manin
connection. In [SV] certain maps compatible with the connections

ω : a(Λl9...,Λn+l) -* ̂ p^JSf^,...,^!)^- , (3)

where constructed (here the superscript "Σ, — " denotes the subbundle of skew in-
variants). The second main result of the present paper is (see 4.3.1):

Theorem. The map ω passes through the projection 3$(Λ\,...,Λn+\) — *
\ , . . . , Λn+\ ) and thus induces a map
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There are reasons to expect that the map ώ is injective. It would be very interesting
to define its image in topological terms; if the above expectation is true, we would
have a topological description of the bundle of conformal blocks.

1.3. The paper goes as follows. Section 1 is devoted to the proof of Theorem 2.10.

The main aim of Sects. 2 and 3 is to define the map (3). This map actually was in-
troduced in [SVB, SV]. However, [SVB] did not contain proofs, and the result [SV]
was formulated in a greater generality, and we need here some important details not
formulated explicitly in loc.cίt. We include these details in Sect. 2. In this section
we discuss the beautiful interrelation between certain spaces of rational functions
on affine spaces, graphs, and free Lie algebras. We believe that the contents of this
section might be of independent interest.

At the end of Sect. 3 we formulate Theorem 4.3.1.
Sections 4 and 5 are devoted to the proof of Theorem 4.3.1. This result is

equivalent to the claim that certain differential forms are exact. In Theorem 5.8
we write down an identity between differential forms, which is more general
and precise than the above claim. We call it Resonance identity. In Sect. 5 we
prove it.

1.4. The results of this paper have been announced in [FSVA]. The proof for the
case g = sl(2) is given in [FSV1].

Although the present paper heavily depends on the main construction of [SV],
we regard it as practically self-contained. In fact, we tried to include into Sect. 2
and 3 all the results from loc.cit. which we need; the proofs are either given or
straightforward. We hope that this alternative exposition is useful also for a better
understanding of a more general framework of loc. cit.

We are greatly indebted to Michael Finkelberg for his permission to include his
proof of the key point of Theorem 2.10. Our initial proof was more complicated.

2. Spaces of Conformal Blocks

2.1. Throughout the paper we fix a complex dimensional simple Lie algebra g with a
chosen system of Chevalley generators /, β/, A z , z = 1,... ,r. Let g = n_ Θ ί) Θ n+

be the corresponding Cartan decomposition; αι, . . . ,α r G f)* the simple roots. (For a
vector space F, F* will always denote the dual vector space.)

Let ω : g Ά g denote Chevalley involution of g - the Lie algebra isomorphism
such that ω(fi) = -e{, ωfe ) = -fa ω(A, ) - -A/,

^ - Σ fl/αί (4)

will denote the highest root;

r = Σ *f

v*/ (5)
z=l

the highest root of the dual root system. Here all a^ a^ are positive integers. We
set

r
V-^V V I 1

9 = 2L<ai + !

/=!

- it is the dual Coxeter number of g, [K], 6.0.
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Let

v : ί) ^ if (6)

denote the isomorphism such that v(Λz ) = ^"^α/ (cf. [K], 6.2.2). Let

denote the corresponding bilinear form; it is non-degenerate and symmetric. We
denote by the same symbol the bilinear form on if induced by means of v. We
have (0, θ) = 2. Evidently, v(0v) - θ.

We extend (,) to the symmetric non-degenerate invariant bilinear form on g as
in [K], ch. 2.

Ω G g ® g ( 7 )

will denote the corresponding invariant symmetric tensor.

2.2. If M is a representation of ί), λ G If, we set Λ/;t = {jc G M|/υc — (A, h)x for all
A G I)}. We will consider only fy-diagonalizable representations of g, i.e. such that
M = φΛMA.

Set Λf° = φ;M;*; introduce an action of g on M° by the formula (ex*,*)
= (x*, — ω(c)x) for Λ: G M, x* G M°, c G g. This g-module is called the contragra-
dient to M.

Given A G if, M(/l) will denote the Verma module over g, generated by the
vacuum vector VΛ subject to defining relations \\+VΛ — 0, hv^ — (A, ti)VΛ> L(A) will
denote the unique maximal irreducible quotient of M(Λ)\ by abuse of the notations,
we will denote by VΛ the image of VΛ in L(A) too.

There is a unique g-module morphism

S : M(A) -» A/(Λ)° (8)

such that (S(υΛ), VΛ} = 1. We have L(Λ) = M(A)/ker(S). We can also consider
S as a bilinear form M(Λ) x M(Λ) — >• <C; it is called the Shapoυalov form. The
weight yl is called dominant integral if all (Λ, hi) are non-negative integers. This
is equivalent to finite dimensionality of L(A).

Let W denote the Weyl group of g, WQ G W the longest element. For a dominant
integral A, wo(A) is the lowest weight of L(A) ([B], ch. VIII, Sect. 7, no. 2, Remark
2). We shall denote

A = -Wo(A) .

It is again a dominant integral weight, and we have

2.3. Let T be an independent variable, C[[Γ]] the ring of formal power series,
C((Γ)) the field of Laurent power series. For /(Γ), g(T) G €((Γ)), introduce the
notation

res0(/(Γ)dg(T)) - coefficient at Γ"1 of f(T)g'(T) .

Set g[[Γ]] = g <g)c <C[[Γ]] C 8((Ό) = 9 ®c

 €((Γ)) These are Lie algebras
with the bracket [c 0 /(Γ), c' 0 gf(Γ)] = [c, cr] (g) f(T)g(T\ c9 c' G g. Define g as
a central extension of g((Γ))

8 ̂  9((Γ)) Θ C . 1 ,
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where 1 lies in the centrum of g, and

[c (8) f(T\ c' <8> g(T)] = [c, c'] <g> f(T)g(T) + (c, c')res0 (/(Γ)dg(Γ)) - 1 .

Set

It is a Lie subalgebra of g.
We have natural embeddings g C g C g; we will identify g with its image in

these algebras. We denote by g+ (resp., g+) the Lie subalgebra g[Γ] 0 (C 1 C
g (resp., g[[Γ]] 0 <C 1 c g). Let us choose an element eo in the root subspace
QO such that (eθ, -ω(eθ)) = 1; set fθ = ω(eθ). We have [eθ, fo] = θy. Set eQ =
fθT9 /o = e$T~l. The elements e0,...,er, /o, - > f r form a system of generators of
g, [K], ch. 7. We have

[e0, /o] - 1 - θv . (9)

2.4. All representations F of g we will consider will have the following finiteness

property: for every x G V there exists n G Z such that cTn x = 0 for all n' ^ «, c 6
g. For such representations, the action of g may be extended uniquely to the action
of g, cf. [KL], no. 1.

