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Abstract. The invariants JKk of a framed knot K coloured by the irreducible
SU(2)q-module of dimension k are studied as a function of k by means of the
universal ^-matrix. It is shown that when Jκ k is written as a power series in h with

q = eh, the coefficient of hd is an odd polynomial in k of degree at most 2d + 1.
This coefficient is a Vassiliev invariant of K. In the second part of the paper it is
shown that as k varies, these invariants span a d-dimensional subspace of the space
of all Vassiliev invariants of degree d for framed knots. The analogous questions for
unframed knots are also studied.

Introduction

A framed knot K in the 3-sphere determines an SU(2) invariant Jκ k for each
positive integer k by using the irreducible SU(2)q -module of dimension k to "colour"
the knot. These invariants, sometimes called the coloured Jones invariants of K, are
Laurent polynomials in t/1/4 with integer coefficients. Setting q = eh, each coloured
Jones invariant can be expanded as a rational power series

in the variable h. Together they form a single function of h and the colour fc, the
coloured Jones function of K. We shall study the dependence of this function on k.

Our main result, Theorem 1.6, is that the coefficient Jd(k) of hd in the expansion
of Jκk is an odd polynomial in k of degree at most 2d+ 1. Furthermore, if K has the

zero framing then the term in k2d+l vanishes, and so in this case Jd(k) is of degree at
most 2d - 1. An extension to the case of framed links is given in Theorem 1.7. These
results have proved fruitful in our study with Kirby [7] of algebraic properties of the
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6'[/(2)-quantum invariants of 3-manifolds introduced by Witten [14] and Reshetikhin-
Turaev [12].

In the spirit of Vassiliev's finite type invariants, we note that for each k the
coefficient Jd(k) of hd in Jκk is an invariant of K of degree d, that is of type d
but not of type d — 1 . By varying k we can find, by the result above, at most d + 1
independent invariants. In fact there is always a relation among the coefficients of
the polynomial Jd, since Jd(l) = 0 for d > 0, and so Jd(k) can provide at most
d independent invariants. By considering the values of these invariants on certain
"chord diagrams" in the sense of Bar-Natan [2] (corresponding to linear combinations
of knots), we show that Jd(k) does in fact determine d independent framed Vassiliev
invariants of degree d (Corollary 2.4).

If K has the zero framing, then Jd(k) is of degree at most 2d — 1 in fc, and so
provides at most d — 1 independent unframed invariants of degree d as k varies.
Evidence points toward a much lower bound of d -f 1 for the degree of Jd, and a
consequent reduction to [d/2\ in the number of independent invariants. We show
by another explicit calculation on chord diagrams that there are in general at least
this number of independent unframed invariants of degree d arising as values of the
coloured Jones function (Corollary 2.9).

We conclude with a conjecture about determining the Alexander polynomial from
the coloured Jones function.

1. Calculations from the Universal β-Matrix

The coloured Jones invariants Jκ k of a framed knot K can be calculated from a
closed braid representation of K using Drinf eld's universal ^-matrix for SU(2)q [4],
as described in Reshetikhin and Turaev [11]. We shall use this approach to produce
a state sum for Jκ k which will be seen to reduce to a finite sum when calculating

Jκk up to terms in hd, where q = exp(/ι).
Recall that the .R-matrix is an invertible element of the topological tensor product

S? ® ̂ , where S? is the deformed universal enveloping algebra Uh(su(2) (g> C). It
can be written, following Kirby and Melvin [6], as

00

R = Σ sn(h)Xn 0 Yn exp (\h(H + nl) ®(H- nl)) ,
n=0

where

( 5_ s-i)n j sinh (i hn)

and X, Y and H are generators of ̂  satisfying the relations

sinh (\ hH)
[H, X]=2X, [H, Y] = -2Y , [X, Y] = [H] =

sinh (i h)

We shall also make use of the element μ = exp (| hH) in ̂  which is sometimes

called the enhancement of R.
As is shown below, the elements R±l and μ can all be expressed as sums of

