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Abstract: We study group extensions 4 - I — Q, where I' acts on a C*-algebra .</.
Given a twisted covariant representation n, V of the pair ./, 4 we construct
3-cocycles on @ with values in the centre of the group generated by V(4). These
3-cocycles are obstructions to the existence of an extension of Q by V'(4) which acts
on &/ compatibly with I'. The main theorems of the paper introduce a subsidiary
invariant A which classifies actions of I" on V' (4) and in terms of which a necessary
and sufficient condition for the the cohomology class of the 3-cocycle to be
non-trivial may be formulated. Examples are provided which show how non-trivial
3-cocycles may be realised. The framework we choose to exhibit these essentially
mathematical results is influenced by anomalous gauge field theories. We show
how to interpret our results in that setting in two ways, one motivated by an
algebraic approach to constrained dynamics and the other by the descent equation
approach to constructing cocycles on gauge groups. In order to make comparisons
with the usual approach to cohomology in gauge theory we conclude with a Lie
algebra version of the invariant A and the 3-cocycle.

1. Introduction

Group three cocycles arise from the descent equation approach to the study of the
cohomology of gauge groups. This early work was motivated by the need to
understand anomalies in gauge theories [2, 4, 10, 26]. From the viewpoint of
Dirac’s constrained dynamical systems these are models with second class con-
straints. There have been many attempts to explain and interpret these 3-cocycles
[2,3,4,10,25,26,30]. For example Dirac’s quantisation condition for the charge of
a magnetic monopole [3, 10, 30] has been interpreted as the vanishing of a 3-
cocycle whilst non-vanishing 3-cocycles have been interpreted as nonassociative
algebra multiplication [4, 10, 26]. Neither of these approaches has yielded to
mathematical analysis. In [4] the conventional mathematical interpretation of
3-cocycles as obstructions was described, but the question remained: obstructions
to what? In [1] one of us pointed out an interpretation of a 3-cocycle on a group of
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symmetries of a quantum system as the obstruction to implementing an extension
of the symmetry group of the system by unitary operators on the Hilbert space of
states of the theory. Mathematical questions were ignored in that discussion in
favour of presenting a simple account of this interpretation and in particular no
conditions for non-triviality of the 3-cocycle were given.

It eventuated that further development of the mathematical framework in
which 3-cocycles are “obstructions” was needed to encompass the motivating
examples. Our particular concern is with conditions for non-triviality. Although
the basic constructions may be found in the mathematical literature [22 and
references therein] they need considerable adapting in order to handle the situation
we consider. The framework we derive is capable of a variety of different interpreta-
tions and we will present several of these. The basic data is a short exact sequence of
groups

A>T ->Q=TI/4

and a twisted or u-representation V: 4 — U () by unitaries on a Hilbert space
A with associated 2-cocycle u € C*(4, %), where W~ < U(#) is some coefficient
group. (Thus V;V; = u(d,d’) V,e.) This is sufficient to determine a mechanism for
producing 3-cocycles k € C3(Q, #°). We present the main results of the paper as
theorems about group actions on C*-algebras. However the motivation for prov-
ing them depends on an insight into the underlying physics. In one of the
interpretations we consider here (which is slightly different from that in [1]) 4 is the
gauge group, the group I’ contains all the automorphisms of the algebra of the
system in question which we wish to consider while the symmetries of the observ-
ables will be represented by the quotient group Q.

The more usual interpretation [1] is to take I'/4 to be the gauge group acting
by automorphisms of the field algebra for a coupled Yang—Mills-fermion system
and I" to be the Mickelsson—-Faddeev extension [2, 14] of I'/ A by the abelian group
A. The latter is identified with a group of U(1) valued functions on the space of
connections (on which the gauge group is acting). Then 3-cocycles would then arise
as obstructions to the existence of a representation of this extension by unitary
operators on a Hilbert space. More details may be found in Sect. 5. Within this
second interpretation our aim in this paper is to lay the groundwork for an
investigation of a cohomological version of Pickrell’s theorem [ 17] which suggests
that the Mickelsson—Faddeev extension has no separable unitary representations.

To avoid technical problems in Sects. 1 to 3 we will assume all groups are
equipped with the discrete topology.

1.1. Constrained Dynamical Systems. To interpret our results in the context of
gauge theories we need to choose a suitable framework. The first of these is the
C*-algebraic theory of constrained dynamical systems described in [6, 7]. One may
read the main theorems and examples of our paper without reference to this
physical framework.

In the terminology of [6, 7] we suppose we are given a unital C*-algebra
o/ (called the field algebra), a set % < .« of unitaries (called the constraint set)
which is first class in the sense that the identity operator 1 is not an element of the
C*-subalgebra of .o/ generated by {U — 1| U € %}. Denote this latter algebra by
C*(% — 1). This guarantees the existence of a distinguished class of states of
o/ called the Dirac states in [6, 7]:

Ip={weL(H)|wU)=1 foral Ue¥},
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where & (</) denotes the state space of .o/. We use the notation: [.], for the closed
linear span of a set. Then the algebra

O={AeAd|UAU ' —Ae2 forall Ueu}
is called the observable algebra, where
D =[AdC*U — )]n[C*(U — 1)/ ]

is the unique maximal C*-algebra contained in N {kerw|w € %p} (it is a closed
2-sided ideal of ). The algebra # = (0/2 is called the physical algebra and the
physical transformations of .7 are those automorphisms which descend to %:

I'={0eAutd|u(2)=2}.

As 0 is the relative multiplier algebra of & in .o, (written M (2)), if o preserves & it
also preserves (@ and the descent to # gives a homomorphism y:I" — AutZ (i.e.
7.(0(A4)) == 6(x(A)) for all A € O, where 0:0 — £ is the canonical quotient map).
We interpret the automorphisms of .o/ which lie in the kernel of y as the guage
group and denote it by 4 so that the quotient group I'/4 = Q is the group of
automorphisms of the physical algebra which descend from 7. Notice that the
group Ad% of automorphisms defined by conjugation by elements of # are in
A and that 4 may be strictly larger than this group. It is possible that there are
non-trivial cocycles on A which are trivial on Ad%. In any case we may suppose
that V: 4 - U(s) is a u-representation of 4 on some Hilbert space which carries
a representation of .«/. This shows how the basic data leading to a 3-cocycle can
occur in a situation in which there are only first class constraints.

In the physics literature a different interpretation is often used (and is described
above and in Sect. 5) in which one treats the elements of the Lie algebra of the
gauge group in a projective representation as imposing constraints (in the sense of
Dirac) which are necessarily second class. We do not go into the operator algebra
approach to this alternative picture in detail here. We note only that the framework
of Sects. 3 and 4 applies. We discuss the implications of the results of this paper for
this picture in Sect. 5.

1.2. Summary. The plan of the paper is as follows. In Sect. 2 we establish notation
and prove the basic results, that is give the mathematical framework for the
construction of non-trivial 3-cocycles. It involves the definition of a cohomological
invariant A which classifies actions of the group I" on the unitaries {V;|d € 4}. In
Sect. 3 we show how to construct a 3-cocycle given the data of Sect. 2, interpret it
and explore its dependence on choices made in the construction. We then prove the
main result (Theorem 3.4) which gives a condition for non-triviality. Section
4 contains an example of some mathematical interest in which we use continuous
trace C*-algebras to realise some 3-cocycles explicitly. Whereas the physical
interpretation we have given above depends for its realisation on representations
which have not been shown to exist, the examples in Sect. 4 are complete in all
details and indeed are of independent interest. In Sect. 5 we consider the Lie algebra
versions of the constructions of Sect. 2. In this and the final section we make
contact with the physics literature and Pickrells theorem in particular.

