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Abstract: We propose a quantum lattice version of B. Feigin and E. Frenkel’s con-
structions, identifying the KdV differential polynomials with functions on a homoge-
neous space under the nilpotent part of sl,. We construct an action of the nilpotent
part Uyn,. of quAlz on their lattice counterparts, and embed the lattice variables in
a Uyny-module, coinduced from a quantum version of the principal commutative
subalgebra, which is defined using the identification of U,n, with its dual algebra.

Introduction

In [FF1, FF2], B. Feigin and E. Frenkel propose a new approach to the generalized
KdV hierarchies. They construct an action of the nilpotent part 7, of the affine
algebra g on differential polynomials in the Miura fields, connected to the action
of screening operators. This enables them to consider these differential polynomials
as functions on a homogeneous space of n,, and to interpret in this way the KdV
flows. They also suggest that analogous constructions should hold for the quantum
KdV equations.

In this work we propose a quantum lattice version of part of these constructions.
Following ideas of lattice J¥-algebras, we replace the differential polynomials by
an algebra of g-commuting variables, set on a half-infinite line. The analogue of
the action of [FF1] is then an action of the nilpotent part Uyn, of the quantum

affine algebra quAlz. Recall that the homogeneous space occurring in [FF1] is ]V+ /A,
where ]V+ and 4 are the groups corresponding to 7, and its principal commutative
subalgebra a. A natural question is then what the analogue of a is in the quantum
situation.

We construct a quantum analogue of a in the following way: we use an isomor-
phism of UqZ+ with the coordinate ring C[Z§+]q ([Dr, LSS]) and transport in the first
algebra a twisted version of the well-known commutative family res diA* trT(A).

We prove that this subalgebra of Uq5+ gives Ua for ¢ = 1. This proof uses char-
acterizations of these algebras as centralizers of one element.
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Using a realization of the coordinate ring C[1A5’+]q in g-commuting variables, due
to Volkov, we find explicit expressions for the representation of Uya in operators
on the half line. A symmetry argument then shows the analogue of the result of
Feigin and Frenkel: injection of the lattice variables in a module coinduced from

Uya to Uyby.

1. The Approach of B. Feigin and E. Frenkel

Let us recall briefly the part of [FF1] we will be concerned with (in the sAlz case). Let
¢ be the free field on S'{P(x), p(»)} = &'(x — y), and ¢’ = ¢. There is an action of

the upper nilpotent part of s/, on the algebra C[¢(x),d’(x),...] of polynomials in
B(x), ¢'(x),..., given by O P(d(x),¢'(x),...) = e~ [s e, P(¢(x), $'(x),...)}
and Q_P(¢(x),§'(x),...) = e?{ [ €77, P($(x),¢'(x),...)} ; O+ and O_ are the
usual generators of 7, C ;lz, satisfying the analogues of Serre relations.

There is a duality between Un, and C[¢(x), ¢'(x),...], given by

Uiy x Clp(x), ¢’ (x),..] — C
T x P e(TP) = (TP)((x) = 0,¢'(x) = 0,...).

Here ¢ is the operation of suppression of all non-constant terms in a given differ-
ential polynomial.

Let a C ny be the principal commutative subalgebra, spanned by Q. + Q_,
[0+ — Q_,h(D)],i = 1, where A(i) are inductively defined by A(1) =[Q4, O-],
h(i+ 1) =[Q4+,[0-,h()]]. Then e(xP) =0, if x € a. The pairing thus factors
through a pairing (C ®u, Uny) x Cl¢(x),¢'(x),...] — C; it enables to identify
C[¢(x), §'(x),...] with C[N,/A] as 7 -module (N, and A4 being the groups cor-
responding to 7, and a).

2. The Lattice Setting

Let us consider variables x;, i < 0, satisfying the relations xpx; = qx; if i < j;
they are thought of as analogues of variables e”(~") and polynomials [],.,x/" with
> i<o% = 0 as analogues of the differential polynomials in ¢(x), ¢’ (x),..., on the
half infinite lattice i < 0, i integer (the point 0 of this lattice corresponds to x in
the continuous approach.)

