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Abstract: Using properties of ordered exponentials and the definition of the Drinfeld
associator as a monodromy operator for the Knizhnik-Zamolodchikov equations, we
prove that the analytic and the combinatorial definitions of the universal Vassiliev
invariants of links are equivalent.

1. Introduction

Vassiliev's knot invariants [1] contain all the invariants, such as the Jones [2],
HOMFLY [3] and Kauffman [4] polynomials, which can be obtained from a defor-
mation Uh(&), usually called quantum group [5], of the Hopf algebra structure of
enveloping algebras U(&)9 where ^ is a semisimple Lie algebra.

For a compact semisimple Lie group G with Lie algebra ,̂ observables of
the quantized Chern-Simons model give knot invariants [6] associated to Uh(^} at
special values h = 2πik~l, k a positive integer. The coefficients of the expansion
in powers of h of these observables are examples of Vassiliev invariants. This is a
particular case of a general theorem [7], which states that for all h the coefficients of
the power series expansion of the invariants associated with semisimple Lie algebras
are Vassiliev invariants.

By treating the Chern-Simons model with the conventional methods of per-
turbation theory, the coefficients of the powers of h of the observables can be
computed [8]. Feynman diagrams and Feynman rules are the main tools of the
computation. Given a knot, or more generally a link L, and the degree n (order in
perturbation theory) or power of h in which one is interested, the corresponding
invariant Vn(L) results from the application of a Feynman rule W<$ to a finite lin-
ear combination Z^S(L) of diagrams. The vector space Dn of diagrams of degree
n is of finite dimension, and Z^S(L) £ Dn depends on L and on the form of the
Chern-Simons action. The Feynman rule W<$ depends on ^ and the representations
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occurring in the definition of the observables. It is an element of the dual space
D:, and Vn(L) = (W,Z£s(L)).

Here we have used Bar-Natan's way [9] of describing Feynman rules and
diagrams. He found that the diagrams and rules of Chern-Simons theory obey a
small number of fundamental properties, and this led him to define general dia-
grams and rules, the latter which he called weight systems, by these same prop-
erties. Kontsevich [10] discovered an integral formula for an invariant Zn(L) G Dn,
which plays for generic h the same role as Z^S(L) does for the special values in
the Chern-Simons case. The main ingredient hiding behind it is the flat connection
associated with the Knizhnik-Zamolodchikov equations. The formal power series
Z(L) — Σn>$Zn(L)hn is called the universal Vassiliev invariant, since by varying

W in (W,Z(L)} one gets all the invariants constructed from a deformation of the
identity solution of the Yang-Baxter equation.

The deep questions remain: do the Vassiliev invariants form a complete set of
knot invariants? Are there any other Feynman rules (weight systems) than those of
the type Wy associated to Lie algebras? The following troubling result is related to
the second question: Vassiliev invariants are invariants of oriented knots. However
all Vassiliev invariants (W<$, Zn(L)} are independent of the orientation. Is there
any weight system W which can distinguish the two orientations of a knot? The
simplest example of a knot which is not isotopy-equivalent to the same knot with
the reversed orientation can be found in [11]. It has 8 crossings.

The knot invariants constructed using the representations of Uh(&) have been
generalized to all quasi-triangular Hopf algebras by Reshetikhin and Turaev [12].
Their construction is purely combinatorial, the proof of invariance consists in
verifying that the Reidemeister moves do not change the relevant expressions.
Recently, similar combinatorial definitions of universal Vassiliev invariants have
appeared [13,14]. The aim of this paper is to show that the combinatorial and the
analytic definition of Kontsevich are equivalent. More precisely, since the combina-
torial approach leads naturally to invariants of framed knots, we will show that it is
equivalent to a variant of the Kontsevich formula, which was written originally for
unframed knots. The same notion of Kontsevich integral for framed knots appears
in [15]. However here we will define it in a way which does not require the framed
knot to be presented as a product of tangles with special properties.

As we were finishing this paper, we learned that the equivalence of the com-
binatorial and analytic definitions had been shown before in [16]. We believe that
our methods make the proof more direct. While the authors of [16] work with the
individual terms Zn(L) which are iterated integrals and are led to long computations
in order to identify these terms with the corresponding terms of the combinatorial
invariants, we essentially treat the whole series Z(L) at once. It turns out
that the main contribution to Z(L) is a type of series called ordered exponen-
tial in the physics literature. Ordered exponentials satisfy many interesting, but not
well-known, identities which makes them very powerful. These identities have been
recently used in the context of quantum groups, in order to compute the univer-
sal quantum ^-matrix from its classical counterpart [17]. A crucial step in the
proof of equivalence is to identify an expression for the Drίnfeld associator [18,19]
among the Kontsevich integrals. We do it quite naturally using only Drinfeld's
definition of the associator as a monodromy operator between solutions of the
Knizhnik-Zamolodchikov differential equations. We don't have to first find some
expressions for the coefficients of the associator viewed as a power series, as is
done in [16].
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The contents of the paper are as follows. In Sect. 2, we define the ordered
exponential and prove the properties which we use later in the proof. Sections 3
and 4 are devoted to the definitions of the combinatorial invariants and the Bar-
Natan (Feynman) diagrams. In Sect. 5 we define the Kontsevich integral of framed
links. The proof of the equivalence theorem occupies Sect. 6 and 7.