The exact sequence in Theorem 3.4 has already appeared in the algebra
literature [8, 12, 24], but the proofs and constructions are expressed in terms of
crossed extensions rather than cocycles. Since we are primarily interested in the
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cocycles (and indeed these are essential to the applications), we have given cocycle-
theoretic constructions of the homomorphisms and self-contained proofs of the
crucial arguments. For some of the less informative calculations and other side
issues we refer to [22], where the relationship between group cohomology and
C*-dynamical systems is investigated in the context of locally compact groups and
the Borel cochain theory of Moore [15].

2. Preliminaries

Assume as in the introduction a short exact sequence of groups
1l24->T->Q->1

and that I" is given as a subgroup of the automorphism group of a unital
C*-Algebra /. We suppose we are given a faithful representation = of .« on
a Hilbert space 5 and a group 7~ of unitaries with the property that for each d € 4
there is a U, € ¥~ with

(Ad Ug)(n(A4)) = Usn(A) Uq ' = n(d(A))

foralld € 4, A € of. Conversely we suppose each V € ¥~ defines an automorphism
of o/ via Ad: ¥ — 4, 1.e. we require (Ad V;)n(A4) = n(d(A)) for some d € A which is
uniquely determined by V.

Remark. The choice of ¥~ will effect the cohomology theory that we are consider-
ing. Enlarging ¥~ can result in non-trivial cocycles becoming trivial (an example is
given in [27]). In practice ¥~ is usually specified by other considerations for
example, in the continuous trace case of Sect. 4 the automorphisms they generate
are inner or locally inner with respect to 7.

Now introduce the group #" = ker(Ad: ¥ — 4) that is:

W ={Ve?V|Vr(Ad)=n(A)V forall Ae ./} .

Note that #" need not be abelian. In examples there may be additional constraints
on © which restrict #7, for example, irreducibility of © forces #~ to be the circle
group. However as noted in [27] nonabelian %" must also be considered

Now we have the following diagram of exact sequences, where V: 4 — ¥~ and
w:Q — I' are sections chosen such that V, =1, w, = e.

1
!
W
!
4
Ad|, 1) v ®
l— 4 r<= e 1
l N
Aut o/
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For each of these sections, there is a noncommutative 2-cocycle. The first is
w:Ax A - defined by V,V, = u(d, k) Vy for all d,k € A. Then

pu(d, kyp(dk,1) = (Vap(k,DVa " u(d kl) - (d,k,1 € 4) 2.1)

by associativity. A second 2-cocycle o : 2 x 2 — A is defined by w, - w,, = a(g, h)wyy,
for all g,h € Q. In this case

(g, W) (gh, f) = (wo(h, f)wg Yol(g,hf) (g.h [ Q). (2.2)

Now the 3-cocycle we will construct depends for its definition on the existence of an
action 6:I' — Aut ¥ with the property that on 4 we have ,(v) = VoV, ! for all
ve? ,de A and on .«

Ad(d4(Vy)) = gdg~*

forall geI', d € A. That is 6,(V,;) € W V,4,- for all g, d, and thus 6 defines a map
A:TxA—W by

Mgod)=0,(Va)Vials (dedgel). (2.3)

The main question we need to address is the existence of such a J. This is handled
by our first result.

Theorem 2.1. Given the exact sequences as above, fix a section V:4 — ¥, with
V,=1. Let :I' > Aut#" be a given action on the coefficient group W~ satisfying
Ssw) =V,wVi! forallde A, we#W. Then & extends to an action 6:I' — Aut ¥~
such that 6,(Vy) € W'Vya4-1 and 0a=Ad|, Vyforallde A, ge I if and only if

wd, k) =VViVal e ZOW Y aw

for all d,k € A and there is a map A:T' x A - Z(¥" YW satisfying, for all g,h e I,
d,k,eA:

(i) Ale,d) =

(i) 9,(p(d, k)
(i11) i(qh d)y=9
(iv) Ad, k) = p(d

Alg,e) =1,
)+ A(g.dk) = i(g,d) (g ,k)u(gdg‘l,gkg”)
o(A(h,d))- A(g, hdh™ ")

ouldkd-.d)~!

dk

Proof. (=) Let 0:I' > Aut 7" be an action preserving #" and such that
Mg, d)=0 (Vd)ngg veW forallded,gel and 6, =AdV,,de . (24)

Then
04a(v) = 8,(VaoV g 1) = 8,(Vy)y(v)6,(Va)~*

= l(gad) ngg_'ég(u) Vg_d(}_‘)“(g’d)_ !
= A(g,d)0,a5-1(0,4(v))A(g,d) " since gdg™' € 4
= (g9,d)d,4(v)A(g,d)"" forallded, gel,veV ,

and so A(g,d)e # nZ(?"). Similarly that u(d,k)ye # nZ(¥") follows from
84(v) = VoV it foralld e A4,v € ¥ and the fact that § is an action. This implies that
dqw)y=wforallded, we A



394 AL. Carey, H. Grundling, I. Raeburn, C. Sutherland
Requirement (i) is clear, using V, = 1. As for (ii):
0g(VaVie) = 0,4(u(d, k)04 (Vi) = 0,4(1u(d, k) A(g, dk) Vgarg~1
= 04(Va)0,(Vie) = A(9,d) Vyag=14(9, k) Vig~1
= M9, d) (Vyay12(9: )V guag=1)1(9dg ™", gkg ™ ") Var~
= Mg, d)2(g, k) u(gdg ™", gkg™ ") Voarg™1
which proves (ii). For (iii), use d,, = 6,6, as follows:
Ogn(Va) = 2(gh, d) Vyhan-14-1 = 0404(Va) = 04(A(h, d) Vian-1)
= 0,(A(h,d))A(g, hdh™ ") Vypan-14-1
which proves (iii). For (iv) we use d;, = Ad V,, d € 4 then:
0a(Vi-1xa) = Ad,d"kd) Vi = ViV Vi ' = u(d,d"'kd) VigVi !
= u(d,d” *kd)u(k,d)" 'V, foralld,ke 4,

so that replacing k by dkd~! we obtain (iv).

(<) Conversely, assume we have an action 6:I' - Aut#  and
al:I'xA—Z(V)nW satisfying (i) to (iv) with V and hence u given. Ford € 4 we
define 0,(V;) == A(g,d) Vyay-1. Since V:4 - ¥  is a section, each ve ¥~ has an
expression v = wV, for some d € 4, w € ¥, so using this, define 6,(v) := 6,(w)d,(Vy).
As a map J,:7 — 7 this is well-defined because for all ve ¥ its expression
v = wV, is unique. First we show that , € Aut¥". Given two elements v = wV,
vV=wVyev:

3y(vv') = S, (WVyw' Vi) = S,(w(Vaw' Vi YWVVy)
= 0,(w(Vaw' Vg Yu(d,d' ) A(g,dd") Vygayg-
= 0,(W)d,(Vaw'V g 1) 3,(1(d,d"))A(g,dd" )V gaar g1
= 3y (W)3ga(W')A(g, d)gag-+((g,d')) 1(gdg ™", gd'g™ ") Vgaag~+  (using (ii))
= 0g(W)A(g,d)03a(W') O gag~1(A(9:d")) Vyag=1Vgarg—  (by (2.1))
= 0,W)A(g,d)0gaW') Vyay=1 A(g,d") Vyarg=1 (04 = Ad V)
= (34 (W)A(9s @) Vyag=)3gaq~1 (3ga(W) A9, d')Voar g~
= 0,(0)0g(W)A(g,d") Vyarg1 = 9,(0)0,(v")

50 d, is a homomorphism.

