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Abstract: Let Gn, n E N, denote the set of gaps of the Hill operator. We solve
the following problems: 1) find the effective masses M^> 2) compare the effective
mass M^ with the length of the gap Gn, and with the height of the corresponding
slit on the quasimomentum plane (both with fixed number n and their sums), 3)
consider the problems 1), 2) for more general cases (the Dirac operator with periodic
coefficients, the Schrodinger operator with a limit periodic potential). To obtain 1)-
3) we use a conformal mapping corresponding to the quasimomentum of the Hill
operator or the Dirac operator.

Introduction

Consider the Hill operator H = — d2/dt2 + V(t) in L2(R), where V is a 1-periodic
real potential from Ll(0,1). It is well known that the spectrum of H is absolutely
continuous and consists of the intervals Sl9 52, . . . , and let

Sn — lAn-ι,An], . . . , An < An < An+1,

n = 1,2, . . . , A+ = 0 < A~, A' --DO.

The intervals are separated by the gaps G1? G2, . . . , where Gn = (A~, A+). If a
gap degenerates, i.e. Gn = 0 then the corresponding segments Sn, Sn+l merge.
The spectrum of the Hill operator consists of closed nonoverlapping intervals which
are called spectral bands. Instead of the spectral parameter E we introduce a more
convenient parameter z, z2 = E, and numbers α^ = Λ/A^ > 0 and gaps

gn = (a~,a+), g_n = -gn, n e N, g0 = 0 .

Later on gn will be called a gap and Gn an energy gap. Now we can define a
quasimomentum function [11, 2],

k(z) = arccos F(z), z G Z = C\g, g = Ugn,
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where F is the Lyapunov function of the Hill operator (see Sect. 5). The function k(z)
is analytic and moreover k(z) is a conformal mapping from Z onto a quasimomentum
region K = C\ U Γn, where Γn is an excised slit

Γn = {Re/c = πn, |Im/c| < ftn}, hn = h_n>0, n G Z, /ι0 = 0.

Any nondegenerate (degenerate) slit Γn is connected in the same way with the
nondegenerate (degenerate) gap gn and the energy gap Gn. With an edge of the
energy gap <7n, having the length Ln, we associate the effective mass

M0-=0, M0

+ = l/£"(0), M±=0, if Ln = 0,

and M± = l£"(fc(α±)), if LJίQ,

where -£?(&) — z(k)2 and z(&) is the inverse function for k(z). It is well known that
if L ^ 0 then

A + (fc - πn) (1/2M -f o(l)), ±(fe - πn) j 0 .

Now we describe the main purpose of our paper.

Let us have only the set of gaps Gn, n G N, (or the set of segments Sn, n G N).
Then we solve the following problems:

a) find the effective masses,
b) compare the effective masses M^ with the gap length Ln and with the height of
the slit hn (both with fixed number n and their sums), then compare such sums with a
norm of the potential V in some space,
c) find asymptotics of k(z) at large z,
d) consider the problems a)-c)/or more general cases (the Dirac oprator with periodic
coefficients, the Schrodίnger operator with a limit periodic potential.)

The correlation between effective masses M^> lengths Ln, heights hn were studied
in many articles. Firsova [3] found the relation between M^, Ln, hn and the Fourier
coefficients of a potential V at large integer n. In [3] it was also shown that the
sum of all effective masses is equal to the physical mass. In [2] Firsova has proved
the asymptotics k(z) = z -+- O(2:~~1//3) as \z\ — > oo. Any Hill operator with finite
band spectrum was described by explicit formulae in the work of Its, Matveev [5]
(including the inverse problem). In the book [10] Marchenko had obtained some
inequalities between hn, Ln and asymptotics k(z) at large real E, E — z2, (see also
[11]). The main result of the paper [11] by Marchenko and Ostrovski is the solution
of the inverse problem. It is shown that under some additional conditions on the slits
Γn, n G Z, the region K corresponds to a periodic potential of the Hill operator.
Later on the inverse problem and some properties of the function k(z) have been
considered in the paper of Garnett, Trubowitz [1]. In [8] Korotyaev has studied the
propagation of the acoustic waves in a periodic media. It was shown that any spectral
band (with number n) "creates" the wave with the velocity Un (Un is less than 1).
The velocity Un is equal to the maximum of the function z'(k(z)) when z2 belongs
to the energy band with the number n. Furthermore 2M0

l~t/2 = 1 and M^ may be
estimated in terms of the gap lengths and the edges of the bands. In [12] Pastur,
Tkachenco have considered the direct and inverse problem for the operator with limit
periodic potentials.

Let us write down the main result of the paper.

a) Simple formulae providing the possibility to find effective masses in terms of the
edges of gaps Gn, n G N, are found.
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b) "The local estimates" (a number n is fixed) between the effective masses M^, the
height of slit hn and the length of gap Ln are obtained.
c) We derive inequalities which relate the following quantities: the sum of squares
(with weights) of the effective masses, the heights of the slits, the gaps lengths and a
norm of a potential V in some Sobolev space.
d) Asymptotics of k(z) or large \z\ are found.
e) There are some estimates about Un, n £ N.
f) We obtain the extension of a)-d) for more general cases (the Dirac operator with
periodic coefficients, the Schrδdinger operator with a limit periodic potential etc.).

It is necessary to note that the asymptotics of k(z) for E — z1 far from an energy
gap differs from the case when E belongs to some neighbourhood of an energy gap.

To prove a)-f) we use a conformal mapping corresponding to quasimomentum
of the Hill operator [11, 2] that makes possible to reformulate the problem for the
differential operator as a problem of the conformal mapping theory. Thus we should
study some "geometric properties" of conformal mappings from C+ onto "the comb"
K+ = K Π C+. For solving these "new" problems we use some techniques from
[11, 9] and we often use the poisson integral for the domain C+ U C_ U (— 1, 1),
the Dirichlet integral for a function k (z) (the definition of k (z) see in Sect. 1),
in particular the Dirichlet integral for the function kQ(z) = k(z) — z. The Dirichlet
integral was used in Kargaev's work [6] to study the conformal mapping of the upper
half plane to the comb.

1. The Main Results

In this section we introduce the concepts and the facts needed to formulate the
theorems, some results for the Hill operator, the Dirac operator with periodic
coefficients and some results from the conformal mapping theory.

At first we give some definitions and facts from the theory of conformal mappings.
We call the set K+ = C+\ U Γn the "comb" where

Γn = {Rek = un,\lmk\ < hn], hn>0, n e Z, ft0 = 0,

while un is a strongly increasing sequence of real numbers such that un —> ±00 as
n —> ±00. We call a conformal mapping k(z) from the upper half plane C+ onto some
comb K+ a general quasimomentum (GQ) if 1) fc(0) = 0, 2) k(iy) = iy(l + o(l))

as y —> oo. It is well known that a GQ k(z) is a continuous function in z G C+. In
this case we introduce the sets

9n = (anianλ Sn = [ α n-l> α nl = ̂ (Ki-H WJ)> ™ € Z .