On the space C[x;x; i<o of degree zero polynomials, we define the operators

04,0 and K by

Q+P = [in’P:] x()_la Q—P = [inap] X(),KP :xOPxO_l :

i<0 i<0
Lemma 1. The operators Q., Q_ satisfy the q-Serre—Chevalley relations

010+ — (@ +14+¢ 05050+ + (¢ + 1 + ¢ 3)0+0:0% — 005 =0,
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and the relations KQy = q¥'Q1K. So they define an action of Uqg+ C qu72 on
C[x,«xo‘l]i<o (the level of Uysl, is taken to be zero).

Proof. We have

Q+<fo[.> — Z (q—zs<j1_‘. _ ,‘<,1\> H 5(1+f)1/ —f
i<0 Jj<0 IS0

and

i<0 j<0

if > o; = 0 (the products are written with lower indices at the left, e.g. ]—[,<0x =
i0
oz,, . 0)

Let us associate to [],.,x/" the element e2i<0% in the (commutative) algebra
Cle*%,i < 0]. In this representation, O can be written

Oy = Ze:f:éj <q:FZ"'<fF(K _ inAvg‘/;zfix) )

Jj<0
Pose

A A A
— ¢ Z.\'S'*L“. - ¢ _Z_\'S 1—%_ /G —Z.\'<'~{“, - _ /=1
aj_e/q —-/rC..s’Gj =e g —»/(C..s’ej__e./q 71970]. _Oj .

Then
—X 0+ 20, 0o =-30+ Y6
Jj<0 Jj<0 Jj<0 Jj<0
Remark that if j > k, 0,0, = q0,0;, 0,0,, = q0,,0;, for all k and k', and 0,’{,9;., =
qé’j’.,@,’{, if &' < j'. The two first relations can then be deduced from the following
result ([F, KP]):

Lemma 2 (B. Feigin). If st, i € Z are variables such that for i < j, sfsj/ =
qeglsj,sf,s,e’ =41, then s* = Zzsli satisfy the g-Serre relations of quAlz.
i€

Proof. (Note that we may have only a finite number of non-vanishing s ) Ite-
rated application of the coproduct of U;n, gives an algebra morphism Ui g —
(Uqﬁ+)@z, where ® denotes the twisted (w.r.t. root graduation) tensor prod-
uct: (a®@b)(c@d) = gl¥lllac®bd; in Ui, the degrees are defined by |Q,|=
—|0-| = 1. We then have algebra morphisms Uz, — C[s], defined by Qi — s,i,
and (Uiy )2% — Cls*,i € Z) (because ClsF)2% = C(sF,i € Z)/(sfsj.l 5] s
if i < j)).

The image of QO+ by this last morphism is the image of > -  ®Q4+®1---, i.e
st

The two last relations are obvious. W

Remark. The operators Oy, K, defined on the space C[xiil]i <o of arbitrary polyno-
mials by Q3P = [, _oxF, Plxf", K = Adx (where [a, b), = ab — q'“ll’lpa, and



200 B. Enriquez

I TLi<ox] = > <o ), satisfy also the relations of Lemma 1. Note also that the
formulas for the non-modified screening action on the half line [} x4y, - ], are
also expressed by the formulas giving Q4 in variables &;, so that the following
results are also valid for the non-modified screening action.

3. Classical Results on the Lattice

From Lemma 1 follows that the vector fields Q"i’ =F> <0 eiéi(@% +2% . ; f? ,
acting on Cle™,i < 0], satisfy the usual affine s/, Serre relations. Let ¢ be the
automorphism of Cle®%,i < 0] defined by o(e**) = ¢¥<. Then 0,0% = 0 (a.
of a vector field denotes its conjugation by ¢.) So, 6.(Q¢ + Q)= Q¢ + Q<.
Similarly, ¢, ([0%/, 0<']) = —[Q¢, 0°']; posing as in 1, h(1) = [0, 0], h(i + 1) =
[0, [0, h(i)]], we show by induction that a./h(i) = —h(i); if it is true for k(i) then
o.h(i+ 1) =[0,[0%, —h(i)]] = —h(i + 1) (by Jacobi identity and [A(i),h(1)] =
0). Then ¢.[QY — Q< h(i)] = [0 — QY,—h(i)] and so [QY — Q°,h(i)] is o-
invariant. In conclusion, all vectors fields of the subalgebra a C 7., spanned by
0% + 0, and the [QY — O, h(i)], i = 1, are g-invariant.