Clearly 0,(v) = d,(w)d,(V,) = 1iff 6,(w)A(g,d) =1 and V4,-+ = 1, which is the
caseiffd = eand w = 1, i.e. v = 1. Thus J, is one to one, so J, € Aut ¥". To see that
it is an action, i.e. 9,4, = 9,0, let v =wV; € ¥, then for all g, he I":

Ogn(v) = Ogn(W)A(gh, d) Vynan-14-+ = 04n(w)d4(A(h,d)) A (g, hdh™ Y Vouan-14-1
making use of (iii). Furthermore
80 0n(v) = 34(84(W)A(h, d) Vian—1) = 0,(3n(W) A(h, d)) (g, hdh™ ) Vgpan-1-1
= Ogn(W)04(A(h, d)) (g, hdh™ ) Vypan=14-1 = Ogn(v) -
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By definition we have ,(V;) € # V,4,-1, so to prove that
0,(0) =VuwVit(vev ,de ),
set v = wVy, then
VaoVal = VuwVy Vil = (VuwVi YV vit
= 0.W)u(d,d')Vaa Vi ru(d,d™ 1)
= da(w)u(d, d" u(dd',d™ ) Vaga= pds ™)™ Vaga) Vaaa—
= dy(wu(d,dYudd'd=,d)” " Vygq- by (2.1)
= 0a(W)A(d, d") Vagrar = 04(v) by (iv) . O

Remarks. (1) It is essential to start with some action on the coefficient group
W because it occurs in (ii) and (iii). The 2-cocycle relation (2.1) holds automatically
for u by its definition.

(2) The fact that u and A take their values in & = # N Z(¥") means that the
cohomology is commutative. This gives the simplifications that V' disappears from
(2.1), 6,0w)=w for all ded, we A". Thus for twisted representations with
cocycles u not commuting with ¥7, no action exists as in the theorem. If we are
given a situation where #* + # and we want actions as in Theorem 2.1, we might
as well factor the redundant information in #”\ ¢ out of the theory, to prohibit the
occurrence of cohomology over #". Usually we will assume # = 4 < Z(¥").
Consider 2.1 (ii):

d,(u(d, k) = [A(g.d)A(g. k) (g, dk)" Tu(gdg ™", gkg ") ,

so if we write u¢(d, k) == 6,(u(g ™ *dg, g~ 'kg)), then u ~ u® € Z*(4, #"). Thus actions
J as in 2.1 will only exist for u € Z?(4, #") which are cohomologically I'-invariant,
ie. u~ uf for all g e I'. This is also a necessary (but not sufficient) condition for
a 2-cocycle u on A4 to extend to a 2-cocycle on I' with the same coefficient group.

(3) Though the problem is essentially a group theoretical one (.« only contri-
butes the homomorphism of the vertical exact sequence) we prefer to retain
C*-algebras in the picture for the interpretation of our results in the context of
gauge groups. When # is isomorphic to the unitaries in the centre of some
C*-algebra %4, denoted UZ(#) we can remove the Hilbert space #, using twisted
crossed products as in [16]. Assume we are given a faithful action o: " —> Aut .o/
and a Borel cocycle pe Z*(4,%"). The twisted crossed product [16], % =
M(4x,,, o ® #) contains a copy of 4 given by u: 4 — U(% ) (the unitaries in €)
and a copy of .7 ® 4 given by a homomorphism k:.o/ ® # — € related by

k(aga) ® 1) = uy(k(a) ® VHuf (ae.o/,de A)
and UgUuy = k(l ® :u(daf))udf (d,fE A) .

The map u is Borel measurable and there is a bijection between representations of
A%, o @ % and p-covariant representations of the action o: 4 — Aut.«/. In this
context we choose 7~ be the group generated by {u,|d € 4}.

(4) As a final remark, observe that there is a special case of Theorem 2.1. where
it is clear where to look for the actions 6:I" — Aut #~ (and which seems natural
from a physical perspective). As I' is meant to be a group of symmetries of
a physical system, it is plausible to assume there is a covariant representation for
the action o:I" —» Aut o/, which may be twisted on 4. Thus we have a group of
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unitary operators % on some Hilbert space such that for each g € I" thereisa Y € %
such that Ad|, Y = g. Clearly then ¥~ = % and we have an extra exact sequence
defined as follows. Let Z ={Y e#|[Y,A]=0 for all Ae}, ¥ ={ue
¥ |Ad|ue A} and # = ¥ NZ. Observe that ¥” is a normal subgroup of % and
hence we have the diagram:

! l
W c @
V l
N c %
Ad|y l)V Adldl)V'
! l w
1 1

In this diagram V':I" —» % is a section, V'(¢) = 1, then using the fact that ¥" is
normal in %, we can define an “action” of I' on ¥~ by 6,(v):= V,oV, ! for all
gel,ve? .

Now since Ad|.,(3,(Vy)) =gdg™ "' for all ge I', d € A, we have

59(1/;1) = Vg,VdV;_l € W%dg—l .
On ¥~ we note that V¥V ' e # for allde 4, so ¢:4 — W defined by ¢(d) =
ViV ! measures the difference between V' and V on 4.

With the data introduced in remark (4) we can prove our second preliminary
result.

Theorem 2.2. Given the three sequences above, fix a section V:A4 -, V,=1 as
before, then a section V':I' > %, V_,=1 defines an action 6:I' > Aut¥" by
0, = Ad V, such that 6,(Vy) € W V4~ and 6, = AdV, for all d e A iff
ed)=ViViteZ(¥)nW

and j(g,h) =V, ViV ' € Z(Z, V) ={ue X |w =vu, forallvey}.
In this case the map A associated to 6 by Theorem 2.1 satisfies

Mg, d) = 0g(Va) V gag = 0(gdg™ ")V y0(d) "V~ fi(g,d) (i(gdg ™', 9)) ™" .
Proof. Write V; = ¢(d)V,, then we have

(Ad V)W) = @ d)VooVy ' o(d) ' = (AdVa)(v) (ve ', ded)

iff ¢(d) commutes with ¥, that is ¢(d)e Z(¥")n# . For ¢, = AdV, to be an
action, i.e. 8y, = J, - Op:

8,(04(v) = VoVioVi Vit = (g, WV ooV (g, )1,
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which is equal to 6,,(v) = V0V, ' for all ve ¥ if and only if fi(g, h) commutes
with 77, i.e. fi(g,h) € Z(%,?"). For the condition on A:

;L(gad) 0 (Vd) gdg =V, VdV/ 1ngg L= Vg(P(d) lVdVI lngg 1q)(gdg_l)
= Voo(d) ' Vi(i(gdg™",9)Vga) 'o(gdg™")

= Vo) 'V, ii(g,d)fi(gdg ™", 9) 'o(gdg™") .
O

Clearly if V'|, = V, then A(g,d) = fi(g,d)ji(gdg~',g)~ ', thus extending (iv) of
Theorem 2.1. Moreover since the range of ¢ is in Ad|, % < Aut¥’, this is only
a subclass of possible actions 4:I" — Aut 7~ as in Theorem 2.1. Observe that the
existence of a section V':I' —> % as above, shows that u is cohomologous to
a 2-cocycle jt on 4 which extends to a 2-cocycle on I', but with a possibly different
coefficient group Z'. So this scenario can occur even when p has no extensions to
I’ over the group #".

Next we wish to define a cohomology for the pairs (4, u) introduced in Theorem
2.1, so that the classes can classify the actio_ns 0. Start with a section V: 4 —» ¥ asin
Theorem 2.1 and choose another section V': 4 — ¥ in such a way that it leaves the
action 6, = AdVy = AdV,, d € 4, invariant on 4. Keep the action 6:I" — Aut ¥~
fixed. Then there is a map : 4 — # such that V, = y(d) V, for all d € 4, and so (as
usual) the cocycle ji associated with V is related to u by:

fld, k) =y @d)(Vayp () Va Y uld, k) (dk) ™"
= Y@y k)Y (dk) ™ u(d, k) = ()(d, k) u(d, k) , (2.5)

where we used the fact that the requirement AdV,= AdV, forces
V:4—->W nZ(?) (in case we had not chosen #" < Z(7")). Moreover

Ag,d) = 0,(Vo) Vgag-t = 04(¥(d) Vd)xﬁ(gdg*)‘l Vg
= 59(‘//(d)))'(g>d) gdg~ ll/j gdg ngg
= Y(gdg ") "6,y (d)) (g, d >. (2.6)

Denote by Dy the pair (1o, o), where Ao(g,d) = ¥(gdg™ ") *,(y(d)) forallg e I,
d e 4, and po = 0y, then, denoting componentwise multiplication of pairs by *-’,

(% ) = Dy - (2, ).
Definition 2.3. On the coefficient group #~ fix an action
o:Ir'->Aut¥, 6,cAd|,?V

Let Z(I', 4, ") be the set of all pairs (4, 1) satisfying the second part of Theorem 2.1
where u:Ax A - Z(V )nW = A is a normalised 2-cocycle, u(d,e) = u(e,d) =1
forall de A. Then Z(I', A, X") is an abelian group under pointwise multiplication.
Introduce the subgroup

B(L, A, X)) ={DYy\Yy:4>AH}cZ(I,A,X)
and define:
A4, 4)=Z(T,4,4)/B(l,4,%) .