We fix a positive integer &; unless specified otherwise, 1 will act as the multipli-
cation by k on all our representations. We set K — k 4- g. Let M be a representation
of g. Consider M as a g+-module, by setting Γg[Γ] to act as zero, and 1 as k. Set

M = t/(g)(S§ M.

This g-module is called the generalized Weyl module associated to M. We have a
natural embedding M C M.

If M = L(Λ), we denote M by L(Λ). This module has a unique irreducible
quotient which will be denoted by L(Λ). We have an embedding L(A) C L(Λ).
A weight A is called smα// if it is dominant integral and (A, θ) ^ k. The set of
all small weights will be denoted by C C I)*. Define s0 : ί)* — > ί>* as

For A £ C, the irreducible module L(Λ) is the quotient of the Weyl module L(A) by

the g-submodule L' generated by the singular vector fQ ' VA These irreducible
modules will be the most important in the sequel. We have an exact sequence

*09 (10)

where the first map sends ι^0(/i) to fQ~(Λ'θ^+lvΛ

2.5. Spaces of Coinvariants. For a positive integer n denote by cf2 the central
extension of the /ιth cartesian power g[[Γ]]w

9[[Γ]]" θ C 1

with the bracket

= ([c,, c1,}
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(it is not the nih cartesian power of g"). The Lie subalgebra g" C g" is defined
analogously. Consider the Riemann sphere F1 = F^C), with a fixed coordinate z.
Let us pick n -f 1 distinct points z = z/, z = l , . . . , w + l . We suppose that z/ G C
for 1 ^ z ̂  n, and zz +ι = oo.

Let g(zι,...,zn +ι) denote by the Lie algebra of rational functions on F1 with
values in g, regular outside z\,...,zn+\. We have local coordinates at our punctures:
z — z/ for 1 5^ z 5ί «, and 1/z at oo. The Laurent expansions at our points define
an embedding

..,zw+1)^gπ+1 (11)

(see for example [KL]Π, 9.9 or [FSV1], 2.3).
For a Lie algebra α and an α -module M, we will denote by Mα the space

of coinvariants M/αM. Given n + l g-modules M\,...,Mn+\9 the algebra g" acts
naturally on the tensor product M\ 0 ® Mn+\ (recall that 1 acts as fc on each M/
by our assumption). Using (11), we regard this tensor product as a g(zι,...,zπ+ι)-
module, and can consider the space of coinvariants

(Mi 0 0MΛ+ι)g(Zls...)Z|i+1) .

2.6. Lemma. Lei MI, ... ,Mn+\ be ^-modules. The embeddings M/ c— >• M/ induce an
isomorphism of coinvariants

(Mi 0 0MΛ+ι)g ^ (Mi 0 - -

See [FSV1], 2.3.1 or [KL]Π, 9.15. D

2.7. Let L(yl) be a finite dimensional irreducible representation of g. Pick a lowest
vector v° G L(Λ) (i.e. such that n_i;° = 0; it is unique up to a constant). We have
VQ e L(Λ)WQ(Λ}.

Let X be a finite dimensional representation of g. Let us consider the maps

Xλ<-*X® L(A) -*(X® L(Λ)\ ,

where the first one sends x to x 0 ι;°, and the second one is the projection. They
induce the map

(12)

2.7.1. Lemma. The map (12) is an isomorphism.

Proof Easy. (Cf. [FSV1], 2.3.3). D

2.8. Let A\,...,An+\ be dominant integral weights. Introduce a notation

W = (L(Λl)® ®L(Λn))n_ .

As usually, Jf; will denote a weight component.

2.8.1. Corollary. The map

Wλ -+ (L(Λ, )0...0Z(Λ+ι))9(,1,,zn+1) (13)

sending x\ 0 0 xn to xι 0 (g) xn (g) ̂ +1, w//^r^ ι;̂ +1 G L(Λn+\ ) w α lowest vec-
tor, is an isomorphism.

Proof. Follows from 2.6 and 2.7.1 applied to X = L(Λι ) 0 - 0 1(Λ) Π
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2,9. Suppose now that all At G C. Set for brevity L = L(Λ\)<& ®L(Λn). Con-
sider the operator

z fβ = Σ ̂  :L-+L,
i=l

where fρ acts as fo on the factor L(Aι) and as the identity on other factors. It
gives rise to an operator

which induces an operator
WsQ(Λn+l)

Let us denote this operator by T(z). We set

W(zλ,...,Σn)=WλnJ\m(Ί(τ)).

2.10. Theorem. Suppose that A\9...9An+\ G C. The isomorphism (13) induces an
isomorphism

W(z\9. ..,zn) = (i(A\) 0 0 L(ylΛ+ι))g(Zlv..;Zπ+1) .

The proof will follow some lemmas.

2.77. Suppose we have A G C. One sees easily that the weight SQ(A) is dominant
integral. Let us choose lowest vectors VQ

Λ G L(A) and VQ

S (yl) G L(s$(A)).

2.11.1. Lemma. One has an exact sequence

L(sQ(A)) -> L(A) -> lu(A) -> 0 , (14)

where the first map sends V°SQ(Λ} to f0~(Λ'°Hlv°Λ.

Proof. There exists a unique involution

ώ : g - * g (15)

such that ώ(c) — ω(c) for c G g, and ώ(f^) — f β T ~ l

9 ώ(βo) = eβT.

For a g-module M, denote by ωM the g-module obtained from M by the restriction
of scalars using (15). We have an isomorphism

ώL(A) -4 L(Λ)

sending v°Λ to υλ. (Note that ωL(A)^L(λ)).

Since θ is the highest weight of the adjoint representation, θ — θ. It follows
from the J^-invariance of ( , ) that sQ(A) = so(Ά). Now, if we apply ω to (10), we
get (14). D

2.12. Corollary. The isomorphism (13) induces an isomorphism

Proof Apply the functor (L (g) )g(Zl,...,2|f+1) to (14). D

The rest of the argument is due to M.Finkelberg, [F].