Note that if the vector field X = ZKOX(@)E% is o-invariant, we have X;(—¢;)
= —X;(¢;), s0 Xi(0) = 0. Let then ¢ : C[e®<,i < 0] — C be the map of evaluation
at & = 0. We have shown that e(xP) =0, if x € a, P € C[e*%, i < 0], and so the
pairing

Uny x Clets, i < 0] — C,
(T,P) v £(TP)

factors through (C ®y, Uny) x Cle®, i < 0]. )
Let us now show that the resulting morphism of 7, -modules Cle*</, i < 0] —
(C ®us Uny)* is an injection. For this, it is enough to show that the Lie algebra

generated by 0F and Q! contains vector fields X" =37, - | XIE - Ep)
with X{"(0) = 0 for k < n, X{"(0)%0 for any n = 1.

We can take XV = Q¢ and XD =[Q¢ + 0/, X(M] — 2X"_ By combina-
tions of products of the X | it is then possible to construct in the algebra generated

by Q¢! and Q¢/, differential operators of the form Y /', ... (EX )" (ﬁ)x’V
+ left ideal generated by m, k z 15 with fo 5, (0) = 6y . sy:p,.--.py» fOr any

¢
R

. . \ N e
fixed N =2 1 and f8y,---,fn = 0. Then, any non-zero combination Z? /y.,,ezf:l”*—'
will have non-zero pairing with a combination of the operators constructed above.
We have thus shown:

Proposition 1. The pairing defined above between Un, and Cle*<i, i < 0] defines
an injection of the latter space in the space of formal series at the origin of Ny /A4,
which is an algebra and n-module morphism.

Remark that the image of this injection does not contain C[]V+/A], because the

latter space contains an element (x;, or ¢ in the formalism of [FF1]) such that

“lx; = 0%x; = 1, and such an element does not exist in Cle*<, i < 0].
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4. Quantum Principal Commutative Subalgebra

Let us assume ¢ to be generic and denote by UqZ+ the algebra generated by X, O,
subject to the relations of Lemma 1; UqB+ is a Borel subalgebra of the full quantum
algebra quAlg (at level zero). Denoting by Uqg_ the opposite Borel subalgebra,
we then have an algebra injection Uq3+ — (Uqg_ )* ([D]). The coordinate ring

corresponding to U,,?bl, denoted C[E-]q, is the algebra generated by f;;.,, i, j =
1,2,n = 0, with #;5,0 = 0 and relations

RO, WTOTD () = TD() TV (L)R(2, 1), and detyT(2) = 1

(see [T]), where T(2) = (t;(A))izij<2 = (D, 20 tijinA" N <ij=2, and R(2, ) is pro-
portional to the R-matrix of [J]:

o _1+g"2 1-q'2 A
RO, p) = =gt g )+ =5l (it 1 o h = (g = 1)(Af @ e+ pe ® 1),

withk:((l) _01>,e:(8 é)f:((l) 8>‘Wewill show:

Lemma 3. The injection Uqg+ — (qu_ )* induces an algebra isomorphism be-
tween U,b, and C[ZA?_]q‘

Proof. The pairing between C[ZA?_]q and Uqg_ is given by (fjj,X) = res;—ood"!

(ilm o T;(x)|j)dA, 1) = (é), [2) = (?), is the notations of [LSS], app. This en-

ables to identify 11, 172, €1 of loc. cit., 7 with t12.1, ta10, ti10 = L5, Tespectively.

The statement can be seen inductively from the relations defining C[E’_]q (for ex-

ample, the relation (1 — ¢)A(t(A)1(k) — La()t1(2) = g3 (2 — @)lta1 (1), 12(2)]
gives (1 — g)(t2.1t11:0 — tazoting ) = q%[tzm, t12:1], and the determinant relation gives
atirotaza + Ptinitae = tiotiag, with o,f — 1 when ¢ — 1, so combinations of
these relations give #;.; and #.; in terms of the generators). M

Remark the difference with the classical situation, where C[Z?_]q is not finitely
generated; though as Poisson algebra it is generated by t]il;lo, t12; and #19. Note

also that Ui, can be considered as possessing two classical limits, one being the
non-commutative algebra Un, and the other being the Poisson algebra generated by
Oy, O— and relations {Q4,{04+,{04+,0+}}} = 03{0+,0+} (it is the limit for
h — 0 of the g-Serre relations, with {a,b} = lims_o3[a,b]) and g = €"); these
relations are satisfied in particular for Q4 = fsl et?, ¢ classical free field.