Clearly A(I', 4, ") classifies the actions 6 : I' — Aut ¥~ which extend the action
on ¥ and are compatible with some section V. Now note that in Theorem 2.1 we
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characterised the actions 6 :I' — Aut ¥~ in terms of a section V:4 — ¥~ and above
we measured with the A invariant how § depends on the choice of V.

Remarks. This discussion left open two existence questions:

(i) given a section V does there exist an appropriate action ¢ (i.e. a 4), and

(i) given an action J:I' > Aut?” such that for all vevy’, gelr,
Ad| . d,(v)) = g(Ad|,v)g" " in Aut.eZ and 6, < Inn 77, is there a section V: 4 — ¢~
such that Ad|,, d,(Vy) = gdg™' € Aut.o/ and 6, = Ad V, for all d € 4?

We first consider (i). The section V' determines the cocycle p with coefficients in
the module #" = Z(#")n#, and the problem is to construct a compatible . There
are two obstructions. First, the class [ ] of uin H*(4, #") must be I'-invariant (this
is the content of equation (ii) of Theorem 2.1). If so then we have a 1-cocycle
g — [p1[ 1]~ ! with values in the coboundaries B?(4,.#") and our second obstruc-
tion is the one arising from the short exact sequence

0 - Hom (4, #)— CY(4, %) i>Bz(1“/z1,t}i/)—+0
when we try to lift this cocycle to ¢:I' — C*(4, ). If we can lift it, taking

Mg,d) = ¢(9)(g'dg) gel,de4 (2.7)
defines the required A. The details of this argument are supplied in [22].
For (ii) we need to assume the compatibility of : 4 — Inn ¥~ and the action of
4 by implemented automorphisms of .«/. This is covered by assuming that for each
d € 4 there is a w € ¥~ such that d = 4d|_,w and d;, = Adw so that:

éAch/(w)(U) = WUW* . (28)

Then the condition Ad|, d,(v) = g(Ad|,v)g~" says that this w will satisfy d =
Ad| ., w and

gdg™' = g(Ad|,w)g™ ' = Ad|,d,(w) .
We can now take V to be any section for Ad|,:7 — A (by this we mean
0g = Adl, V).
Definition 2.4. Let X be the set of all such actions § satisfying (2.8).
Theorem 2.5. For all actions 6 € X and section V for Ad|,:?" — A, which define
a pair (AL,pweZ(I',A,4°) as in Theorem 2.1, the class d(8):= [4, 1] of (4, ) in
A, 4, 4") is independent of the choice of V, and there is a “Green twisting map” [ 18]
that is, a section V for Ad| V" — A such that 6,(Vy) = Vyay-1,9 € I',d € 4, iff [4, 1]
is trivial.
Proof. Only the last statement needs proof. If a Green twisting map exists, then
A=1=y, so [4u] = 1. Conversely, let [4, 4] = 1, i.e. there is a map y: 4 - A
such that

Ag,d) = (gdg™")"10,(¥(d) and u(d, k) = Y)Yk} (k)™ = VhVau'
for some section V. Define V: 4 — ¥ by V, = y(d)~'V,, then 6, = Ad V, = Ad V, for
alld e 4 and
0g(Va) = 3, (d)) ™1 0,(Va) = 34((d)) ™" A(g,d) Vyag

= 0,((d) " "W(gdg ™), (d) Vyag

=Y(gdg™ ") Vg = Voag'
ie. Vis a Green twisting map. O
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Remark. In the particular situation of Theorem 2.2, for actions of the form
0, = Ad|, V,,where V':I' - % is a section with V, = 1, we have 6 € 2 and the pair
(%, fi) defined by the triple V', I, 4 must be cohomologous to (2, u) for any other
choice of section V.

3. The Three Cocycle

In this section we will produce a 3-cocycle K : Q3 — %"~ Z(¥") from the framework
of the preceding section, interpret it and work out conditions for nontriviality. Start
with the section w:Q — I' with corresponding cocycle ¢: Q% — 4 as in (2.2):

a(g,h)o(gh, ) = (wga(h,f)wg_l)a(g, hf) forallf,g,heQ

and take the image of this relation in 4 under a chosen section V for Ad|,: ¥ — 4
associated with an action ¢ € X (and thus a pair (¢,4) € Z(I', 4, 47)). So:

V(a(g,ha(gh, [)) = u(a(g,h),o(gh, )" V(s(g, 1)V (c(gh, f))
= V((wgo(h, flwg Ya(g,hf))
= p(w,o(h, o, ' o(g.hf) " V(oo o, YV (e(ghf))
= u(w,0(h, flwg ',0(g.hf)"
Mg a(h, )™ 00, (V(a(h, )V (a(g,hf)) ,
so that on abbreviating the notation V (g, h) = V(o(g,h)) we get
K(g,h, [)V (g, W)V (gh, ) = 64,(V(h, f)V (g, hf) (3.1)
for all g, h, f € Q, where
K(g,h, f) = u(a(g, h),o(gh, ) ww,o(h, o, 'o(g, hf))ilw,, a(h, ). (32)

Then by definition K: Q3> —» 4 = Z(¥" )W'.

Our aim is to prove that K is a 3-cocycle, but before doing so we make one
comment on its definition. Observe that 54(0) = 04,,(v), ve A, q € Q2 defines an
action of Q on £, because 5wq preserves Z(V )W = A and 0,,.,, = 5a(q,r)wq, =
Os(q.r)0qr» however since oa(q,r)ed, 6€X, sO 0d,4n€lnny” and thus
Osan|z(rynw = id, 50 0,0, = 0 . Moreover, this action ¢ is independent of w, for if
o’ is another section, there is a map i : Q2 — A such that w; = y(q)w(q) and so

5&),’11/ = 6d/(q)5wq|f = 6wq I%
using dy |, = id.

