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Abstract: Let Gn, n E N, denote the set of gaps of the Hill operator. We solve
the following problems: 1) find the effective masses M^> 2) compare the effective
mass M^ with the length of the gap Gn, and with the height of the corresponding
slit on the quasimomentum plane (both with fixed number n and their sums), 3)
consider the problems 1), 2) for more general cases (the Dirac operator with periodic
coefficients, the Schrodinger operator with a limit periodic potential). To obtain 1)-
3) we use a conformal mapping corresponding to the quasimomentum of the Hill
operator or the Dirac operator.

Introduction

Consider the Hill operator H = — d2/dt2 + V(t) in L2(R), where V is a 1-periodic
real potential from Ll(0,1). It is well known that the spectrum of H is absolutely
continuous and consists of the intervals Sl9 52, . . . , and let

Sn — lAn-ι,An], . . . , An < An < An+1,

n = 1,2, . . . , A+ = 0 < A~, A' --DO.

The intervals are separated by the gaps G1? G2, . . . , where Gn = (A~, A+). If a
gap degenerates, i.e. Gn = 0 then the corresponding segments Sn, Sn+l merge.
The spectrum of the Hill operator consists of closed nonoverlapping intervals which
are called spectral bands. Instead of the spectral parameter E we introduce a more
convenient parameter z, z2 = E, and numbers α^ = Λ/A^ > 0 and gaps

gn = (a~,a+), g_n = -gn, n e N, g0 = 0 .

Later on gn will be called a gap and Gn an energy gap. Now we can define a
quasimomentum function [11, 2],

k(z) = arccos F(z), z G Z = C\g, g = Ugn,
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where F is the Lyapunov function of the Hill operator (see Sect. 5). The function k(z)
is analytic and moreover k(z) is a conformal mapping from Z onto a quasimomentum
region K = C\ U Γn, where Γn is an excised slit

Γn = {Re/c = πn, |Im/c| < ftn}, hn = h_n>0, n G Z, /ι0 = 0.

Any nondegenerate (degenerate) slit Γn is connected in the same way with the
nondegenerate (degenerate) gap gn and the energy gap Gn. With an edge of the
energy gap <7n, having the length Ln, we associate the effective mass

M0-=0, M0

+ = l/£"(0), M±=0, if Ln = 0,

and M± = l£"(fc(α±)), if LJίQ,

where -£?(&) — z(k)2 and z(&) is the inverse function for k(z). It is well known that
if L ^ 0 then

A + (fc - πn) (1/2M -f o(l)), ±(fe - πn) j 0 .

Now we describe the main purpose of our paper.

Let us have only the set of gaps Gn, n G N, (or the set of segments Sn, n G N).
Then we solve the following problems:

a) find the effective masses,
b) compare the effective masses M^ with the gap length Ln and with the height of
the slit hn (both with fixed number n and their sums), then compare such sums with a
norm of the potential V in some space,
c) find asymptotics of k(z) at large z,
d) consider the problems a)-c)/or more general cases (the Dirac oprator with periodic
coefficients, the Schrodίnger operator with a limit periodic potential.)

The correlation between effective masses M^> lengths Ln, heights hn were studied
in many articles. Firsova [3] found the relation between M^, Ln, hn and the Fourier
coefficients of a potential V at large integer n. In [3] it was also shown that the
sum of all effective masses is equal to the physical mass. In [2] Firsova has proved
the asymptotics k(z) = z -+- O(2:~~1//3) as \z\ — > oo. Any Hill operator with finite
band spectrum was described by explicit formulae in the work of Its, Matveev [5]
(including the inverse problem). In the book [10] Marchenko had obtained some
inequalities between hn, Ln and asymptotics k(z) at large real E, E — z2, (see also
[11]). The main result of the paper [11] by Marchenko and Ostrovski is the solution
of the inverse problem. It is shown that under some additional conditions on the slits
Γn, n G Z, the region K corresponds to a periodic potential of the Hill operator.
Later on the inverse problem and some properties of the function k(z) have been
considered in the paper of Garnett, Trubowitz [1]. In [8] Korotyaev has studied the
propagation of the acoustic waves in a periodic media. It was shown that any spectral
band (with number n) "creates" the wave with the velocity Un (Un is less than 1).
The velocity Un is equal to the maximum of the function z'(k(z)) when z2 belongs
to the energy band with the number n. Furthermore 2M0

l~t/2 = 1 and M^ may be
estimated in terms of the gap lengths and the edges of the bands. In [12] Pastur,
Tkachenco have considered the direct and inverse problem for the operator with limit
periodic potentials.