We call σ = Usn the spectrum of the corresponding general quasimomentum k(z). We
also denote by gn a gap in the spectrum of GQ and we let g = (Jgn. It is well known
that the set σ can not be the spectrum of two different GQ [9]. Note that the function
k(z) may be continued onto the domain Z = C\g by the formula k(z) = k(z), z € Z.
If a gap gn is empty than the components sn, sn+l merge. The spectrum σ consists
of closed nonoverlapping intervals s(ή) with the lengths rn, n E Z, and σ = Us(n),
where the point zero belongs to 5(0). We denote the length of the gap gn by ln. For
GQ we introduce "reduced masses" (some analogue of the effective masses)

±μ* = l/z"(k(a±)), if ln^0 and ± μ± = 0, if ln = 0.
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It is clear that μ^ > 0 if ln φ 0 and we shall often use the asymptotics

z(k) = α± ± (k - uJ2(l/2μ± + o(l)), ±(fc - uj I 0. (1.1)

Later on p is an integer. We introduce the function u(z) = Re k(z), v(z) = Im k(z\

p
PpW = Σ Qn-ιz~n> kp(z) = zp{k(z) -z + Pp(z)}, ztZ, p > 0,

0

where

QΌ = - f xpv(x)dx, Q+ = - f \x\pv(x)dx, p > -I.
π J μ π J

Here and below an integral with no limits indicated denotes integration over Rd,
d > 1. For a nondegenerate gap gn we denote by r+(r~) the distance between gn and
the nearest right (left) hand side nondegenerate gap or the point zero. Analogously we
denote by s+(s~) the distance between gn and the nearest right (left) nondegenerate
gap. Let us introduce the constants

70 = sup (IJ max s±\, if p = 0, and ^ = sup (IJ max r±V if p > 0,

and r = inf r^ We call a general quasimomentum

i) a normed quasimomentum ifQ~^l < oo and Q_λ = 0,
ii) a symmetric quasimomentum ifk(-z) = —k(z), z £ Z,

iii) a quasimomentum if un = πn, for all n G Z.

Note that for the case Q+j < oo we can normalize the general quasimomentum
by some translation. We emphasize that a symmetric quasimomentum corresponds
to the quasimomentum for the Hill operator, a quasimomentum corresponds to the
quasimomentum for the Dirac operator with periodic coefficients. Furthermore a GQ
is an integrated density of states (or the rotation number) for the Schrδdinger operator
with some limit periodic potential (see [12]).

We shall tell that GQ k(z) has the moment of an order p is Q2p < oo. By Gerglotz
Theorem we have that GQ k(z) has the moment of order p > — 1. Later on we assume
some conditions on the spectrum (or gaps).

Condition 1. Let a GQ k(z) have the moment of an order p > 0, if p — 0, then
70 < oo and ifp > 0, then ^\ < oo.

Condition A. Let a GQ k(z) have the moment of the order p > 0,

i) ίfp=l then k(z) is a normed GQ,
ii) ifp>2 then k(z) is a symmetric quasimomentum.

Let us describe the connection between GQ and the Hill operator. Remember
that the spectrum of H consists of the segments Sn, n G N, with the gaps Gn. In

the case of the Hill operator the numbers α^ satisfy α^ = y/A± > 0, α^n = — αj,
n = 0,1,2,3, . . . , and gaps gn satisfy gn = (α~, α+), g_n = -gn, n<EZ,g0 = ψ. For
an energy gap Gn and a gap gn we have the equality Ln = A+-A~ = ln(a+ + α~),
n = l , 2 , 3 , . . . .

The quasimomentum k is defined by k(z) — arccos F(z), z G Z, where F is the
Lyapunov function for the Hill equation

-f" + Vf = z2f, zεC. (1.2)
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We note that the set g is symmetric with respect to the point zero and the function
k(-z) = —k(z), z e Z. In the case of the Hill operator the following equalities are
valid:

M0

+ = /c'(0)2/2 = l/2z'(0)\ ±μ± = 2α±M±, n > l . (1.3)

Moreover, for the Hill operator we have (see [10])

i i

2Q0 - ί V(t)dt, Q, = 0, 8Q2 - ί V(t)2dt, . . . .

o o

Let us formulate the main theorem.

Theorem 1.1. Suppose V <E L l(0,1) and n = 0,1,2, Then

m>Q,q=±

- f\k'(z)-l\2dxdy = 2Q0, and ^(A+M++ A~M~) = Q0,
J „ \ i (1.5)

Furthermore, let V G L2(0,1) and p = 1, then

- I \(z(k(z) - z))f\2dxdy + / v(x)u(x)xdx

i

= 2 ί x2v(x)dx = (π/4) ί V2(t)dt

o (1.6)
i

ίmd
n>l

βίc. /or V belonging Sobolev space W%~ (R/Z) αnJ p = 2, 3, . . . . A// series
converge absolutely.

Now we present the main inequalities obtained in this paper. We define the
Dirichlet integral πdp = f \k'p(z)\2dxdy9 z = x -f iy, and the constants T =

(π2/48r4)T°maxL2, Γ° = 1 + QQr~2. For a sequence / = {fn}^° or a sequence

/ = {/n}^°oo> such that /-n = /n, n = 1,2, . . . , /o = 0, we introduce a norm

Theorem 1.2. a) Lei V G L!(0, 1). Γ/zen r > 0 and for any n E N,

/ n <2/ι n </ n ( l+Tn- 2 ) , (1.7)

/ n <2μ±</ n ( l+TrT 2 ) 2 . (1.8)



602 P. Kargaev and E. Korotyaev

b) Let V G 1^(0, 1) ίfp = 0 and V e W%~\R/Z) ίfp > 1. Then for anyp>0 there
exist constants Cγ, C2, . . , C5 depending only on p, 7j (70 ifp = Q) such that

C,Q2p < C2\\L\\l^ < C3\\h\\ltp < IIM*!!^ < C4dp < C5Q2p . (1.9)

The exact representation of C l9 C2, . . . , C5 will be given in Sect. 5. We note that
in [10] there is the estimate ln < 2hn < Cln for any n = 1, 2, . . . and some C > 0.
Some analogues of Theorems 1.1, 1.2 for the Dirac operator with periodic coefficients
will be considered in Theorems 1.2-1.5.

Let us consider the case of a general quasimomentum. We introduce the function
wn(x) = \(x — a~)(x — α^)!1/2, x G R. We define numbers αn = max|α^|,
bn = min α±| and the norm \\f\\2

p = Σa^f^ with ||/|| - ||/||0, for a sequence

of real numbers / = {/yJΪΌo The following statements hold true.

Theorem 1.3. Let k(z) be a general quasimomentum. Then for any n G Z,

(MO)

(1.12)

(1.13)

At the same time for a general quasimomentum there are some "global estimates."
We introduce the quantities

and

Let us present the theorem.

Theorem 1.4. Lei β GQ fc(z) have the moment of the order p > 0 and satisfy Condition
A and Condition 1. Then there exist constants Cl,C2, . . . , C5 depending only on p
and 7! (70, if p — 0), such that

Cml < C2\\h\\l <μ2

p< C3dp < C4Q2p < C5\\l\\2

p.