Theorem 3.1. With the preceding notation and = + 0, we have for & € X, and section
V for Ad|,: ¥ — A and a section w: 2 — I', the expression (3.2) defines a 3-cocycle,
K € Z3(Q, ) that is for all q,r,s,t € Q:

So(K (1,5, 1)K (g.75, 0K (g7, 5) = K(gr, s, ) K(q, 7, 1) . (3.3)
Proof. We use Maclane’s argument ([13], p. 126, Lemma 8.4) and evaluate
L= 60,[00,(V(s,0)) V(r,st) 1V (g, rst)
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in two different ways:
M) L =0,[K(s)V(s)Vs,)]V(g,rst) by (3.1)
= 00, [K(r,5,0)00,(V (r,5)) 00, (V (rs, 1)) V (g, s1)
= 00, (K(r,s,))K(q, 7,9V (q,1) V (ar,5)V(g,rs) "
-K(q,rs,)V(q,rs)V(ars,t)V(g,rst) "' V(q,rst) by (3.1)
= 0w, (K(r,5,1) K (g, 7,5)K(q,r5,0)V(q, 1)V (qr, )V (grs. 1) .
(i) L =0da,0,(V(s1))00,(V(r,s1))V(q,rst)
= 0041 (00, (V (5, 1) K(g,r,51) V(g,r)V(gr,st) by (3.1)
=050 [Kar, 5,0V (q,r.9)V(grs, 0V (qr,s) ' 1- K(g,r,s)V (g, 1)V (qr, st) .
So relation (3.3) will hold iff
V(a,r)V(ar,s)V(ars,t) = d,qn[V(gr,s)V (ars,)V(qr,s)" 1V (q,r)V (ar,st) ,
where we made use of d,,,,(K(qr,s, 1)) = K(qr,s,t) since a(q,r) € 4. That is
(AdV (g, (U(g,r,5,1) = 054,n(U(g:1,5,1)) ,

Where U(q,r,s,t) = V(qr,s)V(qgrs,t)V(qr,st)” !. Thus since it is a property of § €
and a section V for Ad|,.: 7" — A that 6, = Ad V, for all d € 4, we have

Ooqr = AdV(o(g,r)) =AdV(q,r),
which completes the proof of (3.3). O

From Eq. (3.1) we see that K depends on the choices of §, V and w. By analogy
with the 3-cocycles in Maclane [13], we expect the class [ K] of K to be indepen-
dent of V and w.

Theorem 3.2. Given the hypotheses of Theorem 3.1,

() the cohomology class of K € Z3(Q, ') is independent of the choice of section
Vfor Ad| v - 4

(i) the cohomology class of K is independent of the choice of section w:Q —T.

Proof. (i) Using Theorem 2.5 we show that if (4, u) ~ (A, u') in Z(I', 4,4"), then
K ~ K’ for the corresponding 3-cocycles. Now (4, ) ~ (4', ') means there is a map
Y4 — A such that

A(g,d) =Y (gdg™")"'9,(l(d))A(g,d) Vgel,de4,
W (d, k) =y (@) (k) (dk) " u(d, k) VdkeAd.
So by (3.2):
K'(g,h, f) = u'(a(g,h),a(gh, £))'u' (w40 (h, fo, *,0(g,hf)) A (@, a(h, f))
=Y(a(g,h) "W (a(gh, ) "W (a(g. Wa(gh, f))u(a(g, h),o(gh, )"
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“W(wya(h, flog YW(a(g.hf)Y (w0 h, fo;  o(g,hf)™"
- wlwgo(h fog to(g,hf N (w0, o, )"
* 00, (W (a(h, ) My, a(h, f))
=¥ (a(g.h) " "W(a(gh )" "(a(g. hf))
“00,(b(a(h, f))K(g,h, f) using (2.2)
= p(g.0) " p(gh.f) " p(g,hf)du,(p(h, f))K (g, b, f) ,
where p(g, h) .= Y(o(g,h)), and so K ~ K.
(i) The proof is complicated and unenlightening but routine. We refer the reader
to [22] for details noting only that the method is to choose a second section

w':Q — I' with consequent 3-cocycle K’ and map n:Q — I' such that w; = nyw;
for each s € Q and prove that K’ = §(¢)K, where

&(r,s) = Ma,, om0, Y p,on,0; o (r,s),n") " ulng ', nyg)
'ﬂ(nrwrnsw;l,a(ns))_lnu(nrswrnswr_l)—l .

O

Our interpretation of the 3-cocycle K will rest on the next theorem. Observe
that if K is trivial, that is there is a 2-cochain p:Q? — 4 such that

K(g,h, f) = p(g.h) " p(gh, £) " p(g,hf)d,(p(h, [)) ,
then substitution in (3.1) produces:
(p(g, 1)~V (g, W) (p(gh, /)~ V(gh, [)) = du,(p(h f) 'V (b, ) p(g,hf) V(9. hf)),

(3.4)
that is

W(g,h):= p(g, )"V (g, h) (3.5)
is a non-commutative 2-cocycle.

Proposition 3.3. Given the hypotheses of Theorem 3.1 and hence a 3-cocycle K asso-
ciated with 6 € X, assume that K is trivial. Then

(i) the extension defined by
& = Qx 9" with multiplication (g1,u1)(g2,u2) = (9192, 410w, U2) W(g1,92)) ,

is a group (wWhere W is given by (3.5)).
(i) The map v:& — Aut .o/ defined by

v(g.w)(A4) = uw,(Au~"', Aest,geQueV

is an action.



402 A L. Carey, H. Grundling, I. Raeburn, C. Sutherland

Proof. The proof is standard, but we include it for completeness.
(i) Since w, =e, W{(e,g) =1, the identity of & is (e,1). The inverse of (g,u) is
(g7 W(g™',9)" 6u, (u™")) and so it is only necessary to verify associativity:

(91, u)[(92,u2)(g3,u3)] = (91, 41)(9293, U200, (U3) W (92,93))
= (ngzgsﬂhéwgl [u2 5wgz(us) W(92,93)1W (91,9295))
= [(g1,u1)(g2, u2)1(g3, u3)
= (9192, Uy 5wgl (U)W (g1,92)) (93, u3)
= (919293, U1 5«»91(“2)W(gu92)5wg‘gz(u3)W(g1gzags)) >
that is, we need to prove that
Oy g, (U3)00, (W (92,93)) W (91,9293) = W (91,92) 00, , 3) W (9192, 93) - (¥)

Now
6wglcogl = 60‘(91,5]2)560!;1!72 = (Adl v V(QI:QZ))(Swg‘gz

= (Adly W (91,9200,
and thus (also using (3.4)), both sides of (*) are equal to
W (91,92)00,, U3) W (91,92) ™" 00, (W (92,93)) W (91,92953) -
(i) To see that v is in action:
V((91,U1)(g2, u2))(A) = V(9192 U100, (U2) W (91, 92))(A)
= (Ad| .y (uy 5%‘(’42)W(gbgz)))awglgz(A)
= (Ad| ., u)(Ad|, 5%1(”2)) *0(g1,92) 0y, 4,(4)
= (Ad| u1)ay,, ((Ad] , uz)w,,)(A)
= (g1, u1)v(ga, U2)(A), A€ A, g;€Q, u;e¥ . O

As a result of this last proposition we conclude that if K is trivial there is an action
v of an extension & of Q by 7~ on .. Thus for a given action é € 2 (and section
w:Q — I') we interpret [K] in the terminology of Sect. 1.1 as the obstruction to the
construction of this extension & of the physical transformation group @ by the group
of implementers of gauge transformations 7.

Next we wish to find conditions for the nontriviality of K. Such triviality conditions
are best expressed in terms of an exact sequence

HX I, ) S A A,2) 5 HYQ, %)

whose existence is proven below. The homomorphism y: A(I', 4, 4°) — H*(Q, %) is
given by the formula y(4, u) = K, where K is given by Eq. (3.2) for a particular choice of
. Then from Theorem 3.2, 5 respects cohomology classes so lifts to produce the
desired homomorphism y. The homomorphism {: H*(I', #") — A(I', 4,4) is given by

() =hweZ(I,4,4)
where for jie Z*(I', 4") we have
Mg, d) = fi(g,d)ji(gdg ™", g)""
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and u=fi|g.4 (cf. remark below Theorem 2.2 for motivation). Then ( respects
cohomology classes so lifts to the desired homomorphism (. The next result is the main
theorem of the paper.

Theorem 3.4. Assume that X %= (. Then

(1) there is an exact sequence
HAD,H) S AL AX) 5 HYQ,0),

where the homomorphisms {, y are as defined above,
(2) the pair (4, u) produces a trivial [ K] if and only if [ A, 1] € Ran {, or equivalently if and
only if there is a pair (X', ') ~ (4, ) for which u' extends to I' and

A(g,d) =W (g, d)'(gdg~',9)"" (geT,de ).