We will now construct a quantum analogue of the principal commutative sub-
algebra of sh.

Proposition 2. For u(i)=d,Ad(A =e+ if, d any diagonal matrix, indepen-
dent of 1), the set of coefficients of ¥(k = 0) in tru(2)T(L) forms a commuta-

tive family in C[§+]q. For u=4 (d' 0 , with d\d,+0, the classical limit

0 d;

of the corresponding family in UqBJr is the subalgebra of UEJr generated by
the principal commutative subalgebra spanned by dye(i)+d,f(i + 1), i = 0(e(0)
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and e(1) denote the elements of UZ+ corresponding to ny, w2 of [LSS], and
e(i + 1) = [e(0),[f(1),e(D]], fG+1)=[f(1),[e0), f()]] for i = 1).

Proof. For the first part, we first check that u(1) ® u(u) commutes with R(4, 1) in
the two cases. Then

tru(A)T () u(u)T(u) = tru(2) © u(u)T (AT ()
= tru(1) @ u(1)R(, )~ ' TH )TV (R, 1)
=tru(A) @ u(p)TP)TO(A) = tru(u)T(p)tr u(A)T(A).

To prove the second part, we first observe that the enveloping algebra of the
principal commutative subalgebra is exactly the centralizer in UBJr of dye(0) +
dy f(1). This can be seen in the associated graded algebra C[Bi]; in the basis z; =
image of A(i), i = 0 [#(0) is the element of Ug+ corresponding to &; of [LSS],
and A(i + 1) =[e(0),[f(1),A(i)]] for i = 0], x; = image of dae(i)+df(i + 1),
i =2 0, and y; = image of dye(j) —d f(i + 1), i = 0, the Poisson bracket with x
is the vector field zi;02(—1)i+1yi6i,;i + (—1)i+1d1d2hi+16iy'i; ordering the basis as
(zi» hos Y0, h1, y1,- -+ ), we see that the only polynomials in z;,A;, y; in the kernel of
the vector field are those depending on z; only.

The image in UZ+ (by the specialisation ¢ = 1) of the commutative subalge-
bra of UqEJr corresponding to tru(4)T(A) is commutative, and it contains d,e(0) +
dy f(1). It remains to see that the subalgebra generated by tru(A)T(4) is maximal as
a commutative subalgebra of C[§+]q. We will show it for the corresponding Pois-
son subalgebra of C[fh]. Denote T'(4) = (¢;(4)) = (gg:; ;E;;), with a(l) =
D onm0@n", etc. (bg = 0). The Poisson brackets between the variables a,,b,, -,

are given by {T(1),®T(p)} = [r(4, p), T(1) @ T(w)], with r(4,p) = %%ﬁh Qh+
2 f Qe+ -2e® [ (trigonometric #-matrix). Let us prove that the polynomials in

J—qt -

a,,,lb,,; -, comrfrlluting with b — ¢¢ (to simplify; the proof with d»b; + d;c instead
is similar!, are exactly the polynomials in b, — c,(n = 0). By specializing for
u =0 the formulas for {a(A),b(u)},- -, we get {b — co,a(A)} = (b1 + co)a(L) —
2a0(%2 +¢(2)),  {b1 = co, 22 + c(A)} = 4(doa(2) — apd(A)),  {b1 —co, X2 —
c(A)}=0. ' )

So, {bl — Cos an} = (b1 +co)an —2ao(bpr1+cn), {bl ~ €0, by +Cn} =4(doan+1
- aod,,+1), {bl — Co,b,,_H — C,,} = O, for n g 0.

From det7(A) =1, we obtain aod,y| — doans1 = —2doans + cobny1 + cnbi+
terms in b;,i £ nycii £ n—1,a;,i £ n. Note that cob,i1 + c,by = %[(co + by)
(cn + bpt1) — (by — co)(bur1 — ¢u)]. Pose for i =2 0, z; = b;1 — ¢; and x; = biyy +
¢;. The polynomials in ay, b,,c,,d, are then the polynomials in a; Uanxi,zi(i = 0).
In this basis the vector field 0 = {b; — cp, } is expressed by d(a,) = xoa, — 2aox,,
0(xy) = 2doans1 + txox,+ terms in a;,i < nx,i < n—1,z;, and d(z,) = 0. The
same argument as above can then be applied, with ordering (zi,aoi‘,x,,al,xz,- -4).
Explicitly, let P(z;,a;,x;) be a polynomial, and x; (or a;) be the greatest terms on
which P depends non-trivially ; then the terms in dya;+; (resp. apx;) of OP will