Let us finally formulate now some equalities concerning a GQ and a quasimomen-
tum (the Dirac operator).

Theorem 1.5. Let k(z) be a general quasimomentum.

1) Suppose 70 < oo, inf (bns^) > 0 and J] b~2 < oo. Then

- 1 + Σ2 ̂  z-a
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the series converges absolutely and uniformly on compact sets.

2) Suppose inf s^ > 0 and QJΓ < oo for some p > 0. Then
n,± μ

P-3

^pQp-ι + 2^(n+l)(p-2-n)QnQp_3_n = ̂ (μ+(α+)p - μ~(a~)p), (1.15)
0 n

αrcd ί/ze series converges absolutely.

3) Suppose Q2p < oo /0r some p > 0.

4) Lei k(z) be a quasimomentum. Then for any n E Z we have

«
± .
2n

raeZ =± 2m ~~ 2n+l

We note that from (1.15) we have the equality Σ(μ+ - μ~) = 0.

2. The Local Properties of the Quasimomentum

In this chapter useful results will be presented. The main attention will be given to
the analysis of the function v(z). It is well-known that for any GQ k — u + ίv the
function u'x(z) > 0, z — x + iy € C+ (see [9]). Hence there are two positive functions
v(z\ z G C\σ and u'u(z), z G Z. From the Herglotz theorem we have

v(z) = y l + - - dt zeC+, (2.1)

therefore uf

x(iy) — v'y(iy) and

L f «S«
π 7 (t2 + ί/

Proving some estimates in this chapter we use positive harmonic functions υ, u'x
and asymptotics υ(iy) = y(l + o(l)), u'x(iy) = (1 + o(l)), y —> oo. _

At first we shall consider harmonic functions in a domain £>(/) = C\(R\/), where
/ is a closed interval. The word "local" is means that some properties are obtained as
result that the function v (or u'x) is positive and harmonic in a region D(gn)(D(sn)\
Introduce the setί/ = { z : | z | < l } . There is the lemma

Lemma 2.1. Let a function f be harmonic and positive in the domain D = D(I),
I — [— α, α], α > 0. Then

1. // f(x)2 = (a- x)(2μ+ + o(l)), as x ΐ α, then

9 (2α)(2μ,)(α - x)
/(χ)2 < ^+n - ί , x 6 / . (2.2)
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3.

< 2(2α)/0c)2(α-x)
+ "~ α + x

e £>. Suppose f 6 C7(C+).
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(2.3)

a e / , (2.4)

(2.5)

/? = lim f(iy)/y, as y —>• oo.

>/ Take any x G /. Let W — W(z) be a conformal mapping from the region D
onto the disk U. The function W is defined by conditions W(x) = 0, W(x) > 0.
Such mapping may be got by the composition of mappings

(here \/l + Oi = l). Define the function fl from the equality fι(W(zJ) = f ( z ) ,
z G D. Using the Harnack inequality for the positive harmonic function fl we obtain

and hence

+ r '

6(χ)/(χ)
< /(*) <

6(0:) '

We rewrite the left-hand side of (2.6) in the form

x < ί < α.

x < ί < α.

(2.6)

α + x

From this, as t | α, we get (2.2). Using the right-hand side of (2.6) we obtain (2.3)
by analogy.

The function b(z) maps conformally the region D onto the upper half plane. For
— α < x < α , t < — α o r £ > α w e have the equalities

Im
1

b(t) - b(x)
= lm

b(t)
62(x)

(t — ά)Va2 — x2

2α(ί - x) 6(ί)(ί-α>

From here, using the property f ( z ) = f ( z ) , z e D, we get the kernel of the
Poisson integral for the domain D and hence (2.4).

By (2.4) we have (2.5). Q.E.D.

We have useful Corollary from Lemma 2.1.
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Corollary 2.2. Let function f be nonnegative, harmonic in the domain D = D(I},
I = [— α, α], α > 0. Suppose f(x)2 = (a ± x)(2μ± + 0(1)), as =px | &> then

af(xγ < (^4- vTC)2^2 - x1) < 2(μ+ + μ_)(α2 - z2), -α < x < a , (2.7)

f ( x ) 2 < 4αλ/μ+μ_ , — α < x < a . (2.8)

By (2.2),

< _
70, 1 - i -

> — χ) (a + X

—a < x < α. Multiplying inequalities (2.2) for μ± we obtain (2.8). Q.E.D.

Now we shall apply previous results for GQ. Instead of a function / we shall
use the functions u'x(z)9 x G D(sn), and v(z), z e D(gn\ In the case of a general
quasimomentum we have asymptotics of k(z) on any gap and band. For this case we
have

Theorem 2.3. Let k be a GQ. Then the statements (1.10)-(1.13) are valid. Further-
more

wn(x) < v(x) < ^2lnμ±wn(x)/\x - αj | , x e gn , (2.9)

/nυ(:r)2 < 2(0z7 + Jμl)2wn(x)2 , a; € ffn . (2.10)

Let in addition Q0 < oo αnrf inf s^ = s > 0. 7/zen

Pwo/ of estimates (1.10), (1.11), (2.9), (2.10) follows immediately from the Theorem
2.1, the Corollary 2.2.

Multiplying (2.9) at μ± we obtain the bound for hn in (1.13), and by (1.11) we
have the last estimate in (1.13).

The first inequality in (1.12) follows from (1.10). Let us prove the second inequality
in (1.12). Integrating υ(x) on gn, using (2.9) and the convexity of the function v(x\
x G gn we have

wn(x)/\x - a±\dx =

9n

Introduce
. 1 f υ(t)dt

Jn + π J «;n(ί)|ί-α±|
R\9n

By (1.11) we have 2(μ~ - μ+) = ln(J+ - J")(J+ + J~),

- α+ - a~)dt= !* ί
π J

and hence (2.11). Q.E.D.

Now we present the result about the behaviour of a general quasimomentum on
the spectrum.
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Theorem 2.4. Let S = [α+, α_] be a spectral component ofGQ k = u + iv and μ±

be the corresponding reduce masses. Then u'x(z) is a positive harmonic function in the
domain D(S) and

(2.12)
7Γ

μ±<2(u'x(x))2\S\\x-a±\/\x-a^ , x€S. (2.13)

If k is a quasimomentum then
(2.14)

where n is the number of the merged components which are composed the band S.

Proof. The estimates (2.12), (2.13) follows from (2.1) and Lemma 2.1 correspond-
ingly. By (2.13) we have

Integrating it on S we obtain (2.14). Q.E.D.

Later on we shall need following results on the function v.

Lemma 2.5. Let k be a GQ and z e C+. Then

k(z) = z + C+- ( v(t)' l l

7Γ ./

~ ~ π / t(l+t2)'

If in addition g = (α, b) be a gap in the spectrum of a GQ and I = \g\. Then

(b-
_ , „ + / wI J (t-

(2.10

/ \

2lυ(x)<4 ί v(t)dt<l2[π + ί H^*_- J , a<x<b. (2.17)
J \ J (t-a)(t-b)
9 V R\s '

Suppose that Q+ < oo, p < 0 then

1 +P«,(+\

t, z^Z. (2.18)

f. We have (2.15) in the work [10]. Using k(ά) = fe(6) and (2.15) we obtain
(2.16). By (t - a)~l + (6 - ί)"1 > 4/Z, α < ί < 6, and (2.16) and by the convexity
of υ(ί), α < t < 6, we have (2.17).