2.13. Lemma. Let A G C, feί 7 Z?£ the kernel of the projection L(A) —» L(yl). 7%e
operator eQ = faT is surjective on Y.
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Proof. Let us denote by Φ the category of g-modules M which are:

(a) f)-diagonalizable, and such that for all λ £ f)*, dim(M;J < oo. 1 acts as a mul-
tiplication by k.
(b) The subalgebra ή+ = n+ 0 Γg[Γ] acts locally nilpotently on M, i.e. for every
x G M, e G n+, Λ - 0 for TV > 0.

Denote by ω' : g -̂  g the Lie algebra involution that sends et to — fi9 and ^ to
—βi for / = 0, ...,r. Let us define the duality functor

D: 0-> (9

as follows. For M e (9, consider the space M' = φ;eί)M* with the g-action

(xm* , m) = (w*, — ω'(x)m). By definition, Z)(M) C M' is the maximal submod-
ule on which ιί+ acts locally nilpotently. D is an exact contravariant functor, and
DD^ Id.

Let us return to the lemma. Suppose that £0 is not surjective on 7. Then fQ is not
injective on D(Y). Let y G Ker(yo) Let Z C D(Y) be the g-submodule generated
by y. All operators fi9 i= l,...,r, and e/, z = 0,...,r, act locally nilpotently on
D(Y)9 hence Z is an integrable g-module (which means by definition that all ei9 /
are locally nilpotent on it). Hence, D(Z) is a non-zero integrable quotient of 7.
This contradicts to the fact that L(Λ) is the maximal integrable quotient of L(Λ)9

(cf. [K], ch. 10). D

2. 14. In the setup of our theorem, consider the tensor product

X

where Jζ = £(AO or L(/L/). As usually, we consider X as a g(zι, . . . ,zn+\ )-module.
We have

mod

for y G L(Λ\ ), jc G ̂ Γ7 := A^ 0 (8) ^ζ? Θ L(ylw+ι ), where ^4 is a linear operator on
X' which acts as

A(X2 0 0 Xn+ι ) = MI /ΘX2 0 ' 0 X/ι+1 H ----- h ^2 0 ' ' * 0 Un fθXn 0 Xn+\

for some M/ G C.

2.14.1. Lemma. ^4 w locally nilpotent on X'.

In fact, it is easy to see that /# is locally nilpotent on all Xi9 and /^Γ"1 is locally
nilpotent on L(ylπ+ι) since this module is g-integrable (cf. [TK], 1.4.6). Hence, A
is locally nilpotent on X' . D

Let Y\ — kQΐ(L(A\) — >• L(/lι)). We have an exact sequence

Hence, any element in ker(0) has the form ]Γ\ jμ7 ®Xj with jμ7 G 7], Xj £ X' . It

follows from 2.13 and 2.14.1 that such an element must be zero.
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It follows that

φ : (L(/Lι) ®X2 Θ Θ AΓΛ <

is an isomorphism. Applying the same argument to other factors Xt instead of X\,
we get the statement of Theorem 2.10 from 2.12. D

3. Trees, Rational Functions and Lie Algebras

3.1. Let us fix a finite set J and a set of distinct complex numbers z = {z\,...,zn},
n^l.

In the sequel, given a positive integer m, we will use the notation [m] :=
{1, . . .,m}. For every subset / C J denote / := / U [w]. Let us consider finite ori-
ented graphs Γ whose set of vertices Ver(Γ) is identified with a subset of J . We
will denote by Ar(Γ) the set of arrows of Γ, and

b,e:

the source and target of arrows respectively. We will call a support of Γ the subset

Supp(Γ) - δ(Ar(Γ)) U β(Ar(Γ)) C Ver(Γ) C </ .

The vertex v G Ver(Γ) lying outside Supp(Γ) is called isolated.
We will suppose that:

(a) every pair of vertices is joined by not more than one arrow;
(b) Γ contains no loops.

Thus, Γ is a disjoint union of trees. We will draw Γ as a graph with vertices labeled
by elements i G J> or s G [n], and we will not picture isolated vertices. We will
denote the set of all such graphs by Gr, and call its elements simply "graphs." For
a subset / C «/, s G [n]9 Gr/ (resp., Gr/.s) will denote the subset of all connected
graphs with support equal to / (resp., / U {s}).

3.2. Let us define a C-vector space © with generators [Γ], Γ G Gr, subject to the
following relations.

3.2.7. If Γ' is obtained from Γ by removing an isolated vertex then [Γf] = [Γ].

3.2.2. If Γf is obtained from Γ by reversing one arrow, then [Γ7] = — [Γ].

3.2.3. Triangle relation. Let {/, y, k} C J be any three-element subset. Consider
three graphs:

j

Γ,=
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Let Γ be a graph such that all three graphs /] U Γ belong to Gr. Then

3.2.4. If Γf is obtained from Γ by removing an arrow which begins at s and ends
at s', where s, sf G [n], then

[Γ'] = (zs-zs,)[Γ].

3.2.5. Compositions. For / c */, we will denote by ©/, ©/;ιy the subspace of ©
generated by all [Γ], where Γ G Gr/, Γ G Gr/;5 respectively. Let us denote by ©/ the

space generated by all [Γ], where Supp(Γ) c /, and each connected component of
Supp(Γ) contains an element s G [ri\. We have operations of partial multiplications

• : ©/ ® (δj — » (5 ,

[Γ] (g) [Γ] •-> [Γ] - [Γ] := [Γ U Γ], defined iff card(/ ΠJ) ^ 1. They are associa-
tive and commutative in the obvious sense. If card(/Π/) = 1, then ©/ ©/ C
©/U7. If / Π J = 0 then ©/;s - ©/., C ©/u/;s.

For / c */ denote by Seq(I) the set of all sequences

/=(ί ι , . . . , / t f ) (16)

such that / = { / ι , . . . , / W } In other words, Seq(I) is the set of all total orders on /.
Evidently, Seq(I) is an Aut(/)-torsor.

Notational remark: if / is a sequence as above, we denote by / the set of its
elements.

We define the graphs:

and

for j G [«]. The following two lemmas are checked directly.

3.2.6. Lemma. For a given I C «/, 5 G [«], elements [Γf.s]9 /G Seq(I\form a basis

Of ®/;5 Π

3.2.7. Lemma. L^ί us pick an element IQ G /. All elements [Γf], where I G Seq(I)
is such that its first element is z'0, form a basis of ©/. D
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3.3. Let us consider a field J^ — C(t) of rational functions on the set t = {i/}/e,/
of commuting independent variables indexed by «/. For a subset 7 C J denote
t/ := {ti}i£i C t. Let us assign to each Γ G Gr a rational function

E(Π= Π : l-r~

where we agree that ts := zs for s G [«]. One sees easily that one gets a well defined
map

E: © — >3? .

