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Abstract: The Cauchy problem for the Yang-Mills-Dirac system with minimal cou-
pling is studied under the MIT quark bag boundary conditions. An existence and
uniqueness theorem for the free Dirac equation is proven under that boundary con-
dition. The existence and uniqueness of the classical time evolution of the Yang-
Mills-Dirac system in a bag is shown. To ensure sufficient differentiability of the
fields we need additional boundary conditions. In the proof we use the Hodge de-
composition of Yang-Mills fields and the theory of non-linear semigroups.

1. Introduction

The present paper is part if a series devoted to the study of the classical theory
of Yang-Mills fields. Its aim is to establish the existence and uniqueness theo-
rem for Yang-Mills-Dirac fields satisfying modified bag boundary conditions on
a contractible bounded domain M C IR3. Since the domain M is fixed, our result
corresponds to a static bag with zero tension. In Minkowski space the classical
Yang-Mills equations have been studied in refs. [1-3]. The existence and unique-
ness result for the pure Yang-Mills theory under bag boundary conditions was
obtained in [4]. Here, we extend that result to include minimal interaction between
the Yang-Mills field and the Dirac field.

Since classical non-abelian Yang-Mills fields are not observed in nature, one
may argue that the classical Yang-Mills theory is not relevant to physics. However,
the understanding of many physical phenomena in gauge theory, like conservation
laws for colour charges, are based on the classical notions for the Yang-Mills
theory. It is the knowledge of the classical structure of the theory, together with
an appropriate understanding of the process of quantization, which enables one to
arrive at a proper description of possible quantum phenomena.

1 Work supported by DFG Grant Schw 485/2-1. Present address: Department of Mathematics and
Computer Science, University of Mannheim, 6800 Mannheim, Germany
2 Work partially supported by NSERC Research Grant A 8091.
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One of the most fundamental aspects of a classical field theory is a complete
description of its phase space. This is relatively easy in linear theories, though
the gauge invariance of electrodynamics leads to some difficulties which we have
learned to handle. Yang-Mills theory is both nonlinear and gauge invariant. In order
to describe its phase space one needs an existence and uniqueness theorem for the
evolution part of the Yang-Mills equations as well as the precise knowledge of the
structure of the constraints.

Our interest in studying the Yang-Mills-Dirac system in the space-time of the
form I ^ l R x M , where M is a bounded domain in R 3 , is motivated by the
following arguments. First, the structure of the phase space of the classical Yang-
Mills fields exhibits some remarkable differences between the theory in R 4 and
in a tube I = R x M . The corresponding results rely on the respective existence
and uniqueness theorems for the classical dynamics, and will be presented in a
subsequent paper [5]. Second, there are several approaches to understand nature of
hadrons (and nuclei) in terms of a field theory of the gluon and quark fields in
such a tube, among these the celebrated MIT bag model. Finally, one might argue
that in a real experiment the field are always (spatially) constrained to a bounded
domain M C R 3 .

The system we are dealing with here is the standard Yang-Mills-Dirac theory
with minimal coupling:

VAFμv = jv a n d (yμVA + ^ ψ = Q ?

where the superscript A refers to the gauge field A used to define the operator of
covariant differentiation. Rewriting these equations as dynamical system yields

dtA=E + gradΦ - [Φ, A],

dtE = -curLS - [Ax,B] - [Φ9E]+J ,

dtψ = -y°(yJVJ + y°Φ + im)Ψ , (1.1)

where the gauge field Aμ is split into the scalar potential Φ — Ao and the vector
potential A = (A\,A2,A^), while Ej = F θ 7 and Bj = \dfFk\ denote the "electric" and
the "magnetic" component of the field strength tensor, respectively. We study this
dynamical system under the following boundary conditions. For the Yang-Mills
fields we choose

nA = 0, nE = 0 and tB = 0 , (1.2a)

where nA and nE denote the normal components and tB the tangential component.
On the spinor fields we impose the conditions

(ίyknkψ) \m= Ψ \δM and {ίyknk(9Ψ)) \dM= ( W ) \δM , (1.2b)

where 3) = —y°(y^dj + im) is the free Dirac operator.
We show that these boundary conditions are preserved under the time evolution.