We rewrite (2.15) in the form

k(z)

Hence by definition kp we obtain (2.18). Q.E.D.

Later on we need some estimates.

1 ί V(V J

 l ί (zp~tp)v(t) j 1 f tpv(t)
-z-Q_l = - / -±Ldt=— / ^——J-^dt+— / —^-

π J t — z πzP J t — z πz? J t - z
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Lemma 2.6. Let a function f be analytic in the domain D = {\ Rez| < α}, α > 0.
Then for any ±ί G [0, α) we have

^ |/'(ί)|2 < - ̂  ί\f'(z)\2dxdy < —^ f\f'(z)\2dxdy. (2.19)

π α2c°s22^ D D
Proof. Map the region D on the disk U by the function

Then

.
4α cos — 4α sin

2α 2α

Define the function fl by the relation fγ(b(z)) — f(z\ z £ D. For the function /jO^),
^j | < 1, there exists the usual estimate

π|/ί(0)|2< flffatfdx^yn ^ 1 = x 1 + i 2 / 1 .

ί/

Combining this with the inequality π sin ί > 2ί, π > 2ί > 0, and with the equality

ί\fl(zl)\2dxldyl = f\f(z)\2dxdy,

U D

we obtain (2.19). Q.E.D.

Now wee present the main "local" results. We shall estimate a reduced mass
through the Dirichlet integral from the GQ on some domain. Introduce the constant

Ap = {π2p(l+p)\ 14-

and the integrals

D

and "the normalized integral"

We have

Theorem 2.7. Let a GQ fc satisfy the Condition A for some p > 0. Suppose an interval
S = (α+, α_) //^ m Λ om^ spectral band ofk. Let μ± be a corresponding reduced mass
ί/α± coincides with the edge of the band and s = \S\, D = {α+ < Rez < α_}.

1) Lei 0^

(2.20)

(2.21)

(aq)
2p(μq)

2<ApI
2

p(D), q = ±, if 5 = 00. (2.22)

, 5) < ApI
2

p(D) , g = ± , (2.21)
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2) Let p = 0. Then

μq min(μq, s) < AQI2(D) , q = ±. (2.23)

3) Letp>\ and 0 e S. Then

(aq)
2pμq min(μg, |αj) < Ap/2(D) , q = ±, (2.24)

Pro0/ We consider the case 5 C R+, the case 5 C R_ is considered by analogy.
From the definition of kp we have k(z) — z — Pp(z) + z~pkp(z), z e Z. We obtain
estimates for x > 0, p > 2 (the case p — 0, 1 is more simple)

0 < k'(x) = I - P'p(x) + x~p^(x) - pχ-p~lkp(x)

x~pk'p(x)] - P- \Pp(x) + ̂  P;(X)

because PΌ(x) H — -PlW > ̂ ' ^(χ) > 0 as x > 0. Hence we have
p

0 < fc'ίx) < 1 + p + x""pfep(x) , x e 5 C R+ . (2.25)

Let 26 = α_ + α+, 2α = 5 and x = 6 -f t. By (2.13), (2.25), (2.19) we obtain for

0<t < α, c = 4(l+p)2,

(α + ί)μ_ <2s(a-t)u'(x)2 < 2s(a - t ) [ l + p + x~pkp(x)]2

The function

α —

has the minimum in the point ί0 = a2/(a + j~) and f ( t Q ) = j~(j~ + 2α)/α2. Hence
we have (2.20) for μ_.

Consider two cases. 1) Let μ_ < s. Then

μ>-/jp < 2c(l + j p / s ) < 2c(l + j~/μ_).

For .R = jp /μ_ we obtain an inequality /t! < 2c(l + 1/-R), which is truth under

the condition J R < Λ 1 = c ( l + ^/l +2/c), i.e.

μ_ < ΛI j~ if μ_ < 5 . (2.26)

2) Let μ_ > 2. then

By analogy we obtain

μ_σ<R\(j~)2, μ_ >s . (2.27)

Uniting (2.26), (2.27) we have got (2.21) for μ_. In the case μ+ we have

<α + 0 | i +

α +
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Repeating the proof for μ_ we obtain (2.21) for μ+. From (2.21) for the interval
(α+, a+ + 2μ+) we obtain (2.22) for the case q = +. The case q = - is proved by
analogy.

2) The estimate (2.23) follows from (2.21) and from invariance (2.21) under transla-
tions.

3) Applying (2.21) for the intervals (α+,0), (0,o_) we have (2.24). Q.E.D.

Now we shall present the more exact result about the reduced masses for the
quasimomentum. Define constants h+ = sup/ιn, l+ — sup/n, TO — π/4(l +270). The
function f ( t ) — (2/+/πf)logcot[l — ί)r0], 0 < t < 1, has the minimum at some point
and denote such point by ί°. Later on we shall need the constants

2l+ i

r = [cot(l - t°)r0]^, v = - (r2 - τ~2) .

The following statements hold true.

Theorem 2.8. Let k be a quasimomentum. Then for any q = ±, n £ Z, we have

/* + <logτ, (2.28)

μq

n < sinh/ι+ < (τ - τ-1)/2, (2.29)

\sn\ > 2arcsin —J— > —\-- > - , (2.30)n cosh/ι+ cosh/ι+ r

μq < i/ in f l s I , (2.31)
m

( 2/Λς \ sinh 2/ι,
-̂ΊΓ < r-̂  < 2z/. (2.32)

max±5±y 2

Proof. The estimate (2.28) follows from (3.1).
Increase all slits Γn, n £ Z, including degenerate until the height /ι+. We obtain

a new comb and a new quasimomentum fcj. From Theorem 3.2 it follows that the
reduced masses increase and the lengths of the bands decrease. It is very important
that new reduced masses and the new lengths of the bands do not depend from number
n. Denote the corresponding reduced masses by μ and the lengths of the bands by
s. It is necessary to find μ, s. The Lyapunov function for kλ has the form (see [9])
Fγ(z) = bcosz = cos/Cj, b = coshh+. From this formula it is easy to obtain the
reduced mass in the point xλ where F λ ( x λ ) = 1 = bcosx^:

Mn - M — ~ F[(
= sinh/ι+, n e Z . (2.33)

From this inequality and from (2.28) we obtain

2μq

n < exp(ft+) - exρ(-ft+) < r - r~l.

There are the equalities sin(τr/2 — X j ) = cosxl = l/b. From this it follows that

1
s = 2(ττ/2 — X j ) = 2arcsin l/b = 2arcsin

cosh h+

Hence from the inequality arcsin t > t, 1 > t > 0, we have

1 2 2
\s\>s = 2 arcsin ——— > ——— > - . (2.34)

cosh/ι+ cosh/ι+ r



610 P. Kargaev and E. Korotyaev

By (2.28), (2.34), (2.33) we obtain

μq

8 -p231 < 2 sinh 2h+ <r — r = 8z/, n, m 6 Z.