Proof. Only (1) needs proof of which we adapt the arguments in [22].
Given that for a choice of section w:

)Z(’L :u)(g: h: f) = ,U(O'(g, h)’ O-(gh’f))- ' ,u(a)ga(h, f)wg— 17 O-(g’ hf)) * j’(wm O-(h’ f))
we see immediately that

(A1, 1) (A2s 1)) = KA1y i fhn) = X (A1, 1) (A2, 12)

so using Theorem 3.2, y lifts to a well-defined homomorphism y: A", 4,4) —
H3(Q,4). For {, we first show that

Upye Z(I,A,0°) YNjie HXI,X) .

Now condition (i) of Theorem 2.1 is clear since A(e,d) = fi(e,d)ji(d,e)"* = 1 = i(g, e).
For condition (ii) of Theorem 2.1:

Mg, ) Mg, k) u(gdg ™", gkg™")
= [i(g,d)ii(gdg ™", )" 'fi(g, k)iigkg ™, 9) " fi(gdg ™", gkg ™)
= fi(g,d)ji(gd, k) fi(gdg ", gk)~ " ii(gdg ™", gk) fi(gdkg ™', g) "
= fi(g,d)ji(gd, k) fi(gdkg~*,g") "
= 0,(U(d, k) fi(g, dk) ii(gdkg ~*,g) "
= 0,(u(d, k))A(g,dk) forallgel, dked,

using o,(w)=wWded, we A
For condition (iii) of Theorem 2.1:

O4(A(h,d))A(g, hdh™ ") = b,(fi(h,d)fi(hdh™ ", h)~ ") fi(g, hdh™ ") ji(ghdh™ g~ *,g) "
= fi(g, W) fi(gh,d)fi(g,hd)~* ji( g, hdh™ ")~ fi(ghdh™ ', h)~*
x fi(g, hd)i(g, hdh™ ") ii(ghdh~'g ™", 9) ™"
= ji(gh,d)fi(ghdh™ g™ ", gh)" " fi(ghdh™ g ™", gh)
x fi(ghdh™'g™",9)" ' fi(g, h) iil(ghdh ™, b) !
= A(gh,d) .
Then (iv) of Theorem 2.1 is true by definition of { and so {(fi) € Z(I', 4, ).

1
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Next we show that { respects cohomology: let fi; ~ fi,, which means there is
a y:I' > A such that fi; =(0y)-[i,. Hence we have u; ~ u,, where y; are the
restrictions onto 4 x A. Moreover

1 1

Alg,d) = fiy(g,d) ity (gdg ™', g9)~
=Y, 0,000 Wea" *Voag— Sgag~r Wy IWgara(g,d)
= 0y a) ¥ gag-142(9,d) ,

that is, (Ay, 1) = DY (A3, pp). Thus C lifts to a map (: H*(I', A7) — A(I, 4,.4).
For the homomorphism property: {(f; - ;) = (A1 * A5, 1 * 42) We use

Mg, d) = fi(g,d) fi(gdg™",9)" ",
so that B ~ B
Ly fla) = (A, pa) = (A, o) = C(f1q) - L(f) -

Next we need to establish exactness of the given sequence. First we show y°{ =0,
that is, ran { < Ker y. Let (4, u) € ran{ so there is a p € Z*(I', #’) such that

Mg.d) = p(g,d)n(gdg™",9)"" .
Then for all g,h, fe Q and a choice of section w,
T4 1m)(g,h, ) = K(g,h, f)
= p(a(g,h),algh, 1)~ wyah, o, *,a(g,hf)) iy, a(h, f))
= W@, 00" O ;g ) ™ (W, R0 rOs @y, W1
* (00, 040 ;O @y 040y 0p 0 1 05)
= W, 00" 00 0gr) Uy, 00 )
11(C0, Ry sty OO )
- Wy, Oy 0gf) ! (using the 2-cocycle relation (2.1) on the
2" and 4" terms)
= ww, 00", @)~ (@, 0h @) T (O gns 0 ;g )
- 02y, Dy 0y
‘H(wgawhfwg_is}rlﬂ(wga)hwfwh_fl,whf)
- 1@y 00 1, Dgnt )y (U(Drp> Ogny) ™)
(using p(ab™ ", bc) = u(ab™ ", b)u(a, )0~ (pu(b,c)) ™"
on the 1 and 3™ p)
= (g0 Dgn"s Dgn) @ ghs © p Dgh )y (@4 iy, D1y )
- ey, ;)
- g, pyp)” 1ﬂ(wgwhf> wg;})_ lﬂ(wgwha wy)” léwgw;,(ll(wf, wg_hfl))

where we used (2.1) on the 4™ and 6™ terms, then on the 5" and 8" terms, and using
(2.1) on p(@ywp, 0 rg) (W, WL 1, Wy ).
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Now apply (2.1) to the 4™ and 7" s, regroup and set

ﬁ(g’ h) = /’t(a)ga)ha}g_h1 D wgh).u(a)gy Coh)_ !
to get

K(g,h, f) = B(g:h)™ 00, (Blh, £)) (e, 04) ™" pl(@gh, @0y gns)
'.u(wgwhf’wg_h})_léwgh( (wfa ghf)) (recall 5wgwh = 5u)yh on %)
= ﬂ(g> h)_lawg(ﬂ(h,f))u(ww whf) M(wgmwf)ﬂ(wghwfawg_h})
< (@, 0g5) " (using (2.1) on the 2°* and 4™ y’s) .

Now p(ab™1,b) = p(ab™*,be)u(a, ¢) ™ -1 (pu(b, ). So with a = w,wyr, b = gy,
¢ = wg; we see that

(@, g, W)~ = @y Onr g, O ) (@ ghs, Ogup) "
and when a = w,,w, instead, we have
(@@, Oguy) = HOnD O ghf, Ogus) ™ UDgny, Ognf) -
So on substituting these into the expression for K
K(g,h, f) = B(g, )" 00, (B(h, [))B(g.hf)B(gh, [)~" = (8)(g.h. f) ,

that is, yo{ = 0.

For the more difficult part of proving that if [, u] € Ker y, then [4, u] € ran{,
we first need the following lemma, stating that K is the boundary of a cochain
p over I' (but not necessarily over Q).

Lemma 3.5. For each (A, p) € Z(I',, A, A, define p e C*(I', ") by:
p(g,h) = A(wy, hoy ugo, ', ohoy 'og ) u(gho, 'o, ' o(g,h) Vghel
(where we use notation w, = w,, and (g, h) = a(g4,dA)). Then
K(gd,h4, fA) = p(g,h)~ " p(gh, f)~ ' p(gh, f)de,(p(h, f))
=(0p)(g:h, f) Vgh fel .
Proof. Note that on %, 5% = J,, SO
(@0)(g, b, f) = 4L A, fory Dp(ha, ', op fry oy Hp(hfor  wy (b )]
Mg, hf o ulgag ' oghfor of ) p(ghf o o, ' 6(g,hf))
< Mwg, hoy ') (g, ohoy tog ) p(gho, t o, a(g, k)
- Mgy, fo, 1) u(ghog', op for ‘o)™
-(ghfor og',eo(gh )" . (3.6)
Now note that by the Theorem 2.1 (iii), the first A-term is
8y[Awn, fooy )] = Mwywp, for; ) Mwy, o for o, )
= Mg, for; ) A(a(g, h),wgfo; o)
Aoy, o for o, )
= Mg, for; Mg, onfor oy ') u(o(g, h), opfor oa')