"bounded degree" in the following sense. Any element in &®n can be written as
a power series in h with coefficients in ,^®n, where 3F is the algebra of complex
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polynomials in the noncommuting variables X, Y and H. Rearranging the terms in
this series produces a sum of the form

in which the ajk are monomials in X, Y and H, and the coefficients c (h) are
complex power series in h. The index set J may be infinite, but we allow only
finitely many coefficients c of any given order, where the order ord(c) of a power

oo

series c(h) = ^c^ is the smallest i for which cτ / 0. Such a sum is said to have

bounded degree if
deg(αj/c) < ord^)

for each j in J and all k = 1, . . . ,n. Equivalently, the coefficient of hd is a linear
combination of tensor products of monomials of degree at most d. Observe that sums,
products and exponentials of bounded degree sums are again of bounded degree.

It is clear that μ — exp(hH/2) has bounded degree. Indeed

oo

^—-V

ra=0

with cm(h) = hm/(2mm\) and μm = Hm. The same is true of R±.

Proposition 1.1. The universal R-matrixfor SU(2)q and its inverse can be written as
sums of bounded degree,

where oc^ and β^ are monomials of degree not exceeding the order of ' c3.

00

Proof. Write R = £) Sn exp(Tn), where Sn = sn(h)Xn ®Yn (for sn as above) and
n=0

Tn — - h(H + nl) (8) (H — nl). Evidently Tn is of bounded degree, as is Sn since

ord(sn) = n. Thus the product Sn exp(Tn) is a sum of bounded degree in which all the
monomials which appear are of degree at least n, and it follows that R is of bounded
degree. Using the formula R~l = (S <g> I)R, where S is the antiautomorphism of ̂
defined by s(H) = -H, S(X) = -sX, S(Y) = -s~lY (see Sect. 3.16 in [11]), it is
not hard to show that R~l = R~l(h) = R(—h)9 and so R~l is of bounded degree as
well. D

Remark. The index set J can be chosen explicitly to be the set of triples (n, α, 6) of
non-negative integers, with a^ab ® @nab = XnHa ®YnHb, and

00 / ΛΣ <- >"(ί
\

This formula is not essential for what follows, although it can be useful to note that
X and Y occur in cx^ab and β^ab with the same degree.

Now suppose that a framed knot K has been presented as the closure of a braid
B on n strings. The universal J?-matrix and its inverse can be used to represent B by
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α+(x)

Fig. 1. x y x

an automorphism Bk of the tensor product V®n for each irreducible ^-module Vk.
In particular, if B is written as a word in the braid generators σf , for 1 < i < n and
ε — ±1, then Bk is the corresponding composition of automorphisms ]Rξ = (P^)ε,
where Pi is the interchange of the ith and (i + l)st factors of Vjfn, and Λ2 is the
action of R in the same factors:

The invariant Jκ fc can then be calculated as a weighted trace of Bk, namely

where μ is the element exp (| ft/Z") regarded as an endomorphism of the module Vk

by the action of H on Vk. In other words, we must compose Bk with μ 0 . . . 0 μ and
then take the ordinary trace on V^n, as described in [11]. (For more general quantum
group invariants, an orientation is required on K\ the preceding construction is for
the downward orientation through the braid, and a dual construction is needed for the
opposite orientation. This distinction disappears for SU(2)q since the modules Vk are
self dual.)

We next produce a states sum for JKk. By the previous proposition, each

automorphism Rf can be written as an infinite linear combination

endomorphisms Rε

τy Explicitly fit maps x <g> y (in the iih and (i -f l)st factors of

V^n) to βf(y) 0 α+(z) while #~ maps it to aj(y) 0 /?~(x). The effect of this
endomoφhism at a crossing is illustrated (suppressing the subscript j) in Fig. 1 by
showing the crossing with a± on the overcrossing string and β± on the undercrossing
string.