2. The Ordered Exponential

We give here without proofs some properties of the ordered exponential which
we will need later in the paper. Let A : IR — > #0 be a function with values in the
associative algebra $0 . The ordered exponential of s#\

, (2.1)
y

is the solution of the differential equation:

-j-g(x,y) = A(x)g(x9y) (2.2)
ox

with the initial condition g(y,y) = 1. An equivalent definition is

+00 X t\ ln-\

g(x9y) = 1 + Σfdtιfdt2 / dtnA(t,)A(t2)" A(tn) . (2.3)
n=\y y y

Proposition 1. The ordered exponential is multiplicative: g(x,y) = g(x,z)g(z,y).

Corollary 1. g(x9y) is invertible, g~l(x,y) — g(y,x) and

(2.4)
cy

Proposition 2. Let δ G derj/ be a derivation of s$, then:

X

δg(x,y) = fdtg(x9t)δA(t)g(t,y) . (2.5)

Proposition 3. Behaviour with respect to gauge transformations: if h : R —> jtf is
a function such that h(t) is invertible for x g: t ^ y, then

( * \
h(x) loxpfdίA(t) h~\y) = Qxpfdt(h(t)A(t)h~l(t) + dίhh~\t)) . (2.6)

V y J y
Proposition 4. Factorization identities:

JdtA(t) eϊp JdtAB(t) , (2.7)
y J \y J
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= exp ( fdtBA(t) J exp ί ]dtA(t) J , (2.8)
y v / \y J

' x \ ( x \~l . / x \
QxpfduA(u) B(t) expfduA(u) = exp I fduadA(u) B(t), (2.9)

t J \ t J \t J
where

AB(t) = ( exp fduA(u) 1 5(0 I exp fduA(u) I , (2.10)

#*(ί) = (exp fduA(u)} B(t) ( e x p f d u A ( u ) ) , (2.11)
V r / V t J

and ad : j/ —> derj/ is gπ eft fty ad(α) b = [a,b] = ab — ba for a, b G J/.

3. Ribbon Categories

In this section we recall the definition of the combinatorial invariants. We formulate
it in the language of categories and we use the definitions of Cartier [14]. In the
following, ^ is a monoidal category, and its product, which is a bifunctor ^ x ^ —»
^ is denoted by (8). For any triple of objects X, 7, Z of ,̂ we have an isomorphism
Φz,r,z ' (^Θ7)0Z—>Jf(8)(7(8) Z), which is natural. The unit object is denoted
by /, and we will assume that X ® / = / ®X = X for simplicity.

When the object X is a left dual of 7, the duality morphisms are denoted
a:X®Y -+I, b\I -> Y ®X.

Let Xι,X2,...,Xk be a (possibly empty) sequence of objects in ,̂ and consider
X = (((Xι((®(X2 ® — •)'—)) ® Xk)), with a given distribution of parentheses. We
shall say that X is standard if X = /, or if all its left parentheses are placed on the
left of the first factor X\. We also say that a morphism from X to Xf is standard
if both X and X' are standard. Every morphism from / t o 7 can be written as the
composition of standard morphisms. By Mac Lane's coherence theorem [20], for
every object X there is a unique isomorphism ψx from X to a standard object Xsi,
and for every pair of morphisms / : X —•> X', g : 7 —» 7', the morphism / ®st $ =
Ψx'®γ'(f ®9}ψχ®γ is standard.

Following [14], a braiding in a monoidal category ^ is a function, which to any
pair of objects X, Y of ^ associates a natural isomorphism RXj : X 0 7 —> 7 0 Jf.

A ribbon category is a monoidal category equipped with a braiding, in which
each object has a left dual, and such that for any object X there is a natural
isomorphism vx : X -+ X, satisfying the relation

for all objects X, 7, as well as other conditions [14].
An example of ribbon category is &, the category of ribbon graphs [12,21].

To get the definition of objects and morphisms of this category, just replace in
[21] the representations by symbols: a symbol is a pair (*,α), where x e IR and
α, α7 G {!?!}• To each extremity of an open ribbon is associated a symbol such that
x is the middle point of the intersection of the ribbon with IR x {0} x {0,1}, and
the arrow α is given by the direction of the ribbon. The product in 3ft, is denoted
by D, and we sometimes call words the objects of 2%.
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Fig. 1: X+n

1 i-l i+2 n

Fί§ 3: n,.

It will be important for us that every closed graph is a composition of elementary
standard graphs X^,^ n and \Ji n (Figs. 1,2,3,4).

Let K be a field of characteristic 0, SΓ a tensor category over K, in the sense
of [14], and t an infinitesimal braiding in ,̂ which to any pair of objects X, Y
associates the natural morphism txj : X Θ Y —> X 0 Y.

