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Abstract: The elliptic-matrix quantum Olshanetsky—Perelomov problem is introduced
for arbitrary root systems by means of an elliptic version of the Dunkl operators. Its
equivalence with the double affine generalization of the Knizhnik—Zamolodchikov
equation (in the induced representations) is established.
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0. Introduction

We generalize the affine Knizhnik—Zamolodchikov equation from [Ch1,2,3] replac-
ing the corresponding root systems by their affine counterparts. To explain the
construction in the case of the root system of gl,, let us first introduce the affine
Weyl group S;. It is the semi-direct product of the symmetric group S, and the lat-
tice 4 = @?;11 Zg;i41, where the first acts on the second permuting {¢;,¢;; = ¢ — ¢;}
naturally. This group is generated by the adjacent transpositions

si=(i+1), 1 £i<n, and so = si;, where s\ = (ij)(ke;;) € S; .

Setting

sBIbY = b — (5, b)(ey +ke), s () =c, beB=@", Ze,,  (0.1)

* Partially supported by NSF grant number DMS-9301114 and UNC Research Counsel grant
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we obtain an action of S? in B = B @ Zc. In particular,
so(b) =b+ (b,e1n)(c — €1n), a(ei) =& —(a,6)c, a€ 4,1 Si<n.
Put
x5 = ke + znjlkixi, 2= kE+ f:]k;z,» for b = ke + Zn:lk,-a,- .
i= i= i=

The double affine degenerate (graded) algebra $’ is generated by the group
algebra C[S;], pairwise commutative elements {x;, b € B}, and central x,, satisfy-
ing the relations (depending on # € C):

sixp = Xs,b)Si + N(&ir1,0), 1 S i < n, SoXp = Xso(8)S0 + N(&n1,b) - (0.2)

This algebra is a double affine generalization of that considered by Drinfeld and
Lusztig and a degeneration of the double affine Hecke algebra from [Ch8] (for gl,,).
Let us fix u € C and set

ct,[-jl.q = ct(z;, + k&) for ct(t) = (exp (¢) — 1D Zy =2z —2zj.
We introduce the differential operators of the first order:

Do =D =0fozi—n ¥ P —m+n T a6l -

nzj>i 1<)<t
- 2*: kZO (Ctgc](sz[f] — ) — et (s’ — u)) +pn(nf2 —i+1),
JTFLE>
D=0/l +nun, 1 = i,j <n. 0.3)

We consider the sums formally as infinite linear combinations of the elements w €
S, with the coefficients depending on {z,£} and one more complex variable (.
Assuming that R(£) > 0, we can introduce a norm in this space to make all series
convergent.

The family of operators {Z] = 9, — x;, 9. = D. — x.} is commutative and S;-
invariant with respect to the following simultaneous action of this group on the
coefficients (that are from $’) and the arguments {z;,(}:

W(h) = whw ™', h € 9/, W(z) = 244y, DEB,
siQ)y=Cfor 1 <i<n so()=0—C+z1. (04)
The invariance means that W(Z;) = Py, Where ;. oz = 0D} + P for o, f €
Z,ii,5 € B, and w € S?. Actually this family is invariant even with respect to the
action of the bigger group generated by W and B (instead of A). It leads to a
natural extension of the above §’. The introduction of 3/0; and the precise choice
of constants in (0.3) is necessary to ensure the B-invariance. As to W -invariance,
the central extension is not necessary.
The double affine KZ is the system {29 = 0, u € B} for a function $(z) with
the values in $§’ or its representations. Here ¢ is considered as a parameter.
Let us factorize §’ by the ideal (x.). The symmetric polynomials in x,...,X,
belong to the center of the resulting algebra $;. Given a character of the algebra

of symmetric x-polynomials and a finite dimensional C[S;]-modules ¥, the corre-
sponding induced $)-module is finite dimensional as well. When considered in this
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representation, the series in (0.3) become convergent (at least for rather big R(¢))
and turn into functions of elliptic type. The corresponding double KZ is equivalent
to a V-valued version of the elliptic quantum many-body problem from [OP]. It also
generalizes the spin QMB introduced in [Ch5] unifying the Calogero—Sutherland and
the Haldane—Shastry models.

To introduce the elliptic QMB let us start with the same formulas (0.3) assuming
now that s[]] act on the arguments {z;,{} as in (0.4). We will write () and

[k]mstead of W and s T to emphasize this. The corresponding elliptic Dunkl op-

erators (which are scalar but not pure differential anymore) will be denoted by
{4,, 4., 4;} (instead of {Z}). The map

W — a(W), x; — Az, weS, beB,

gives a homomorphism from the algebra §’ into the algebra of operators acting on
the space of (scalar) functions of {z,{}. Imposing the relation 4. = 0 we obtain an
embedding of $;. This theorem plays the key role in the paper.

Second, given an arbitrary symmetric polynomial p = p(xj,...,x,), we use (0.4)
to represent

p(dy,...,4,) = Y Dyo(Ww), where Dy are differential .

wesy

Then we replace every a(w) by the image of W' in Autc V setting 8/0( = —nun
afterwards.

The resulting operators {L,} are Sj-invariant and pairwise commutative. We
emphasize that 0/0( is not present in the final answer but appears in the intermediate
calculations when we place (W) on the right (the action of S;;, on b € B involves ¢).

If V' is one-dimensional, {L,} coincide with the OP operators for u = 0. When
u = £1 (with one-dimensional V' of the same “sign™) they are conjugated to these
operators (by proper remarkable scalar functions).

The element p, = Y7, x? leads (up to a constant ) to the Schridinger operator

H = Z 0%/0z% + const 3 p(z; ~ z;) (0.5)

l<j

in terms of the Weierstrass elliptic function with the periods {(2m), £}.

In this paper we consider arbitrary root systems and any initial representations
V' of the corresponding affine Weil groups. We note that the commutative families
of scalar H-operators for the 4, B,D types (with certain uniqueness theorems) were
obtained recently by direct methods (due to Heckman—-Opdam) in [OOS].