Moreover, E is compatible with multiplication in the evident sense. For / C */, let
us define subspaces R/ C Λ/(z) C ̂  as R/ = £(©/), RI(Z) = £(©/).

3.3.1. Lemma. The map E induces isomorphisms

E : ©/-^^/ E : ©/-^^/(z). D

For / as in (16) will use the notations

N I

y=2 tij ~ Vl

1 N 1
L T—.. L

3.4. Shapovaloυ form. Suppose we are given a symmetric map

a : J> x e/ —> C

and numbers α(/,6<) G C for each / G </,,? G [«].
(i) Given two sequences 7 = (/Ό,...,i^\J — (/o? ?yW) G J^ΛΓ+1(TV ^ 0) such that
/o =y0, define a complex number S(I,J) by induction on TV. Namely, set
S((i),(/))=!, and

-̂  ^ / ^ \

5(/,J) -

for TV ̂  1. It is clear that S(/,J)ΦO only if / =J. One easily proves that

S(Ϊ,J) = S(J,Ϊ) .

(ii) Given arbitrary ϊ= (i\,...,iN),J = (JI> >JN) £ SN(N ^ 0) and 5 G [«],
define a complex number 5(/,J)(5) by induction on TV. Namely, set S((),())(5) = 1,
and

for TV > 1. Again 5(/,/)(5) ΦO only if / = J, and

5(/,J)(5) =S(JJ)(S} .
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3.5. Given / C «/,/= (i\,...JN) G Seq(I) and s G [ri], define important rational
functions

N

(17)

and

» r t ^ π g(^'y) i£r(t/,z,) = U +
p=l Γ*> zs

3.5.1. Key Lemma. We have

Br(t',zs) = E ^(/,/)(5) £/(t/;z,) .
J=(Jl,...JNKSeq(I}

Proof. This is a particular case of [SV], Theorem 6.6 (for = 0 and λ —
(1,..., 1)). Or else, it may be checked directly. D

3.6. Let n = Lie(y/), e,/ be a free Lie algebra on generators f i 9 i G J (over C). Its
enveloping algebra U(n) may be identified with a free associative C-algebra with
these generators. For a sequence

r=(it,...,iN)esN (19)

denote by fa G U(n) the monomial

Jΐ ~ JiNJiN-\ ..... Ji\ '

and by [fγ\ G « the commutator

[ff] = *&(fiN ) ° adC/ ̂  ) o - . o ad(^2 )(^ ) ,

where ad(jc)(^) :— [x, y]. (Note the reverse order!)
Given / C */, let t/(n)/ G ί/(a) (resp., n/ G n) be the (C-subspace generated by

all monomials fj- (resp., by all commutators [//•]), / G Seq(I). We set ί7(n)0 =
(C I;u0 = 0. Let us denote by Seq^n\I) the set of all n-tuples of sequences

/!,...,/„ such that / is a ΛJ/O/Λ/ union [fs=lls. We denote by t/(π)f" C U(n)®n

the (C-subspace generated by all monomials of the form

with ( / ! , . . . , I n )

3.7. Suppose we have (/!,...,/„) G Seq^n\I) as above. We set

^....Λ^2) = ̂ (t/i^i) ^/Λ(t/«^ι.) (20)

3.8. Lemma. Pick I C «/.

(i) 77ze assignment ff*—>Bj (tι'9zs) defines a map

B,(zs) : U(n),

(ii) 77/e assignment
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defines a map
fi/(z) : t/(n)fπ —+ Λ/(z) .

Proo/ This is trivial since the above monomials form bases of the left-hand sides.

D

3.9. Lemma. We have

Proof. The lemma is proved by induction on card(7), simultaneously with the fol-
lowing statement which is a particular case of 3.10.1 below.

Claim. Suppose that j 0 /. Then

B^{j}(zs\Uΐ\fj) - ~ Afti) Σ (~ + ~) -

D

3.10. Suppose we have n+ 1 disjoint subsets /!,...,/„,/ c </, and sequences ΐj G
Seq(Ij\j G [n]'9J G Seq(J). Set / = Uy=ι /;.
For x = x\ (8) ®xn G ^/(n)0",^ G [n],^ G ί/(n), denote

3.10.1. Lemma. We

fl,z α

yE/,;j€/ 0' ~~ *i J^J *J ~ Zs )

Proof Similar to the proof of Lemma 3.9 above, by induction on card(7). D

3.11. Lemma. The assignment [ff] *-^ Af(tι) defines a map

AI : m —>Rj .

Proof. Follows from 3.9. D

3.12. Lemma. Suppose we have two disjoint subsets 7, / c </, and /G Seq(I\
JeSeq(J). Then

Aιuj([[frlfj]])=AI([fr\)^Aj([fj])^ Σ f^v
ϊG/jey lj ~~ tj

Proof. Induction on card (J) using 3.10.1 for n = 1. D

3.13. We will need a generalization of the previous constructions to the following
situation. Let
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be a surjective map between two finite sets. We set

kj = card(π-1 (/)); k = (

One can regard the pair C/,k) as a "weighted set," kj being "the multiplicity" of
j. We will say that the map π is an unfolding of (^k).

We set Σs : = Aut(^) and

£„:= Π Autίπ-'O'WcΣ., (22)

the last group is non-canonically isomorphic to the product of symmetric groups
Σkj. We consider a Lie algebra n = Lie(/})7(Ξ/, and the field J^ = C(i/)/€t/, with
subspaces /?/,/?/(z),(7 C «/) as above. The group I> acts on J^ permuting gener-
ators t{. For every J C ̂  we have an induced action of Σπ on /?π_ι^j^,Λπ_i(</)(z).
We will denote by Symπ the symmetrisation operator

Symπ = Σ σ (23)
σGZπ

acting on these rings.
Pick J C /; set / = π'V)- Set N : = card(7); evidently N = ΣyeA Let us

denote by Seq(J\ k) the set of all sequences

/= ( J \ , . .

such that for each j £ J there are exactly kj entries equal to j in J. We will
denote by £/(n)^k (resp., n^) the C-space generated by all monomials fj (resp.,

commutators [//]) with J G Se#(J;k). For a sequence /={/!,...,/#} we write

Given / G Se Ĵ k), let us call an unfolding of J with respect to π a sequence

such that π(/) = J and all /^ are distinct. We denote the set of all unfoldings by

Unf(J). It is naturally a torsor over the group Y[jeJAut(π~l(J)γ.

