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Abstract: We prove the decomposition formula for the n-invariant of the compatible
Dirac operator on a closed manifold M which is a sum of two submanifolds with
common boundary.

0. Introduction

Let M be a compact odd-dimensional Riemannian manifold without boundary. Let
A C®(S) — C*°(S) denote a compatible Dirac operator acting on sections of a
bundle of Clifford modules S over M (see [6,8]). Then 4 is a self-adjoint elliptic
operator. It has a discrete spectrum {4;};cz. We define the eta function of the
operator 4 as follows:

n(d;s) = 3 sign (Al A|™ . (0.1)
A %0

Now #(4;s) is a holomorphic function of s for Re(s) > dim(M), and it has
a meromorphic extension to C, with isolated simple poles on the real axis and
locally computable residue (see [1,8,13]). In particular, we know that if 4 is a
compatible Dirac operator, then #(4;s) is holomorphic for Re(s) > —2. The value
of n(4;s) at s =0 is an important invariant of the operator, the bundle, and the
manifold. We call #(4;0) the eta invariant of 4 and denote it by 74. We use the
heat representation for the eta function and obtain the following formula for #,:

LTl e yar (0.2)
=—=-+|—= - Tr(de . .
Voo Ve
In this paper we study the decomposition of 7, into the contributions coming
from different parts of the manifold M. The problem here is that #, is not given
by the local formula and it depends on the global geometry of the manifold and
the operator (see [1,13]). Therefore it is somewhat surprising that we can present
a satisfactory result.

* Research partially supported by NSF
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Assume that we are given a decomposition of M into M; U M,, where M; and
M, are compact manifold with boundary such that

MNM, =Y = oM, = oM, . (0.3)

We also assume that the Riemannian metric on M and Hermitian product on S
are products in N = [—1,1] x ¥, the bicollar neighborhood of ¥ in M(M; NN =
[—1,0] x Y). In this case 4 has the following form in N:

A=T(,+B), 0.4)

where I' : S|Y — S|Y is a unitary bundle automorphism (Clifford multiplication by
the unit normal vector) and B : C®°(Y;S|Y) — C*°(Y;S|Y) is the tangential part
of 4 on Y. B is the corresponding Dirac operator on Y, hence it is a self-adjoint,
elliptic operator of the first order. Furthermore, I' and B do not depend on u and
they satisfy the following identities:

I'*=—-Id and TB=—-BI . (0.5)

In particular, S|Y decomposes into the direct sum S* @) S~ of subbundles of eigen-
vectors of I' corresponding to the eigenvalues +i. The operator B has the following
representation with respect to this decomposition:

0 5 =]

B=1p+ 0

(0.6)

We consider first the case ker(B) = {0}. Let I (respectively, IT.) denote the
spectral projection of B onto the subspace of L2(Y;S|Y) spanned by the eigenvectors
corresponding to the positive (resp., negative) eigenvalues. It is well-known (see
[6,12]) that IT-. is a self-adjoint elliptic boundary condition for the operator A|M,.
This means that the operator o/, defined by

oy = A|M, 0.7)
dom(sf,) = {s € H'(My; S|My); 115 (s|Y) = 0} :

is an unbounded self-adjoint operator such that o7, : dom(.o/,) — L*(M,; S|M;) is
a Fredholm operator and the kernel of ./, consists of smooth sections of S|M;.
It turns out that the eta-function of &/, is well-defined and enjoys all the prop-
erties of the eta-function of the Dirac operator defined on a closed manifold (see
[12]). In particular 7,, the eta-invariant of /5, is well-defined. Likewise, IT . is
a self-adjoint boundary condition for the operator 4|M;, and we define the operator
/1 using the formula which is the obvious modification of (0.7). We proved the
following result in [20]:

Theorem 0.1.
4 = N, + Ny, mod Z . (0.8)

It was explained in [20] that the integer jumps in formula (0.8) are due to the
presence of “small” eigenvalues of the operator 4.