It is worth mentioning that for u = 1 (and certain special #) the operators L,
are expected to be the radial parts of Laplace operators for Kac-Moody symmetric
spaces at the critical level ¢ + n = 0. The latter condition gives the existence of the
“big” center of the corresponding universal enveloping algebra (which is necessary
to start the Harish—Chandra, Helgason theory of radial part). It is directly connected
with the substitution 0/0{ = —nun.

Something can be done when 9/0{ = nuv for arbitrary v € C (which corresponds
presumably to the “affine” harmonic analysis at arbitrary level). Let us introduce
one more operator

Ay =0/ Y Ek(ct{k] R e )) : (0.6)

i<jk>0
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It does not commute with {4;}, but the operators 4; = 4, + k4. + 14, for b=
b+ kc + Id still satisfy the cross-relations:

04y = As,<5)6" + 11(8,,-+1,5), 0si<mn ¢r=c—c¢n,
si{c)=c, sj(d)=d for 1 < j<n, so(d)=d — ¢y, 0.7)
where the form (,) is extended to R"™ in the following way:
(c,e)=(ce)=0=(d,e;)=(d,d), 1 £i=<n, (c,d)=1.

It gives that the operator 2444, + >.._, A? is S;-invariant. Its reduction in the

above sense is also invariant and is conjugated to the parabolic operator H =
H + 2nu(n + v)0/0¢ in the setup of (0.5).

There is another way. We can exclude 0/0{ from the construction (put v = 0)
considering the operators

Ay = exp (2midy/(nun))

instead of A;. The corresponding {L,} will be pairwise commutative and Sj-
invariant. It resembles the construction of the center of Kac—-Moody algebras (after
a proper completion) due to Kac. .

When =1 and V is the corresponding one-dimensional representation, H was
introduced in [EK]. Presumably this operator and {L,} and the double affine KZ
are related to the elliptic »-matrix KZ from [Ch1] (with the additional equation from
[E]) and the so-called Bernard KZ equation (see [FW,EK]).

In conclusion we would like to note that all above constructions have difference
counterparts (based on the non-degenerate double affine Hecke algebras from [Ch8])
and hopefully ensure a basis for the elliptic Macdonald theory (see e.g. [M,R] and
[O,Ch6]). The latter is related to the Macdonald theory at roots of unity. The
connections with g-deformations of the “double loop algebras” and the so-called
elliptic algebras are also expected (in the case of 4,).

This work was started at the Weizmann Institute (Israel) and completed at the
Laboratoire de Mathematiques Fondamentales (Université Paris 6). I’d like to thank
A. Joseph, A. Connes, and R. Rentschler for the kind invitations and hospitality. I
am grateful to G. Felder for useful discussions.

1. Double Hecke Algebras

We follow [Ch 3] (see also [Ch 5,6,7]). Reduced root systems only will be discussed
here. All the definitions and statements can be extended to the general case. Minor
changes in formulas are necessary for divisible roots.

Given a Euclidean form (,) on R” and a root system R = {a} C R" of type
Ay, By, ..., Gy, let s, be the orthogonal reflections in the hyperplanes (o, u) =0, u €
R”. Further, {o,...a,} are the simple roots relative to some fixed Weyl chamber,
R, the set of all positive (written a > 0) roots, W the Weyl group generated by

5o (or by sidgsa,,l < i = n), C[W]=a,Cw the group algebra of W > w.
We introduce a; = o, where oV = 20/(o, ), the dual fundamental weights
bi,..., b, satisfying the relations (b,,o;) = 5{ for the Kronecker delta, and the lat-

tices
A= @:’zl Za; C B = @:':1 Zb; .
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Let us fix a W-invariant set n = {5, € C,a € R}. The W-invariance ("5, =
Hw(a),W € W) gives that n, =#" or u” respectively for the short and long roots
(R is supposed to be reduced). We put n; = 5, and define the y-generalization of
the p and the Coxeter number A:

2py = 3 a0 =Y mi(o,0:)b; € R”,
=1

a>0

hy = ng + (py, 0) for the maximal root 0 € Ry . (L.1)

We will use the same notations for other W-invariant sets instead of #.

The following affine completion is common in the theory of the Kac-Moody
algebras (see e.g. [Ka, Ch6]). Let us extend the above pairing to R"™ = R” ® Rc
setting (c,¢) = 0 = (¢, u).

The vectors (affine roots) & = a+ kc for o € R,k € Z, form the affine root
system R? D R. We add ocodéfc— 0 to the set of simple roots and put #g =
Nas Mo =1p =n". The corresponding set R} of positive roots coincides with

RoU{a+ke,a € Rk >0} Let BEB@ Ze. Given G=a+hc € R ac A, i=
u+ ke e R,

sg(@) = it — (u, 0" Yo + k), a'(iF) =i — (u,a)c . (1.2)

The affine Weyl group W is generated by all s;. One can take the simple re-
flections s; = 54;,0 < j < n, as its generators. This group is the semi-direct product
W <A’ of its subgroups W and 4’ = {d’,a € A}, where

ad= S S{at+c} = S{—a+c}Sx for a = O(V,OC €R.

Definition 1.1 The degenerate (graded) double affine Hecke algebra $’ is alge-
braically generated by the group algebra C[W*®] and the pairwise commutative

h
xdng(u,otz)xz-f-Kxc for ﬁ:u—}—KcERn_H ’ (13)
i=1

satisfying the following relations:
SiXig — X{s@}Si = M, 04), 0 i = n. (1.4)

The restricted algebra $, is the factor-algebra §'/(x.) (the quotient by the central
ideal (x.)). O

Without i = 0 we arrive at the defining relations
5% — (Xi — Xg,)5i =1y, $iX; = x;5;, where 1 < i%j < n, a =0,

of the graded affine Hecke algebra from [L] (see also [Ch 3,5]). We mention that

$’ is a degeneration of the double affine Hecke algebras introduced in (Ché,7].