Furthermore they are physically reasonable by maintaining the "physical content" of
the bag, in the sense that there is no flux of matter or energy through dM. They, in
fact, turn out to be a modification of the boundary conditions of the original MIT
quark bag model [6]. The MIT bag boundary conditions for the Yang-Mills fields
coincide with the last two conditions of (1.2a). The first condition of (1.2a) is a
partial gauge fixing. The MIT condition on the Dirac field coincides with the first
one in (1.2a). As we shall show this condition suffices to guarantee that the initial
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value problem for the free Dirac equation has a unique global solution in the Sobolev
space Hι. To handle the nonlinearity, however, one has to demand higher order of
differentiability of Ψ, which enforces the stronger boundary condition (1.2b). Under
these conditions the initial value problem for the free Dirac equation is uniquely
solvable in the Sobolev space H2.

Based on that existence, uniqueness and regularity result for the free Dirac
equation, our results on the pure Yang-Mills system [4], and the theory of nonlinear
semigroups [7] we will prove as the main result of this paper:

The Cauchy problem for the Yang-Mills-Dirac dynamics given by Eqs. (1.1)
under the boundary conditions (1.2) has, for any initial condition (A(0),E(0), Ψ(0)),
a unique solution in an appropriate Sobolev space.

In order to obtain this we introduce in Sect. 2 the phase space for the Yang-
Mills-Dirac equations, written as a dynamical system, by fixing the boundary con-
ditions and choosing appropriate Sobolev classes for the respective fields A, E and
Ψ of the theory. In Sect. 3 we eliminate the scalar potential Φ from the dynamical
system by choosing an adequate gauge fixing. Linearizing the system we give an ex-
istence and uniqueness result for the free Yang-Mills evolution equation. In Sect. 4
the existence and uniqueness of solutions for the free Dirac equation is proven. To-
gether with the results of [4] on the pure Yang-Mills dynamics and some analytic
properties of the nonlinearity of the coupled system we then establish the existence
and uniqueness theorem for the nonlinear evolution in Sect. 5. Section 6 is devoted
to the study of the conservation of the GauB law constraint under the time evolution
of that system. In an appendix we give a number of estimates used in the proofs.

The authors are indebted to R. Racke for his remarks on the choice of boundary
conditions for the Dirac equation.

2. The Cauchy Problem for the Bag

To study the coupled Yang-Mills-Dirac equations we denote by M a fixed con-
tractible bounded domain in IR3 describing the bag. We consider here only static
bags, which implies that the part X of the space-time accessible to the fields is the
product X = IR x M of the time IR and the space M— the usual (3 + 1 )-splitting.
We equip X with a Lorentzian metric ημv = diag(-f,—,—,—). For our choice of
convention the Dirac matrices obey (y°γ = y°9 (y*Y — ~Ϋ 0' = 1,2,3), and the
anti-commutation relations {yμ,yv} = 2ημv.

By G we denote the structure group of the theory and by ty its Lie algebra.
The generators of 9) denoted by Ta, act as matrices on a vector space V and the
structure constants are given by [Ta,Tb] = fc

abTc. We assume 2) to be equipped
with an ad-invariant metric given by the trace of (Γj" 7i), which is used to raise
and lower the Lie algebra indices. To formulate the corresponding gauge theory
we consider a right principal G-fibre bundle over X with Yang-Mills connection
Aμ = Aa

μTa and the covariant derivative V^. With Dirac spinors Ψ : X -> <C4 0 V
as the matter fields of the theory, the Yang-Mills-Dirac system is

