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Abstract: The problem of diagonalization of the quantum mechanical Hamiltonian,
governing dynamics of an electron on a two-dimensional triangular or square lattice
in external uniform magnetic field, applied perpendicularly to the lattice plane, the
flux through lattice cell, divided by the elementary quantum flux, being a rational
number, is reduced to the generalized Bethe ansatz like equations on the high
genus algebraic curve. Our formulae for the trigonometric case, where the genus of
the curve vanishes, contain as a particular case a recent result of Wiegmann and
Zabrodin.

1. Introduction

In this paper we consider the diagonalization problem of the following Hamilton
operator:

cΓ^S1-1) + v(βT + β~lT~l) + p(yU + y~lU~l) , (1.1)

where unitary operators S, T, and U satisfy Weyl commutation relations

ST = ωTS, TU = ωUT, US = ωSU (1.2)

with ω being a primitive Nth root of unity:

ω = exp(2πiM/N), (M,N) = I (1.3)

for some mutually prime integers TV > M ^ 1, the complex parameters α, /?, y
have unit absolute values, while μ, v and p are real parameters. Phases of α, /?, y
are constrained to lay between 0 and 2π/N:

0 ^ arg(α), arg(β), arg(y) ^ 2π/N . (1.4)
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The Hamiltonian (1.1) appears in various problems of solid state physics. With
parameter p, taken to be zero, it governs the dynamics of an electron on a two-
dimensional square lattice in the external uniform magnetic field, applied perpendic-
ularly to the lattice plane, phases of α and β playing the role of quasi-momentum,
and the phase of ω, the role of magnetic flux through lattice cell, divided by the
elementary quantum flux. The same problem on triangular lattice is described by
(1.1) with non-zero parameter p. Parameters μ, v and p, called hopping parameters
(or amplitudes), serve as length scales along corresponding directions on the lattice.

Nih powers of operators S, Γ, U are central elements and we fix them to be
unity:

SN = TN = UN = 1 . (1.5)

From (1.2) and (1.5) one can deduce that operator

C = STU (1.6)

is also a central element, and its Nth power is 1 (—1) for odd (even) TV:

CN = (-lf~l . (1.7)

If we fix C by some number, satisfying (1.7), then operators S, T, U have a
unique N-dimensional irreducible representation. For the problem under considera-
tion only algebraic properties of these operators, given by (1.2), (1.5) are important.
Different reducible realizations can affect degeneracies of eigenvalues, but not the
spectrum itself. We will use this fact, working with an N3 -dimensional reducible
representation.

Exploration of the spectrum of (1.1), or its various particular cases, is associated
with many names, and especially Hofstadter, who at p — 0 made a detailed numer-
ical analysis of dependence of this spectrum on integers M and N for N ^ 50
[H]. A shortened list of physical and mathematical papers, concerning this problem,
contains also [W, HK, BKS, CEY].

Last years the idea about possible relevance to above problem of methods, used
in quantization of integrable models, attracted some attention. This idea has been
materialized in recent paper [WZ], where Wiegmann and Zabrodin showed that
in the case, equivalent t o p = 0, μ = — v = l , and α^ — βN = 1, the spectrum of
(1.1) can be represented in terms of solutions of Bethe ansatz (BA) type algebraic
equations.

In this paper, using more sophisticated methods of integrable models, we show
that BA like equations can be obtained also for general Hamiltonian (1.1). They
are similar to the equations, found in [BS] for the case of the chiral Potts model
[AMPTY, MPTS, BPA]. Rapidity variables, satisfying generalized BA equations,
live on high genus algebraic curve. The rational limit, where the genus vanishes,
contains also the case, considered in [WZ]. We hope, that our result will be useful
for further investigation of Hamiltonian (1.1), especially in the limit of large N.

In Sect. 2 we represent Hamiltonian (1.1) as a part of three-site transfer matrix,
constructed through elementary L-operator, intertwined by the six-vertex R-matrix.
In Sect. 3 we calculate Baxter's vector, which enables to derive functional equation,
determining in principle the spectrum of Hamiltonian (1.1) in terms of solutions of
BA like equations on high genus algebraic curve. Section 4 contains specialization to
the case with p = 0 in (1.1). In Sect. 5 a detailed investigation of the trigonometric
case, corresponding to genus zero curve, is performed.
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2. Transfer Matrix

In this section we introduce a simple Z-operator, intertwined by the six-vertex R-
matrix, and define transfer matrix, containing Hamiltonian (1.1).