Let C [x]d;fC [x1,...,xs,x.] be the algebra of polynomials in terms of {x;}. We

denote the subalgebra of W -invariant polynomials (with respect to the action of W
on {ii}) by C[x]”. Later the same notations will be used for other letters instead
of x.
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Theorem 1.2 An arbitrary element h € §' can be uniquely represented in the (left)
Jorm h =374 pa fuW and the (right) form h =3 o Wgy, where fy, g4 € Clx].
The center of $o contains C[x]”.

Proof. The first statement results from Theorem 2.3, [Ch7] established in the non-
degenerate case (see also [Ché6]). Following [Ch3] one can check that the center of
$o contains C[x]”. O

Induced representations. Let V be a C[W“]-module, ¥° = Homc(¥,C) its dual
with the natural action (W(I(v)) = (W™ 'v), I € Homc(¥,C)),t and ° the corre-
sponding homomorphisms from C[#?] to Endc ¥ and Endc V°. We will use the
diagonal action:

(W) (v ® x7) = T°(W)(v) ® W(xz), W(xz) = X (i)} »
for v@xs € ¥V E VO ®c Clx], we W, ieR". (1.5)

The next proposition holds good for the entire §’. However the latter has the
trivial center = Cx, (we need a “big” center to construct finite dimensional rep-
resentations). Till the end of the section, x, = 0 and x; are identified with the
corresponding x,.

Proposition 1.3 The universal (free) $o-module generated by the C[W*]-module
V' is isomorphic to ¥~ with the natural action of C[x] by multiplications and the
following action of s, :

§i=08(s)+mx;'(1-5), 0<i<n a=c—0", (1.6)

where x;'(1 — s:)(f) = x;'(f = si(f)) for f € ¥ (s; acts only on x).
Proof follows [Ch3,5]. O

We fix a set 4 = {4,,...,4,} C C and consider the quotient ¥"; of ¥ by the
(central) relations p(xy,...,x,) = p(4i,...,4,) for all p € C[x]".
Finally, we intreduce:

V() E @ )" = Home(¥5,C), h(l(w)) = IRw)), u€ ¥ 1€ (¥3),

S =50 %) =xi, (hihy)’ = WSR3, hip € 9. (.7

The anti-involution 4 — A° is well-defined because relations (1.4) are self-dual.
The above construction gives two canonical #“-homomorphisms:
id: VY= =¥, tr:V(A)—=V.

Proposition 1.4. If a $'-submodule % C V(1) is non-zero then its image tr(U) is
non-zero too.

Proof. 1t is clear, since ¥"; is generated by V° as an $’-module. O
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If V is finite-dimensional then dimcV' (1) = |W|dimcV, where || is the number
of elements of W. The main examples will be for one-dimensional representations
of W4 which are described by W-invariant sets ¢ C {+1}:

t(si))=¢€, 1(@)=1, 0L i<n acAd. (1.8)

Let us denote the corresponding ¥, V(1) by C,, Ci(1) for the latter reference.

2. Affine r-Matrices

Following [Ch 1,3,5] we introduce abstract classical »-matrices with the values in

an arbitrary C-algebra & and show how to extend non—aﬂirle r-matrices to ~afﬁne

ones. The notations are from Sect. 1. Let us denote R& + Rf C R” by R(&, ) for

& € R

Definition 2.1. a) A set r = {rg € #,0d € R%} is an affine r-matrix if
[rof,rE]:()’ (21)

[rs, r&+5]+[r[;, r[;] + [rﬁ/;,rl;] =0, (22)
Ura,rg gl + Urasrpltlrg g raopl+
oo i)+ apap il = 0 Paargojl =0, (23)
[ra, r3g jl + ras g gl + ras gy o] + s rg gl + [ras rpl+
[r3az+/§””2&+ﬁ] FPaas o 3asapd o po Papd + agap Tarpl + Iy prpl = 0,
[r3&+/?’r3oz+2/7] + [”3&+ﬁ’ rgl+ [’3&+2/§s’/§] =0= [73&+ﬁ”&+/§] = ["2&+ﬁ" r/?]’ (24)
under the assumption that &, f € R% and

R(%, ) NR* = {£5},7 runs over all the indices 2.5)

in the corresponding identities.

b) A closed r-matrix (or a closure of the above r) is a set {rs € F,d €
R} (extending r and) satisfying relations (2.1)~(2.4) for arbitrary (positive,
negative) o”z,ﬁ € R such that the corresponding condition (2.5) is fulfilled. If the
indices are from R, (or R) we call r non-affine. [

We note that (2.5) for identity (2.1) means that
(& ) =0 and R(& f) NR* = {£a,+f} . (2.6)

It is equivalent to the existence of w € W such that & = w(a;), /? = Ww(a;) for simple
o;Fa;(0 = i,j < n) disconnected (not neighbouring) in the affine Dynkin diagram
of R°. In the most interesting examples, (2.1) holds true for arbitrary orthogonal
roots.

The corresponding assumptions for (2.2)—(2.4) give that o?,ﬁ are simple roots
of a two-dimensional root subsystem in R? of type 4,,B,,G,. Here o?,ﬁ stay for
oy,0; in the notations from the figure of the systems of rank 2 from [B]. One
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can represent them as follows : & = w(o;), § = Ww(a;) for a proper w from W and
joined (neighbouring) o, ;.

Given an arbitrary r, we always have the following closures (the standard one
and the extension by zero):

rg=—rg r—3=0, d€R. (2.7)
If there exists an action of W* > w on & such that
W(roz) = 1 (@) for &, W(&) € Ri ,

then the extension of r satisfying these relations for all w is well-defined and closed
(the invariant closure).

Theorem 2.2 Let us assume that r is a closed non-affine r-matrix and the group
A>a (see (1.2)) acts on the algebra F > [ (written f — a(f)) obeying the
following condition:

a(ry) = ry, whenever (a,a) =0,a € 4,0 €R. (2.8)
Then the elements
r&défa(ra) for a such that & = a'(¢) = o — (a,a)c 2.9)

are well-defined (do not depend on the choice of the element a satisfying (2.9) for
a given & € R*) and form a closed (affine) r-matrix.