Let $m be the associative graded algebra over K with generators fy = fy/, i φj,
ij G {1,..., m} of degree 1, and relations

[fz/,fe + f/*] = ° > (3 2)

[>ι/,ίfc/] = 0 , (3.3)

where /, j, k, I are distinct. Denote by &m the completion with respect to the topol-
ogy defined by the gradation. Similarly, let ̂  be the free associative graded algebra

on two generators A\9A2 of degree 1, and let ^2 be its completion. A Drinfeld se-

ries, or associator, is a formal non-commutative series Φ(Aι,A2) G ^2 satisfying

Φ(Al9A2) = (3-4)

(3-5)

(3.6)

where the last two relations hold in ^4 and ^3, respectively. Drinfeld has shown
[18, 19] that such series exist for all K, in particular K = Q. For K = C he gave
an explicit construction of a solution Φκz using the properties of the Knizhnik-

Zamolodchikov equations: Φκz(A\9A2) — G^1G\ where G\9G2 G ^2
tions of the differential equation

G'(x) =
2πi

A2

x- 1
G(x)

solu-

(3.7)
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defined in 0 < x < I with the asymptotic behaviour G\(x) ~ xA^2πι for x — * 0 and
GI(X) ~ (1 — .x)^2//2π/ for x — > 1. The coefficients of ΦKΣ are given by generalizations
of Riemann's ζ function [15].

Note that J 2̂ becomes a topological Hopf algebra with the comultiplication de-
fined by Δ(Af) = Aj ® I -i- I <g)Λ/, ί = 1, 2. Let J&? be the Lie algebra of primitive el-

ements in J^j and let J5?' = [J£?, cSf] be the derived subalgebra. Then logΦκz(A],A2)
G ,£?', and if Φ(Aι,A2) is a solution of (3.4-3.6) of the form expP(A\,A2)
with P(^ι,y42) G J2?, then the decomposition P — Z^jΛ? into homogeneous el-
ements Pn of degree w satisfies PI -0, i.e. P e ^7, P2 = ( l / 2 4 ) [ A { , A2],P3 =
a 3 ( [ A \ 9 [ A \ , A 2 ] ] — \A2,\A.2,A\]\), where a^ ^ K is arbitrary.

Given any tensor category 2Γ with an infinitesimal braiding ί, we can construct
a ribbon category ^[[h]], as follows. It has the same objects as <^~, but a morphism
X — > 7 in ^[[/z]] is a formal series 2w>0Λ/z'7, where /, : J^ — > 7 is a morphism
of y . The tensor product of objects is the same as in ^~, and the tensor product of
morphisms is the extension to AΓ[[Λ]] of the one in ̂ , with the non-trival associator

,htγ,z). (3.8)

The braiding is given by

RXJ = σxj Qxp (txj , (3.9)

where σ is the symmetric braiding of ^~, and the ribbon structure can be found
in [14].

Now we can define a generalized Reshetikhin-Turaev functor F : 2ft — > ^~[[/z]],
which restricted to closed ribbon graphs gives an invariant of oriented framed links.
We choose first a fixed object X^ in ^~[[/z]], and a left dual X^ of Jfj. We put
F({jc,|)) =^,F({jr,T)) =^rT and extend the definition of F to all objects of J>
by requiring F(wD w7) — F(w) 0 F(w'). To define F on moφhisms, we require
that F preserves φ, the braiding /?, the family of moφhisms a and & which define
duality, and the ribbon structure v.

4. The Category of Diagrams

A chord diagram D is a pair (X,C), where X is a set of lines and circles and
C is a set of chords connecting pairs of points in X. The precise definition is as
follows: X is a compact oriented, piecewise smooth one-dimensional submanifold
of R2 x [0,1] = {(jc,;;,0|0 ^ t ^ 1} such that:

(i) cX = NQ U NI , where N, = dX n F/, F7 = {(x, 0, z)k 6 R} ,
(ii) for each x £ Nj, i = 0,1, the function t restricted to the tangent line to X at x
is not constant, i.e. the tangent line is not horizontal.

A chord on X is a subset {x,y} C X\cX of two elements xή^y, and C is a finite
set of disjoint chords on X, possibly empty. X is called the support of the diagram.
If Card(C) = n we shall say that the diagram D = (X,C) is of order n. A point
x G X such that {x, y} G C for some v G X is called a vertex. Chord diagrams are
represented as in Fig. 5.
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b'= b =
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Fig. 7. Fig. 8.

We identify two diagrams if they are related by a diffeomorphism which sends
the lines EQ and E\ into themselves and conserves the orientation of X,£Q and E\
and we also identify over and under-crossings in chord diagrams.

Let K be a field of characteristic 0, and Z)(;?) be the AΓ-vector space spanned
by the diagrams of order n. The space of Bar-Natan diagrams of order n is B(n^ =
D(n^/R(n\ where R(n^ is the subspace of D(/?) spanned by the linear combinations
of 4 diagrams defined in Fig. 6. Note that the 4 terms of Fig. 6 stand for arbitrary
diagrams Z)j , . . . ,Z)4 which are equal except for the parts shown there.

Now we are ready to define the category &κ of diagrams. Its objects are finite
sequences S = ( α ι , α 2 , . . .,o^), where αy G { ΐ , l } ,y = ! , . . . , & , including the empty
sequence 0. A Bar-Natan diagram with support X is a morphism from SQ to S\,
the Sj being defined as follows: use the fact that Ej is an ordered set, to build a
sequence of unit tangent vectors Sj = ( M I , M 2 , . . . , w/ c), where u\ is the tangent vector
to X at the smallest x G Λf/, t/2 is the next tangent vector to X along £/, and so on.
Then £/ is given by the projection of Si on the vertical axis t.

The composition of morphisms is defined by stacking the diagrams, as shown
on Fig. 7.