Now we will discuss the situation in which ker(B)=+{0}. In this case, the un-
bounded Fredholm operators o/ and &/, are no longer self-adjoint. We have to
modify the boundary conditions in order to take care of the kernel of the operator
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B. We follow Appendix 4 of [12]. Formulas (0.4)—(0.6) show that I" defines a sym-
plectic structure in ker(B). We use the Cobordism Theorem for Dirac Operators
(see [6, 18]) which implies that index BT = 0. In particular, it gives the equality

dimker(BT) = dimker(B™) . (0.9)

The last fact implies the existence of Lagrangian subspaces in ker(B). We choose
two such subspaces W, and W,. Let o; denote the orthogonal projection of
L*(Y;S|Y) onto W,. The operator /5, is defined by
{ 20, = A|M> (0.10)
dom(:/25,) = {5 € H\(My; SIM); (1= + 02)(s]Y) = 0} '

The operator ./, is determined analogously by the condition (/1 < + o). Note that
o/ ,,a, are self-adjoint operators. We refer the reader to [4 and 12] for a discussion
of the space of self-adjoint generalized Atiyah-Patodi-Singer boundary conditions. In
general I1. + g, +1d — (Il - + o) and this is the reason that we have a correction
term in our additivity formula. The correction term is the #-invariant of the boundary
problem on the cylinder. We consider the operator 4 = I'(d,, + B) on the manifold
[0,1] x Y subject to the boundary condition (IT= + o) at u = 0 and (Il - + o) at
u = 1. Let 5(o1,0,) denote the n-invariant of this operator. In this paper we prove
that

Theorem 0.2.
N4 = Noty 0, + Netyor, + 001, 02)mod L . (0.11)

Remark 0.3.

(a) Theorem 0.2 shows that partial localization of the y-invariant can be achieved
when the manifold is a sum of two submanifolds joined by the cylinder. In this
case the n-invariant is the sum of the contributions coming from different parts of
the manifold, plus the error term due to the cylinder.

(b) We also have a corresponding result in case M is a manifold with boundary,
which leads to a formula for the variation of the y-invariant under cutting and
pasting of the operator. This subject is discussed in Sect. 4 (see Theorem 4.3 and
Theorem 4.4).

(c) In this paper, for simplicity, we discuss only compatible Dirac operator. The
result, however, holds for any operator of Dirac type (see [6 and 8]. We reduce
general case to the compatible. Details will be presented elsewhere.

The main step in the proof is the reduction to the case in which the tangential
operator is invertible. Fix a Lagrangian subspace W of ker(B). Let ¢ denote the
corresponding orthogonal projection of L2(Y;S|Y) onto W. We define the operator
y LXY;S|Y) — L2(Y;S|Y) by

_ { 20 — Idyenzy on  ker(B)

0 on ker(B)*: (0.12)

We define {4,}10<,<1}, a family of modified Dirac operators, where the operator
A, is given by the formula

A, =A+rf)ly, (0.13)



318 K.P. Wojciechowski

and where f :[—1,+1] — [0,1] is a smooth function equal to 0 for |u| > % and
equal to 1 for |u] < %, which is extended by 0 to the whole manifold M. The
tangential part of 4,, B + ry, is invertible for » 0. The technical problem we face
here is that the operators A4, are not pseudodifferential. Therefore we have to be
careful when dealing with heat kernel formulas giving the values of 14, . We employ

Duhamel’s Principle, which allows us to show that Tr(A,e"’Aiz‘) and T r(A,e_’A'z')
have the same asymptotic expansion as ¢ — 0, as in the case of compatible Dirac
operators. We use the standard notation here - A, denotes the derivative of 4, with
respect to a parameter r. Once we have established the necessary asymptotic behav-

ior of Tr(A',e_‘Af2 ), we show that #4, is 0. Now we can directly apply the argument

from [20] in which we treated the “invertible” case. This gives the following result:

N4 = ”I&/., Idkel(B)”” + ’7&/2,« mod Z. . (014)

The general case now follows from the results of [14], in which we studied the
variation of 7., ; under perturbation of the boundary condition.