AFμv = jv 9

(2.1)

where Fμv = δμAv — dvAμ + [Aμ,Av] is the Yang-Mills field strength tensor and

j μ = ψtyoyμTaψTa i s ^ c u r r e n t density of the matter field.
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To study the existence and uniqueness of solutions of these equations it is conve-
nient to reformulate them as a dynamical system. The (3 + 1 )-splitting X = IR x M
leads to the usual splitting of the Yang-Mills field Aa

μ into the scalar potential
Φa = A% and the vector potential Aa = {Aa

x,A
a

2,A\). Similarly, the field strength Fa

μx

splits into the "electric" field Ea and the "magnetic" field Ba with components

EJ = Fξj = d0A] - djΦa + [Φ,Aj]a ,

Baj = UfF^ = (cur\Aa)j + [Ax.Afj . (2.2)

Here the bracket terms are to be understood as [Φ,Aj]a = fa

hcΦ
bAc^ and [Ax,A]" —

\fl9&
k-Ab

kA
c

ι. Furthermore (cuήAa)j = dfdkA\. The fields Aa, Ea, and Ba are treated
as time dependent vector fields on M. The current density Jμ determines a scalar
density pa and a 3-current JJ

a on M given by

pa = ψϊTaΨ and J{ = ψϊγoγ>TaΨ . (2.3)

In terms of the fields (Φ,A,E,Ψ) and the quantities derived from them, the
Yang-Mills-Dirac equations (2.1) determine a set of evolution equations

dtA
aj = η + djΦa - [Φ,Aj]a , (2.4a)

dtη = -(curl^)7- - [Ax,B]] - [Φ^Ejf+Jj , (2.4b)

dtψ = - y o ( / a 7 + ίm + y°ΦaTa + iA)TayP (2.4c)

Eq. (2.1) also contains the (non-dynamical) Gauβ law constraint

dj(Eay + [A ,Eγ = p\ (2.4d)

where [A ,E]a — flcA
bjEcj. In the sequel we will skip the Lie algebra index on all

the fields defined above by identifying A — AaTa, etc.
To get a complete formulation of the Cauchy problem of a dynamical system

one has to specify the boundary behaviour of the fields involved. Here we study the
existence and uniqueness of solutions of the Yang-Mills-Dirac system on the M
under the boundary conditions given by (1.2). To clear the notion we denote by /Γthe
outward pointing unit normal vector field on dM. Writing nj for its components, for
every vector field W, we call nW = n(WJ\dMnj) m e normal and tW = W \$M —nW
the tangential component of W. To get a short notion for the boundary condition
on the spinors we furthermore define the boundary operator $ — i^rij acting on the
Dirac fields restricted to dM.

To formulate proper existence and uniqueness results for that Cauchy problem
we finally have to impose appropriate differentiability conditions for the fields in-
volved. These are given in terms of the Sobolev spaces Hk(M), consisting of the
Lie algebra valued vector fields and F-valued spinor fields on M, respectively,
which are square integrable together with their derivatives up to order k. The scalar
products on these spaces Hk(M) is given in terms of the usual scalar product on
M C IR3, the ad-invariant metric on ?) and a 2)-invariant scalar product on V.

In this setting the phase space of our system is given by P = Py^ x P/), where

PYM = {(A,E) e H2(M) x H\M) \nA = 0, t(cur\A) = 0,nE = 0} and

PD = {Ψ e H\M) I @Ψ \dM= Ψ\m and @®Ψ \dM= W \dM} . (2.5)
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In view of the boundary conditions (1.2a) we note that nA = 0 implies tB — tcuvlΛ.
As a state of this classical system we denote a triple (A,E, Ψ) e P. It is crucial to
note P is by its definition a Hubert space.

3. Gauge Fixing, Linearization and Hodge-Decomposition

In the Yang-Mills-Dirac equation written as a dynamic system (2.4), the scalar
potential Φ does not appear as an independent dynamical degree of freedom. The
gauge group acts transitively on the space of scalar potentials [1]. Hence, using
appropriate gauge transformations, we can fix the field Φ at all times. The most
common gauge fixing for studies of Yang-Mills field as a dynamical system is the
temporal gauge AQ = 0. For our approach, however, it is much more convenient
to use the gauge condition giving the scalar potential Φ to be the solution of the
Neumann problem

AΦ = -div£ and n(gmάΦ) = 0 with JΦd3x = 0 . (3.1)
M

From the theory of partial differential equations [8] the unique solvability of this
problem is guaranteed by the boundary condition nE = 0.