The identity morphism is represented by the diagram of order 0 on Fig. 8.
This category of diagrams Q>κ is a tensor category. The monoidal structure 0

is defined on objects as concatenation of sequences, the unit object being 0. For
morphisms b 0 b1 is juxtaposition, see Fig. 9.

For α, α; G {ΐ,i}, let Ωy^ be the diagram of Fig. 10, with α and α7 given by
the orientations (not shown on the figure) of the two lines. The category 2>κ has
an infinitesimal braiding t defined by ty^ = ±Ωα α/, where the sign is -f or —
according to whether α = α; or not. We denote by ί/7 and Ω// with ί , j G {!,...,«},
the diagrams of degree one, whose supports have n connected components which
are parallel vertical lines, such that they reduce to the diagrams ty^>, resp. Ώ α α / , if
all lines but those labeled / and j are deleted.
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Fig. 9. Fig. 10.

For any tensor category 2Γ over K with an infinitesimal braiding t, and any ob-
ject X± in 2Γ with a left dual X^, there is a functor of tensor categories W$r : &κ — >

SΓ defined by 0>U) =*ϊ,»>(ΐ) =*τ and »>(V) = M,,> for α'α/ e {U}
This functor defines a weight system on &&. The Reshetikhin-Turaev functor
FU : ̂  — > @κ [[h]] defined in the previous section is called the universal Vassiliev
invariant. For any Reshetikhin-Turaev functor F : $ -> &~[[h]]> F = W y- o FU, be-
cause S&K is a free [20] tensor category with infinitesimal braiding.

From several sources [19,21, 13] we can extract the next theorem, which enables
the computation of Fjj(L) for any framed link (closed ribbon graph) L. Before
stating it, we need a definition: let id^ be the identity morphism of an object S
in QK which is a sequence of k arrows. We consider id^ as a standard morphism
in ®κ[[h]] F°r anY morphism / in ®Λ [[/*]], define /(£) recursively by /(<» =
/> /(*) = /(*-n Θ idi, and put fjjc = (idy Θ f\k}.

Theorem 1. The functor
values

takes on the elementary standard ribbon graphs the

±2ί/'/+1
φ(0 9

n =

(4.1)

(4.2)

(4.3)

where

(4.4)

In fact Ff/ depends on the choice of a solution Φ to (3.4-3.6). What is remarkable
is that for closed graphs L (framed links), Fu(L) is independent of the choice of Φ
[22]. This implies that the coefficients of the universal Vassiliev invariant of links
are rational.

We denote by jtf(X) the space of all chord diagrams with support X. The space
s0 = stf(Sl) has the structure of a commutative algebra, with the multiplication
defined by means of the connected sum of the two circles [9,10]. If X has m
connected components Xj, 1 ^ j ^ m, then for each value of j we can define an
^/-module jtfj(X), which is isomorphic to #0(X) as a vector space, and for which
the action of stf is given by the connected sum Sl#Xj, where Sl is the circle of
s4 = j/(Sl). This is illustrated in Fig. 11. The 4-term relation of Fig. 6 implies that
the result is independent of the point of insertion of the circle.
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Fig. 11. Fig. 12.

For further convenience we define Θ e j/ as the unique chord diagram on S1

of degree 1, shown on Fig. 12.

5. The Kontsevich Integral

Let G be a standard ribbon graph, i.e. a morphism of $ from w to w7, where
w and w' are two standard words. Remember that G is an equivalence class of
ribbons which are related by an isotopy of C x [0,1] = {(z, ί)|0 ^ t ^ 1}. We

choose a particular element G in this class, such that t is a Morse function on G,

i.e. for a given value t = ΪQ there is at most one extremum of G. Each connected

component G7 is the image of an embedding z : Gy x [0,1] —» C x [0,1], where

GJ = [0,1] or Sl. We assume that G is contained in the plane Im(z) = 0 except for
small neighbourhoods around the crossings of Figs. 1 and 2, where only the framing
vector ι(x, 1) - z(x,0) is contained in the plane Im(z) = 0. In other words, we use

the blackboard framing. Let X j ( G ) be the curve z(G;° x {0}), X(G) = \JjXj(G). Let

h be a formal variable, h = /i(2π/)~1,ε > 0 and

Σft" / Σ (-l)*fT£>(G,P)Π ' _ V (5 D
w=0 ' m in < / l < < /»< /max pairings P={z, ,zO} *=1 Z> Zi

\Zi-z'.\>E

Here ίmin and /max are the minimal and maximal value of / on X(G), a pairing P is
a choice of n unordered pairs (z^z\\ such that for 1 ^ / ^ «, (z/,ίz ) and (z .tj) are

distinct points on ^(G), #P| is the number of vertices (z^zj) of P at which X(G)
is oriented upwards. The coordinates z/ and z are considered as functions of t^ and
integration is over the subset of the ^-simplex tm\n < t\ < < tn < tmax defined

by the conditions |z/(i/) — z'(^ )| > ε. D(G,P) is the chord diagram of degree n

with the support ^(G) and the set of chords C defined by the pairing P (Fig. 13).
Now we define the regularized Kontsevich integral as:

Z(G) - lim Πε " ~" j Zf(G) , (5.2)
fi->°y=ι

where π^1 are the number of critical points (maxima and minima) of the Morse

function t on the component Xj(G\ and (97 denotes the diagram Θ acting on the

latter. (Notice that n ̂  — n J = 0 if j corresponds to a circle.) Later we will show

that a slightly modified version of Z(G) is invariant under isotopies of ribbons.
We recover the usual definition of the Kontsevich invariant if we impose the

additional relation Θ = 0, i.e. if every diagram having an isolated cord is set equal to
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Fig. 13.

zero. This condition implements the framing independence in the original Kontsevich
integral [10,9].