Remark 0.4. Theorem 0.2 was announced in [5]. We have a corresponding decom-
position formula for the index (see [5,6,7]) and for the spectral flow. The last was
obtained by L. Nicolaescu (see [17]; see also [5]).

Remark 0.5.

(a) It should be mentioned that Jeff Cheeger was the first who considered the
localization problem for the #-invariant in his papers [10 and 11]. He suggested to
blow down Y to a cone in order to separate pieces M,. He also pointed out that
this procedure should correspond to the choice of the specific boundary conditions
on M;, of the type considered here.

(b) This paper presents results of the research, which was started long ago with
a joint project of the author and Ron Douglas. The fundamental analytical tools
were developed in the joint work of author and Ron Douglas (see [12]).

(c) Mazzeo and Melrose obtained a formula which corresponds to formula (0.8)
in Theorem 0.1, in the framework of the b-calculus of pseudodifferential operators
(see [15]).

(d) Theorem 0.2 was also announced by U. Bunke (see [9]). His proof was
based on the finite propagation speed method.

(e) The n-invariant of boundary value problems of the type considered in this
paper were also studied in a recent work of Werner Miiller (see [16]).

In Sect. 1 we use Duhamel’s Principle in order to show that #, enjoys all
properties of the x-invariant of a compatible Dirac operator. In particular we show
that we can use formula (0.2) in order to represent #,.

In Sect. 2 we study the variation of 74, with respect to a parameter r. Results
of Sect. 1 allows us to prove that

Na = Na, mod L .

In Sect. 3 we explain how Theorem 0.2 follows from the results of Sect. 1 and
2, and of [14].

In Sect. 4 we discuss cutting and pasting of the #-invariant. The corresponding
problem for the index was settled and solved in the early Eighties (see [19]; see
also [3, 6]). In this paper we present a simple corollary from a generalization of
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Theorem 0.2 for the case of manifolds with boundary (Theorem 4.4). We will
analyze the general situation in future work.

1. The y-Invariant of the Operator A,

In this section we discuss the #-invariant of the operator 4, given by formula (0.13).
It is not difficult to show that 5(4,;s) is well-defined for Re(s) large. The question is

about the meromorphic continuation of n(4,;s). We show that Tr(A,e“’A%) has the
same asymptotic expansion as ¢t — 0 as the corresponding trace for the compatible
Dirac operator 4. We have the following result:

Theorem 1.1. There exist positive constants ci,c, such that for any 0 <t < 1,

ITr(4,e= ") — Tr(ae™")| < ¢ - e~ . (1.1)

In particular, we have a positive constant cs such that for any 0 < t < 1,

\Tr(4,e™)| < c3 -7 . (1.2)

Proof. We apply Duhamel’s Principle (see for instance [6,10]). Let us observe that
A=A —rf(uy+ w2, (13)

where 2 denotes orthogonal projection of L?(Y;S|Y) onto kernel of the operator
B. We also have

Tr(dye™") — Tr(de ™) = Tr(4, — A)e™™ + Tr(d{e ™ — e ™'}) . (1.4)

We discuss 7r(A, — A)e""f =Tr(rf(w)I ye""fz‘ first. We are interested in the small
time asymptotics only. Therefore we can replace the operator e by a suit-
able parametrix. Let &%,(t;x,z) denote the kernel of e and let &1(t;x,z) de-
note the kernel of the operator e’ on the manifold M. We also introduce
&(t;x,7), the kemnel of the operator e~{(—%+8"=r/'w@y+rf*2) on the infinite cylin-
der (—o00,+00) X Y. We define an operator Q(¢) by defining its kernel to be

2
ot x,z) = I;lgbk(x)éa,'(t;x,z)w,-(z) , (1.5)

where {i;}2_, is a partition of unity on M such that y5(z) is equal to 0 for z ¢ N
and ¥, is a function of the normal coordinate # in N satisfying

l/fz(u)={ I for i“} § 2 (1.6)

The corresponding function ¢,(x) is 0 outside N and is a function of the normal
variable # in N such that

$au) = { 0 for {”{ = - (17)
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Similarly, ¢(x) is equal to 1 outside of N. Inside N, ¢;(x) is given by the formula

weo={ Jor MEVE 9)

The choice of the cut-off functions implies that

dist(supp ( %d)i

u

);supp(wi)) = (19)

We have the following result (see, for instance, [12]; Sect. 2).