Let us write down the main result of the paper.

a) Simple formulae providing the possibility to find effective masses in terms of the
edges of gaps Gn, n G N, are found.
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b) "The local estimates" (a number n is fixed) between the effective masses M^, the
height of slit hn and the length of gap Ln are obtained.
c) We derive inequalities which relate the following quantities: the sum of squares
(with weights) of the effective masses, the heights of the slits, the gaps lengths and a
norm of a potential V in some Sobolev space.
d) Asymptotics of k(z) or large \z\ are found.
e) There are some estimates about Un, n £ N.
f) We obtain the extension of a)-d) for more general cases (the Dirac operator with
periodic coefficients, the Schrδdinger operator with a limit periodic potential etc.).

It is necessary to note that the asymptotics of k(z) for E — z1 far from an energy
gap differs from the case when E belongs to some neighbourhood of an energy gap.

To prove a)-f) we use a conformal mapping corresponding to quasimomentum
of the Hill operator [11, 2] that makes possible to reformulate the problem for the
differential operator as a problem of the conformal mapping theory. Thus we should
study some "geometric properties" of conformal mappings from C+ onto "the comb"
K+ = K Π C+. For solving these "new" problems we use some techniques from
[11, 9] and we often use the poisson integral for the domain C+ U C_ U (— 1, 1),
the Dirichlet integral for a function k (z) (the definition of k (z) see in Sect. 1),
in particular the Dirichlet integral for the function kQ(z) = k(z) — z. The Dirichlet
integral was used in Kargaev's work [6] to study the conformal mapping of the upper
half plane to the comb.

1. The Main Results

In this section we introduce the concepts and the facts needed to formulate the
theorems, some results for the Hill operator, the Dirac operator with periodic
coefficients and some results from the conformal mapping theory.

At first we give some definitions and facts from the theory of conformal mappings.
We call the set K+ = C+\ U Γn the "comb" where

Γn = {Rek = un,\lmk\ < hn], hn>0, n e Z, ft0 = 0,

while un is a strongly increasing sequence of real numbers such that un —> ±00 as
n —> ±00. We call a conformal mapping k(z) from the upper half plane C+ onto some
comb K+ a general quasimomentum (GQ) if 1) fc(0) = 0, 2) k(iy) = iy(l + o(l))

as y —> oo. It is well known that a GQ k(z) is a continuous function in z G C+. In
this case we introduce the sets

9n = (anianλ Sn = [ α n-l> α nl = ̂ (Ki-H WJ)> ™ € Z .

We call σ = Usn the spectrum of the corresponding general quasimomentum k(z). We
also denote by gn a gap in the spectrum of GQ and we let g = (Jgn. It is well known
that the set σ can not be the spectrum of two different GQ [9]. Note that the function
k(z) may be continued onto the domain Z = C\g by the formula k(z) = k(z), z € Z.
If a gap gn is empty than the components sn, sn+l merge. The spectrum σ consists
of closed nonoverlapping intervals s(ή) with the lengths rn, n E Z, and σ = Us(n),
where the point zero belongs to 5(0). We denote the length of the gap gn by ln. For
GQ we introduce "reduced masses" (some analogue of the effective masses)

±μ* = l/z"(k(a±)), if ln^0 and ± μ± = 0, if ln = 0.
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It is clear that μ^ > 0 if ln φ 0 and we shall often use the asymptotics

z(k) = α± ± (k - uJ2(l/2μ± + o(l)), ±(fc - uj I 0. (1.1)

Later on p is an integer. We introduce the function u(z) = Re k(z), v(z) = Im k(z\

p
PpW = Σ Qn-ιz~n> kp(z) = zp{k(z) -z + Pp(z)}, ztZ, p > 0,

0

where

QΌ = - f xpv(x)dx, Q+ = - f \x\pv(x)dx, p > -I.
π J μ π J

Here and below an integral with no limits indicated denotes integration over Rd,
d > 1. For a nondegenerate gap gn we denote by r+(r~) the distance between gn and
the nearest right (left) hand side nondegenerate gap or the point zero. Analogously we
denote by s+(s~) the distance between gn and the nearest right (left) nondegenerate
gap. Let us introduce the constants

70 = sup (IJ max s±\, if p = 0, and ^ = sup (IJ max r±V if p > 0,

and r = inf r^ We call a general quasimomentum

i) a normed quasimomentum ifQ~^l < oo and Q_λ = 0,
ii) a symmetric quasimomentum ifk(-z) = —k(z), z £ Z,

iii) a quasimomentum if un = πn, for all n G Z.