Hence, from (1.13), (2.33), (2.34) it follows that

- < S1Π

2

 + <2ι/. Q.E.D.

Now we shall present the main result on the reduced masses in the case of a
quasimomentum. We introduce the constant

> 2

Theorem 2.9. Lei α quasimomentum k satisfy the Condition A for some p > 0 and
D- = {α+_! < Rez < α-}, D+ = {α+ < Re* < α^J, n € Z. Then

q = ±. (2.35)

Proof. We consider q = -. By (2.20), (2.31),

_
), μ n < ι / β , s = |βj, j =

Hence μ~ < sϋv, where s° is the decision of the equation 8(1 + p)2 j(s + j) = vs2.
It is easy to find

vs* = 4(1 + p f j B l

p / 2 / 2 P π = Bl

p/
2Ip(D-)/(a-)P .

The case q = + is consider by analogy. Q.E.D.

3. The Identities and the "Integral" Estimates

In this chapter we shall present results about "global" properties of a general
quasimomentum. Some of them we shall obtain using the previous proposals. We
have

Theorem 3.1. Let the set σ be such that l+ < oo, the point zero lies inside σ and
70 < oo. Then σ is the spectrum of some GQ and

h+<logτ. (3.1)

Proof. Suppose that / is arbitrary, fixed closed interval and |/| > 2/+. Any gap,
intersecting with / (but excluding two extreme gaps) lies in / together with the
neighbouring bands. Then

270|J Π σ\ + |/ Π σ\ + 21 + > \I\ . (3.2)

First term on the left-hand side estimates the sum of lengths of "inner" gaps. We take
a\I\ = 2l+, where α > 0 and enough small. From (3.2) it follows that

(1 + 27o) |7 Π σ| > (I/I - 2α/+) - (1 - α) |I| .

We need the following facts (see [4, 9]):
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Let 5* be a closed subset of a real axis such that for some values L < oo and
δ > 0 the Lebesgue measure of the intersection of 5^ and any interval of length 2L
is not less than δ. Then there exists the unique function υ(z) which is harmonic in
the domain C\J^ and has the following properties:

i) a.e. on 5^ the function υ(z) has zero limit values,

ii) for every z G C, 0 < v(z) - lmz\ < — log cot —.
7Γ 4L

We take L = 2/+/α, δ = (1 -α)2Z+/α(l+270) and o < a < 1. From last inequality
and from Levin's work [9] we obtain that σ is the spectrum of GQ and we have (3.1).
Q.E.D.

Now we shall prove the simple variational inequalities for effective masses
(reduced masses).

Theorem 3.2. Let km(z) be GQ, m = 1,2.

1) Suppose that um n = un, m — 1,2, and hγ n < h2 n for any n G Z. Then

I ς I > O I / / ^ < / / ^ Π ^ϊl ^ l ^ n l ^_ 5 2,n l ' rΊ,n — ^2,n ' W -V

2) Suppose that g{ n C 02 /or flfry n G Z and a^ = a^N /or some JV G Z. TTzen

Proof. 1) Introduce the function /(z) = InX^λ^^))). This function is harmonic,
nonnegative in C+ and continuous in C+. Suppose the inequality

f ( z ) > Im(z2(k2(z))) = y, z = x + ίy,y>0. (3.5)

Then lmzl > Imz2 in the domain A:2(C+) and
r\ r\

z[(u) = — lmz{(u) > — Imz2(u) = z'2(u), ueR, u ̂  un .

From this the proposal of 1) follows because

\Sm,n ~

τ

From the representation (2.15) we obtain that

km(z) = z(l + o(l)), z G U(A) = {z : y > A\x\}, | ^ | — ^ o o .

But for any A there exists a constant R = R(A) > 0 such that km(U(A)) D {z :
\z > R} Π U(2A), m= 1,2. Hence zm(k) = k(l + 0(1)), k G U(2A\ \k\ —> oo, and

zλ(k2(iy)}/iy = [ z { ( k 2 ( i y ) ) / ( k 2 ( i y ) ) ] [ k 2 ( ί y ) / ί y ] -> 1 as y -> oo.

From this it follows that f ( i y ) = y(l 4- 0(1)), as y —>• oo, and using the Herglotz
theorem we obtain (3.5).

2) From the Phragmen-Lindelof theorem (for our case see [9]) we have the inequality
vγ(x) < v2(x\ x G R. Then from the definition of the reduced mass we obtain

M!.TV = lim ^V+X ^ < lim ...+2X ..x = /4 TV Q E D
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Lemma 3.3. Let k(z) be a GQ.

1) Suppose that Q$ < oo. For t > 0, t ^ |α^|, n G Z, introduce the functions

2π

*'.»)- Σ
|α±|<ί

2_,, z_β ;
-i/i*π 7

(tεxp(iφ))-l\2dφ.

Then

oc

/ tf2(t)dt = dQ < oo,

\k'(z)2 - 1 - S(t,z)\ <
t- \z

2) L^ί m addition J0 < oo, RΞΞ infbnr± > 0, and ̂  6n

2 < CXD.

(3.6)

(3.7)

< 00. (3.8)

c. From the Cauchy theorem about residues we obtain the equality

2πί J a-z
|α|=ί

and the inequality

Γ (k'(a) - I)2 + 2(kf

J a-z
a\=t

and by (1.16) we have (3.6).
We have inequalities

(a) - 1)
da

πt(f2(t) + 23/2/(Q)

t- \z\

Σ Σ /ί21z_^ r n I

2^ \n±\ — zL^i Ώ '

From these inequalities and from the Theorem 1.4 we obtain the convergence (3.8).
Q.E.D.

Now we prove the formulae for the reduced masses in the case of a quasimomentum
and some equalities.

Proof of Theorem 1.5. 1) From (3.6) it follows that we can take the sequence {tn}^°
such that tn —> oo, f(tn) —> 0 as n —> oo. From this and from (3.7) we obtain (1.14).
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2) The definition of kp and its representation (2.18) result in following asymptotics:

p
kf(iy) = 1 + Σ Qm__, m(ίyΓl~m + O(y~2~p) , y -> oc . (3.9)

o

Then for each term of the series in (1.14) we have

m=0

Suppose that

?/>'

Then by (1.14) we obtain

Λ P

(3.10)

(3.11)

>, (3-12)
m=0 n

y — > oo. Hence we have (1.15) from the comparison of (3.9), (3.12).
Let us prove (3.10), (3.11). It is useful to note that from (1.11), (2.11) we have

μ^ < CLn, |μ~ - μ+ < Cl2

n, n € Z, for some C > 0. Hence

m\a+
n - + \μ+ - μ~\a

and

iy - α+

and by (2.17), (1.12) we obtain QJ > c\\l\\2

p/2 for some c> 0.