This yields the state sum Bk = Σ (ĉ 1 R^ . . . c^R%°jc)9 where each choice
JlvJcGJ

of indices j l5 . . . ,jc in J, corresponding to a choice of one term in R±l for each of
the crossings of B, is to be thought of as a state. To obtain Jκ^k we must compose

Bk with μ®n, and so we extend the state to include a choice of non-negative integers
m l 7 . . . ,mn specifying one term in μ — ΣcmMm at me toP °̂  eac^ braid string.
Thus a state S of the braid B consists of a choice of indices jl , . . . , jc in J for the
crossings and of non-negative integers m1 ? . . . , ran for the tops of the strings. Setting
^ = . . . . . . 0 , w e have

where £5 is the endomorphism (7Jmι 0 . . . 0 Hrnn)(Rε

i

l

ιh ...βf^) of V^0n

determined by S. Observe that the coefficient cs does not depend on the colour
k, whereas the endomoφhism Bs does.
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Fig. 2.

We now show how to replace Bs by a monomial Ms in &, regarded as an
endomorphism of Vk, with Ίr(Bs) = Tr(M5). This method has been discussed by
Lawrence [8] and developed in a diagrammatic form by Kauffman [5].

To define Ms, recall that the endomorphism Bs is built up from endomorphisms

otf ® βf of Vk ® Vk at each crossing of B, as shown in Fig. 1, together with
endomorphisms μm of Vk at the top of each string. Following Kauffman, view the
monomials α^, βf and μm as "beads" which are free to move along the strings past
the individual crossings, and may be multiplied when they occur next to one another.
Thus the endomorphism Bs will take a vector of the form x{ ® . . . <g) xn to a tensor
product yl 0 . . . 0 yn of vectors, each of which is the result of operating on one of
the vectors xτ by the beads which it has passed on its way from the bottom of the
braid to the top. In particular, if B induces the permutation π in the sense that the
string at position i at the top of the braid is joined to position π(i) at the bottom, then
yi = V^Tφ)' where rφi is the product (from top to bottom) of the beads on the iίh

string. Now define

which is just the product of all the beads on the single string K obtained by closing
the braid B. For example, in the state of the diagram for the figure-eight knot in
Fig. 2, the monomial Ms is μvβ^θί^ μ^β\ <^

Proposition 1.2. For each state S, the trace of the endomorphism Bs ofV®n is equal
to the trace of the monomial Ms on Vk, and so

summed over all states.

Proof. Choose a basis e l 7 . . . ,e fc for Vk and denote the associated matrix for any
endomorphism ψ of Vk by (ψj), so that ψβj = £) ψfa. Then Bs maps e^ 0... ®ejn

to
k
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and so

Tr(Bs)= Σ ^(1)-..^π(tl)

J l v ,Jn = l

fe

- l>ι ^(i) - - ̂ n-ι(1))J - Tr(Ms). D
J = l

Each state 5 thus makes a contribution csTr(Ms) to the invariant Jκ^k. The
coefficient cs does not depend on the colour k, nor does the monomial Ms.
Dependence on k arises only on taking the trace of Ms in Vk. The polynomial nature
of the dependence on k will already appear in the contribution of each individual state,
and will be determined by a calculation of Tr(Ms) in terms of k. Before making this
calculation, we note a restriction on the degree of Ms which arises from the bounded
degree of the terms in the universal .R-matrix. This will eventually give the desired
control on the degree of k relative to that of h in Jκ^k(h).

Proposition 1.3. deg(Ms) < 2ord(cs)for each state S.

c n

Proof. The coefficient cs is the product Π cj* Π cmτ

 and so

*

αrd(c5) = ̂ σrd(c*«) + 2
ι=\ i=l

since order is additive on products. Now each term cε

3a
ε

3 ® βj and cmμm in the state
S is chosen from a sum of bounded degree, so deg(α|) < ord(c|), deg(/3|) < ord(c|)
and deg(μm) < ord(cm). The monomial Ms is the product in some order of the
monomials α|, βj and μm chosen by the state S and so

c c n

deg Ms = y^ deg α^ -f Y^ deg /3*1 -f ̂  deg μm.
i=l i=l i=\

c n

< 2 y ord(c z) H- \ ord(crn ) < 2ord(cs). D

We now analyse the dependence on k of the trace of an arbitrary monomial M in
X, Y and H, when operating on the ^-module Vk.