Proof is the same as that of Theorem 2.3 from [Ch4] in the case of quantum
R-matrices. [

Theorem 2.3 a) Given an affine r-matrix, let us suppose that the algebra F is
supplied (as a C-linear space) with a norm ||f|| and the following series are
absolutely convergent:

~ def
Py =Fy + Z(rkc+a"rkc—a),a ER+ >
k>0

WE Y iy = Y a), uc R (2.10)
o?ER‘:L aER+

If any pairwise products of these series are also absolutely convergent, then F is
a non-affine r-matrix and [y,, y,] = 0 for any u,v € R".

b) Let the group W° act in & by continuous automorphisms relative to the
norm and r be We-invariant:

W(F&):rw(d) for all w € W° & € R*, (2.11)

for a proper closure of 7. Then 7 is W-invariant and

S (Vu) = Yy = (0, ((ry, +5:(r5,)), 0 S i < n, ueR". (2.12)

Proof. The commutativity in the non-affine case is established in [Ch 3], Proposition
3.2. As to (2.12), see [Ch 3], Corollary 3.6 and the end of Sect. 1 from [Ch 5]. The
considerations in the affine case are the same. We calculate separately the sums of

the pairwise commutators for any subspaces R(d, /)N’) NR* O



Elliptic Quantum Many-Body Problem 449

Let us fix one more W°-invariant set u = {ug, @ € R*}. Here are two examples
of the above construction.

Theorem 2.4. a) Using the variables {x} from (1.3),(1.5), let & be the algebra
F" generated by C[W*] and

C{x} = C[Ct(xacv +hx.),d =a+kce Ri]
with the cross-relations Wx, = x;uyW, where ct(t) = (exp(t) — 1)\, Then
r2 = nact(x + kx)(pg — $3), 6 = o+ ke € R%a=a" , (2.13)

is a Weinvariant closed r-matrix and s;rj +ry s, = 0i(s, — p) for 0 £ i < n.
b) Now F = F* is the algebra generated by F° and C{z} = C[ct(z;)], where

Zutke = Y (U,bi)z, + k€, u € R", for complex = {zy,...,zp,z. = {}

i>0
commuting with C[W*?]. The following functions of Z
i = naet(zy + kE)(sg — pg) + rg, &d=a+kceR, (2.14)

also form an r-matrix which is invariant relative to the diagonal (simultaneous)
action 6 of W that is the product of the action of W* on {x} and the analo-
gous action @ on {z} : 6(W)(z, + k&) = zyw) + k& Moreover 8(s;)(rh)+rk =0
for0 i< n

Proof. The theorem for u = 1 is a straightforward affine extension of Corollary 3.6
from [Ch 3] (see also the end of Sect. 2, [Ch 5]). These r-matrices are quasiclassical
limits of the quantum R-matrices from [Ch 4], Propositions 3.5,3.8 ((1.6) is a
rational counterpart of one of them). Calculating the corresponding commutators
(2.1-4) we obtain a set of relations that are the coefficients of s; and SaSj (the

latter never coincide with the first). If sasp =1 then & = ﬁ and the corresponding

commutator equals zero. Hence if the r-matrix relations are checked for one non-
zero u they are valid for all of them. O

We regard {x;,x.,z,&} as the coordinates of the space "t €' where W@
acts on the first component in the obvious way. The following proposition intro-
duces a completion of the semi-direct product of C[W¢] and a proper “functional”
extension of the algebra C{x, z} = C[ct(x,v + kx.),ct(zgz + k&)]. This definition al-
lows us to apply Theorem 2.3. We will use it permanently in the next sections as
well. The discussion will be continued in the next paper.

Proposition 2.5 Let® 2 ¢ >0, M > 1, meZ,,
Ea(M) ={(x,xc,2,) such that R(E),R(x.) = e,

[ct(xq + kxc)|, |ct(zy + kE)| < M > exp|xa|,exp |z«|}
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Jorall keZ, a € R, a=a". A formal series [ = . fw(x,xc,2,E)W for scalar
S, W € W is called m-convergent if the following norm is absolutely convergent
for any &, M, &

1A S sup(1fol in Za(OH

where ||w|| = exp (@ — &)I(W)(2h — 2)~'4!=™) (2.15)

I(W) is the length of W € W* with respect to the generators {s;,0 < i < n}, h the
Coxeter number, | | the absolute value. Then products of any m series from (2.10)
are m-convergent (for both r° and v*). The diagonal action of W* is continuous.

Proof. Let us start with u = 0. Without ”, (2.15) follows from the estimate
I(Sqke) < kl(d') + const < k(2h —2) +const, for k =0, a=a", (2.16)

(see e.g. [Ch4], Proposition 1.6 and [Ch7], (1.15)). Here the factor 4!~ does not
appear. Given a(1),...,a(m) € Ry, let us consider the product FZ(I) ...FZ(M) that is
the sum of

O = rj0y . iy ke = {k(1),..,k(m)} C Zy, (i) = k(i) ¢ £ a(i) € RS, .

We should fix C > 0 and calculate the number of the terms such that ||IL;|| > C.
Now {sz} from {r’} act on the arguments {x;} moving them from Ep(M):

e = (=1)" [T na(expxz — 1)™1w, where w = []saw) ,

& =a(1), & = sz1y(@2))s. .., &" = (5q1) - - Sam—1) N@(m)) . (2.17)
Lemma 2.6. Let & = of +kic,d' €R, ky =max{0, £k', 1 <i < m}. Then

Cwky = k_ for cp =0+ 1" 1 -1, (2.18)

where v is 1 for A, D, E, 3 for Gy, and 2 for the other root systems. The number
of the terms Il with given k, is less than (¢, + 1)"(ky)". The length of the
corresponding elements W is not more than (2h — 2)(cym + Dk

Proof. We argue by induction on m. The inequality for k4 is clear for m = 1 since
k' = k(1) is always non-negative. Supposing that (2.18) is valid for m, let us add
one more factor Fob;(o) on the left and denote the new pair of extreme values of
{£k’,0 < i < n} by k.. Then

ke — vk < K2 k% KD < ko + k0,

em(1+ VKL = cp(k, +VE®) Z ko = k. —vk® 2 K. — VK, .