Linearizing the evolution equations in the fields A,E, and Ψ, and observing that
Φ depends linearly on E by construction, we obtain

3tA = £ + gradΦ (3.2a)

dtE = -cur lcurU, (3.2b)

dtψ = 2>ψ = -y°(yjdj + im)Ψ . (3.2c)

In order to solve (3.2) under the boundary conditions imposed here, we will use
the Helmholz-Hodge decomposition theorem [9] for vector fields. Its statement is
that each vector field W on the bounded domain M can be uniquely decomposed
into W — WL + Wτ - called in resemblance to electrodynamics the longitudinal
and transversal component of the field - such that

cux\WL = 0 and Wτ = curlί/ for some vector field U with tU = 0 .

In this way we split the gauge fields into A = AL -f Aτ and E = EL + Eτ. Observing
that nW = nWL for any vector field W, our specific choice of the gauge fixing (3.1),
and the uniqueness of the solution of the Neumann problem yield

gradΦ = -EL .

Furthermore (curl curl A)τ — curl curl Aτ because tcurhi = 0. Since the operator
(—curl curl) acts as the Laplacian A on AΊ\ Eqs. (3.2a, b) split into two linear
systems, one for the longitudinal and the other for the transversal components of
the Yang-Mills fields:

dtA
L = 0 and dtE

L = 0 ,

dtA
τ = Eτ and dτE

τ = AAT . (3.3)

The pure Yang-Mills system under the boundary conditions (1.2a) has been
studied by the authors in [4]. Let £f be the evolution operator for the linearized
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system, determined by Eq. (3.3) with 6^(AL,AT;EL,ET) = dt(AL,Aτ;EL,Eτ). The
result of [4] can be written as:

Proposition 1. The linearized Yang-Mills operator £f, defined by Eq. (3.3) with
domain

D r M = {(A9E) G H2{M) x Hλ{M) \nA = 0, t(cm\A) = 0, nE = 0}

generates a one-parameter group exp(tSf) of unitary transformations in the
Hilbert space

HYM{(A,E) G H\M) x L2(M)\AL G H2(M\ EL G HX{M\ nAL = nEL = 0} .

This induces a one-parameter group exp(ί^) of continuous linear transformations
on the domain ΌYM of Sf.

4. The Dirac Equation under Bag Boundary Conditions

In order to prove an existence and uniqueness theorem for the coupled Yang-Mills-
Dirac system we next study the free Dirac dynamics under the boundary condition
given by Eq. (1.2b). Therefore we introduce the Hilbert spaces of spinors as

HD = {Ψ G L2(M)} with scalar product «Ξ, Ψ))Li = / Ξ f Ψd3x , (4.1)
M

where denotes the ^-invariant product on V, and t denotes the Hermitian adjoint.
Considering the boundary conditions (1.2b) imposed on Ψ we observe that

Si := iinj : L2(dM) —> L2(dM)

defines a self-adjoint operator, and SS1 = \. The first of the conditions (1.2b) cor-
responds to choosing the eigenspace

B + = {Ψ I W \m= Ψ \dM}

for the Dirac fields. So we let

ΌD=Hι(M)Γ)B+ (4.2)

be the domain of the Dirac operator 3) = —yo(yJdj + irri).