Theorem 2. The regularized Kontsevich integral is well-defined and multiplicative:

Z(GG) = Z(G)Z(G). (5.3)

Proof. A pairing P" of G G can be partitioned into a disjoint union of pairings

P,P' of G and G', such that D(GG\P") =D(G,P)D(G',P'). Let

where

The formula

z/-z; | > ε

otherwise .

a<t\< <tn<b

dt}...dtp
p=Q a<t\ 1 < <tn<b

(5.4)

(5.5)

....<//„/

(5.6)

implies that Zε(GG') = Zε(G)Zε(G/). The action of each factor Θj in (5.2) through

the connected sum is independent of its point of insertion on the diagram D(G,P),
thus we can "move" it along the support until it reaches an extremum. By the
definition of the Morse function t we can decompose G into a product of standard
graphs each of which contains at most one extremum. Therefore the theorem is
proved if we can show that Z((~}m n) and Z(|Jmw) converge. This is done in the
appendix. D

The main ingredient in the construction of the Kontsevich invariant Z(G), as
we now explain, appears when G contains no extremum, so that it becomes a braid.
Consider a path γ : [0,1] —> Vm, where

Vm = {(z!,...,zm) G (5.7)

Let yι(t) = zι(t\ t e [0,1] be the zth component of this path and construct a ribbon

graph G' out of y.
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Fig. 14. Fig. 15.

Define the abstract Knizhnik-Zamolodchikov connection with values in the al-
gebra ^m, as the 1-form on Vm\

i^—^L . (5.8)
, '</ Zl ZJ

It is easy to see that

i
Z(G')=Dyex$$fω, (5.9)

o

where Dy is the diagram of order zero whose support is given by 7. Let us quickly

recall some well-known properties [23] of Z(G ). Let yf be another path in Vm,
Λ f

with /(I) = 7(0), and let y' 7 denote their product. Then we have Z(G' ) =
/

Z(G )Z(G'). The four-term relation satisfied by diagrams (Fig. 6) means that the
generators ty of 3&m satisfy (3.2). The KZ connection ω is closed, dω = 0, and the
relation (3.2) is equivalent to ω Λ ω = 0, so that ω is flat: Fω = dω + ω Λ ω = 0.

This implies that Z(G') only depends on the homotopy class of y relative to its
endpoints. Thus the formula (5.9) gives, when y( l) = σ 7(0), where σ is a permu-
tation of the coordinates, a representation of the full braid group Bm in the semidirect
product of έ$m with Sm, where the symmetric group Sm is identified with the group
of order zero diagrams with m components, each of which is homeomorphic to
[0,1].

The flatness of the KZ connection implies that Z is invariant under an isotopy
which fixes the extrema. But one cannot remove the parts of a ribbon graph which
look like Fig. 14, without changing the value of Z. However, if we define Z(G) by

Z (ΓUJ = μ~l Z (f|w,„) , (5.10)

where p|m n is the elementary graph of Fig. 3, μ = Z(U),U is the diagram of

Fig. 15 acting on the component of p|m n carrying the maximum, and Z(G) = Z(G)

for the other elementary graphs G, then Z is invariant under insertion or removal
of the subgraph of Fig. 14. This shows:

Theorem 3. Z(G) is an isotopy invariant of ribbon graphs.

6. The Distancing Operator

In this section we introduce the distancing operator, which is the renormalized
Kontsevich integral of a trivial braid with a pair of consecutive strands
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moving away from each other to infinity. Let a G IR, λ > 0. We consider a path

: [0,1] -> Δn, An = {(z1?.. .,zπ)|,zι < z2 < - - < z«} such that

r/|Λ)(0) = (z1 -a,...,zi-a,zi+ι+λ-a,...,zn + λ-a). (6.1)

(The strands z and z -f 1 are moving away from each other. ) Due to the zero
curvature condition satisfied by the KZ connection and the fact that Δn is simply-
connected we can choose any path with these endpoints to calculate Z(?/ w)). Let us
take the following one:

- - \ <j <i

_ β ) ,.+/*,. * M > o . (6 2)

It is useful to remark that Z(η\'^) does not depend on the global translation a
because the KZ connection depends only on the differences Zj(t) — z/(ί). We put

0j (λ,z\,...,zn) = Z(ηf ) and in the following we will not mention the arguments
(zι,...,zw) if there is no ambiguity. Using the definition of the Kontsevich integral
we have:

(6.3)
o /

where

ω(θ = Σ Σ 7Γ-TT7Ϊ - (6'4)

y=U=/+lU- IM + ̂  -Zjfc

The distancing operator is obtained by sending λ to infinity, but to do this a regu-
larization is needed.