Suppose we are given a symmetric map J x J — > C. Let us pick / E Unf(J).
Let us define rational functions

R! , (24)

e Λ/(z) , (25)

where the functions in figure brackets are defined in (17), (18).
Analogously, for any positive integer, n, denote by Seq^(J\Vi) the set of all

n-tuples of sequences Ji, . . . , Jn such that their concatenation J — J\ \ '. . . \Jn belongs
to Seq(J\\i). We will denote by C/(n)Θ^ C t/(n) the subspace spanned by all mono-y,κ
mials

x = //, ® ® /Λ, (^i, Λ) e WV; k) -

1 Recall that a torsor over a group G is a set X equipped with a free and transitive action of G
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Given such (J\9...,Jn), we will call its unfolding an w-tuple of sequences (ϊ\,...Jn)
such that for all s, Γs is an unfolding of Λ, and all these sequences are disjoint,
i.e. the corresponding sets I\ ...,/„ do not intersect. The set of unfoldings will be

denoted Unf(J\ ,...,/„),
Pick an unfolding (/!,...,/«). Define

^/1---»/ l f;π( t;Z) = Symπ{^1(t/l^l) " ' β !„(*!„ ^n)} (26)

One can see that the above functions do not depend on a particular choice of
unfoldings, as the notation suggests.

3.14. Lemma, (i) The assignment

defines a map

(ii) The assignment

defines a map
£/;k(z) : £/(n)®J| — ̂  */(z)Σ» .

(iii) The assignment

[//]^^/;π(*/)

defines the map

4/ k : nj;k — > Rfπ .

Proof follows from the non-symmetrized case (Lemmas 3.8 and 3.11 above). Cf.
also [SV], 5.11. D

4. Conformal Blocks and de Rham Cohomology

4.1.

4.1.1. Let us introduce some notations. For λ G ϊ)*,λ = ̂ =1̂ ι α/, set λ\ = Σr

i==lqi.
For λ,λ' G f)*, we write λ ^ λr \S λ' - λ = X^=1#/α/, where all ^/ are non-negative
integers.

^.7.2. Let us fix weights Λ\,...,Λn E ί)*; set /I — ̂ =1Λ Fix non-negative
integers *i,...£r, and set / = {/ G [r\\kι > 0};k = (kj)je/. Set A^ = ^=1^-,α =
Σ^jfc/αf,;!' = Λ - α .

Let us pick an unfolding of (,/,k):

π : [N] — + / , (27)

where card^"1^)) = *}• for al1 J G /• We denote ^ := [N].
As in 3.13, one defines the symmetric group Σ := Σπ C I> = ΣN. Recall that

we have fixed a positive integer k, and we set K — k + g (see 2.4).
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4.1.3. Let us consider the cartesian product of TV projective lines, X — (P1)^, with
coordinates (t\, . . . , t^\ t\ G C U {oo}. Fix n distinct complex numbers z\9 . . . ,zn, and
set zn+\ = oo. Inside X, consider the following hypeφlanes:

Hij .ti = tj9ij= l9...,N(so,Hij =Hβ)ιHi.s:ti = zS9 ί = 1,.. .,7V; s = ! , . . . , /* + 1 .

We denote by # the set of all these hypeφlanes. We set Ή^ — {//j>n+ι }/=!,...,#, ̂  =

*-^oo.

Let us define the map a : ^ — > C as follows. Set

a(Hij) = (απ(0,απω)/κ;; a(Hils) = -(Λ,απ(0)/κ;

if ί < n+\. Finally, set

a(Hi ίn+ι)= [ A - Σ απω,απ(0 I /K .
V ;*'• J

We will also use the notations

These numbers are determined by the condition that for every line L = P1 °̂  X
defined by equations tj = zp,jή^i, (i being fixed), the sum ]ζα(/O over all H G ^
meeting L trans versally, equals 0.

Set U =X- [ j f f ^ H C X. We will identify X - U//^^ H with the affine

space AN with coordinates t\,...,tN. For each // G ̂ , we define the function ///
on A^ as follows: fH.. = tt - tfjn ^ = t> - zs.

Let us define the following complex of vector spaces

> Ω° - ---- ΩN — » 0 . (28)

By definition, Ωl is the space of holomoφhic i -forms on U. The differential d is
the sum

d = dDR + ωa, (29)

where dDR is the de Rham differential and ωa denotes the left multiplication by the
closed 1-form

ωa - £ a(H)

where dlog(^//) = d(fπ)/ fπ We will write elements of Ωl symbolically as

/(fi, . . . , to) / Λ/,! Λ- - Λ Λ Λ , (30)

where / is a holomoφhic function, and

this expression should be considered as a formal symbol. The formal differentiation
of (30) gives the differential (29) since dlog(/) = ωa.

The symmetric group Σ acts on Ω* by the rule

Λ '" f\dtpi) = f ( t σ ( \ ) , . . . t σ ( N ) ) / dtσ(p{}Λ -- f\dtσ(pi} .

(31)
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The geometric meaning of Ω* is as follows. The form ωa defines an integrable
connection V = doκ -f ωα on the sheaf ΘU of holomorphic functions on U. Ω* is
the complex of global sections of the holomorphic de Rham complex associated
with V. It computes the cohomology H*(U,tf) of the locally constant sheaf ̂
of horizontal sections of V.

4.2. Consider irreducibles Li = L(Λi)\ we denote by vt G L, the highest vector; set
L — L\ <S> (8>Z,W. In this subsection we introduce, following [SV], a certain map

ω : LΛ, — > ΩN .

4.2.1. The subspace LAι is generated by all monomials of the form

where (Jι,...,Jπ) runs through Seq(n\/\K). Given such a monomial, we can con-
sider the rational function Bj jn.π(t;z), as in (26). Set

ω(x) = BJ} ? Λ;π(t;z) . /(t) . dt e Ω" , (32)

where Jt: = dt\ Λ Λ ί//^.

4.2.2. Theorem (i) The formula (32) correctly defines the map

ω-.LΛ, — > ΩN .

(ii) We /zflί e ω((n-L)A/) c dΩN~l. Thus, ω induces the map

ώ : Ln_Λ> — >HN(U,y) .