Lemma 1.2. There exist positive constants cy,cy such that for any 0 < t < 1,

. dPy)
t

7 (%, 9) = O(t;x,p)|| < c1 - e @ (1.10)

It follows from the choice of functions f,¢;, and i;, that, up to exponentially
decaying summand, we can replace trrfT'y% (t;x,x) by

trr () ()2 (u)(yE2)(t; (u, ¥), (u, y Wra(u) . (1.11)

The trace (1.11) is equal to 0. The point is that, up to the cut-off functions, we
have trace of the kernel

Ty o (= 0h+B —rf (w4 (0 P) _ Ty o 1B o= U= 0—rf W+ P (w)P)

The operator y commutes with (—02 + B2 — rf"(u)y + r2 f*(u)?) and we have

~H—0+B —rf' W+ fHw)P) _ ~ (=35 +B =] W+ 7 )P)

rl'ye —ryle

This shows that the trace of (1.11) has to be equal to 0 and we have just
finished the proof of the estimate

2
-7

ITr(d, — d)e™ | < ¢y - e (1.12)

This takes care of the first summand in (1.4). We estimate the second summand
Tr(Afe ™ —e™™'})

in the same way. We use Duhamel’s Principle to show that up to an exponentially
decaying summand this is equal to the trace of

[(8 + B)pw)e™® (t; y,2) (e oM — Oyt u,v)(v) ,  (1.13)

where ¢(u) and Y(v) are the suitable cut-off functions and W denotes the operator
—rf'(u)y +r* f2(u)?. It is easy to observe that the trace in the y-direction in
formula (1.13) is 0. This ends the proof of (1.1). Then (1.2) follows from the
corresponding estimate for the compatible Dirac operators (see [2, 8]).

We have an immediate Corollary:

Corollary 1.3. The y-invariant of the operator A, is given by the formula (0.2):

- Tl Tr(d, e~ )dt
W= m i '
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2. Derivative of n,4 with Respect to the Parameter

In this section we follow the argument given in Sect. 4 of [14]. We pick a small
real number ¢ > 0 which is not an eigenvalue of 4 = 4y. By the continuity of the
eigenvalues, there exists € = 0 such that ¢ is not an eigenvalue of 4, for 0 < r < e.
Let P. denote the orthogonal projection of L?(M;S) onto the subspace spanned by
the eigenvectors of 4 corresponding to the eigenvalues 4 with |1] < c. Put

Al =A4,(1d - P,)+P, .

Then 4. is an invertible operator for 0 < r < €, and depends smoothly on r. Fur-
ther, P, has finite rank and therefore the y#-function of 4. is defined and

n(A4y;s) =4y s) + 35 sign()|4| ™" — Tr(P.) . 2.1)

|21 <c

Formula (2.1) shows that the difference #(4,;s) — n(4.;s) is a holomorphic function
on the whole complex plane. In particular, we have

Na, =Ny mod L, (22)
and we can use formula (0.2) to evaluate 7,,. We differentiate

d d d 1 1 2
_ = — Wy = — K —— _ T AI —t(Ar)
dr"A' drnA" dr{ Nz f\/f r(dye )dt

]. 6 ./ 71\2
=—=" 1+2t— ) Tr(d,e™ ")) dt
vn f 0 Vit ( ) "
- - 7 e P yar 2= T\ﬁ 0 Tr(d, e )
vrooy Vi VT
_ 2 . LN R 2 . e
=7 éir})\/é Tr(d,e )|6 - lmﬁ Tr(d,e )+

RIS

- 1im Ve - Tr((d, —Ar)e™)
€E—>

- lim Ve - Tr(A(e~€UD’ — e=<AT)) .