Note that for the case Q+j < oo we can normalize the general quasimomentum
by some translation. We emphasize that a symmetric quasimomentum corresponds
to the quasimomentum for the Hill operator, a quasimomentum corresponds to the
quasimomentum for the Dirac operator with periodic coefficients. Furthermore a GQ
is an integrated density of states (or the rotation number) for the Schrδdinger operator
with some limit periodic potential (see [12]).

We shall tell that GQ k(z) has the moment of an order p is Q2p < oo. By Gerglotz
Theorem we have that GQ k(z) has the moment of order p > — 1. Later on we assume
some conditions on the spectrum (or gaps).

Condition 1. Let a GQ k(z) have the moment of an order p > 0, if p — 0, then
70 < oo and ifp > 0, then ^\ < oo.

Condition A. Let a GQ k(z) have the moment of the order p > 0,

i) ίfp=l then k(z) is a normed GQ,
ii) ifp>2 then k(z) is a symmetric quasimomentum.

Let us describe the connection between GQ and the Hill operator. Remember
that the spectrum of H consists of the segments Sn, n G N, with the gaps Gn. In

the case of the Hill operator the numbers α^ satisfy α^ = y/A± > 0, α^n = — αj,
n = 0,1,2,3, . . . , and gaps gn satisfy gn = (α~, α+), g_n = -gn, n<EZ,g0 = ψ. For
an energy gap Gn and a gap gn we have the equality Ln = A+-A~ = ln(a+ + α~),
n = l , 2 , 3 , . . . .

The quasimomentum k is defined by k(z) — arccos F(z), z G Z, where F is the
Lyapunov function for the Hill equation

-f" + Vf = z2f, zεC. (1.2)
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We note that the set g is symmetric with respect to the point zero and the function
k(-z) = —k(z), z e Z. In the case of the Hill operator the following equalities are
valid:

M0

+ = /c'(0)2/2 = l/2z'(0)\ ±μ± = 2α±M±, n > l . (1.3)

Moreover, for the Hill operator we have (see [10])

i i

2Q0 - ί V(t)dt, Q, = 0, 8Q2 - ί V(t)2dt, . . . .

o o

Let us formulate the main theorem.

Theorem 1.1. Suppose V <E L l(0,1) and n = 0,1,2, Then

m>Q,q=±

- f\k'(z)-l\2dxdy = 2Q0, and ^(A+M++ A~M~) = Q0,
J „ \ i (1.5)

Furthermore, let V G L2(0,1) and p = 1, then

- I \(z(k(z) - z))f\2dxdy + / v(x)u(x)xdx

i

= 2 ί x2v(x)dx = (π/4) ί V2(t)dt

o (1.6)
i

ίmd
n>l

βίc. /or V belonging Sobolev space W%~ (R/Z) αnJ p = 2, 3, . . . . A// series
converge absolutely.

Now we present the main inequalities obtained in this paper. We define the
Dirichlet integral πdp = f \k'p(z)\2dxdy9 z = x -f iy, and the constants T =

(π2/48r4)T°maxL2, Γ° = 1 + QQr~2. For a sequence / = {fn}^° or a sequence

/ = {/n}^°oo> such that /-n = /n, n = 1,2, . . . , /o = 0, we introduce a norm

Theorem 1.2. a) Lei V G L!(0, 1). Γ/zen r > 0 and for any n E N,

/ n <2/ι n </ n ( l+Tn- 2 ) , (1.7)

/ n <2μ±</ n ( l+TrT 2 ) 2 . (1.8)
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b) Let V G 1^(0, 1) ίfp = 0 and V e W%~\R/Z) ίfp > 1. Then for anyp>0 there
exist constants Cγ, C2, . . , C5 depending only on p, 7j (70 ifp = Q) such that

C,Q2p < C2\\L\\l^ < C3\\h\\ltp < IIM*!!^ < C4dp < C5Q2p . (1.9)

The exact representation of C l9 C2, . . . , C5 will be given in Sect. 5. We note that
in [10] there is the estimate ln < 2hn < Cln for any n = 1, 2, . . . and some C > 0.
Some analogues of Theorems 1.1, 1.2 for the Dirac operator with periodic coefficients
will be considered in Theorems 1.2-1.5.