! (here d; denote the coefficients of the diagonal matrix)
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be 2 doa,+1 (resp —2« - aoX; if 0, and —;%%aoxo else); 0P = 0 implies then
FX; = 0, (resp. 7, vao =0), contradiction.
As a by-product of this proof, we obtain:

Corollary. For q generic or q = 1, the centralizer of Q. — Q_ forms a maximal
commutative subalgebra of Uyb. .

Proof. For g =1, it is the first part of the proof above. For g generic, we translate
the statement for C[§+]q, and use the limit ¢ — 1 and the second part of the proof
above. W

We will call this subalgebra of UqEJr its quantum principal commutative sub-
algebra and denote it U,a; note that Uya is not a Hopf subalgebra of Uqg+ (ais
already not a subbialgebra of E+ ).

S. Realisation of U,a in ¢g-Commuting Variables

Let us go back to the setting of Lemma 2. It gives an algebra morphism U,n, —
C[s,-i], and also by composition Uyn, — C[sl-i]/(s;“tsf‘E =¢,), ¢q; being invertible
scalars. Let us describe the image of Ua by this morphism. For this we need to
construct the morphism C[1§+]q — Clk, s,-i] deduced from UqZJr — C[k,s,-i] by the
isomorphism Uq3+ o~ C[§+] (k is an additional variable, with ksft = q¢%siik, and
we prolongate Uyn, — C[s,-i] by K +— k). From Lemma 3, we see that it is defined
by 110 — &, tzzo — k7Yt s, e — Y s

Let 4, u be auxiliary variables, with ku = q¢2uik,, other relations being
commutation relatlons and [k =k, []; <lkji‘ uf 1k =s7. Note that we
may impose that u ut = - i Following Volkov ([V0]), we remark that the ma-

k .
), and hence also the matrix 77(4) = [[=>° 1

. 1
trices ———— T
(=299 \ Jut k i=—00 (1—/qgq;)"/?

(;} k_ ) satisfy the relations R(4, u)T"(A) DT (1) = T' ()P T (L) VRO, p),

detq lT’()) = 1. Denote T'(1) = (4;(4)), ;;(2) = 3,50 %;,A". The mapping from
C[B+] to Clk,s; £1, sending #;;, to 1.,
f11.00 Boo» tp, and 15, are respectively k, k=", Y7 s, 37, this morphism is the
desired composition C[§+]q ~ Uq3+ — Clk, sii].

The image of U,a is then generated by

tél;n_t{Z;n+l :' Z (Hk) < H k > : 12,,+1 ( H k)
1 <-<ippgi <n 1 <i<ip i>Iny
(Hk ) ( U.kf)“?i" :m.( IT & )
1<iy 1 <i<ip >

+ > scalars (analogous expression with 1 replaced by p)
p<n

thus extends to an algebra morphism; since
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for n = 0, which can be written

! / = tom gt Tt T
Bim — homsr = > SivSiy ©  Siger T S0 S Sign
i) <. <iypyy

+ > scalars (analogous expression with n replaced by p).
p<n

We have proved:

Lemma 4. The image of the principal commutative subalgebra of Uyn,, by the
mapping defined in Lemma 2, is the subalgebra of C[s,«i] generated by

+ o + +
. Z SiySiy ** Sigepr T SiySiy T Siggy Jornz0
1< <iptl
Note that in the case where there is only a finite number N of s the image
of Uy,a is finitely generated (the sums vanish for n = [l 2* '1). One may think that
the elements #5,., — f{.,,;, for n = [%31], generate the kernel of the morphism
Uy — C[sii], and that this morphism is injective if there is an infinite number
+
of 57,

6. The Pairing Between U,n. and the Lattice KdV Variables

Recall that in Sect. 2, K = Adx, :q—z"“’#ﬁv =0, (posing & =0). The argu-
menti of Sect. 2 show that the operators O, = =2 i<l + > <00 =04+ 0,
and Q_ = =37, 07+ 3,00, (where 6 = 03" ') satisfy the g-Serre relations.