Proof. It is one of the main results of [SV], Part II. Cf. he. cit, Cor. 6.13. The
key result here is Lemma 3.5.1. D

4.3. Set Λn+ι = Λ'. Suppose that Λn+ι G C. Set m0 = k - (Λn+λ,θ) + l,Λ" = Λ' +
m^β. Consider the operator

(z fθr°'.I<Λ»—+LΛ>

as in 2.9.

4.3.1. Theorem. We have ω(Im((z fθ)
m°)) C dΩN~l.

Consequently, if all Λj 6 C, ω induces the mapping

ώ: W(zl9...9zn+l)—>HN(U,ίe)Σ>-.

The rest of this work will be devoted to the proof of the first statement. Note that it
is non-trivial only if Λ" ^ Λ. The last statement follows from Theorem 2.10. D

4.4. Resonances. Keep the notations of 4.3.
Let us call an edge any non-empty intersection L of hyperplanes H G ̂  . Set

a(L) = Σ a(H) .
H€C\HDL

For instance, consider the point LQQ = {(oo, . . . , oo)} C. X.
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4.4.1. Lemma. We have

β(Loo)=- Σ a(H).
πec

Proof. Easy. D

4.4.2. Lemma. Suppose that A" = A. Then

Σ a(H) = -mo .
HZC

Proof. From our assumption it follows that A' — A - m^β. Recall the notations
from 2.1. Note that mQ = k - (Λ',0) + 1 since Λ' = Λn+\. We have (Λ',θ) =
(A - m0θ, θ) = (A, 0) - 2m0, so

mo = k - (Λr, θ)+l=k-(Λ9θ) + 2m0 + l,

hence
(Λ,θ) = k + mQ+l . (33)

On the other hand, one easily sees that

Σ a(ij) = — f (/w0θ,m0θ)- WoX)a,-(a/,a/) ) = -(ml - m0(# - 1)) ,
\^i<j^N λκ \ i J κ

since
(az ,a/) = (v~l(oii),oci) = {a^a"1/*/,^) = sa^a~l .

It follows that

Σ a(H) = _ϋ^(yι?e)+ E ΦW) - -—(k + g) = -m,
κ \ i < N κ

(cf. (33)), and we are done. D

Now suppose that A" ^ A. Denote β: = A - Λ" = Σ^^/αi, M: = \β\. Let us fix
maps

p:[M]—> [r]

such that card(^-1(/)) = #/ for all z, and

X: [M+1,AA] — ̂  [r]

such that card((/?/)"1(/)) = m^ai for all / (recall that θ — J^α/α/). Let us define the
map π, (27), as

x/) i f I ^ J ^

The following lemma generalizes 4.4.2.

4.4.3. Lemma. The sum of a(H) over all H = HΪJ e C such that ί or j is > M
or H — H^s G ̂  such that ί > M, is equal to —mo.

Proof. Computation similar to the one in the proof of 4.4.2, shows that the sum in
question is equal to

— (-(Λ9 0) + m0 - g + 1 + (ft θ)) . (34)
K



Algebraic Equations Satisfied by Hypergeometric Correlators in WZW Models 237

On the other hand, our assumptions imply that

(A1, θ) = (A-β- m0θ, θ) = (A, θ) - (/?, θ) + 2m0 ,

hence
mQ = k- (A1, θ)+l=k-(Λ,θ) + (β, θ) + 2w0 + 1 ,

so

/w0 = -i + (Λ,0)-G8,0)+l .
Substituting this into (34), we get our claim. D

5. Resonance Identity

5.7.

5.7.7. We fix Λι,...9An <G ί)*; we set Λ = Σ"=1Λ We fix non-negative integers
k\9...,kr, set α = Y^i=lkitti,A' = A — α. We fix a positive integer m, and set /I" —
A1 + mθ. We suppose that A' ^ Λ" ^ A We set

We fix a map
π ι : [M] — [r] (35)

such that card(π]~
l(z)) = ^/ for all /.

Recall that θ = X)/=ι f l/α/' and a11 β/ > ° We set ̂  = |θ|. We fix a map

π2 : [̂ ] — M (36)

such that card(π2"
1(z)) = at for all /.

5.7.2. Let us introduce the following sets of independent variables: u = {uι}ι^i^M\
^(i) = {vj(i)}ι^j^A, \ ^ i ^ m, y = (J7 v(z'). Let us assign to every variable x a
simple root α(*) as follows. We set:

α(ι//) = απι(/);α(ι;7 (z)) = απ2(y ) .

Let us fix distinct complex numbers zι,...,zn. Let us define the complex numbers
a(x,y\ or a(x,zs\ where x,y are any two of our variables; we will call these
numbers exponents. Namely, set

a(x,y) = (α(x),αO>))/κ:; a(x,zs) = -(a(x)9Λs)/κ .

We set

for any p G [m] (these numbers do not depend on p). Let us consider the following
symbolic expressions.

/Λ»(U) = Π(«ί - zί)
α(""Zϊ) Π («, - «7 )

β(H/ B>) (37)
ϊ',5 i,j' i>j

Π (^(^)-^r("'(")A) Π (w/(p) - »Xp))β/j ' ; (38)

) /'(u,v), (39)
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where

/'(u, v) = Π hWp» Π (f, (/0 - urfww . π (»/(/>) - »y(?))e"
/? 1,7, p i,j;p,q:p>q

(40)
Let us define the following numbers:

C(m) = m + Σ(aU exponents involved in /') (41)

a = Σa(Vi(p\zs)\b= Σ eij\c = !>//;</ = ZXu/(/>)>"/) , (42)
/,5 ij: i>j ij ίj

in the definition of a and d a number /? G [m] is fixed; the value does not depend
on it.

5.1.3. Lemma. C(m) = m + ma + mb + ̂ ^>c + d.

Proof. Easy computation. D

5.2. Let t\9...9tn be independent variables. Let us define a differential (Λ - l)-form

v(ί) - v( f ι , . . .Λ) - Σί-iy-'f Λi Λ Λ Λ, Λ Λ Λπ . (43)
/=!