Let us consider the case of a general quasimomentum. We introduce the function
wn(x) = \(x — a~)(x — α^)!1/2, x G R. We define numbers αn = max|α^|,
bn = min α±| and the norm \\f\\2

p = Σa^f^ with ||/|| - ||/||0, for a sequence

of real numbers / = {/yJΪΌo The following statements hold true.

Theorem 1.3. Let k(z) be a general quasimomentum. Then for any n G Z,

(MO)

(1.12)

(1.13)

At the same time for a general quasimomentum there are some "global estimates."
We introduce the quantities

and

Let us present the theorem.

Theorem 1.4. Lei β GQ fc(z) have the moment of the order p > 0 and satisfy Condition
A and Condition 1. Then there exist constants Cl,C2, . . . , C5 depending only on p
and 7! (70, if p — 0), such that

Cml < C2\\h\\l <μ2

p< C3dp < C4Q2p < C5\\l\\2

p.

Let us finally formulate now some equalities concerning a GQ and a quasimomen-
tum (the Dirac operator).

Theorem 1.5. Let k(z) be a general quasimomentum.

1) Suppose 70 < oo, inf (bns^) > 0 and J] b~2 < oo. Then

- 1 + Σ2 ̂  z-a
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the series converges absolutely and uniformly on compact sets.

2) Suppose inf s^ > 0 and QJΓ < oo for some p > 0. Then
n,± μ

P-3

^pQp-ι + 2^(n+l)(p-2-n)QnQp_3_n = ̂ (μ+(α+)p - μ~(a~)p), (1.15)
0 n

αrcd ί/ze series converges absolutely.

3) Suppose Q2p < oo /0r some p > 0.

4) Lei k(z) be a quasimomentum. Then for any n E Z we have

«
± .
2n

raeZ =± 2m ~~ 2n+l

We note that from (1.15) we have the equality Σ(μ+ - μ~) = 0.

2. The Local Properties of the Quasimomentum

In this chapter useful results will be presented. The main attention will be given to
the analysis of the function v(z). It is well-known that for any GQ k — u + ίv the
function u'x(z) > 0, z — x + iy € C+ (see [9]). Hence there are two positive functions
v(z\ z G C\σ and u'u(z), z G Z. From the Herglotz theorem we have

v(z) = y l + - - dt zeC+, (2.1)

therefore uf

x(iy) — v'y(iy) and

L f «S«
π 7 (t2 + ί/

Proving some estimates in this chapter we use positive harmonic functions υ, u'x
and asymptotics υ(iy) = y(l + o(l)), u'x(iy) = (1 + o(l)), y —> oo. _

At first we shall consider harmonic functions in a domain £>(/) = C\(R\/), where
/ is a closed interval. The word "local" is means that some properties are obtained as
result that the function v (or u'x) is positive and harmonic in a region D(gn)(D(sn)\
Introduce the setί/ = { z : | z | < l } . There is the lemma

Lemma 2.1. Let a function f be harmonic and positive in the domain D = D(I),
I — [— α, α], α > 0. Then

1. // f(x)2 = (a- x)(2μ+ + o(l)), as x ΐ α, then

9 (2α)(2μ,)(α - x)
/(χ)2 < ^+n - ί , x 6 / . (2.2)
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2. If 2(a - x) /(x)2 =

3.

< 2(2α)/0c)2(α-x)
+ "~ α + x

e £>. Suppose f 6 C7(C+).
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(2.3)

a e / , (2.4)

(2.5)

/? = lim f(iy)/y, as y —>• oo.

>/ Take any x G /. Let W — W(z) be a conformal mapping from the region D
onto the disk U. The function W is defined by conditions W(x) = 0, W(x) > 0.
Such mapping may be got by the composition of mappings

(here \/l + Oi = l). Define the function fl from the equality fι(W(zJ) = f ( z ) ,
z G D. Using the Harnack inequality for the positive harmonic function fl we obtain

and hence

+ r '

6(χ)/(χ)
< /(*) <

6(0:) '

We rewrite the left-hand side of (2.6) in the form

x < ί < α.

x < ί < α.

(2.6)

α + x

From this, as t | α, we get (2.2). Using the right-hand side of (2.6) we obtain (2.3)
by analogy.