From the basic properties of the y-matrices, and by integration by parts we get

((3, ®Ψ))L2 = -J {(y°yJΞ)ϊ - djΨ - (imy°Ξ)i ψ) d3x
M

\/Ψ,Ξ £H\M).
= -<(®S, Ψ))L2 - J(y°yjnjΞγ - Ψd2x

ΘM

(4.3)
Considering the boundary integral we find by taking the Hermitian conjugate

(y°yJnjΞΫ Ψ = + ((γ°yJnjψγ-Ξ)* VΨ, Ξ G HX{M) . (4.4)

On the other hand, if both spinor fields Ψ and Ξ obey the boundary condition
\dM= Ψ \dM, we have
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(yY«, 3)t Ψ = -(iy°Ξγ Ψ = - ((y°γ>njψγ Ξ)* . (4.5)

Thus the boundary integral in (4.3) vanishes, which implies the skew-symmetry of
the Dirac operator, i.e.

((Ξ9@Ψ))L2 = -((®Ξ9Ψ))L2 VΨ9SeΌD.

The boundary operator & in self-adjoint on dM, and the decomposition
L2(dM) = B + 0 B~ is orthogonal. Furthermore y° maps J>+ onto J*~, and &t~
onto ^ + . Therefore, the adjoint ^ * of the Dirac operator is given by

Qj* = -Q) with domain ΌD* = {Ξ G HD \ Q)Ξ G L2(M) and ̂ Ξ \eM= Ξ \SM}

On the other hand Ξ G DD* implies Ξ G Hι(M), which follows from the estimate

\\Ξ\\Hι £ d (\\®Ξ\\L2 + | |S| |L 2) , (4.6)

proven in the appendix. This shows that the Dirac operator with domain Dp is
skew-adjoint. Also in the appendix we prove that

| | « P | | W 2 ^ C 2 ( | | ^ « P | | L 2 + ||«P|| i2) V f € P D ) (4.7)

where the space PD is given by Eq. (2.5). Since the one-parameter semigroup
exp(ί^) preserves the domain of its generator, and commutes with Q), cf. [10], and
since W G D D for Ψ ePn we get

and consequently

^ C4

Thus exp(ί^) acts as a family of bounded operators on P D . The group properties
of Qxp(t^) on D/) and on P^, respectively, follow from the group property on H^.
Finally, using the same arguments as above one shows that

5 j r | | ^2=0 V!P G PD ,

which implies that the map 11-> exp(ί^) determines a continuous family of bounded
operators in P^. So we have proven:

Proposition 2. On the Hilbert space HD the operator Θ — —y°(yJdj + im) with
domain Dp given by (4.2) generates a one-parameter group of unitary transfor-
mations

Ψ(0) ^ Ψ(t) =

which preserves the domain DQ. This induces a continuous group of bounded
transformations in the space PD.

As it stands this theorem gives a (global) existence and uniqueness result for
the Dirac equation in Hι(M) under the boundary condition &Ψ \OM= Ψ \dM In
order to guarantee a dynamics in H2(M), however, we have to impose the stronger
boundary condition, this is inevitable in view of the subsequent estimates for the
nonlinear coupling of the spinors Ψ to the Yang-Mills fields (A,E).
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Theorem 1. The linearized Yang-Mίlls-Dirac system (3.2c) and (3.3) defines an
operators ZΓ given by

F{AL,AT\EL,ET\ Ψ) = (0,Eτ;0,AAT',@Ψ),

which is skew adjoint on the Hubert space HYM X H D and has as its domain the
space D = ΌYM X Dp. The operator ^Γ generates a one-parameter group
of unitary transformations in HYM x HD. This induces a one-parameter group

(A(0% E(0), Ψ(0)) .—> ®(t)(A(O), E(0), Ψ(0)) = (A(t% E(t), Ψ(t))

of continuous linear transformations of the phase space P defined by Eq. (2.5).