For any function /(ί) = f(t\9. ..9tn) we have

ί>§f ) Λ , (44)
ί=l Ok J

where dt := dt\ Λ Λ </fn. Let us consider a formal expression

/(/) = /(/,,...,?„) = Πtt -^"ΠU - fy)*" (45)
1,5 i>7

Differentiating formally, we get

d(/(ί)v(0)= Λ + Σ ^ + Σ - ί(OΛ (46)

5.3. It is known that all root spaces of our Lie algebra g are one-dimensional. It
follows that a root vector fg G Q-0 may be chosen in the form

fθ = cθ [fr(θ}] (47)

for some I(θ) = ( / i , . . . , /^) G [r]A and a non-zero c^ G C. We fix such a represen-
tation once for all. We also fix an unfolding of /($) with respect to U2 :

5.̂ . Let us return to the setup of 5.1.1. Let t = {*!,...,*#} denote the union

t = u U v ( l ) U - Uv(/w) (48)

and
f = t U { z 1 , . . . , z n } . (49)
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By definition, N := card (t) = M + mA. We order the variables t\,...,tχ by the
natural left-to-right order following from (48). So,

etc. The maps (35) and (36) induce the surjective map

π : [N] — + [r] (50)

with card(π-1(0) = qι + mat for all /. We set Σ = Σπ

 as m 3-13.
To each variable tt € t we have assigned a simple root α(f/) = απ(ί), and to a

point Zy we assign the weight —Λs. We introduce notations

a(ij) := a(ti,tj)\ a(ί,s) := a ( t ί 9 z s ) .

5.5. Note that we can rewrite the expression (39) in the following form:

Mu, v) = /Xu) - /0(v(l))Π(v(l),u) - /0(v(2))Π(v(2), v(l))Π(v(2), u) .....

^(v(m))Π(v(m), v(m - 1)) ..... Π(^),v(l))Π(v(m), u) , (51)

where

and

πwλvc/)) := ΠMO -
We will denote lΛ/(u9\) simply by /(u,v) or /(t). We will consider the complex

Ω*alg : 0 -̂  Ω°alg -̂  ---- >[%lg-^09

where Ωl

al is the vector space consisting of expressions

φ(t)l(t)dtPlΛ' Λdtpi9

φ(ί) being an algebraic rational function of t\9...9t^. The differential is defined in
the same way as for Ώ; (28). The complex Ω*t is naturally a subcomplex of Ω*;

it inherits the action of the symmetric group ^ = Σπ

We denote by $0 : Ωa'lg — > Ωa'lg the operator of skew symmetrization:

where |σ| denotes the parity of a permutation. We will denote by Sym an operator
of symmetrization Symπ, (23) acting on rational functions of u,v.

5.6. Let us fix n disjoint sequences /= (ϊ\9...Jn) such that I\ U (J In = [M].
Set Js = π\(Is). We have the corresponding monomial

x = xJ^.Jn = /JΊ "1 ® ® fjnυn e LAn . (52)

Let us define a differential form

A» = Bΐ,.,ΐn^ z) ' 1Λ"W Λ Λ Ω(l) Λ - - - Λ Ω(w) e ̂  , (53)
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where u := u\ Λ Λ UM, Bf ^(u; z) is as in (20), and

Set
Ωm = £/(Ωm). (55)

5.7. Let us consider a free Lie algebra n with N generators ft, i G [M] and
pfa,p G [m],a G [A]. We have elements

^ 1 In

and

'Λ := cβtVflβ)] e f t .

The construction of Sect. 3 gives us a map

£ : C/(n)f" —> £/(z)

for each I C [N]. Note that

Recall the notation (21). Pick an /-tuple of mutually distinct numbers (p\9...,/?/) G
[m]1. By Lemma 3.10.1 we have

„, Λ f n „
V . P\ f(s> I ί V 7 . ^ f(ί

jzs 'Jo I ' I Z^Z5 /0
1 / \j=l

for a certain rational function ^^^"'^(UjV). Let us describe this function more
explicitly.

Let us consider all rational functions of the form

,.,,

( }

where s\,...,Si G [«], q\,...,qi G [̂ ] and

O ^ K } U u / U

(the last union may be empty). Let us call such functions admissible terms.

5.7. 7. It follows from Lemma 3.10.1 that WPli-tpi(u9\) is equal to the sum of all
admissible terms with fixed (/?!,...,/>/•)•

5.7.2. Definition. For any i G [/w], the rational function Wι — ^(u,v) w defined
as a sum

α// ί-tuples of pairwise distinct numbers (p\,...,pi) G [m]z. We set WQ := 1.
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5.8. Theorem. We have an equality

Λ/(0)(ι;(/»))

m I m

•Σ Π CO) ^ Oι,vH. (57)
ι=0 V=' +l / J

Here

CO) := J+Ja +Jb + ~ c + rf ,

where α, Z>, c, rf G C are defined in (42). Equality (57) will be called Resonance
identity.

5.9. Let us deduce Theorem 4.3.1 from 5.8. From the definition (53) it follows
immediately that the form Ωm, and hence Ωm, is exact. Let us rewrite (57) in the
form

m [ m \

^m-Σ Π CO) ^(u,v), (58)
i=Q \j=i+l J

where

τr,<u,v) = 4/(u,'
)} . (59)

Now set m = mo. By Lemma 4.4.3, C(mo) = 0. Thus

Q _ V^
iώ/72o — π WQ

We have by definition, 4.2.2,

ω((z /0)w°Jt) = /(u,v

the summing over all wo-tuples (p\,...,pmQ) of pairwise distinct integers PJ G [m].
It follows from Lemma 3.10.1 that

where Λ: is as in (52). This proves that the map ω takes the image of the operator
(z fo)m° to the subspace of exact forms, thus proving Theorem 4.3.1. D

Theorem 5.8 will be proved in the next section.

6. Proof of Resonance Identity

We keep all the notations of the previous section.
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6.1. For each i G [m]9 let us consider the operators "partial differentials"

acting on our functions or forms. Note that in the expression (53) we can replace
all forms Ω(z) by the forms

Ω'(i)=cθ </(I){ W)) ' ΠWOX' - 1)) ΠW

• ̂ /(β)(
γ(0 ' v(v(0)} (60)

In fact, in the product of the first factor of Ωm and the first / - 1 forms Ω(/), we
have already differentiated the variables u and vq(j) with j < i.

We can apply (46) to (60), and get

0,v(ί- 1)) ΠWOXl)) ' Π(v(0,u))
a(Vq(i\zs)vg(i)

' Λ/(0)(v(0) I l + fe + z^
\ q€[A]\s(

+ Σ r̂

~ zs

In fact, the expression in brackets in (60) is the sum of expressions of the form
(45) with v q ( ί ) playing the role of ί's in (45), and ί's playing the role of z's.