Let us consider the algebra mapping ¢ : Cle- +4] — C, defined by e +— 1. We
can compose it with the action of Un; (by O, and 0O_) on C[e*<], and obtain
a pairing between Uyn, and C[ei"].

Let us show that for any polynomial P € Cle*<], and n = 0, e((tarn —
tizn41)P) = 0. Ordering the 0;,0’ by (0_;,0_5,---,---,0"_,,0), Lemma 4 shows
that

laj

(t21;n = N2+l )P = < Z (P:(P; o (pgnﬂ - Z (,0,_;(0,-; o (pi_217+1> P,

iy < <igpal i) < <igpyg

(pii is the list (9fl,~~,0(’]i). We split each of these sums in two parts: the
terms such that for some o, ¢;, = 0,,% and ¢;,,, = 0,,, and the other terms for
the first sum, and the terms such that ¢, =0, and ¢; =6/ , and the other
1 2n+1 2+1
terms for the second. We can define a bijection between the sets of remaining
terms in the following way: to ¢, @i =+ @y, With ¢ =0, and @;,,,, = 0},
we associate qoi;goi3-~~(pi2,,+19;11 if o> f, and OECPI', @y, i a < p. In
both cases, £((¢;, <pfz_ "+ @iy, — its associated term) P) = 0. Indeed, in the first

= e"fﬂlqz“'é”?. Since o+ 1 is larger than all

indices occurring in @ - @iy, e”“»+1 can be translated to the left (in the

. <
case ¢, = e‘-“qqu %, and 0/

2 we note also ¢ = ¢;,0 =0,
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expression @ - - @, 0;;1) without changing the result, and there is also no cor-

rection due to the transport of qz‘g“(“is to the left, because it has to cross the
same number of e and e~ %, with all these i and j less than «. In conclusion,
we can identify ¢;, (pfz_ - Qpy,,, With es*Tx+1 (its associated term). Similarly, in
case a < f, ¢, (p,’z— “- @y, is identified with e™*/ ~<+1 (its associated term) so if
a%f, e((9iy @i, Piy,,, — associated term)P) = 0.
For the first parts of the sums, we divide them in partial sums X,, with ¢; = 0,
— — -  — — —
and ¢;,,,, = 0, (resp. ¢, =0, and @iy = 0,01)- Then 0,07 @i -y 05, =
: g _ _ _ _ i e - 2
e‘:x+l+$1+l ¢i2 (pi3 N (pfzn’ and 60( (Pi2 qoi3 . (Plj,, el = e TSt (piz (pl_3 N (pizn—] (PiZn'
So e(X,.P) =

>

=& Z (p’,;(pi3 e (pi;” — quz(pi; e gDiZn P
i1(2) i <igy <ippy1(2)

this is an expression of the same type that the expression we started with, with
smaller degree. So we can use an induction argument to show that these expressions
vanish.

So e((t21: — tizm+1)P) = 0 as claimed. And we can state the first part of:

Theorem. The pairing between Uyn,. and Cle*<], given by

Uity x Cle=5i] — Cle*] - C,

where the first map is the action of Ugn, on Cle*], factors through a pairing

(C ®Uqa Uqﬁ+) 2 C[eiéi] - C,

which induces an injection of Ugny-modules Cle*] — (C ®u,q Ughy)* .

To prove the injection statement, we note that the classical limit of the operator
0, is @Cil = 0% + 1. Let ¢ be a function on N, such that Q. =Q_¢ = 1;¢
is (up to an additive constant) the function assigning to exp(aoe(0))exp(f1 /(1))
exp(aje(l)) exp(B2f(2))--- € N,,e**P1 (in the notations of Prop. 2). Denoting by
1 the injection C[e™%] — (Cg,,Uny)* provided by the operators O, the analogous
mapping 1, provided by @i, will be 7 = @1 (composition of 1 with the multiplica-
tion by ¢), and so will also be an injection. Since by [LSS], the family U,n, is
flat at ¢ = 1 (PBW result), and by Prop. 2, the limit of Uja is Ua, the quantum

mapping Cle*“] — (C ®y,q Uyny)* has for limit the classical mapping Cle*<] 5
(C ®uy,a Un,)*, which is injective, and so is injective.

Remerciements. Je voudrais remercier Mmes Harmide et Truc pour la frappe de ce texte.
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