Proposition 1.4. Let M be a monomial in X, Y and H, and consider the trace of
M on the irreducible ^-module Vk of dimension k, expanded as a power series

00

Tr(M) = Σ ^ι(k}hl in h. Then the coefficient M^k) of h1 is an odd polynomial

in k of degree at most I -f deg(M) -f 1.

Proof. Following [6], but with slightly modified notation, set m = k/2 and choose
a basis for Vk consisting of weight vectors e_m+1, e_m+2 ? em

 with the property
that

= [m- j-f

Hej =
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where [n] = sinh (^ hn)/sinh (^ ti). These relations extend to all j = m(mod 1) by

setting ej = 0 for j < —m and for j > m. The definitions given in this way of
Xe__m and of Y~em+1 are consistent, since [0] = 0.

The monomial M can be represented diagramatically by its profile, consisting
of a sequence of rising, falling and level edges corresponding to the sequence of
appearances of X, Y and H in M, read from right to left. For example, when
M - H2XY2X3H the profile is

Now set d(M) = degx(M) — degy (M), which is just the final level of the profile
with initial level zero. We claim that Tr(M ) = 0 if d(M) φ 0, and otherwise that the
vectors e are eigenvectors for M on Vk with eigenvalues Λ^ (depending on k), so
that

m

Tr(M)= \.

Indeed, it is clear from the effect of X,Y and H on ej that Me- is a multiple of
ei+d(Mγ anc* me claim follows immediately. Thus we need only consider those M
for which d(M) — 0. (Note that all the monomials Ms defined from the states of a
knot diagram have this property, because of the balance between the degrees of X
and Y in each pair a ® /?.)

Let us then assume that d(M) = 0, and compute the eigenvalues λ j defined by
Mβj = λjβj. Suppose that there are p rising edges in the profile, starting at levels
α 1 ? . . . , ap and q horizontal edges at levels 6 l 5 . . . , bq. There must also be p falling
edges finishing at levels α 1 ? . . . , ap9 since the net change of level is d(M) — 0. Now
each horizontal edge at level b contributes 2(j + b) — 1 to λ^ , as H then appears at
level &, to feature as HeJ+b. A rising edge from level α to level a + 1 contributes
[ra -f (J + α)], from the appearance of XeJ+a, while a falling edge from level a + 1
to level α contributes [m - (j + α)], from the appearance of YeJ+a+l. Thus

p q
X. = J|[m + (j + α.)] [m - (j + αt)] [|(2(j + 6 ) - 1) .

ι=l ι=l

Now it is an easy calculus exercise to show that the coefficient of hl in the power
series expansion of [n] is a polynomial in n of degree at most / + 1, and it follows
that the corresponding coefficient \^ in the expansion

is a polynomial in j and k of degree / + 2p + q = I + deg(M). In fact, λ j / is even
in k. This is immediate from the fact that [m 4- (j 4- α^)] [fπ, ~ 0 + ̂ )] is an even

function of k = 2m, which follows from the identity 2 sinh(m H- n) sinh(m — n) =
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cosh(2m) — cosh(2n). Since

771
Mι(*> = Σ A,.,,

j=-τn+l

the proposition is a consequence of the following lemma.

Lemma 1.5. Let p be a polynomial of degree a. Then the function f defined on integers
kby

ra

/(*)= p(j),

where m = k/2, is an odd polynomial of degree d + 1.

Proof. First observe that there exists a polynomial P of degree d+ 1 such that p(x) —
P(x) — P(x — 1), a "discrete integral" of p. For example, for pd = xd+l — (x — l)d+1

the polynomial Pd = xd+l will do. But p can be written as a linear combination
d

p = Σ anPn> smce Po> »Pd clearly sPan me space of polynomials of degree < d,
n=Q d

and so P = ̂  anPn is the desired integral.
Now n=°

which proves the lemma, and thus the proposition. D

We now give the proof of our main theorem on the dependence of the coloured
SU(2)q invariants Jκ k of a framed knot K on the colour k, the dimension of the
module Vk.