3) We can write kp = R + i J, where J(x) = xpv(x), R(x) =
x G R. For the domain D = {z \ Rλ < \z < R2, y > 0}, 0 <
have the Green formula

R'(x)J(x)dx + (R2b'(R2) - R^b^

Rl<\x\<R2

where the function

b(t) = J

o

- x +
< R2 < oc, we

(3.13)
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and we have got the equality

-R'(x)J(x)

( p-i "I
(p+ l)xp -pxp~lu(x)-y^Qm(p- 1 -ra)xp~2~m >, x <E R

o

Introduce the set σ^ = σ U (—00, N) U (TV, oo) and the variables corresponding to
σ^ we denote by the upper index N. It is well known (see [9]) that

VN(X)/*V(X)) \UN(X)\ / \u(x)\, N —> oo, x e R .

From this and from Levy's theorem it follows that

Qm+ / <9m> f VN(X)\UN(X)\ \X\m dx / ί υ(x)\u(x)\ \X\m dx ,

as TV —> oo, and by (2.18) we obtain that kp converges to kp uniformly on compact
sets from C\σ. We also have from (2.18) that

= 0(1/z), (k£(zy)' = 0(1/z2), as > oo.

Hence if R2 — > oo, #j — » 0 we obtain (1.16) for the case σN . Then by Fatou
theorem

, P-
dp/2 < (1 +p)Q2p -^ x2p-lu(x)v(x)dx - Σ(p - 1 - n)QnQ2p_2_n .

π J o

But from this and from (3.13) we obtain that the limit a = \\mtb' (t) > 0, as
t — » oo, exists. Let us prove that α = 0. Suppose not. Then for some C > 0 we have
tb'(t) > C, t^> 1. Hence b(t) — » oo, as t — >• oo. Define the function

π

/2(ί) - /" |fc;(ίexp(^))|2d^, ί > 0,

o

where by the definition of dp we have

oo

2 f
- \
π 7

oo.

There is a sequence tn — > oo, such that tnf(tn) — >• 0, as n — > oo. Suppose not.
Then for some c > 0 we have tf(t)2 > c/t for large t and dp = oo. For this sequence
t we obtain

7Γ

f \

as n —> oo, uniformly on φ G [0, π], because by (2.18) kp(iy) —> 0, as y —> oo. So

7Γ

*(<„) < ί \kp(texp(iφ))\2dφ, -* 0, as n —> oo.
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4) For the Lyapunov function F(z) — cos k(z), z G C, there is the estimate
\F(x)\ < coshf(x), x G R. Then we obtain

f log+ \F(x)\ f υ(x)
I !—-—- dx < I z- ax < oo .

J l+x2 ~ J l+x2

Hence the functions F(z) ± 1 are entire functions of Cartwright class. Using the
properties of this class (see [7]) and taking into account the fact that zeros of the
function F(z) — 1 is the set {o^n^n £ N} (if a^n = αjn then the multiplicity equals
two) we obtain

F(z) - 1 - exp(ϊαz)V.P. l - - , zeC, (3.14)

where a G C and the multiplication in (3.14) converges uniformly on any compact
set of the complex plane. Introduce the function f+(z) — F'(z)/(F(z) — 1). From the
Weierstrass theorem and from (3.14) we have

/+(2) = iα + V.P. "Γ - ̂ -, (3.15)
' ^

where the series converges uniformly on any compact set lying in C\{α^}. Using
(3.15) and the equality ImF(x) = 0, x e R, we have α — 0. From F(z) = cos k(z),
z G C, we obtain zf(k(z)) F'(z) — — sink(z), and hence

-F(z) = z"(k(z))F'(z), F(a±) = (-l)n, z = a± . (3.16)

From (3.15), (3.16) it follows that for z = α^+1,

f+(z) = F'(z)/2F(z) = -± μ±n+l/2 = V.P. ^ _1

 q .

Using f_(z) = F'(z)/(F(z) + 1) we have (1.17) for μ^n. Q.E.D.

Let 72 = max{2,70}. We shall prove "the global estimates" for GQ.

Theorem 3.4. Let a GQ k satisfy Condition A and Condition 1 for some p > 0.

1) Suppose p = 0. Then

\\l\\2 β <Q0 = dϋ/2 < I \\l\\ \\h\\ < 1 \\h\\2 < πΊ2μ
2

0 ,

μ2

0<2A0d0, d0<47 2A0 | |/| |2.

2) Suppose p > 1. Then

<QΪP<
1- \\l\\P\\h\\P < I I Λ I I ^ < 2τr(l +7l)

1+2^; (3.ι8)

μ2 < 2Apdp , dp < 2(1 +p)Q2p , (3.19)

Q2 p<4(l+p)^(l+7 l)
1 + 2P||/| |2. (3.20)

Proof. 1) Prove successively all inequalities. Take any gap gn. From (2.9) we obtain
v(x) > wn(x)9 x G gn. Integrating this inequality on gn and adding in n we have the
first inequality. In (1.16) there is second equality.
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In (1.12) we have the inequality ln < 2hn and this gives

πg0 = I υ(t)dt < Σ hnln < 1 1 / 1 1 \\h\\ < 2\\h\\2.

Let Yn = minμ±. By (1.13) we have ln < 2Yn. Hence

n n n n q=± n n n n — n n n n

and then

lnYn <min{2yn

2,70(μ;

From this inequality and from 2h2

n < ττ2lnYn (which follows from (1.12)) we
obtain

I I M | 2 / π2 V^ 7 \Λ / 7271"2 V^
INI < y Z^ lnYn < -L— ^

Using (2.23) we have the estimate

2 _ V^

By (3.17),

From this estimate it is easy to get the necessary inequality.

2) Consider the case gn C R+ (the cases gn c R_ or 0 e ^n are proved by analogy).
From (2.9) it follows that

/

Λ /. / _|_ . _ \

ί2pυ(ί)ώ > / t2pwn(t)dt > I Vb2-x2(x+ αn^α" J

9n

~ 4

where 2b — ln. From this we have the first inequality. By (1.12)

< 2<pft;, n <G Z.

Hence the three inequalities in (3.18) are proved. We have ln < 7j max± r^. There
are two cases. First, let ln < 7^", then αn < (1 + 71)|α~|. By (1.12), (1.13),

hi < π\μ-/2 < π2μ~ min{M-,7lr-/2} < π2(l + 7ι)μ~ ™™{vu^n} -

Hence
a2//!2 < π2(l + 7l)

1+2P(a;)2V; min{M;,r;} . (3.21)
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Second, let ln < 7^+, then by analogy

By (3.21), (3.22),

<%hl < π2(l + 7i)1+2p(O2p*4 min{μ+, r+} . (3.22)

< π2(l
q=±

From this it is easy to prove the last estimate in (3.18).
To prove (3.19) we use (2.21) and then

= Σ «)2Pμqn^(μqn^J<

The last estimate in (3.19) follows from (1.16).
We shall prove (3.20). By (3.18), (3.19),

< \\l\W\2

p < \\l\\y (

From this estimate we obtain (3.20). Q.E.D.

4. Asymptotics

Let (A, B) be the distance between sets(numbers) A, B. Introduce the numbers ξ > 0,

ξ± = min(ξ, r±/2), ξn = πώi^, B± = a± ± ξ± ,

9n

the domains Zn(ξ) = {B~ < Rez < £+}, gn(ξ) = {\lmz\ < ξ} Π Zn(ξ), and the
functions

\t\Pv(t)dt *p(*>7, ί Λ 2 /"
J(P'^'Z)=π y

2\t-z\<z

We present the theorem.