logonfor o, o, o(gh) (3.7)
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and by Theorem 2.1 (ii), the next two A-terms are
Marg, hf i) My, hay *)7!
= Mg, onfons Yu(@shoy  0g ", 0,0, fou o )o,(phoy ', o for) ™)
= Mg, o for; oy Aoy, 0,005 (@, for oy to, L o,oh, o, ")
-8, Lulwnfor oy b o(h ) ulhoy o fort) 1]
cu(wghoy *o; w0 for o) . (3.8)
Thus on collecting all A-terms in (3.6), substituting and cancelling we get:
Awy,a(h, f)) x p-terms in (3.7) x p-terms in (3.8) .
Now the §,- y-terms in (3.6) cancel with the d,u ™ !-terms in (3.8) because
phoy ' onfar oy Yuthfor oyt oh, f)
= wonfor o, ' alh ) pthoy, ' o, fon') .
Thus
(@0)(g,h. f)
= Uay, o(h, )u(o(g, h), o for ' op')
-u(wgwhfa)]la),,_la)g_l,a(g,h))_1,u(coga),,fa)fla),,_lwg'l,wga(h,f)wg_l)
u(@ghoy *o, b oo, fort o u(go, L oghfot o, )
plghfor o) a(g.hf)p(go, s wghoy to, 1)~
cplghay oyt a(g, 1) (ghog!, o for  og') 7!
“u(ghfor g’ o(gh )™
= Mwg,a(h, )+ plogofor oy o, a(g,h) ™!
-ula(g, ) ogfor og" ) ulgho, o, a(g, D) w(ghog', opfor og') ™
-,u(a)gha)h_la)g_1,coga)hfwh_flwg_l)ﬂ(ga)g_l,wghfa)h_flw;l)
gyt ohoy o, )
- @gonfor oy o, wga(h, o, Yughfo, o, ', 6(g, b))
“u(ghfor ou',a(gh, )™
= Moy, a(h, ) pl@yonfor oy 'o, ", 0(g,h) !
{u(ghoy o, oo, fo; o' )} u(ghoy 'w, b oo fort o 1)}
plwgonfor oy oyt wga(h, o, u(ghfor o, ", a(g, k)
“p(ghfor og',o(gh f))™!
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= Moy, a(h, ) o, for oy 'wy * a(g, )~

cu(ghoy P o ogo,for  og" ) u(ghoy 'o, L o,ofor o, )
-,u(a)ga),,fa)f_lcoh_lcug_l,wgo(h,f)w;l)
Lughfor oy o o0k, fo, ")
lwga(h, fog ' a(g, hf))- plghfor oy o, oo fog a(g,hf))]
- plghoy oy o, ' a(g,h)
-u(a(g. h),a(gh, )~ ulghfor o o ' 0(g,hoa(gh )",
so using (2.2) we obtain the cancellation. On regrouping:
@p)(g.h, f)
= My, a(h, ) (a(g, h),a(gh, )~ wwyo(h, o, ' a(g,hf))

‘g 1 a(g, ) ulghoy oy g0, for  og') !

o o for oy
- u(ghoy, o, o fort o (oo, for  op fo, L ooh, o, )
ughfor oy oy wgah, o, ) u(ghfor oy o, a(g,h)

=K(g.h, [)- plo,on fo; oy o, a(g,h)
-,u(ghw,,_la)g_l,wgw,,fwf_1wg_h1)‘1/1(ghw,,_1wg_1,wgwhfwf_la)h_lwy_l)
‘ulghfor oy o, o(g.h)

=K(g,h. 1) . O

The final step is to show, using this lemma, that if [K] = y[4, u] = 0, then there

is a 0eZ*I',#) such that (4,u)={_(0). Equivalently u=0]|,,, and
Mg,d) = 0(g,d)-0(gdg~*,9)"*, so that ker y < ran{. Now since [K | = 0, there is
some normalised 7e C*(Q,#") such that K = dt. Define fe C*(I',.#") by
#(g,h) = 1(g4,h4). Then d(p-7 1)=K-K~ ' =1, and so we set 0:=p-T le
Z(I, ). Trivially

Olasa=(pT Nlaxa=plaxa=p.
Moreover since 7(g,h) = 1 if either g or h € 4, we see that
0(g,d)-0(gdg™",9)" ' = p(g,d)p(gdg~"',9)"*
= Moy, d)ulgo, ', odoy u(gdo, ', 0(g,d))
“Ae,g)” 'u(gdg ™", gw; Yu(gdw, ', a(gdg ™", g)) !
= Moy d)u(go, ', odo, )u(gdg ™, gog 1)~
= Mwy, d)A(gow, ', wdw, ') by Theorem 2.1(iv)
= A(g,d) by Theorem 2.1 (iii) .
Thus K e ran{. O
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Summary: The circumstances in which this framework will produce a nontrivial
3-cocycle K are that (4, u)¢ran{ and this will be the case when either:

(i) ¢ does not extend to I' over # (but remember we must still have that
u~ p¥gel orelse K will not exist), or

(i) u does extend to I' over 4", but there is no extension [ which satisfies

Mg,d) ~ fi(g,d)fi(gdg~",9)"" .

Note finally that in 3.4 we have used only part of the long exact sequence contained
in [22].

4. Examples

In the absence of constructive approaches to gauge field theories which enable us to
exhibit representations of gauge groups on Hilbert spaces which also carry a rep-
resentation of the “field algebra” we turn to more conventional C*-algebras for
examples of the three cocycles of the previous section. The examples we construct
here are for continuous trace C* algebras which bear some formal similarities to
the algebras one would expect to arise in quantum field theory. To keep the
discussion brief we assume familiarity with [18, 237.

Example 4.1. For the first example consider the commutative diamond:

E
s? s?
2

of principal T-bundles, in which both p and g are the Hopf vibration. Then there is
a continuous trace algebra A with spectrum S3 and an action o:R — Aut 4
inducing the given action of T = R/Z on S* = A and such that the spectrum
(A x, R)" is isomorphic as a principal circle bundle to ¢:S*> — S? = A/R. (Noting
that H“(S2 Z) =0, this is a corollary of [21, Theorem 3.1]. It also follows by
applying [23, 4.12] to any stable algebra whose Dixmier—Douady class d(A4)
satisfies pi (0(A4)) = [¢q], where p, is the map in the Gysin sequence

0= HS%Z) 5 H3S%,2) 5 HX(S2,Z) 25 HA(S%,Z) = 0

with [p]Ju denoting the map which takes [¢] to the cup product [p]lu[q].
Exactness of this sequence also tells us that there is just one class 6(A4) mapping
onto [¢] under p,.)
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Now we apply Theorem 2.2 of [23] to the above system which then identifies
the diamond of bundles with the spectra of the algebras as indicated:

(Z x, A)

(Rx, A)~ A~

\ /

AJR

Here Ind denotes the induction of representations and Res takes a covariant pair
(m,U) to . Because H*(4,Z) = H*(S*,Z) = 0, the fibration Res is trivial, and « | ; is
inner by [18]. Hence we are essentially in the situation of Sect. 2 and 3. Now we
know from [20] that g is the trivial fibration if and only if « is given by a Green
twisting map on N, and hence if and only if the pair (4, u) (which is well defined
because a|, consists of inner automorphisms) is also trivial. But we have construc-
ted g to be non-trivial forcing the class of the pair (4,4) to be non-zero in

A(R,Z; C(X,T)). From [23, Theorem 4.17 we have H?*(R,C(X,T))=
0 = H3(R,C(X, T)) and hence the exact sequence

H*(R,C(X,T)) » A(R,Z; C(X,T)) i>H3(T,C(X,T)) - H*R,C(X,T))

implies that [K] = 4([4, u]) is non-zero in H*(T,C(X, T)).
Remark. Note that the two cocycle p is zero as a |, is inner so that the class we have

constructed is in the kernel of the map A(R, Z; C(X,T)) - H*(Z,C(X, T))-indeed
the second cohomology of Z with any coefficient group is trivial.