The function b(z) maps conformally the region D onto the upper half plane. For
— α < x < α , t < — α o r £ > α w e have the equalities

Im
1

b(t) - b(x)
= lm

b(t)
62(x)

(t — ά)Va2 — x2

2α(ί - x) 6(ί)(ί-α>

From here, using the property f ( z ) = f ( z ) , z e D, we get the kernel of the
Poisson integral for the domain D and hence (2.4).

By (2.4) we have (2.5). Q.E.D.

We have useful Corollary from Lemma 2.1.
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Corollary 2.2. Let function f be nonnegative, harmonic in the domain D = D(I},
I = [— α, α], α > 0. Suppose f(x)2 = (a ± x)(2μ± + 0(1)), as =px | &> then

af(xγ < (^4- vTC)2^2 - x1) < 2(μ+ + μ_)(α2 - z2), -α < x < a , (2.7)

f ( x ) 2 < 4αλ/μ+μ_ , — α < x < a . (2.8)

By (2.2),

< _
70, 1 - i -

> — χ) (a + X

—a < x < α. Multiplying inequalities (2.2) for μ± we obtain (2.8). Q.E.D.

Now we shall apply previous results for GQ. Instead of a function / we shall
use the functions u'x(z)9 x G D(sn), and v(z), z e D(gn\ In the case of a general
quasimomentum we have asymptotics of k(z) on any gap and band. For this case we
have

Theorem 2.3. Let k be a GQ. Then the statements (1.10)-(1.13) are valid. Further-
more

wn(x) < v(x) < ^2lnμ±wn(x)/\x - αj | , x e gn , (2.9)

/nυ(:r)2 < 2(0z7 + Jμl)2wn(x)2 , a; € ffn . (2.10)

Let in addition Q0 < oo αnrf inf s^ = s > 0. 7/zen

Pwo/ of estimates (1.10), (1.11), (2.9), (2.10) follows immediately from the Theorem
2.1, the Corollary 2.2.

Multiplying (2.9) at μ± we obtain the bound for hn in (1.13), and by (1.11) we
have the last estimate in (1.13).

The first inequality in (1.12) follows from (1.10). Let us prove the second inequality
in (1.12). Integrating υ(x) on gn, using (2.9) and the convexity of the function v(x\
x G gn we have

wn(x)/\x - a±\dx =

9n

Introduce
. 1 f υ(t)dt

Jn + π J «;n(ί)|ί-α±|
R\9n

By (1.11) we have 2(μ~ - μ+) = ln(J+ - J")(J+ + J~),

- α+ - a~)dt= !* ί
π J

and hence (2.11). Q.E.D.

Now we present the result about the behaviour of a general quasimomentum on
the spectrum.
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Theorem 2.4. Let S = [α+, α_] be a spectral component ofGQ k = u + iv and μ±

be the corresponding reduce masses. Then u'x(z) is a positive harmonic function in the
domain D(S) and

(2.12)
7Γ

μ±<2(u'x(x))2\S\\x-a±\/\x-a^ , x€S. (2.13)

If k is a quasimomentum then
(2.14)

where n is the number of the merged components which are composed the band S.

Proof. The estimates (2.12), (2.13) follows from (2.1) and Lemma 2.1 correspond-
ingly. By (2.13) we have

Integrating it on S we obtain (2.14). Q.E.D.

Later on we shall need following results on the function v.

Lemma 2.5. Let k be a GQ and z e C+. Then

k(z) = z + C+- ( v(t)' l l

7Γ ./

~ ~ π / t(l+t2)'

If in addition g = (α, b) be a gap in the spectrum of a GQ and I = \g\. Then

(b-
_ , „ + / wI J (t-

(2.10

/ \

2lυ(x)<4 ί v(t)dt<l2[π + ί H^*_- J , a<x<b. (2.17)
J \ J (t-a)(t-b)
9 V R\s '

Suppose that Q+ < oo, p < 0 then

1 +P«,(+\

t, z^Z. (2.18)

f. We have (2.15) in the work [10]. Using k(ά) = fe(6) and (2.15) we obtain
(2.16). By (t - a)~l + (6 - ί)"1 > 4/Z, α < ί < 6, and (2.16) and by the convexity
of υ(ί), α < t < 6, we have (2.17).

We rewrite (2.15) in the form

k(z)

Hence by definition kp we obtain (2.18). Q.E.D.

Later on we need some estimates.

1 ί V(V J

 l ί (zp~tp)v(t) j 1 f tpv(t)
-z-Q_l = - / -±Ldt=— / ^——J-^dt+— / —^-

π J t — z πzP J t — z πz? J t - z