Thus, we have

where

^ ..... AJ(θ}(v(m))

T(m))}9 (62)

(63)

6.2. Let us consider the function T(m). Using the identity

7̂̂ 7 = 1 + -τr-Tr (64)

many times, one sees that T(m) may be rewritten as

T(m)= l + α + Z? + ( m - l )
zsa(Vq(m),zs)

υq(m)-zs

+ Σ ,-;.τ"r7 (βs)
Let us denote

C(/w) = ! + « + * + ( / w - l ) c

Note that C(1) = C(1).
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Let us consider the expression v (^_u. for some j G Is C [M], and replace it by

Uj - Zs Zs

Όq(m) - Uj Όq(m) - Uj '

The next lemma is our main technical statement. In its proof we use in an essential
way that θ is the highest root.

6.3. Highest Root Lemma. We have

„
j£Is ,<ie[A}v<l(

Proof. Suppose ίs = (i\,...,ip). According to Key Lemma 3.5.1 we have

Brs(uls;zs) = E S(ϊ,,σϊs) EσΓs(u,s;zs) ,
σ£ΣP

where σls := (iσ(\), ,iσ(p)) Let us consider one product

for some j G Λ, say 7 = /σ(/?) for some p G [P], and rewrite Uj - zs as a sum

The term (66) becomes a sum of terms corresponding - in diagrammatic notations
of Sect. 3 -to graphs

Now let us fix a decomposition Is = /' U 77/ with 7X n 77/ = 0 and 7/x Φ0, and a se-
quence /x G Seq(Γ). Let //7 G Seq(I"} be the total order induced from /s. Consider
the sum of terms (66) (with their coefficients) which produce the above graphs with
the right interval from ir to s equal to /', the left interval varying.

One sees from 3.5.1 that the factors corresponding to the left interval give a
multiple of ^//(u///). After multiplication by Aj^(\(m)) and summing up over all
connections between the left interval and the group v(m) and symmetrisation, we
get a multiple of

by Lemma 3.12. But [f^fθ] is zero since θ is a highest root. D

6.4. Corollary. The Resonance identity is valid for m — 1.

Proof. In fact, making the above substitution in the expression for Γ(l), and
taking into account the Highest Root Lemma, we are left (after the symmetrisa-
tion) with the expression C(l) -f- JFι(u,v(l)) which gives the Resonance identity for
m=l. D
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6.5. We will proceed with the proof of the Resonance identity by induction on m.
Suppose we know it for m — 1 . Let us set

mD(Γ} = π CM .j=i+\
We also denote by wfm) = ^(m)(u,v(l ),..., v(m)) the function denoted earlier
PF,(u,v). By (62), we have to show that

T(m)}

i=Q

By induction hypothesis, one is reduced to proving that

V'X"1'0) T(m)
/

= Sym\Br ^(u zH^vd)) ..... AJ(θ)(v(m)) f)D<M)0?m)} . (67)
I i=Q )

By definition,

P\, ,Pi

the sum over all (p\,...,pi) G [m — 1]1

9 PJ mutually distinct. Let us pick such
(/?ι , . . . ,/?/) . Consider a product of an admissible term from ^r(/n~1)piv ,p/) (see

(56)) and a summand from T(m) (see (65)):

/) (68)

(j < m). These products occur in the left-hand side of (67).
Two cases may occur.

1st Case, j 0 {pi,...,/?/}. Then we can replace the factor

(69)1 - y CO

in the term (68) in the Ihs of (67) by —\. In fact, we are doing the symmetrisation
which permutes j and m, and we have

yCO
vq(m) - vqf(j) υqf(j) - υq(m)

2nd case, j — pr for some r.

Claim. In this case we can replace (69) by

, *Sr ,., (70)
vq(m) - υq,(j)
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In other words, if we substitute

υg(m) - vq,(j)

into the Ihs of (67), we get 0 after symmetrisation. This claim is proved by the
argument identical to the argument in the proof of Highest Root Lemma 6.3.

Let us denote for brevity

Using the Highest Root Lemma, we can rewrite the Ihs of (67) as

SyJV(t;z). "gy^" Σ ^(m~')Pl ..... "'

a(υq(m)9Uj)zs\ / a(υq(m),vqf(j))\
' 2-j (w\\ a / \ 7 /

.. Σ

i ^ s s j

a(υq(m)9Uj)zs

υq(m)-zs j€ls υq(m)-Uj

--^ [ q , q r S r

2 r=\q,q< Vq(m) - Vqt(pr) )} '

We have to prove that (71) is equal to

Symίy(t z) £^w) Σ W(m}p'^p'i\ . (72)
I '=o P;, ,.,/»; J

(5. (5. Let us consider more attentively the nature of symmetrisation. Let us denote
by

π(m) . [Λη = [M + mv4] — > [r]

the map (50), and by
π(0 : [M 4- L4] — > [r]

the analogous map with m replaced by / G [m]. Denote

The symmetrisation in (71), (72) is done over the group Σ — Σ^m\ Note that
is equal to a disjoint union

where (im) G ̂ m^ denotes the transposition of the whole group v(/) with v(m).
More generally, the symmetric group Σm is naturally embedded in Z(m)-it acts

by permutations of groups v(z). This subgroup evidently fixes 7(t;z). Let us denote

We have
SymΣ(m) =
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Let us pick mutually distinct (p\,...,pi) G [m — I]1, and consider the partial
symmetrisation of the corresponding summand in (71):

r(t
l

S y m r ( t z )
i=o ' V s,q\ vq(m)-zs

a(Vq(m\Uj)zs\ m-i- 1

where

ι=o \ *,Λ vq(m)-zs

a(vq(m),Uj)zs\ _ m-i-\ ̂

jels vq(m)-Uj ) 2

' α(^λV(^)KΛl°m)

 (74)

άl,γ ^(w)-v(^) ))

Consider the jth summand Sj. Two possibilities may occur:

(0 j £ [m] - {p\> - •> Pi}- In this case

= F(t z) - D?- c(m) -

(ii) y = /7r for some r. Then

as one sees from definitions.
Now, if we pick mutually distinct (// 1 ?..., /?•) G [m]1, we see that the contribu-

tion into W^Pi'-'Pi from (73) comes with a coefficient

C(«) - c (» - 0 + 7 = (75)

(76)

6.7. Lemma. P

C(m) = (m - 0 C(m) -
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Proof. Immediate. D

It follows that (75) is equal to D\m~l}C(m} = D(™\ It follows that (71) = (72)
which in turn implies mth Resonance identity. D
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