5. The Non-linear Yang-Mills-Dirac Dynamics

Considering the nonlinear dynamics we rewrite the evolution equation for curves
(A,E, Ψ)t = (A(t),E(t), Ψ{t)) of states as

dt(A,E, Ψ)t = f((A,E9 Ψ)t) + F((A,E, Ψ)t), (5.1)

with a mapping F = FYM + Fc : P —> P given as follows: Let FYM describe the
nonlinearity of the pure Yang-Mills theory and the Fc the coupling between Yang-
Mills field and matter fields. Then we find from (2.4),

Fm(A,E, Ψ) = (-[Φ,A]; -[A*,B] - curl[^x,^] - [Φ9E]; 0 ) ,

FC(A,E, Ψ) = (0;/; -ΦΨ - γ°fAjΨ), (5.2)

where the fields B and Φ are uniquely determined from A and E by (2.2) and (3.1).
First we observe that the boundary conditions (1.2) are preserved by these nonlinear
maps: for the Yang-Mills term FYM we refer to [4]. Concerning the coupling term
it follows from the argument above (Eq. (4.4) and (4.5)) that

On the other hand we observe that (&ΦΨ) \m= (Φ&Ψ) \dMi and

St^fiAjΨ) = -y°nAΨ + ifiAjyknkΨ = yQy>Aj(@Ψ).

This obviously also holds for Ξ = &Ψ with Ψ ePD. The statement that F maps
the P onto itself furthermore requires to prove that its components have values in
the right Sobolev spaces. To characterize the analytic properties of F, which also
includes that statement, we formulate:

Proposition 3. The nonlinear mapping F = FYM + Fc defined on the phase space
P, with components given by (5.2) has the following properties:

1) The range of this map is a subset o/P, i.e. F : P —> P.
2) F is continuous with respect to the norm on P given by

3) F is a smooth map with respect to that norm.



Yang-Mills and Dirac Fields in a Bag 449

A proof of the properties of the operator FYM, i.e. for the pure Yang-Mills case,
was given in [4]. The required estimates for the coupling term FQ can be found in
the appendix.

In terms of the continuous one-parameter group %(t) of linear transformations
on P, determined by Theorem 1, we rewrite the evolution equation (5.1) together
with the initial condition (A,E, Ψ)o in the integral form

(A,E, Ψ)t = <tf(t)(A9E, Ψ)o + M* ~ s)F((A,E, Ψ)s)ds . (5.3)
o

On the basis of this we can apply the theory of nonlinear semigroups. The cor-
responding statement of [7] is that each initial state xo £ P determines a unique
curve of solutions of the integral equation (5.3). Furthermore, since the nonlin-
earity F : P —> P of the system is a differentiable map, the solution curve is also
ί-differentiable and solves the corresponding differential equation3

Theorem 4. For every initial condition (A,E, • F J Q G P of gauge and matter fields on
M there exists a unique continuous curve (A,E, Ψ)t in P, satisfying the integral
equation (5.3). This time evolution is well defined for all t £ [0, Γ), where the
maximal time of existence 0 < T 55Ξ oo is determined by the initial condition.
Furthermore the curve (A(t),E(t),Ψ(t)) is continuously differentiable and solves
the Cauchy problem for the Yang-Mills-Dirac evolution, given by Eqs. (2.4a-c),
for all ί G [0, Γ) with initial condition indicated.

One should remark that the time evolution for the Yang-Mills-Dirac system
not only yields a curve of solutions for any initial condition, but also deter-
mines a diffeomorphism on the phase space P. To see this we differentiate the
map (A,E, Ψ)o ι—> (A9E, Ψ)t9 given by Eq. (5.3) in the direction of an arbitrary
(a,e,ψ) G P. This yields

(a,e,ψ) ^ %(t)(a9e9ψ) + ]%(t - s)D(F((A,E, Ψ)s))(a,e,ψ)ds ,

which is a smooth map by Proposition 3. Since the dynamics is reversible, this
shows that the time evolution determines a diffeomorphism.