€E—>
It follows from the fact that P. is an operator of finite rank that the last two
summands are 0 and we have the following result:

is given by the following formula:
d

_ 2 . . —-EA,Z.
G == - m Ve - Trde ). 23)

Now we are ready to apply Duhamel’s Principle. We have

Lemma 2.1. 41,

7

Are™4 = f(u)lye 4

and we are in exactly the same situation as we were in the first part of the proof

of Theorem 1.1 when we discussed Tr((4, — A)e=“7) = rf(u)[ye—"7. We repeat
the argument and obtain
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Lemma 2.2. There exist positive constants c¢; , ¢, such that for any 0 <t < 1,
\Trd,e™")| < cre™F . (2.4)

Equation (2.3) combined with (2.4) gives the main result of this section.

Theorem 2.3. The derivative of n4, with respect to the parameter r is equal to 0
and

N4 = N4, mod L . (2.5)

3. The Additivity Formula

In the previous section we have shown that n4 =14, modZ. Now 4, is an op-
erator with invertible tangential part. The fact that A; is not a pseudodifferential
operator does not have any influence on the proof of the additivity formula offered
in [20]. Let 7}, denote the operator:

{%5;0 = 4,|M,

dom(stL,) = {s € H\Mo; SLY; (1T + o)slyy =0}~ OV

We define the operator .o/ %,a . on M, using the boundary condition (IT. + o),

where o1 denotes the projection of the kernel of B onto the subspace orthogonal
to the range of 0. We follow Sect. 4 and Appendix A in [12] to show that the
n-invariants of both operators are well-defined and are given by the formula (0.2).
The next result follows from the argument given in [20].

Theorem 3.1. The y-invariant of A is given by the following formula
Ma =N, | + N, Mmod Z . (3.2)

Proof. First we repeat the proof of Theorem 0.1 from [20] for the operator A4;. The
fact that 4; is not a differential operator does not change the argument. The most
important point here is that 4; has the form (0.4) in N, which allows us to use the
specific spectral decomposition on the cylinder and the fact that 4; is a differential
operator outside of the cylinder N. This gives us

N4 = N4, = N N +n&4_ mod Z . (3.3)
10 0

In the second part of the proof we have to show that, at least mod Z,n 7l

is equal to 74, , and Mgy =Nty Let us focus on # K The argument for
’ .0 * 2,0
Ml |~ 8OES exactly the same way. We do not have any problem with showing the
lio

formula
d

N

2 . r
— =+ lim Ve - Tr(og e 50" ) (3.4)
dr €—0 ’

g,o’ = \/E

. 2
Now, once again, we replace the kernel of the operator.o/y.qre ’" by the cor-
responding parametrix. Let 7 (¢;x,z) denote the kernel of the operator

_E(‘y[lé;a

e~ NI @uFBY+rfINa)
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where (I'(0, + B) + rf(u)I'y), denotes the operator I'(d, + B) + rf(u)I"y on the
infinite cylinder [0,+00) X Y subject to the boundary condition IT. + ¢ at u = 0.
Let 7 ,(;x,z) denote the kernel of the operator I'ye™((@u+B)+rf@rI: M)’ We have
an explicit representation of 7 (¢;x,z) (see [12], Sect. 3; see also [16]) in terms of
the spectral decomposition of the operator B. This gives us the representation of
T ,(t;x,z) as well. In particular,

!f(u) < (Tt (, y), (v, ¥)))dy =0 . (35)

Equation (3.5) implies the desired equality of the n-invariants. We have

d ~__2% ot
e = 7 213}) Ve Tr(sz{we : )
2

= -z lm Ve +0f°° SO [1r(7 (5 6. ), (6 Y)Y =0 . (3:6)

This ends the proof of Theorem 3.1.