Consider two operators, X and 7, satisfying Weyl permutation relation, and with
unit 7Vth powers:

XY = ωYX, XN = YN = l, (2.1)

with ω from (1.3). These operators can be realized as N-by-N matrices with the
following matrix elements:

(m\X\n) = ωmδm,n, (m\Y\n) = δm,n+l , (2.2)

where indices m and n run over N values 0,1,...,7V — 1 and are considered
(modTV), so they are elements of ZN.

Introduce 2-by-2 matrix, L(JC, /z), with operator valued matrix elements:

τί ,, (aXY xbY\ „_
d > (23)

where x and h = (a,b,c,d) are some complex parameters. The N -dimensional linear
space, where operators X and Y act, will be referred to as a "quantum" space while
the two-dimensional space, where L(x,h) acts as 2-by-2 matrix, as an "auxiliary"
one.

Matrix (2.3), called an L-operator, is intertwined by the six-vertex ^-matrix:

R(x/y)L(x,h)®L(y,h) = (1 ®L(y,h))(L(x,h)®l)R(x/y) , (2.4)

where L(x,h) and L(y,h) act independently in two different auxiliary spaces and in
one and the same quantum space, while R(x/y) is a matrix in the tensor product of
the auxiliary spaces with numerical matrix elements:

'xω-χ-1 0 0 0
ω(x — x~l) ω — I 0
ω-1 x-x~l 0
0 0 xω-x~l

Note that this ^-matrix differs from the usual one in two diagonal elements. Our
choice enables us to escape square roots of ω for the time being and to consider
both odd and even N simultaneously. Matrix (2.3) has been used in [BBP] for the
derivation of functional equations for the chiral Potts model. It can be extracted
also by specialization of parameters in L-operators, written in [BKMS] and [T].

Now introduce the following transfer matrix, acting in the tensor product of
three quantum spaces:

3T(x) = tr(L(x,ho) <8> L(JC,h λ ) 0 L(x,h2)), (2.6)

where the matrix products and trace are performed in the auxiliary space, and
the indexed λ's mean that three different sets of parameters hi = (#/,£>/,£/,<//) are
taken. To write down explicitly 3Γ(x\ we introduce special notations for certain
combinations of parameters A / :

id+i, fi = Ci-\aibi+ι, i = 0,1,2(mod3), (2.7)
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where index i is considered as an element of Z^. Then, for ^~(x) we have the
following explicit expression:

^(x) = ̂ Q+x2^2, (2.8)

where
dQdιd2 , (2.9)

and
^2 - e2S + fiCS'1 + e{T + f{CT~l + β0ί/ + fQCU~l , (2.10)

with
5=^0701, r = r<g>l<8>*, C/ = 1 0 A Γ ( 8 ) 7 , (2.11)

C - αr1^ <8)AT 0AT . (2.12)

Operators S, Γ, (7 and C, defined in (2.11) and (2.12), satisfy algebraic relations
(1.2), (1.5), and (1.6), operator C being commutative with others (so it can be
considered as a number). Thus, operators (1.1) and (2.10) can be identified:

^2 = ̂ , (2.13a)

where

α = ̂ (/2CΓ^ β = ef(flCΓll\ y^fC/oCΓ1/2, (2.13b)

μ - (β2/2C)1/2, v - (ei/iC)1/2, p - (e0/oC)1/2 . (2.13c)

To conclude the section note, that one and the same transfer matrix 3Γ(x) can
be represented by (2.6) with different L's:

(2.14)

where Z's differ from Z's by a gauge transformation:

!,(*,*/) - i4,I(x, A/Mw, ί € Z3 (2.15)

with some invertible numerical 2-by-2 matrices A^ In the next section we will use
this freedom to construct Baxter's vector.