6. The Constraint Equation

In order to complete our results on the existence and uniqueness of solutions of the
Yang-Mills-Dirac system (2.1) we finally have to study the Gauβ law constraint,
Eq. (2.4d),

\7JEJ-p = 0 (6.1)

under the dynamics determined above. Therefore we compute the covariant time
derivative VQ of that expression, and find direct from the Yang-Mills equations
(2.4a, b):

= v p J - vA

oP.
In fact it suffices, as proven in [11], to show that the nonlinearity F is Lipschitz.
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This expression vanishes due to the continuity equation for the current density
associated to the Dirac fields. Since the Hubert space structure on HYM x H/) relies
on an ad-invariant scalar product in 9), we get

p p |β 2({Vi<y*E' - p), VJEJ - p))L2 = 0 .

Thus || Vyiϊ7 — p\\L2 is a constant of motion, and in particular, the GauB law con-
straint (6.1) is preserved under the evolution of the system.

Appendix

In order have a complete proof of Proposition 2 we are left with proving the
estimates (4.6) and (4.7). In Sect. 4 we introduced the Hubert space Ho of square
integrable spinor fields with scalar product given by (4.1); and its subspace ΌD of
fields obeying the &Ψ \OM— Ψ \dM, and PD of H2 -fields obeying the full boundary
condition (1.2b).

Lemma A.I. For the operator 3) — — y°(yJdJ + im) the following estimates hold:

\\Ψ\\Hι ύ C I ( | | W | | L 2 + \\Ψ\\L2) W G ΌD , (A.1)

\\Ψ\\H2 ύ C2(\\@(®Ψ)\\L2 + 11^2) \fΨ e PD . (A.2)

Proof
(i) For any Ψ € D/) we compute with (4.1) that

\\®n2
L2 = -((ykyJδjΨ, dkΨ))L2 +A(Ψ) + m2\\Ψ\\L2 ,

where A(Ψ) = im(((yJdjΨ, Ψ))Lτ - ((Ψ, yJdjΨ))Lz).

Furthermore, ykγ = —δki + \[yk, yJ], and hence

γkwhere 2B(Ψ) = (([γk,γJ]djΨ, dkΨ))L2 .

Since C°°(M) is dense in Hι(M) it follows by integration by parts that

2B(Ψ)= f(nk[γ
dM

for all Ψ £ Hι(M), where the surface integral makes sense since the restriction
of Ψ to dM is in Hι/2(dM). To handle this expression we take ^o € C°°(M),
and introduce an orthonormal non-holonomic frame (^1,^2,^3) along the boundary
δλf, such that e^ = n. In terms of this we have [y3,/5] = 2y3ys. Furthermore yJdj —
ys^s + y3 V3, where V5 denotes the covariant derivative induced by the Levi-Civita
connection of the metric grs on dM. Then we find from the boundary condition
(1.2b) that

B(Ψ0) = J(n3y
3fVsΨoΫ Ψ0(det(grs)Ϋ/2d2y

dM

= if(ysVsΨoγ Ψo(dct(gn))ι/2d2y .
dM
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Since ^(^o) is real, the integral has to be purely imaginary. Taking into account
that y3 is covariantly constant, we obtain by integration by parts

JifVsΨoΫ • Ψ0(άct(grs)f2d2y = j ψl-ysVsΨ0(άtt(grs)fl2d2y
dM dM

sΨoΫ Ψo(det(gn))i/2d2y
dM

This implies that the surface integral vanishes for all smooth spinor fields ^o on
dM, satisfying the boundary condition (1.2b). Since C°°{M) is dense in 7/1/2(δM),
it follows that the expression B(Ψ) has to vanish for all Ψ G Dp. This shows that

\\Ψ\\2

Hl Z\\®Ψ\\2

Ll+\A(Ψ)\+C\\Ψ\\l2.

The term A(Ψ) can be estimated by means of the Cauchy-Schwarz inequality as

\A(Ψ)\ ^

Hence there is a constant C\ > 0 such that

\\ψ\\Hi g

(ii) In order to prove (A.2) we show that the operator Q)Q), accompanied by the
boundary conditions (1.2b) is elliptic. The square of the Dirac operator corresponds
to the Laplacian, i.e. 3)3)Ψ — (A — m2)Ψ. To prove ellipticity we have to show that
the boundary conditions (1.2b) satisfies the Lopatinskii-Sapiro condition [12]4 for
the Laplace operator. Using for p G dM the coordinates (ys;y^) with 3/3 parallel to
n, we Fourier transform the equation AΨ — 0 with respect to (y\,yi). This yields

where | ξ \2= ζ\ -f- ζ\. As the set of the solution of this (ordinary) differential equa-
tion, which decay at infinity, we get

^ + = {<£exp(- \ξ I y3) I Ψ e V} .