Theorem 4. Set X^ = Σ =,ΣL+1^

1. 77zβ distancing operator

^" )(Z l,...,zπ)=.lim ^'(/μ^'" (6.5)
/.—>•+ oo

w fl well-defined function on Vn with values in &n[[h]], the algebra of formal power
series in h with coefficients in $n.

2. It has the asymptotic behaviour D\ ~ (z/7 — z\)~flXt in the region

Zn -Zλ >Zy -Zi, 7 ^ Z

3. 7Y satisfies the differential equations

(6.7)
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where

k=l Zj -Zk

53

(6.8)

k=i+\
J > I .

Proof. 1. We factorize from gf (λ)9

exp hfdt-
(t-\)λ-\-zl-zn

hX(n)

(6.9)

γ(n)

Thus, using (2.8) and performing the change of variables x = λ(l — t)/(zn - z\) we
get:

h f dxώ(x) I i T-̂ —^— 1 , (6.10)

with

(6.11)Σ<, -
\i+l<k<n

and % = (ZA. - z/ )/(zπ - zi). Since

and the integral

converges, we deduce that
. / ^

exp I ^ J dxώ(x)

(6.12)

(6.13)

(6.14)

converges as a formal series in h, which means that all the integrals appearing in
its expansion converge.

2. The asymptotic region (6.6) is defined by ukj•• = 1,1 ^ j ^ /, / + 1 ^ k ^ n.

In this region ώ(x) = 0, thus Df (zn — z \ )
3. The formula (2.5) yields:

iΛn)
- 1.

where
I

h(x,y) = exp hfduω(u)

/z(/,0), (6.15)

(6.16)
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(6.17)
vί+1 StS*'-(I-'> + **-2,;

if j rg /, and integrating by parts over t, the r.h.s. of (6.15) becomes:

ft Σ Σ -r-
! ^A ^/ j Λ ' z/

hdth(i,t)
0

'lί*'
- t) + zkι - Zj

Using in the second term the classical Yang-Baxter equation:

-0,
IZj - Zk Zji - Zk J IZj - Zjf Zj - Zk Zji - Zk J

and again the derivation property (2.5) we get:

h(t,0).

(6.18)

(6.19)

Now multiply on the right this equality by λnA' , and notice that [ X j ,
j, f 5Ξ / and

:-tιX(n}

lim λ~ Σ

(6.20)

= 0,1 ̂

(6.21)

Here the limit means that each term in the h expansion tends to zero. This proves
part 3 of the theorem for 1 ^ j <^ i (the proof for the case / + 1 ^ j ^ n is
identical). D

Remark. The distancing operator is equivalently defined as being the solution of
the differential equations (6.7) on F,?, satisfying the asymptotic conditions (6.6).

Let A be a standard ribbon graph such that its top (resp. bottom) endpoints are
( z ι , . . . , z / ) G Aj (resp. ( z ( , . . . , z f

p ) G Ap)9 and let B be a standard ribbon graph such

that its top (resp. bottom) endpoints are (z/+ ],... ,z/7) G An-i (resp. (z'p+l9... ,z'y) G
Δq-p). (Here ς'endpoint" really means the middle point of the intersection of an
open ribbon with IR x {0} x {0,1}.) We put these graphs side by side such that the

AΏB lie in Δn (resp. Δq). This is always possible up to a global translation of B.
The product A D B is not standard. Let A Dst B be the same graph as A D B but with
the standard arrangement of parentheses.
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^ (6.22)

ts areProof. Let (A Dst B); be the ribbon graph whose top (resp. bottom) endpoint

(zi - λ/2, ...,Zi- A/2, z/+1 + A/2, . . . ,ZB + A/2)

(resp. (z( - A/2, . . . ,z; - A/2, z),+1 + A/2, . . . ,z'q + A/2)) . (6.23)

Then AΏstB and f/|π)(zι,...,zB)(^Dstfi)/l(>/(/)(2i, ..,4)Γ1 are isotopic ribbon

graphs (see Fig. 16), where the path ηf' is defined in (6.2), and the same symbol

is used here for the associated standard ribbon graph. We also set (^n))-1(ί) =

^(1-0,0 £ t £ i .
Thus

Z(A q, B) = g("\λ)Z((A Dst B)λ)(fi\λ)Γl (6-24)

.(6.25)

From the definition of the regularized Kontsevich integral one sees that

Z((A Dst B)λ) = Z(A)® Z(B)
κ^l

where f(n)(λ) is a finite sum of terms of the type:

'max 7 7

D(ADB,PAB) J dt— f-7/(0
/ - Zi ~~ Zί T A'mm -̂

(6.26)

(6.27)

1 i i+l n 1 i i+l n

Fig. 16.
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Fig. 17.

such that PAB contains at least one pair (z/,zy) with (z/, t) G A , ( z j , t) G B, and

is convergent. Hence

lim
λ—»oo "

(6.28)

HO/Moreover the following relation holds: Xln)(Z(A)®Z(B)) =
This relation follows from (3.2) and the fact that D(tjk + ^+1,*) — 0 (resp. (t^ -f
ti+\jk)D = 0) if D is a diagram of degree zero in which the bottom (resp. top) end-
points labeled i and i + 1 belong to the same connected component (see Fig. 17).

Therefore

lim
λ-^ oo

'• Z((AΏst

and the theorem is proved. D

=Z(A)® Z(B} , (6.29)

7. The Equivalence Theorem

The relation between the Drinfeld associator and the distancing operators involves
two functions on Fz+ι with values in &i

gl+l(Zl,. . . ,z,.,z;+I ) = lή'

Theorem 6.