Theorem 1.6. Write the coloured Jones invariant Jκ k of a framed knot K as a power
series

d=0

in h, where q — exp(/ι). Then Jd(k) is an odd polynomial in k of degree at most 2d+l.
Furthermore, the coefficient ad of k2d+l in Jd(k) depends only on the framing a on
K, namely ad = ad/(4ddl).

It suffices to construct, for each d, a series J^ k(h) which agrees with Jκk(h)
up to degree d in /ι, and which is an odd polynomial in k of degree at most 2d+\
with coefficient of k2d+lhd equal to ad/(4ddl). To accomplish this, consider the state
sum JKjk(h) = Σ cs(^)Tr(Ms) given in Proposition 1.2. Expand each trace as a

S oo
power series Tr(Ms) = Σ,Msl(k)hl in Λ, and write Ίr(Ms)\d for the partial sum

ΣMsl(k)hl. Now set
1=0
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where for convenience we write os for ord(c^). Observe that this sum is finite since
ds = deg(Mg) < 2os < 2d, by Proposition 1.3, and there are only finitely many
monomials of any given degree.

It is clear that Jκ^k(h) and Jχ^k(h) agree up to degree d in h. The last proposition

shows that each Msι(k) which appears in Jχjk(h) is an odd polynomial in k with

deg(M5/) < / + ds + 1 < 2d + 1 ,

where the last inequality follows from the inequalities / < d — os, ds < 2os (by
Proposition 1.3) and os < d. Thus J^ k(h) is an odd polynomial in k of degree at
most 2d +1.

It remains to compute the coefficient ad of k2d+lhd in J^ k(h). To get any
contribution of degree 2d -h 1 in k from a state S, all the inequalities above must
become equalities, giving os = d, ds — 2d and / = 0. Thus

ad = as »
S,ds=2os=2d

where as denotes the coefficient of k2d+lh° in the expansion of Tr(M5). We will
show that this sum depends only on the framing a of K.

First observe that since ds = 2d for the states S in the sum, the coefficient
as is independent of the order of the variables in the monomial Ms. Indeed, for
any monomial M, write aM for the coefficient of fcdeg(M)+ι^,o jn the expansion of
Tr(M). Now if Mf is a reordering of M, then it follows from the commutation
relations [H, X] = 2X, [H, X] = -2Y and [X, Y] = [H] = H + O(ft) that
M — M' + TV -h O(/ι), where TV is a sum of monomials of degree less that deg(M).
Since TV does not contribute to αM, by Proposition 1.4, we have αM = αM/.

Since ds = 2os for the states S under consideration, it follows from the proof of
Proposition 1.3 that 5 must select the term μ0 = 1 from the sum μ for each of the
strings of the braid representing K. Now let K' be any knot presented as a braid with
the same number of positive and negative crossings as K. Fix a bijection φ from the
crossings of K to the crossings of K* ', respecting sign. This induces a bijection φ
between the states of K and of K' which select μ0 from each appearance of μ, namely
if S assigns α^ 0 β? to a crossing x of K, then φ(S) makes the same assignment
to φ(x). The coefficients cs and cφ(S^ are then equal, but the monomials Ms and
Mφ(S) are m general different, because of the different order in which the crossings
appear on the two knots. These two monomials are however the product of the same
elements aε

3 and βε and differ only in the order of these elements. It follows from

the observation above that as = &φ(sγ an(^ so ad *s tne same f°r K and for K' . Now
it is clearly always possible to choose K' as the unknot with the same framing as
K, given by the sum of the signs of the crossings, and so ad depends only on the
framing.

Thus it suffices to compute the coefficient ad of k2d+l for the α-framed unknot
O It is well known that

(cf. Sect. 3.27 in [6]). An easy exercise shows that the power series sα(/c ~
and [k] = Σ ^(fyh1 satisfy deg(s^) = 2ί and deg(6t) < i -h 1. It

follows that adk
2d+l is the leading term in the product sd(k)bQ(k). Since sd(k) =

ad(k2 - l)d/(4ddl) and bQ(k) = k, we have ad = ad/(4ddl). D