Under the Fourier transformation the boundary conditions turn into

γiΨ(ξuξ2,0) = -iΨ(ξι,ξ2,0), (A3)

y3§Ψ(ξuξ2,0) = -i@Ψ(ξι,ξ2,0), (A.4)

where the Fourier transformation of 3)Ψ is

W = -i(y°fξs + m)Ψ - yV 3 Λ Ψ .

Therefore

r

3 w = -i(γ°fξs + m)y3 Ψ + iy°γ3dy3 Ψ - iy°y3dy3 Ψ - y°dy3 Ψ ,

and by using (A.3), the condition (A.4) turns into

V u ξ 2 , 0 ) = -y°δy,Ψ(ξuξ2,0). (A.5)

4 See also [8] for a more explicit version of that condition.
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Hence for Ψ = Ψexp(- | ξ \ y3) e W+ the conditions (A.3) and (A.5) yield

γ> ψ = -iψ respectively y3 Ψ = -iΨ .

Thus the (constant) spinor Ψ G V has to vanish, which proves ellipticity of the
operator 3)2 under the boundary imposed. Therefore the inequality (ii) follows
from the usual a-priori estimate for elliptic boundary value problems. D

In order to show that the nonlinear coupling term Fc has the analytic properties
demanded in Proposition 3 we are left with proving:

Proposition A.2. The map FC(A,E, Ψ) = (0, J, -ΦΨ - y°γΆjΨ) maps P to P, and
is of class C°° on this space with respect to the norm given by

Proof. Since, for dimM = 3 the space H2(M) is a Banach algebra, cf. [13], Ψ E
H2(M) implies that the components of the current JJ

a = ψiγ°γjTaΨ are of Sobolev
class H2. Hence / <G H2(M) C Hι(M). Since also the potential Φ and the field A
are H2(M), the same argument holds for the terms ΦΨ and y°yJAjΨ. Furthermore
Fc preserves the boundary conditions (1.2) and hence maps P onto itself.

From the Banach algebra property of H2{M) we also immediately prove the

continuity of Fc. For Ψ, Ψ e H2(M) we have

WJi-faWli = \\^yyτaψ-ψ\yτaψ\\2

Hl s K^ΨW^WΨ - Ψ\\2

H2 .

On the other hand we get with E, E e H\M) and A, A e H2(M\

\\ΦΨ- ΦΨ\\2

H2 s K2(\\Φ- Φ\\2

H2\\Ψ\\2

H2 + | | y ^

+ | | y -

Putting these terms together and observing that ||Φ||//2 5ί ^H^ΊI^i by its construc-
tion, we end up with the required estimate

\\Fc{A,E,Ψ)-Fc{A,E,Ψ)\\l

^ K5\\(A,E,Ψ) - (A,E, Ψ)\\l(l + \\E\\Hi + \\A\\H2 + \\Ψ\\H2)2, (A.7)

which proves the continuity of Fc : P —> P.
To show the differentiability of F c , we write (a,e,ψ) for an arbitrary infinite-

simal variation, and evaluate

where Δφ — —dive and «grad φ = 0 .

Since a,e,φ and φ are of the same Sobolev classes as A,E,Φ and Ψ, respectively,
all the estimates used to prove continuity of Fc also can be applied here. Hence
one shows, literally as above, the DFc(A,E,Ψ)(a,e,φ) is continuous. Analogous
arguments also hold for the higher derivatives of J. Actually, derivatives of Fc of
order §; 3 vanish identically. D
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