(7.2)

(7.3)

Proof. The key point is the fact that gi+l and gi+\ are solutions of the Knizhnik-
Zamolodchikov equations:

(7.4)

with the following asymptotic behaviour:

9t+ι r^> I T^ — z,
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• ,u +1 -Z\ »Z, _ι -Z\ > •• >Z2 -Zi ,-.v
in the region < + (7.5)

— > —

/
gi+l ~ (z2 - z, )'" - - (z,.., - zj n-2 (Z/ - z, Γ-i (z/+1 - z, )

in the region z/+ι - z\ > zz — z\ > z/_ι - zi > > z2 - Z! . (7.6)

We recall that A!/71* = Σ;=ιΣ/U +ιί/* Note tnat al1 tne factors appearing in the
asymptotic behaviour of 0/ +ι and gi+l mutually commute. The relations (7.4), (7.5),
and (7.6) are direct consequences of the properties of the distancing operators es-
tablished in Theorem 4.

Any solution g of the KZ equations (7.4) can be expressed in terms of the
reduced variables u^ = (z# —z\)/(zi+\ — z\)92 ^ k ^ ί:

g(zl9...9zi9zi+l) = G(u29...,ui)(zi+l-zl)
1lX

9X= £ tjk . (7.7)
1^7<A:^/+1

Observe that X is a central element in ̂  +ι. The function gf(zι, . . . ,zz +ι ) satisfies the
KZ equations in the variables z7 ,y — 1, . . . , / + 1 if and only if G(w2, , w / ) satisfies
the equations

(7.8)
Uj ~ 2^^αΦy Wy -Uk

for y = 2, . . . , /. Now if we set

-*x(i~l)

rr —nt\'> / — 2 /^t /^ r\\
t/z +l =M 2 ^ . . . M ^ j G/+1 , (7.9)

and the same for c7/+1,Gγ+ι, we obtain that £//+ι and Uί+\ are analytic functions in
the domain 1 > MZ > M / _ I ^ w/_2 ^ • • • ^ ^ 2 ^ 0 ? and they obey the same linear
differential equations. Moreover, at the point uι-\ = Mz _2 = = M2 = 0 it follows
from (7.8) that they satisfy the equation

with the asymptotic behaviour:

* ( 0
> 0 , (7.11)

M ι - ^ 1 . (7.12)

Thus, at the point ι//_ι = w z _2 = = w2 = 0,

ti4+l), (7.13)

and by the uniqueness of the solution of differential equations this equality holds
in the whole domain 1 > ut > u\-\ ^ w/_2 ^ ^ UΊ ^ 0. D

We have seen already in Sect. 3 that any closed ribbon graph is a composition
of elementary standard graphs ^/7,Πm n an^ Um «• Recall (see appendix) that p|̂  n



58 D. Altschuler, L. Freidel

and (J'm n are diagrams in 3>κ of order zero with supports given by Πm «> LU «• ̂ ut

Theorem 7. The value of the regularized Kontsevich integral on the elementary
graphs is:

Z (X£) = gn(Φrl exp ,/+ι Dσ/l+ί Φg-\ (7.14)

Comparing with the results obtained with the functor FU : & —* @κ[[h]] in Theorem
1, we see that for closed ribbon graphs L (framed links), Z(L) = Fu(L). This gives
another proof that Z is an invariant of ribbon graphs.

Proof. Let (ZI, . . . ,Z Λ ) G Δn and consider a path in Vn\

(7.17)

associated to the ribbon graph X^. We choose the parametrization Zj(t) = zy i f y φ
i, i -f 1 and

zf(0 -z/+1(0 - e±/πί (z, -zί+1) . (7.19)

In order to compute the corresponding Kontsevich integral, we move away to infinity
all strands surrounding the crossing. More precisely, we move first the nth strand on
the right, then the n — 1th, and so on until the strand / -f 2. Then we are left with the
diagram X±+l. Therefore we write X± ^.^Didi = (^__2DidODidι = =

X^+ι D s tidn_ z _ ι , and apply the tensorization theorem (6.22) n — i — I times to get:

Z(X± ) = (Z>£, D^}Z(X^ )(̂ "Λ - - Dft2')-1 . (7.20)

After that we send to infinity the distance between the strands i — 1 and /, which

translates into further conjugation of Z(X^+l) by D^\ We then use the value of

the Kontsevich integral on an isolated crossing: Z(X^2) = Qxp(±(h/2)t\2)Dσ}2, and

the fact that (zί+ι -z/)Λ/'V+ι D^~2

l} - -Df} commutes with f/ s / + 1 to obtain:

l = i+ι

Now (7.14) follows from Theorem 6.
Next we prove (7.15). Proceeding as in the case of crossings, we successively

move away from the maximum the strands n,n— I , . . . , / + 2, then we send to in-
finity the distance between the strands i — 1 and i on the bottom of the maximum,
noting that this last operation is not required on the top. We apply the tensorization
theorem to f|z> = id/_i Dst f\2Πst idΛ_, _ι, and we get:
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(n~2} .7 (pi } ~ (Γ>(n~2} . . .n(i} Ϊ7 (Γ\ }(D(n) . . .D(l+2)D(ί+l}}~1
Δ \\ \i,n) ~ \un-ϊ Ui-\)^ \\ l l , 2 j \Un-\ Ui+\ U i~\ >