3. Baxter's Vector

Following [Bl, FT, BS], let us turn to the calculation of Baxter's vector for transfer
matrix (2.6). For this let us use its representation by (2.14) with matrices Aί9 chosen
as

Λ i = ( ί ?V ηt = ξi-l, ί e Z a , (3.1)
V l ςi /

where ξl are some complex parameters to be fixed later on. Transformed L-operators
Li(x,hi) have the following explicit form:

-F(x9hi'9ηi9ηi+ι)
Ί7(γ— r (x,

where operator valued function F is defined by

/7/v Z, . £ £ \ Ί7(γ /, £ „ \ / ' *r(x, ni9 ς/, Ci+i J — r (x, Λ f , ς/, ηi+\
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F(x,h; ξ , ξ ' ) = (ξ'aX -xb)Y + ξ(xξ'cX - d). (3.3)

Now let us try to fix parameters ξj by demanding that equations

F(x,hl;ξi,ξί+l)\φί)=0, i€Z3 (3.4)

have non-zero solutions. Writing them in the basis (2.2), we get the following
recurrence relations for matrix elements of vectors \φi):

/ 1 I / \ ^>ί Y n, 1 "> ^~ J '(m — liφi) xci+\Ci(Dm — dί\ 1 T * / ='τ^ i t t

Periodicity conditions impose algebraic relations of high order on ξ's:

~N ?N _ hNΎ N

^ΛT , ^ x \1 M; S ; _ i i ί/, Λ _ ___
\&\6)

Considering ξ's and x as variables, while keeping all A's fixed, we get three equa-
tions on four variables, which define an algebraic curve Γ. Let p be some point of
this curve, specified by a particular set of coordinates (*,£/)> satisfying (3.6). Then
vectors |φ/) depend on this point, so from now on we will use another notation for
them:

\φ,) = \p),, peΓ. (3.7a)

Besides, choose the following normalization:

(0\p)i = l, i € Z 3 . (3.7b)

To proceed further, define two automorphisms of our curve, τ±, which act on
coordinates x and £• as follows:

τ±:Γ ->Γ, τ*±x = ω±l/2x, τ*±ξt = ω~1/2^ . (3.8)

Using this definition, one can easily show that

F(x9hi'9ξi - l,ξi+ι)\p)i = -\τ-p)i(xξi+lci-di) , (3.9a)

and

F(x9hi;ξi9ξi+ι - l)\p)i = - τ+p}iξί(aίdί-x2bici)/(ξi+lai-xbi) . (3.9b)

Denoting
\P) = \ P ) 0 ® \ P ) 1 ® \ P ) 2 , (3.10)

and using (2.14), (3.2), (3.4), (3.9) together with multiplication properties of trian-
gular matrices, we come to the relation:

#-(x)\P) = \τ-P)Δ-(p)+ τ+P)Δ+(p), (3.11)

where

Δ-(P)= \[(dt-xξMc,), (3.12a)
ί€Z3

Δ+(p) = Π ξfadi ~ x2biCi)/(ξi+}ai - xb,) . (3.12b)
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To get the functional equation from (3.11) we just multiply it from the left by
the eigenvector (φ\ of $~(x\ corresponding to some eigenvalue Λ(x). The vector
(φ| evidently does not depend on /?, so we obtain eventually the scalar relation

Λ(x)Q(p) = Q(τ-p)Δ-(p) + Q(τ+p)Δ+(p) , (3.13)

where

is a function on our algebraic curve with known poles (they can be extracted from
recurrence relations (3.5)), while its zeros, the number of them being equal to that
of poles, are determined from the generalized Bethe ansatz equations, obtained from
(3.13) by taking p as various zeros of Q(p)\

= 0, *=l,.,#(poles). (3.15)

Relations (3.13)— (3.15) at this stage only in principle solve the diagonalization
problem of (1.1), since Eqs. (3.15) are too complicated to work with. The main
problem, of course, is that of the suitable choice of coordinates on Γ. Unfortunately,
uniformization of algebraic curves is still unsolved in the general, long standing
problem of mathematics. Our hope, however, is that Γ has a very special structure,
which we believe should admit a particular approach to it. Taking into account
successful analysis of the curves in the chiral Potts model, [AMP1, AMP2, B2,
MR], we think that the analytic structure of Γ deserves a further study.

4. Hofstadter Hamiltonian

Here we specify results of Sect. 3 to the case with p = 0 in (1.1), which corresponds
to

The algebraic curve Γ, defined by (3.6), reduces to a disjoint set of N copies of
another curve, Γ0, defined by two high order equations on three variables £0, £2
and x:

while the sih copy in the set is specified by the value of ξ\:

ζ\ = ωs /ξv, s (Ξ ZΛΓ (4.3)

with —ω1/2 being chosen as the Nih root of minus unity:

(-ωl/2f = -l . (4.4)

Now Baxter's vector \p) as well as the functions Λ±(p) acquire the index s\

\p)->\p,s), Δ±(p)-+Δ±(p,s), seZN, (4.5)

so relation (3.11) now reads
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where automorphisms τ± of ΓQ are defined by (3.8) with index / being restricted
to only two values, 0 and 2. Taking into account (4.3) together with (3.12), we
have explicitly:

) = ofA±(p,0). (4.7)

Noting that
α/ = Φ(s)Φ(l)/Φ(s - 1), Φ(s) = ωs(s+N}/2 , (4.8)

then multiplying (4.6) by ωst/Φ(s) and summing over s, we get Baxter's relation
for the case of Hofstadter Hamiltonian:

F(x)\p,t)' = \τ-p9t)'Δ-(p,t)Φ(l)+ \τ+p9t)Ά+(p9t)Φ(l)9 t G ZN , (4.9)

where
\P>*Y = Σ \P,ήωst/Φ(s), (4.10)

and we used (4.7). Repeating arguments from the end of Sect. 3, one can get direct
counterparts of relations (3.13)-(3.15).

5. Rational Limit

In this section we consider the rational limit of formulae from Sect. 3.
Let us restrict parameters /z ί? / G Zs, by

ai = q-ldi, b^q^Ci, i G Z3 . (5.1)

Everywhere in this section q = ω1/2 satisfies (4.4). Then, relations (3.6) become
very simple:

*N = cS ")

Here the variable x does not enter, so, we have just several copies of genus zero
curve, spanned by the coordinate x, while all ξ's are fixed up to Nih roots of unity.
Let us put ξ — ql for some 7 = 0,..., 2N — 1 and choose

ξt = ξ, i£Zι, (5.3)

then point p of Γ can be identified with the pair (#,7), and (3.11) becomes

where
A-(x,l)= Π(4 -W), (5.5a)

Define function

[1/2]

f(x, 0 = Π Π (di - xciq-lωj ) / ( d t - xc^ω^ ), 7 = 0,... ,2# - 1 , (5.6a)

where

N _ zN <~ 7 ?2N _ 1 /ς O Λ— i G Z3, ς — i . (5.2)
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(I - 1 )/2, / = 1 (mod 2) ,

and for any m 6 ZN introduce new vectors

\x>™)o = Σ l*>2« + 1) /0>2« + !)ωmπ . (5.7)
n=0

Combining them into 2-component row vectors

|jt,m))=(|jt,m)e |jc,ιw)0), (5.8)

one can rewrite (5.4) in a matrix form:

Γ(x)\x,m)) = \xq-{,m))D-(x,m) -f |^,m))jD+(x,m) , (5.9)

where

Relations (5.9) do not change their form under gauge transformations:

\x,m)) -» \x,m))U(x,m) ,

D±(x9m) -+ U(xq±\mΓlD±(x,m)U(x,m) (5.11)

for any invertible 2-by-2 matrix U(x,m). In the case of arbitrary N and without
further restrictions on parameters, there is no gauge, where matrices D±(x,m) would
be diagonal, and rational in jc, so, from now on let us work with only odd N:

N = 2P+19 P ^ 1 . (5.12)

In this case q = ω1/2, satisfying (4.4), can be represented as an integer power
of ω:

q = ω'/2 = ω/>+ι (5 13)

Define the function

xctωJ), (5.14)

and choose the gauge transformation matrix in (5.11) of the form

-qmu(qx) u(x)

Then matrices D±(x,m) become diagonal:

_ (5.16)

where

φ(x)= Π(^ +^^"1/2) (5 17)
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Now multiplying (5.9) from the left by the eigenvector (φ\ of &~(x), corresponding
to some eigenvalue Λ(x), we get two scalar relations:

±q-mΛ(x)Q±(x) = ψ(-xq-l2)Q±(xq-l) + Ψ(xql/2)Q±(*q) , (5.18)

where
(Q+(x)Q-(x))=(φ\x,m)). (5.19)

From the structure of Baxter's vector, given by (3.5), it follows that Q±(x) is a
polynomial in x, and sending x to zero and infinity, taking into account (2.8) and
(2.9), we conclude, that

β-(*) = 0, Q+(x)=xpQ(x)9 degβ(x) = 2P, m = P, (5.20)

while the central element C in (1.6) equals unity. For convenience choose the
following normalization for the parameters CQ, c\, CΊ°?