Hence (cn(1 +v)+ v)k,. = k’, which provides the necessary estimate. As to the
length, /(W) = (W), W' =sgm ---5,, and we can use (2.16). O
The lemma gives that ||II;|| < const exp(—ky¢) for a rather big k. Here

const = (Mmax|n|)". Finally, the sum of the norms of the terms IT; with given &,
can be estimated as C(k, )" exp(—k,¢) for a constant C. It gives the convergence.
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If we have a “mixed” product (2.17) where some of x are replaced by z, then the
reasoning is quite similar. We apply again the induction taking into consideration
mostly the first term (with k(1) = k'). The changes of the arguments of the others
can be controlled in the same way. When =0, we can use the estimate without
u for smaller m. O

Corollary 2.7. Let us denote the operators y from (2.10) considered for r’ by
{¥°, u € R"} and introduce

def b

Xp = Yo A (P ), X0 = h, = (6, 0)/2, x40 = x0 + Kx] (2.19)

Then the group algebra C[W*) and {x%} satisfy relations from Definition 1.1 and
form a representation of ' ( which is faithful in §'/(x. — hy,)). O

3. Dunkl operators and KZ

Let us extend C-linearly the standard pairing (,) to C” and then to C"*? =
C"pC.Cy setting (c,d)=1, (c,c)=(c,u)=0=(d,u)=(d,d) for uec C"
(see e.g. [Ka], Chapter 6). Given & = a + kc € R, o € A4, the formulas

sa(@) = @ — {(u, &) + vk}a¥ — {(vk*(a", a¥)/2 + (u, 2V Yk }c

d(4) =t +va—{Wa,a)/2+ (u, a)}e, & =u+xrc+vdeC?,
za = 3.(u, b))z, + K&+ VL, G(W)(zlz)d—i—f:?{wm)}, 05 = 0(sg) (3.1)
1=1

define an action of w € W* on it € C**? and ngéfa( W) on z;.

The linear functions z, = z,;, 1 < i < n, &, { will be regarded as coordinates of
C"*2. For instance, 0zg/0z; is the multiplicity of o; in & = o + kc € R?, 0z4/0¢ =
k, 0zz/0f = 0. We will also use the derivatives

03 =0u+K0/0(, Ouzs)=(v,u), d=u+rceC™, §eC™*?,
with the following evident properties:
Orits = ¥0z + 105, o(W)(0z) = Oway, 7t €C, we W9,
0p, =0/0;, 1 £i<n, 0.=20/0C. 3.2)
We extend (pyu, - ) to a linear function on & = u + kc € C"*! by the formulas
(see (1.1))
Pyu() = (P + hyy(0, 0)d /2, ) = (pyy, u) + Khyy = hy(0,0)/2,  (3.3)

to ensure the relations p, (o) = M pi(oy, 0;)/2 for all 0 < i < n.

Following Theorem 2.4, let us introduce the algebra #¢ generated by C[W{] and
C{z} = C[ct(zz), & € R%.]. We will need another W* (without o) commuting with
z and the corresponding algebra & ¢ generated by W* instead of W?2. The definition
of the sequence of norms (in terms of m, M) from Proposition 2.5 remains the
same (but there is no dependence on {x}!).
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We can write #? = C{z} ®c C[W*]. As to F9, it is the semi-direct (smash)
tensor product where the second algebra acts naturally on the first.

The algebra of differential operators in 0y,...,0,, 0. with the coefficients in 2
will be denoted by F#4[0]. We will also use #?[d] (the derivatives are always with
respect to z, ().

Theorem 3.1. The following family of differential-difference Dunkl operators de-
fined for i =u+ ke € R™!:
A: % 0, + k0[Ol — Y nalu, )et(z3) (07 — Ha) + fy(id) (3.4)
a>0

is commutative. Moreover,{o; = a(s;)} for 0 < i < n and {4;} satisfy relations
(1.4), and the map
Yisz— 08 x> A; 3.5)

gives an injective homomorphism from $' into the algebra of convergent series
from F4[0]. The convergence of differential operators is coefficient-wise with re-
spect to the norms for sufficiently big m, M. If A. = 0/0( + h, is replaced by
zero, then ¥ maps via ;.

Proof. Without {0;}, the commutativity follows from Corollary 2.7 (x are to be
replaced by z). The contribution of the derivatives to the commutators of A4; is
trivial since [0z, 2] = 0 if (&, &) = 0 and

i
[04 (B, &)r3) — [05, (if, d)r8] = [0, aya—qa, ays> rg] = O for all &, .
Here (see (2.13))
e = nact(za + k&) uz — sg), G =a+kc €R* a=0a .
The other properties of ¥ follow from the same Corollary 2.7. O

The theorem is valid even when the map o satisfies the following weaker prop-
erties:

O4zi = 2704, 0405 = 0y0g, for ¥ = sg(it), i e C**, (3.6)

04,04, = aﬁlaﬁz if Sq, 84, = sﬁlsﬁz’ & peRr. 3.7)
Indeed, the necessary relations are written in terms of commutators (cf. [Ch 5],
Sect. 2).

Definition 3.2. Let us take C{W*] which commutes with z, £, { (we omit ¢ to
differ it from C[W¢?]). Given A € F4[0], we represent it in the form

A= Y Dyo(W), where Dy are differential, (3.8)
wewa
and introduce the operator from F°[0]
Red(4)¥ S D! (3.9)
wewa

with the coefficients in the completion of the group algebra F° = C{z}®c
C[W*]. Replacing 0. = 0/0( by —h,, in Red(4) we obtain Redo(4) € F°[01,...,04].
Both operations are continuous.
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Theorem 3.3. Given arbitrary A and W2-invariant A’ from F4[0],

Red(44') = Red(4)Red(4').
If p € Clxy,...,x,)", then the (differential) OP operators

L, S Redo(p(4,s..., Ap,) € FOL01,.., 4]

are pairwise commutative and W§-invariant with respect to the diagonal action
(W) = o(W) @ w, where w act in C[W*?] by conjugations (cf. (1.5)).