Theorem 4.1. Let k be a GQ. Suppose that Qp < oo /or some p > 0.

1) Let(z,g) > ξ > 0. TΓie/i

|^p(^)| ^ 2Qp/\z\ + J(p, ξ, 2:), (4.1)

am/ J(p, ξ, z) —>• 0, as \z —* ex).

2) Lei z G flfn(0 for some ξ G (0, bn). Suppose Pp(x}' < 1, z G ^n.

, (4.2)
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where

(4.3)

(4.4)

Remark. If p > 0, n| > 1, then Pp(x)' < 1, x G #n. Furthermore, if a GQ k satisfy
Condition A then Pp(x)' < 1 for any x ^ 0.

/ 1) By (2.18) and by the inequality 2\z - 1\ > ξ + \z - 1\ if (z, g) > ξ we have

2\t-z\>\z\

Since Q+ < oo we obtain that J(p, ξ, 2;) -̂  0, as \z\ — » cχo.

2) By the maximum principle enough to estimate /p on the boundary of Zn(ξ). First
we consider fp(z) when z belong to the upper side of the slit gn (the case of the
lower side is considered by analogy). By the definition of kp, fp we have

0 < Im fp(χ -h iO) - v(x) <hn, x£gn. (4.5)

Now we estimate the real part of fp(x + iO), x € gn. We see Re/p(a; + iO)' =
1 - Pp(x)' > 0.

Then the function — Re f (x + zO) increase in x G gn and sup | Re fp(x -f zO)| =

max I Re/p(α^)|. Now we estimate the function fp(z), Rez = B^ By (2.18),

Suppose x G . Then

/ /
{2\t-x\<\x\}\gn

since 2\t - x\ > \t - x\ + ξn if tφ gn and α± - t\ < \B± - t\ if t G ^n. By (2.16),
(2.17) we have the first inequality in (4.3). By (2.9) we obtain

Using the estimates for υ from (2.10), (2.16) we obtain (4.4). Q.E.D.

We shall consider asymptotics for the Hill operator. We introduce the numbers

πvn = [υ
J

(t)dt,
= f ^^ ,J Wn^l>

n G Z ,
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and the function

1 f

^ = * J
v(t)dt

' n € Z '
We present the theorem.

Theorem 4.2. Let k(z) be the quasίmomentum of the Hill operator and V G Ll(Q, 1).
Then for any x G gn, n G Z, the statements (1.7), (1.8) are valid. Furthermore

max{^n, Fn(x)} <Tn< Q0r~2 , (4.6)

T n <Tn~ 2 , (4.7)

v(x) < wn(x)(l + Tn~2) . (4.8)

Proo/ We estimate Wn. the case of Fn is considered by analogy. We have the
inequality wn(t)2 > ra2r2, t G gn+m, and hence

[v<f)Λ<lγ* ί v(t
J wn(tf - π ̂  J (m-

m n

_

n)V '

By |m| > 1 we have.Tn < Q0r~2. In the case of the Hill operator

In = LJ(a$ + α-) < Ln/2nr , n > 0 . (4. 10)

By (1.10), (4.9),

υ(x) = wn(x)(l + Fn(x)) < w;n(x)(l + Γn), x G #n , n G Z . (4.11)

We see from (4.10), (4.11), (4.6) that

Hence
/ \ — z / ^ 1 L^

Vn-m(mr) < 2(4m(n — ra)r2)2

3T

rn2(m — n)2 '

and by

- n rn-n

we have (4.7). By (4.6), (4.7), (4.11), (1.10), (1.11) we obtain (1.7), (1.8). Q.E.D.

Introduce the function
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We present

Theorem 4.3. Let k be the quasimomentum for the Hill operator and p > 0, ξ > 0,
Q+ < oo, z G C, β > 1. Then

7Γ J(p, & Z) < T°A(β, ζ,Z)l

I 2(gn,z)<\z\

. (4.12)
{l(9n,z}<\z\ )

Proof. Introduce the function

(^ + (9m *}Tβl , I/A
\

and a number πQ(p, ri) = / |ί|pt;(0ώ. We have

2

2(gnιz)<\z\

2(gn,z}<\z\

We have to estimate B. We obtain

x \z\/2r

B(β, ξ,z)< Σ G + \n\rΓβl < 2J ΓA + / (ξ
2|n|<|z| I ^

and

and hence β < yl'3'. By (1.7),

2

n/2 . Q.E.D.
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5. Applications

In this chapter we shall apply the previous results for the case of both the Hill operator
and the Dirac operator with periodic coefficients.

First we consider the Hill operator H = - d2/dt2 + V(t) in L2(R), where V
is 1-periodic real potential and V G Ll(0,1). Let φ(t,z),θ(t,z) be the solutions of
(1.2), satisfying φ't(0,z) = 0(0, z) = 1, φ(0,z) = 0{(0,2) = 0, and the Lyapunov
function F(z) = (φ't(l,z) + 0(l,2»/2. The sequence 0 = A$ < A~ < A+ < . . .
is the spectrum of Eq. (1.2) with periodic boundary conditions of period 2, i.e.
f(x + 2) = /(#), x G R. Here equality means that A~ — A\ is a double

eigenvalue. We recall that α^ = Λ/A± > 0, αΐn = — αj, n G Z+. Essentially
that F(α±) = (-l)n, TV G Z. The lowest eigenvalue Aj is simple, F(oJ) = 1 and
the corresponding eigenfunction has period 1. The eigenfunction corresponding to A^
have period 1 when n is even and they are antiperiodic, f ( x H- 1) — — /(x), x G R,
when n is odd. We have the well-known estimate

i

A± = (τrn)2 + fv(t)dt + o(l), n-^oc. (5.1)

o

Later on we need the simple relations

, M ± = M?n, μί = μ?n, n G N , (5.2)

n G N . (5.3)

There are some estimates for /n, ftn, μj, v, in Sect. 2 and the same series for the
general quasimomentum in Sect. 3. For the Hill operator we can rewrite these results
more simply.

Corollary 5.1. 1) Let k be GQ for the Hill operator and V G L^O, 1). Then

the series converges absolutely and uniformly on compact sets. The effective masses
are expressed by (1.4).

2) Let a potential V G Wf (R/Z), p > 0. Then

p~l ( ι\
- (1 + 2p)Q2p + ̂ (1 + 2m) ί p - m - - ) Q2mQ2(ί,_1_m) , (5.5)

o ^ ^
and the series converges absolutely. If p = 0(p — 1) then we have (1.5), ((1.6)).

Proof. By (1.14), (5.2). (5.3),

^T - -̂ 1 = Σ-< z"α"^ ,=fe

au"
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and hence

= - Σ

because X] M^ = 1/2 (see (1.14) at z = 0). Thus we obtain (5.4).
n>0,<?=±

By (1.17), (5.2) we have (1.4) by analogy.