, π(/ϊ-2) n(/) n(?-i) Π^ΛT /Ό Wr>( / ?)
= (Dn-l '"Di-\Dι-2 "'Dl )Z(\\2)(Dn-\

•..D^D^^^ ^Γ1 . (7.22)

Since the value of the Kontsevich integral on an isolated maximum is Z(p|1 2) =

ΠΊ 2fe - z\ f'12, we arrive at (7.15). The proof of (7.16) is similar. D

Appendix

We prove in this appendix that Z(p|m / 7 ) and Z(\Jmn) converge. In the following, we

use the notation Z(y) instead of Z(G'), for y a path in Vm, which is not supposed
to be closed. We start by computing Z(y) when y is a path with 2 components of
opposite orientations. We parametrize the components as follows:

Zi(t) = * + (π - Xi)t, 0 ^ t ^ 1 , (A.I)

for / = 1,2, with jc/ ? > y/ G 1R, xi < ^2 and ji < j2 Choose an ε > 0 such that ε ^

2 -^1,72 - 3;ι} Then Eq. (5.1) or (5.9) leads to

Z,(y) - Z(y) = exp f-Ω,2log^-^ - ( yι " y2} " . (A.2)

Here we have used the notation ί2, y = feί2/y . Suppose ^2 — ̂ i > 72 — Ji , take now
ε = y2 — V i Then

limεΩ l 2Z ί :(7) (A3)

exists, and the same is true in the other case ε — XΊ ~ x\ < yi — y\, namely

limZ< :(y)ε~Ω l 2 . (A.4)

Consider now ;>,„„, the same path with m - 1 (resp. n - m - 1) vertical lines on
the left (right) and the two center lines as in y. The parametrization we choose is
z/ — const G R for iή=m,m -f 1 and z/ as in (A.I) for / = m,m -f 1. We will now
prove that the limits

limε«— 'Zc( / m n ) (A.5)

and _

limZί;(7,n,,)fΓΩ'" '»-n (A.6)
ί;— ̂ 0

exist, where ε = mm{xm+\ -xm,ym+\ - ym}, and max{x/M+ι - xm, ym+\ - ym} is
fixed. The KZ connection can be written as

— dzm — dzm+\ fco = -Ω/H,w+ι - - -- h ω , (A.7)
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where

A φm,wφl m V m^zm~zk '" ' zm+\ ~ ?k J

and Si = ± 1 is the orientation of the zth component. Using the factorization formula
(2.7), we find

i
Z ( γ m n ) — g(ym ~ ym+\ )e*P / (g(zm - zm+\ Ylω'g(zm - zm+])) , (A.9)

o

where _
-Ω/»,WI+ι

Therefore, the relation (3.2) implies that

i
9(ym - ym+\ )~lZ(γmn) = exp J(ω' + ω"), (A.I 1)

0

where

OG I (zm-Zm+\\ — —
ω" = Σ ~7log/; — ^~ adp(Ω/ ? κ / π + ]) Σ smSk&mk

p=\P \Xm — xm+\ / A φm.m+1

(A.12)

and to prove that (A. 5) exists, it is enough to show that

/„ - }dt log"(zm+ , - zm ) f -̂  --- Z^~~ } ( A. 1 3 )
0 \zm ~ ZA zw+l ~ zk /

converges when ι?

/;/ — > vm +ι, for any positive integer ;;. Here we have adopted the
notation dz/dt = z. Writing

τ Γ 7^ i /;/ \ / zm\^m+\ zm ) zιn+\ zm \ / A 1 /ι \
Ip = Jdt log/;(z/«+ι - zm) 7 - —77 - — : -- > (A. 14)

0 \(zm ~zk)(zm+\ ~zk) zm+\ ~ zk /

and noting that (zm+1 - z / w) log/;(z/;?+ι - zπ ι) — > 0 as zm+\ ~ zm -> 0, we see that the
first term converges. As for the second term, we put

(z/H+ι -z / H) log/;(zw+ι -z / H) = —Fp(zm+\ -zm) ,—

where

(A. 16)

and observe that the function Fp(z) is defined at z = 0. Thus, integrating by parts
proves that

ldtdFp(zm+l -zm)/dt 7



Universal Vassiliev Invariants 61

converges. This concludes the proof that the limit (A.5) exists. Similarly, one can
show the existence of (A.6).

Notice that since the KZ connection is flat, (A.5) and (A.6) do not depend on
the details of the path ymn9 but only on its endpoints. From the definition of the
regularized integral (5.2), we see that for ε = min{.x:m+ι — xm,ym+\ — ym}9 keeping
max{xm+ι -xm,ym+\ ~ ym} fixed,

Z (αj = limnL,ttε^+ιZε(7m,) = lim (ε**" fQ Zs(γmn) , (A.18)

Z (UJ = limZfi(yw,ll)6-δ^iUil,Λ

where Πl,?

 and Ul/2

 are diagrams in 3)^ of order zero with supports given by
Π / W Λ ' Um« such mat me extremities of the line containing the maximum (resp.
minimum) are ym and ym+\(xm and xm+\). D
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