Proof. We completely follow [Ch 5], Theorem 2.4. [J

It is worth mentioning that the operators p(4p,,...,4s,) for p € Clxi,...,x.1"
are not We-invariant. Therefore Red destroys their commutativity and has to be
replaced by Red, that can be done for a special value of d, = d/0; only.

We can exclude d/0( from the construction considering the operators

jbk = exp(ZniAbk/h;#)

instead of 4;,. The corresponding p(Abl,...,an) will be W?-invariant. Hence we

can use Red (and do not need the central element c at all). However {4, } are
rather complicated to deal with. They are similar to the difference elliptic Dunkl
operators which will be discussed in the next paper.

Theorem 3.4. Let us introduce the KZ operators that are differential operators of
the first order with convergent coefficients from C{z} ®c 9’ :

Di=05— Y. na(d, d)et(zz)(sz — pg) + Py (@) — x5, i € CH' (3.10)

a>0

They are pairwise commutative and satisfy the following invariance property with
respect to the above diagonal action & extended to ' D C[W*]:

SOWND ) = Dy, W € W, i € C' (3.11)

Proof. First of all, the contribution of the derivations is zero (see the proof of
Theorem 3.1). Then the commutators [Z;, ;] and the differences d(W)(Z;) —
Dy for all @, 0, w belongs to C[W“]. We have to check that they vanish. Theorem
2.4 gives that they really equal zero in the representation of §’ from Corollary 2.7.
But the latter is faithful when restricted to C[#¢]. O

The isomorphism. We will show that KZ considered in certain induced represen-
tations of ' is equivalent to the proper eigenvalue problem for the above Dunkl
operators. It generalizes the constructions from [Ma] and [Ch 5]. Let us start with
the following general remark. If w € W* are bounded operators in a certain algebra
with a norm 4/, then the series for 2 and 4 and the products of any m among
them are convergent for rather big R(&). Indeed, (2.15) leads to the estimate

exp(@(2h —2)7'417™) > max{A(s;), 0 £ i < n}.

The norm always exists if W* and {x} act in finite dimensional representations.
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Thus the KZ equation, which is the system
2,0(z1,...,2,) =0, ueC", (3.12)

is well-defined when the values of ¢ are taken in any finite dimensional represen-
tations of $’. The extended KZ is obtained for # instead of u:

Dutp(z1, .2y 0) = 0, 0/OL + )y = 0, By = hy(0, 0)/2.. (3.12a)

If ¢ satisfies (3.12) then ¢ = ¢ exp(—h{wC) is a solution of (3.12a). But this trivial
extension is important for the main theorem below.

We may use standard results about the solutions of differential equations (as-
suming that $R(¢) is rather big). Here and further & is considered as a parameter
(0/0¢& does not appear in @, A).

Following Sect. 1, let ¥V be a finite dimensional C[W“]-module, t the corre-
sponding homomorphisms from C[#“] to EndcV. We fix a set A = {4,...,4,} CC
and consider the $j-module V(1) introduced in (1.17) with the C[W“]-
homomorphism fr : V(1) — V. The homomorphism $)+— EndcV (1) will be
denoted by 7.

Main Theorem 3.5. Let " be the space of solutions ¢(z) of (3.12) in V(1) defined
in a neighbourhood of a given point ( its dimension coincides with dimcV (1) =
|W|dimc V). Then the map tr: ¢ — = tr(¢) is an isomorphism onto the space
A of solutions of the quantum many-body problem

Lplp(z) = p(ila cees in)l//(Z), p(xls cee ,xn) € C[x]W 5 (313)
for the operators {L} introduced in Theorem 3.3.

Proof. The statement is a direct generalization of Theorem 4.6 from [Ch 5]. We
will remind the main type steps of the proof (adapted to the affine case).

In the set up of Theorem 2.5, let us pick a set Z C C™*! obtained from Zp(M)
by certain cutoffs and obeying the following conditions. It is connected and simply
connected. The image of the intersection (), W(Z) in the quotient Z &(M)/W* is
connected. Assuming that (&) is rather big, we can fix an invertible analytical
solution &(z, {) of (3.12a) for z € Z and arbitrary { with the values in EndcV'(4).

The functions a(w)®, w € W*, are well-defined in open subsets of Z, we may
introduce the “monodromy matrices” 7'

WPz, {) = o0 " WDz, O)Ti(z, {), Wwe W, (3.14)

which are well-defined for almost all z € Z and locally constant (use the invariance
of 9;). They satisfy the one-cocycle relation

Ty, = 000y NI )Ty Wi, 02 € WO,
which results in the following action ¢ of W*:
GOF(z, ) E 6(P)F(z DTz ), Wwe e, (3.15)

on End¢V(4)-valued functions F defined for almost all z € Z.
Substituting 6, = 6(s,) for 7(sy) for 7(s,) we rewrite KZ for @ as the system

Ay(®) = (x7)®, it € C"T, (3.16)
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where the operators 4; are introduced by formulas (3.4) with ¢ replaced by G. The
latter obeys relations (3.6), (3.7), which ensure the validity of Theorems 3.1,3.3.
The operators Zp constructed for & (by replacing 6(3) on the right with w™')
coincide with L, for . Hence,

P(4a)(®) = (F(p(xa)N(®) = p(D)e ,
L (@)= p(A)® for p(xi,...,x,) € Clx]" . (3.17)

The last formula contains no {x} and therefore commutes with tr. More pre-

cisely, given e € V(4),
r(Lp)(pe)) = p(A)ir(Pe) .

Since an arbitrary solution ¢ € " can be represented in the form @e for a proper
e, the image of 4 belongs to .#. The dimension of the latter is not more than
dimc#". However fr has no kernel due to Proposition 1.4 (as it was checked in
[ChS)). O

It is worth mentioning that one can introduce the monodromy of KZ more
traditionally. It is necessary to fix a point z and to replace @ in right-hand side
of (3.14) by its analytical continuation along a certain path from z° to Ww(z%) (see
[Ch 2,5]). This approach gives a representation of the “elliptic” braid group which
is directly connected with the induced representations of the double affine Hecke
algebras from [Ch 7, 8].