2) By (5.2),

A = \^ q(aq)l+2pLίq = \^ q\(aqγ+2pπ,q + (aq Ϋ+2pu,q 1
n>0

n>0 n>0

Using (1.15), (5.2) we obtain

,4 = 4(l+2p)Q2p + 2 ^(n-
o

p-l

= 4(l + 2p)g2p + 2^(2m-
o

By (3.17), (5.5) we have (1.5) and by analogy we get (1.6). Q.E.D.

Recall that for a sequence / = {fn}^° and a number p we introduced a norm
l l / l l ± , p = Σ(^n)Ί/ni2 If we define a number η = sup{A+/A~} > 1, then we

π>0 n>0

have simple estimates ||/||?_ p < ||/| + p < ^p||/||?_ p. It is necessary to note that for
an even sequence / = {/n}f?oo, i.e. such that f_n = fn, n = 1,2,3, . . . , /0 = 0,
we have the equalitis 2||/||2±)0 = ||/H2, 2||/||5.>p = ||/||2.

Now we present the theorem.

Theorem 5.2. Let k be a quasimomentum of the Hill operator and V G L^O, 1). Then

(5.6)

(5.7)

d0 < 2S0||L||iι_1. (5.8)

Suppose a potential V € W£~l(R/Z), p>l. Then

2-^\\L\\2
+^ < Q2p < 1 | |Λ| |2 ιp, (5.9)

INIL < 4π2||M±||i)1+p < π2Bpdp/4, (5.10)

dp < 2(1 +p)Q2p < 8(1 +p)Bp\\L\\2

+tp_ί. (5.11)
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Proof. By (5.3), (3.17),

π>0 n>0

and again by (3.17) we have (5.6). Now we shall prove (5.7). By (5.2), (1.12),

hi < π2(μ±)2 < 4π2,4±(M±)2, n G N. (5.12)

Combining (5.12) with (2.35) we have (5.7). We see from (3.17), (5.3), (5.7) that

π2Q2 < \\h\\2\\l\\2 < 2|W|2

+ ) 0 | |/| |2 < 4π2^0||/||2+!θ < ̂ B^\\L\^_λ ,

and using 2Q0 = d0 we have (5.8). The estimates (5.6)-(5.8) have been proved.
We rewrite (3.18) in the form 22-4~2ί)||/||2.?p < Q2p < 4||/ι||2_?p/τr, and by (5.3),

From (5.12) it follows that

\\h\\±,P ^ 4^Σ^)PIM« I2j4n < 4π2||M±||iιp+1,
n>0

and by (2.35) 4||M±|2=^1 <Bpdp.
Now we shall prove (5.11). We have the first inequality of (5.11) in (3.19). It is

necessary to prove the second. By (3.18) and by the first estimate of (5.11) we obtain
that

and hence we have (5.11). Q.E.D.

Now we shall find asymptotics k(z) as \z\ — > cχo. We consider only the case p = 0.
Suppose ξ > 0 and (z, g) > ξ. By (4.12) at β = oo we have

πJ(0,ξ,z) < 2T°J Γ1 + - log f 1 + ̂ ] } sup /2 , (5.13)
[ r V 2U ) 2(z,9n)<\z\

and since
2|α- + < ! > ! * , as 2(z,gn)<\z\, (5.14)

and by (5.3)

SUp Γn < —12 SUp
l(z,9n}<\z\ Z\ 2\aή\>\z\

then we see from (5.13)-(5.15) that

(5.16)

(5.17)

sup Ln,

Then we obtain
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Now we consider the case ( z , g ) < ξ. Let ra ^> 1 and such that r^ > π/2 as
\n\ > m. We take 4ξ < π and z G {(z,gn) < ξ}. By (1.10), (5.3),

rriQ T /y->0 T

2hn < T°ln < — — a-, < — =2. . (5.18)
n- n- - -

From (5.18), (1.10) it follows that

ft < T°ln < T°LJ\z , (5.19)

and by (5.16) J(0,ξ,x) < 4J&, \z\/2) J2(^2\z\)/\z\2, x € {α±,α± ±ξ}. Finally,
we obtain

\k(z) ~z\< (4Q0 + T°LJ/\z\ + 4J,(ξ, z/2)J2(ξ, 2z)/\z\2 .

Now we shall consider some estimates about the velocity Un, n £ Z. Let the
spectral band of the quasimomentum for the Hill operator s(n) = [α(n),6(n)],
rn = |s(n)|, n G Z. Suppose the point kn such that Un = z'(kn) = maxz'(k\
z(k) G s(ri). We present

Corollary 5.3. Let V G L!(0, 1). Then

Proof. Let 2xn = a(n) + 6(n) and the domain L>n = {Rez G s(n)}, n G Z. Then we
have

and by \kr(xn) - 1| > |1 - U~l\ we obtain (rn/2)2|l - U~l\2 < ^(DJ. Summing
we have the estimate. Q.E.D.

Now we shall consider the Dirac operator HD (with periodic coefficients) in the
Hubert space 38 = L2(R) Θ L2(R)

Later on we shall use the Dirac equation

/2 + VI/! = */, , -/ί + ^2/2 = ^Λ , (5.20)

where Vj , V"2 are real 1-periodic functions in t e R, VJ, V^ € L'(l,0). For a vector-
function /(ί) = {/[(ί), /2(ί)} we consider the following boundary conditions:

/(O) = /(!), (5.21)

/(O) = -/(!). (5.22)

The boundary value problem (5.20), (5.21) is called by periodic and the boundary
value problem (5.20), (5.22) is called antiperiodic. We denote the eigenvalue of the
periodic problem by a^n and the eigenvalues of the antiperiodic problem by α^+j,
n G Z. It is well-known that

• < <*2n-l - α2n-l < α2n - a2n < ' ' ' > (5>23)

α^ = n(τr -f- o(l)), 17i I —> oo.



Effective Masses and Conformal Mappings 625

Let φ(t,z) = (Ψι(t,z),φ2(t,z)\ θ(t,z) = (Θl(t,z),θ2(t,z)) be the solutions of
(5.20) satisfying φ(0,z) = (0,1), 0(0, z) = (1,0).

We introduce the Lyapunov function for the Dirac equation 2FD(z) = φ^l^z) -f
Θ2(\,z\ z E C. The properties of the Lyapunov function for the Dirac operator and for
the Hill operator are similar. But there is one exception. The function FD(z) is not even
in z E C. We have F(a^) = (— l)n, n E Z. The spectrum of HD is purely absolutely
continuous and is given by the set Usn, where a intervals sn = [α*_1?α~]. These

intervals are separated by gaps gn = (α~, α+). If a gap gn is degenerate, i.e. gn = 0
then the corresponding segments sn, sn+l merge. The spectrum of HD falls into
the components which are called spectral bands. Now we define the quasimomentum
function k(z) = aτccosFD(z), z E Z — C\g, g = Ugn. The function k(z) is analytic
and moreover A: is a conformal map from Z onto the quasimomentum slit plane
K = C\ U Γn, where an excised slit is given by Γn = {Re A; = πn, | lmk\ < hn}>
hn > 0, n E Z. A lot of estimates for the Dirac operator repeat corresponding
estimates for the Hill operator.
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