Now the general additivity formula follows from the results of [14]. The main
result of [14] can be formulated in our context as follows:

Theorem 3.2. Let o, and o, denote the projection of the kernel of B onto two
different Lagrangian subspaces and let of,, denote the corresponding bound-
ary problems on M,. We have the following formula for the difference of the
n-invariants

Netygy = Netyy, = N(02,01)mod 7, 3.7)

where n(o,,01) is the n-invariant on the cylinder defined in the Introduction (see
Theorem 0.2 and (0.9)-(0.11)).

We apply this result. We have the following sequence of equalities mod Z
M= Metrg) Tty 1 = Mty Mty (Netygy = Nsv,, Il)
= MNatyg, T Ntygy — n(oz,07) .
We also use the following equalities, which holds mod Z for any o,0,, and o;:
n(o,06) =0, n(o1,02) = —(02,01) , N(02,0) +n(0,01) = n(02,01) . (3.8)

Equation (3.8) follows from the formula for #( -, - ) given in Theorem 2.1. of
[14]. Now we finish the proof of Theorem 0.2.

End of the proof of Theorem 0.2.
No =Nt | Flatyy =Nt = Napy, + Net, 1
’ i

- r’dl‘al + 1147/2‘,2 - (11(0'2’01}-) + r’(ail‘,gl)) = rfﬂw‘ + nﬂz‘az —n(a2,01)
=Nty Ty, t n(o1,02)mod Z . (3.9)
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4. Cutting and Pasting of the n-Invariant

In the last section of the paper we discuss the variation of the y-invariant under
cutting and pasting of the manifold, the bundle and the operator. We avoid the
discussion of certain technicalities, and we present here the simplest possible case of
the cutting and pasting operation. Let @ : S|Y — S§|Y denote a bundle isomorphism
covering f : Y — Y, a diffcomorphism of the manifold Y. This means that for any
y €Y, the map

P(y): Sy = Ssy)
is a linear isomorphism. Assume that

P (¥) = T(f(NP(y), (W) =b(f (ST NP(y)  (41)

for any y € Y, and for any { € T;Y, where b(y;(): S, — S, denotes the principal
symbol of the tangential operator B. Moreover, let us assume that f is an isometry
and that @ is a unitary isomorphism. We obtain a manifold M/ by taking M; and
M,, and pasting them along Y using f. We identify

MiDY>y ~ f(y)eYcM,. 4.2)

Similarly we define a bundle S® using the isomorphism @.

Now we define the operator 4% to be equal to the operator 4 outside the cylinder
[-1,0] x Y € M, and equal to the operator I'(0, + B,) inside this cylinder. The
family {B,}uc[—1,) is defined by the formula

By =B+ h(u)(®~'BS — B) , (43)

where h(u) is a smooth function equal to 0 for —1 < u < —% and equal to 1 for

—% < u £ 0. Then 4? is a compatible Dirac operator with respect to the introduced

structures. We want to find a formula for the difference 7,0 — #4.

Remark 4.1. The corresponding problem for index was stated and solved a long
time ago (see [3, 19]; see also [6]).
We have

F Ny =Ny 0

Ny = @
4 nt%l,(p—lad’ 2,01 |’¢—|0.

@ + nMZ:GJ_
= (ﬂg:?q)_w — Nty ,) F Nty + Nty

= (N yo —Naty,) +Namod L .
P

Lol
@
1,0~ 1g?
condition ®~!(IT. + ¢)® (the boundary condition is determined by the spectral
projection of the operator ®~'B®). We rewrite the equality given above as follows.

In the formula above, &/ denotes the operator 4?|M;, subject to the boundary

Hge — Na = N yo ~ N, mod 7L . 4.4)
Lo~ lsp ’

The simplest way to interpret this formula is to introduce the manifold M { =
M, Uy M; and the bundle S’;p = (S|M1)Ug (S|M;). Now we define the operator

Z;p = (A%|M;) U (—A4|M,) equal to A®|M; on one copy of M, and equal to —(A4|M;)
on the other copy (see [6] for the details of the construction).
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Theorem 4.2. 1,0 — 1, is given by the following formula:
N> =14 = N0 mod Z. . 4.5)