4. Examples

We will calculate the first (quadratic) L-operators for the simplest p C {£1} and
u =0, and discuss their basic properties. More complete analysis will be continued
in the next paper(s).

The following elliptic functions ¢, ¥ “almost” coincide (but do not coincide) with
the classical {, ¢;. To avoid confusions we changed a little the standard notations.
Let

[e ) o0

o) = Y- ct(kE +1) — 3 ct(kE — 1),

k=0 k=1

() = (exp(¢/2) - e7413(—1/2))5_.11(1 — exp(—k& 4+ 0))(1 — exp(—k& - 1)),

o(t) = 3 k(ct(kE + 1) + ct(kE — 1)) . 4.1
k=1

Here ¢, £ € C, R(E) > 0. All these functions are 2miZ-invariant. One has the fol-
lowing relations (which can be deduced from the corresponding properties of { and
¥, or proved directly):

t+md)=o(t)+m, It +ml)=—exp(t+/2)Ne),
s(t) + (=) = =1, ¥(=t) = =1), o(=1) = 0(1) ,

dlog 9(1))/0t = &) E c(1) + 1/2, dlog ¥(1))/0¢ = o(t) ,

ot — &) = e(6) + (1), & E dg/ot = v — &(t) ~ 20(1) . (4.2)
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As to the latter (up to a constant @), check that the difference of the two functions
has no poles and is periodic with respect to the shifts by £ (everything is periodic
relative to 2mZ).

Let us take u = %1 and the corresponding one-dimensional V' = C, (see (1.8)).
Our first aim is to determine L, = L,, (Theorem 3.3) for

n
P2(X15e s Xn) = D0 XiXe,s Xa, = D (0, %)X, -
J

=
The calculations are rather simple because Redo(oz — pg) = 0:
Redo(dp, 4s,) = 0;04, + (Pnps %)0i + (Ppu> bi)0s,+

(Pnes %) P> bi) + Redo{— 3 na(bi, d)ct(zz)(0z — pa)ds, } » (4.3)

>0
where the last term equals

+ Z Ntk (D, )(0t7, o’ )ct(z, + kﬁ))(aa, - kh:;y) .

o+ke>0

Here we applied (3.1), (3.2) and replaced d/3( by —h;,. To sum up the terms (4.3)
with respect to i, we use the definition of p,, and the relations

b= Zn:(bs bi)(xi = En:(b, O(,')b,‘ .
i=1 =1

Finally, L, Redo(Zi2; 4p,44,)

n
1 aiaa, + 2ap,w + (in pnu) +2 g(; ﬂaﬂa(g(za)azx - h:mQ(Za))
= o

+

1

= 2:1 aiaa, + (sz, me) +2 XR; na#a(g(za)aa - h:,,uQ(Za)) . (44)
i= aERY

The next calculation will be a reduction of L, to the Schrodinger operator (with-
out linear differentiations). We will introduce the following elliptic generalization of
the “standard product” playing the main role in the Macdonald theory, Heckman-—
Opdam theory, and the theory of integral solutions of KZ:

o(z) = w(—z)E [T d(z,)"H2 .

aER

Actually we will need in this paper only the formulas (see (4.2):

0(w) = > fatta(u, 2)é(z,), forueC”,
aER,

00/0l = Y NapaQ(24) - (4.5)

a€ER
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The first gives that H, ©f wLyw™! is free of linear differential operators. More pre-
cisely, H, = 3" 0:0s, + (Pyu> pyu) — U(2), where

U(z)=2 Z Nt ($(2Ze )50(((,0)60_1 + h:wQ(Za))

aER L
i é((a“'(w)w—l)(ai(w)w"l) — 0i{0y (w)o™'})

= 3 Nutta((2 2)S"(25) + 2hy,0(22))

a>0
+ ﬁzorlaﬂaﬂﬂﬂﬁ(% Be(z,)(zp) - (4.6)
Lemma 4.1.
%: Oﬂaﬂﬂ(“a B)&(zo)i(zp) = I, ZO 1.3 (z2) + C(1) - (4.7)

Proof. Let us fix b € B and replace z, by zy ) = Zu—(b,u)e = 2u — (b,u)¢ for u =
o, f in (4.7). The change of the left-hand side is

2= Manp(o, BB, a)i(zy) + (b, B)S(zp) + (b, 2)(b, B))

o, f>0

=k, ZO 21(b, #)3(zo) + (1) (b, ) . (438)

Here we used the main property of 4, :

> Halut, 2)(v, @) = hy(u, v) for u, v e C".
a>0

The same holds for the right-hand side. Hence, their difference is B-periodic and
has no singularities. The latter can be checked directly or deduced from (4.8) with
t~! instead of &(¢) (use the r-matrix relations). Thus the difference is a constant C
depending on . [

Finally, applying the lemma and replacing 20(z,) + &(z,)? by @ — ¢(z,) (see
(4.2)), we arrived at the formula for U and the following

Theorem 4.2. a) If u C {£1} and V = C, is the corresponding one-dimensional
representation of W°, then the reduction procedure for p, =Y xix, gives the
operator L, conjugated (by w) with

Hy =Y 0i0, + ZO Rablo{ gy — (2, 2)}6'(24)
i=1 a>
+ (P> Py — @hiy, ZO Mt — C(AL) - (4.9)
a>

b) The operator H, can be included into the family of pairwise commutative

. . def _ . . . .
differential operators H, = ol p0~ Y, p e Clx)7, which are W-invariant. Their co-
efficients are B-periodic with respect to the action z, — z, — (u, b)¢, b € B. They
are self-adjoint relative to the complex involution taking z, to —z, and leaving 0,
invariant.
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¢) Operators {L,} are W-invariant as well. Moreover, they are B-invariant
for the action:

Zy = 2y — (u, b)E, 0y — Oy + (u, b)Yy, bE B, uc C",
and formally self-adjoint with respect to the following pairing:

(/@) 9(2)) = [ & f(2)g(~2)dz: ...dz, .