= ω . (5.21)

Then, the function ψ(x) reads

ψ(x) = ql/2(x + μ )(x + v)(X + p), (5.22)

where μ, v, p are the same as those in (1.1). As for the parameters α, /?, 7, they
are equal to q1/2. Using (5.20), we rewrite (5.18) as

= 2P, (5.23)

Λ(x) being
Λ(x) = μvp(ql/2 + ̂ ~1/2) + *2£ , (5.24)

where E is an eigenvalue of Hamiltonian (1.1). Let Q(x) have the following de-
composition:

β(*) = Π (*-V*«) (5.25)
/n=l

for some z's, which should satisfy BA equations (3.15):

-

' ""^- U m=l,mή=lzl ~ qzm

(5.26)

Differentiating (5.23) twice with respect to x at x — 0, we get the expression for E
entirely in terms of z's:

- (q ~ <Γλ)(μv + vp + pμ) Σzm + (^ + tf~1/2)0* + v + P) (5-27)
m=l

Formulae (5.26) and (5.27) at p = 0, μ — — v = 1 reproduce correspondingly for-
mulae (6) and (5) of paper [WZ], if we identify our zm with their izm.4

3 This can be done by rescaling variable x
4 In fact our Eqs. (5.26) differ from (6) of [WZ] by a sign. We checked our equations by direct
diagonalization at TV = 3, so we think that there is a misprint in [WZ].
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Let us comment on the physical meaning of our result in the case of the Hofs-
tadter Hamiltonian, i.e. the case with p = 0 in (1.1). Equations (5.26) and (5.27) at
p = 0 describe particular points (one in each band) in the spectrum of an electron
on the square lattice and in an external uniform magnetic field with rational flux
through elementary cell. It appears we can in fact describe four points in each band,
two of them being the band's end-points. Indeed, fix two positive numbers t\ and t2
and consider four different substitutions of the form μ = ε\t\, v = ε^h^ p — 0 into
(5.26), where ε\9 €2 — ±1. Then, all four cases describe the band's four different
points of one and the same physical system with the hopping parameters being
μ = t\, v = t2, p = 0. Two cases with εi = CΊ — ±1 describe two end-points of
a band, while the cases with ε\ — —62 = ±1 correspond to a pair of the band's
interior points, if t\ φ^2> and to a single band's mid-point, if t\ = t^.

It is worth noting that in the case of odd N one can start from the very beginning
with another L-operator:

Ύί 7 \ ( aV XbW \ / C 0 0 \

^x^=(xcW-1 dV-i) ' (5 28)

where operators V and W satisfy

VW = qWV, VN = WN = 1 . (5.29)

Z-operators (5.28) and (2.3) are connected in a simple way. If we multiply (5.28)
from the right by V, and replace the parameter a by qa, then we get (2.3) with

X=W~1V, Y=WV. (5.30)

The L-operator (5.28) can be extracted as a particular case from the Z-operator,
considered by Bazhanov and Stroganov in [BS]. The case, where a — d and b — —c,
is related to the massless quantum Sine-Gordon model on the lattice [G, V, KT].

Using the L-operator (5.28), we can repeat the procedure developed in Sect. 2
and 3. Automorphisms τ± in this case act on variables ξj and x in another way,
namely, they are inverse to each other and transform only the variable x. So, in the
rational limit we are not forced to use simultaneously several disjoint copies of the
zero genus curve. Particularly, (5.23) and (5.26) arise as a direct specialization of
general formulae, counterparts of (3.13) and (3.15), without intermediate transfor-
mations, which we made in this section. Nevertheless, the approach which we have
presented in detail enables us to consider both even and odd N on equal footing.
This explains why we prefer to work with the Z-operator (2.3).

Summary

The main result of this paper consists in establishing the relation between the gener-
alized Hofstadter Hamiltonian (1.1) and inhomogeneous XXZ chain of three sites.
The available methods in lattice integrable models lead to the generalized Baxter re-
lation (3.11), as well as Bethe ansatz (BA) type equations (3.15) on the high genus
algebraic curve. In particular, in the rational case we have got BA-like equations
(5.26) together with formula (5.27) for eigenvalues of the Hamiltonian (1.1).

To use Baxter's relation in the general case, one has to develop analysis on
the high genus algebraic curve. Results in the chiral Potts model, [AMP1, AMP2,
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B2, MR], can be useful here. Apparently, one needs also more information about
automorphic functions, connected with the curve.

There is an opportunity to try to apply the known simplification properties of
BA equations when the number of variables, satisfying these equations, tends to
infinity. In our case this corresponds to N —>• oo. However, at the moment it is not
clear how to utilize this possibility.
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