Proof. We apply Theorem 0.2. to the operator 4 lqb, and obtain

Neo = N yo
Ay 107 1s

— Ny, mod Z . (4.6)
@

Theorem 4.2, however, is not the result we want to have, as we would like to
achieve at least partial localization. We introduce an operator on the mapping torus.
We introduce the manifold ¥/ =[0,1] x ¥/ ~, which is obtained from [0,1] x ¥
by an obvious identification, (1, y) ~ (0, f(»)). In the same way we define a bundle
of spinors (S|Y)? and then we introduce a Dirac operator D? : C=°(Y/;(S|Y)?) —
C>(Y/5(S|Y)?),

D? = I'(0, + B+ h(u)®~'[B, ®]) . 4.7)
The main result of this section is the following theorem:

Theorem 4.3. 1,0 — 14 is equal to the n-invariant of the operator D®

Nyo — N4 = Hpo mod L . (4.8)

We introduce a generalization of Theorem 0.2 in order to prove this result. Let
Z denote a cobordism between Y and another closed manifold W. We paste M,
and Z along Y and obtain a compact manifold X

X=MUZ,

with boundary W. Let E denote a bundle of Clifford modules over X such that
E|M; = S|M,. Once again we assume that all metric structures are products in
the collar neighborhoods of ¥ and W. Let Ay : C*°(X;E) — C°(X;E) denote a
compatible Dirac operator on X such that Ay|M; = A|M;. Let oy and g, denote the
orthogonal projections onto a Lagrangian subspaces of ker(B), and let g3 denote the
orthogonal projection onto Lagrangian subspace of the kernel of the tangential part
of the operator Ay restricted to W. We define an operator .«/x,, as the operator
Ay subject to a boundary condition o3 on W. We denote by n(A4z;02,03) the eta
invariant of the operator Az = Ax|Z, subject to the boundary condition defined by
o, on Y and g3 on W.

Theorem 4.4. The y-invariant of the operator o/ xs, is given by the following
formula:

Netxgy = Nety,, +1(01,02) +1(Az;02,03)mod Z. . (4.9)

The proof of Theorem 4.4 is almost the same as the proof of Theorem 0.2. First,
we use Duhamel’s Principle and adiabatic argument, as in [20], to prove the result
in the case of invertible tangential operators. Then we follow Sect. 1, 2, and 3 of
this paper. We leave details to the reader.

Proof of Theorem 4.3. We have already shown (see (4.4))

Nyo — Na =N yo — oy, mod Z .
Lo~ oo ?
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Now we apply Theorem 4.4. in the case Z = [—%,O] x Y, and we obtain

Noy® =ty +1dz;07,07'00). (4.10)

1Lo— oo

In this formula, 4z = I'(0, + B + h(u)®~'[®,B]) and the summand #(0,07) =
n(I'(d, + B);a;a1), which appears in the formula (4.9), is equal to 0. Now A,
is equal to the operator 4 on the manifold M| = Ml\[—%,O] x Y = M; subject to

a boundary condition, defined by ¢ on {—1} x Y. It was shown by Werner Miiller
that the n-invariant of the boundary problem, of the type considered here, does not
depend on the length of the cylinder (see [16]; Proposition 2.16) and we have

Ny =Nty - (4.11)

The only thing left is to apply Theorem 0.2 to the operator D? on the mapping
torus. We can assume

([t o ().

where we use f (and @) to make a pasting at u = —%, and we use Idy (and Idgy)

to paste the manifold (and bundle) at u = 0 to the manifold at u = —1. D? is equal
to I'(0, + B) on [—1,—%] x Y and it is equal to Az = I'(d, + B + h(u)®~'[®, B])
on [—%,O] x Y. Theorem 0.2 gives the equality

Npe = N(Az;0%, 8 'a®)mod 7. . (4.12)
This allows us to finish the proof

71A¢ — N4 = ?]&46 + rl(Az;O'_L,¢_1G'¢) — 11&/[’6
= n(dz; 0, 97 16®) = npe mod Z .
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