Proof. The previous calculation gives a). Begining with ¢), the invariance relative
to W* (generated by W and 4) is due to Theorem 3.3. It can be naturally extended
to the bigger group with B instead of 4. We will not discuss this extension in this
paper. The self-adjointness results from the same property of 4;, which can be
checked directly using the definition of w. It gives the analogous properties of H.
For instance, let us check the periodicity:

@' 0ud = 0u+ Y Nabta(b, 0)(t, u) = 0y + Iy (u, ),

a>0

where @& = w(zy — 2o — (b, 2)¢) = @ exp(— Y Napta(b, 2)¢/2) . O
a€ER

Without going into detail we mention that one can generalize the construc-
tion of the shift operators from [Op, He] to the elliptic case. It is connected with
Theorem 3.5 for C, (see [FV]). The most interesting applications of these opera-
tors are expected when u = 1 because in this case the operators L, preserve certain
subspaces of W-invariant elliptic functions.

To define these spaces let us fix m € Z, and introduce the set

PrB = koy + - + kywn + ke, (B, 0) = m'}, m' E m(0, 0)/2,

where w; = (o, o;)b;/2, ki,....kn € Ly, k € Z. (4.10)

The linear space generated by the orbit sums

Y5 = ¥ exp(z) for B, €P, (4.11)
pewa(f +m'd)

over the algebra of formal series ), _ 1o €1 exp(l¢), ¢; € C, (convergent for M(E) >
0) will be denoted by £,,. This construction is due to Looijenga and closely related
to the characters of Kac-Moody algebras. The operators {L,} for u =1 leave %,

invariant if m’ = —h;. Moreover they preserve subspaces ,iﬂ,,,(ﬁ ) for ﬁ 4 € 13,:
generated by

T

T+

~ n ~
such that 7, = f, — Y koy € B, {k} C Z; .
1=0

It results directly from the corresponding properties of the elliptic Dunkl operators
and allow us to introduce the elliptic Jacobi—Jack—-Macdonald polynomials Jﬁ+ as

eigenfunctions of {L,} in LB +) with leading terms T/ﬁ' A further discussion
will be continued in the next papers.



Elliptic Quantum Many-Body Problem 459

Parabolic operator. A demerit of the above constructions is the constraint 0/9( +
hfw = 0 corresponding to the condition x, = 0 in the Hecke algebra §’. We will
show that something can be done even without this restriction.

Let A; = Ag + vAq for & =i +vd € C"*? |

Ag=0/08 =3 3 Maket(zy + kENOuins — ta) - (4.12)
aER k€Z+

The operators 4, are not pairwise commutative but still satisfy the following cross-
relations (see (1.4)):

0ildi — Ags o =n(d, o), 0<i<n seC™??, (4.13)

relative to the action from (3.1). It gives (together with the previous considerations)
the following theorem.

Theorem 4.3. The operator M =24,4.+ Y,y A Ay, and its reduction M =
Red(.4) are We-invariant. If V=C,, p=1, 0/0{ =m', m € L, then

M =2(m’ + hy)0/0¢ + Znil 0i0u, + (P> P) +2 3 Nl E(22)00 + m'0(22)) 5

aERy
NE oMw™" = 2(m' + )0/ + Hy(see (49)). (4.14)

The operator M preserves the spaces L, and L,(f ) for arbitrary i 4+ € PN’;.
O

The operator N was introduced by Etingof and Kirillov in [EK] for sl,, together with
its certain eigenfunctions (the generalized characters that are the traces of proper
vertex operators of sy ). In a recent work, they extended the definition of N to
arbitrary root systems and proved directly the properties mentioned in the theorem.
To be more precise, their formulas are different but with certain minor changes
seem to be equivalent to (4.14) (e.g. they use more special parameters). If it is
so, then our approach (based on the Dunkl operators) gives another proof of their
result. The construction of the generalized characters is still known for sl, only.

Matrix Schrodinger operator. The next application (which is a straightforward
extension of Corollary 2.8 from [Ch 5]) will be for arbitrary representations and y =
0. Let us calculate LI = ngo for p = p, (see above). Applying Red and imposing
the condition 0/ = 0, one has:

LY = zn: 05,00, — Y. (o, @)ct'(z3)s4
=1

G=o+ke>0
+ X Manp(o, Blet(za)et(oa(z5))s sz » (4.15)
& >0

where ct'(t) = dct(z)/dt = —(exp(t/2) — exp(—t/2))~2. Following [Ch 5], Lemma
2.7, we check that the contribution of the terms with @+ f in the last sum equals
zero. Hence we arrived at the follwing theorem:
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Theorem 4.4. The differential C[W*]-valued operators
L§ =3 05,0, + 3 (at 0)act(2a)(1 ~ 52) (4.16)
=1 >0

and L' defined for p € C[x]” are pairwise commutative. Moreover they are
We-invariant with respect to the d-action on z and on C[W?] (by conjugations).
When considered in finite dimensional representations of the latter, the coefficients
are convergent matrix-valued functions for sufficiently big M(¢). O

We can obtain the scalar OP operators (for arbitrary root systems) from this
construction as well. Let {s;} be taken in one-dimensional representations C, (see
(1.8)). Then

LY = ‘jzlaﬁ' 0o, + D (o, My — €4)S" (24) - 4.17)

a>0

The corresponding L, are W-invariant and their coefficients are elliptic = B-
periodic (cf. Theorem 4.2). Generally speaking, the coefficients are “matrix” elliptic
functions with the values in the endomorphisms of vector bundles over elliptic
curves. Ignoring the differential operations in (4.16) and substituting “good” z, we
obtain “periodic” generalizations of Haldane—Shastry hamiltonians. Presumably the
points of finite order of the corresponding elliptic curve and the critical points
of the scalar hamiltonians ((4.17) without the differentiations and after a proper
normalization) lead to integrable models (see [BGHP, F, P]).
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