Example 4.2. Let I" be a discrete group, 4 a central subgroup and suppose we are
given a continuous trace C*-algebra B with B = X and a cocycle

ceZ*(4,UZM(B)) = Z*(4,C(X, T)) .
We say that «:4 — Inn(B) has Mackey obstruction ¢ = ¢() if there is a map
u:4 - UM(B) (UM(B) denotes the unitaries in the multiplier algebra of B) such
that oy = Aduy and u.u; = o(c,d)u.. Let K denote the C*-algebra of compact
operators on a separable Hilbert space. If B is stable there is always such an action,
for by [9, Theorem] we can find such an action f of 4 on Cy(X,K) and take
x=1®f on
B®cx) Co(X,K)XBR®K =~B.
Now let

A =1Indj(B,o) = { fe/*([,B)| f(yd) = og "(f(y)) _

for all d € A and the map y4 — || f(y) | vanishes at co on I'/4} .

Because o fixes X = B, A is a continuous trace C *-algebra with spectrum I'/4 x X
and a natural action t of I' by left translation: z,( /)(x) = f(y_'y). The homeo-
morphism which gives 4 is induced by the map M:I'xB — A defined by
M(@y,m)(f) ==(f(y) [19].

Lemma 4.1. The automorphism 1|, is inner and the Mackey obstruction c(t|,) is
given by
c(t| e, d)(y4,x) = (1 ® a)(c,d)(y4, ) = a(c,d)(x) -
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Proof. 1f d € A, then because 4 is central

()W) =@y =f0d™") =0 f() -

We define v, € M(Ind B) by choosing a section ¢:I'/4 — T’ (recall that I' is discrete
and so there is no topological problem in choosing a cross section) and setting
va(y) = ac_(y‘A)vxy(ud). It is easy to check that v, € M (Ind; B) and it is unitary because
uy is. Further, for any ¢,d € 4 we have

ac(ud) = ucudu:}< = O'(C, d)O'(d, C)_ luducuf = O'(C,d)o'(d, c)_lud >
so that o, (u;) implements o; = Ad u,. Thus for each y, v,(y) implements «,; and

Adog(f)() = va(y) f P)va()* = aa( f (7)) = T )H)) -

Since

Ucvd(’)/') = ac_(ylzi)“y(ucud) = cxc_(ylA)_‘y(O-(ca d)ucd)
= O-(Cad)ac_(yld)"y(ucd) = J(c!d)vcd(y) .

If we identify (Ind); B)” with I'/4 x X so that the unitary group of the centre of the
multiplier algebra of B is just C(I'/4x X, T) then this says precisely that
UcUg = (1 ® O-(c’d))vcd'

Now we may apply the analysis of Sects. 2 and 3 with ¥~ equal to the unitaries
in the multiplier algebra of A, #” the unitaries in the centre of the multiplier algebra
of A and the section V; given by v,. The lemma implies that the cocycle u of
Theorem 2.1 is given by u =1 ® 0.

Using Theorem 3.4 (namely the exactness of the long exact sequence at A) the
3-cocycle K which is the image of the pair (4, ) in H*(I'/ 4, #") vanishes if and only
if (4, u) is the restriction of some v e H*(I', #"). In particular, only if u extends to
acocycle viIxI' « W .

Nowif v:[[xI' > C(I'/4x X, T)is a cocycle extending p =1 ® g and I'/4 is
finite then

p( 0 = [ v 2004,%)

ydel'/A

will be a cocycle bounding u'"/“!. (Notice that for example p|,, . x is not a cocycle
because the action of I' enters in the last variable.) On the other hand if we seek
acocyclev:I'x I' > C(X, T) extending p, then this amounts to making a different
choice for 7~ and hence a different choice for #° (namely C(X,T)). Thus for
example, with ' =ZxZ, A =3ZxZ, X =T and p((3my,ny), (3m,,ny)) = z"",
then u cannot possibly extend to a cocycle on I' x I'. For if so the bicharacter
¥ obtained by antisymmetrising v would satisfy

7((0,1), (3,0)(2) = 7((0,1),(1,0))(2)* ,

which would only be consistent with i((0, 1),(3,0)) = z2 if we had a continuous
cube root for the function z —z% on T.

Remark. Note that this illustrates the sensitivity of the non-triviality question to
the choice of coefficient group.
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5. The 3-Cocycle a Lie Algebra Context

The literature on gauge group chomology actually mainly discusses Lie algebra
cohomology (see [31]). It seems useful therefore to consider what our constructions
yield in that context. Hence assume that the groups 4,1,Q,7",#" are all Lie
groups with Lie algebras 4,I",€2,7", # and that the homomorphisms considered
previously are locally C* and hence we obtain the diagram below also for the Lie
algebras. Also assume the sections V:4 - ¥ and w:Q — I' are locally C*, and so
define linear sections v: 4 - ", v(0) =0, and w: 2 - I', ®(0) = 0. We now have
the diagram:

0
!
W
1
v
v(l [0
PR
0 A4 r Q2 > 0
!
0

The relations V,V, = u(d, k)Vy and w,w, = d(g,h)w,, have the Lie algebra
versions:
[vg, 0] = v g + p(d, k) foralldked,

and [w,, o] = oy, +0(g,h) forallg,heQ2,

where u:AxA —># and 6:2x 2 — A are Lie algebra 2-cocycles involving the
infinitesimal versions of the actions

Saw) =VwVi' (of 4 on %) and wykw, ' (of Q on 4),

that is,
d-w=[v,w] and g-k=[w,k].

Our first task is to obtain a Lie algebra version of A(I", 4, #") and hence an
analogue of Theorem 2.1. Introduce

Derv” = {6 € L(¥")|6([v1,v2]) = [6(v1),v2] + [v1,6(v2) 1}
and a Lie algebra action 6:I' — Der #, as a map satisfying
59 + 6;, = 6g+h and 6[9.;,] = [5g>6h] € Der W

(Observe that whilst Der #” is not closed under composition, it is closed under the
commutator, and is thus a Lie algebra.)

Theorem 5.1. Given the exact sequences above and a Lie algebra action
0:I — Der W on the coefficient Lie algebra W such that

0,(w) =[vy,w] forallded,we W,
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then there is an extension to a Lie algebra action d:I" — Der #~ such that
0,(vs) e W + vy 4
and 04(v) = [vs,v] forallgel,ded,ve? .
if and only if
ud,kye Z()n W =H foralldked,
and there exists a map A:I' x A — A4 such that for all g,he I, d,k,e 4:
(i) 4(0,d) =0 = 4(g,0),
(i) 0, (u(d, k) + 4(g,[d,k]) = u([g,d]. k) + n(d,[g,k])
83 i((g’gl;)hl L;iz)(d:,k?.(l(h’d)) — 0,(4(g,d)) + A(g,[h,d]) — A(h,[g,d])
Proof. ( =) Assume an action é:I' — Der ¥~ exists as above. Define
Mg, d) = 8,(vy) — Vg €W,
forgerl’,de A. Now
014,19 (V) = (V10,15 v] = [[v4, 0,1, 0] — [ u(d, k), 0]
= (040, — 0x.04)(v) = [Vg, [V, v]] — [Vk, [vg,v]] forallve ¥, dked.
Rearranging:
—Lu(d, k), v] = [v,[v4, 0, ]] + [va, [0, v]] + [vi[v,0,]]1 =0

by the Jacobi identity. Hence, u(d, k) e Z(#")n(#) and we denote this latter
algebra by 5. Similarly, let ge I', d € 4, then for all v e ¥":

(0404)(v) = 0,([v4,0]) = [8,(va), v] + [v4,0,(v) ]
= [A(g,d),v] + [g,a1,v] + [04,6,(v)]
= [01g.a) + 040,)(v) = [vrg,a1, 0] + [v4,0,(v)] .

Hence [A(g,d),v] =0 or all ve ¥, thatis, A: I x4 - A ". Using v(0) = 0, (i) now
follows.

For (ii) consider 8,([vy,v,]) = [8,(vs), vx] + [v4,,(v,)]. The left-hand side of
this expression is

0y (Va1 + p(d, k) = 8(p(d, k) + Vyg 10,17 + A(g. [d,k])
while the right-hand side becomes:
[4(g,d) + vig a1, 0] + [Va, A(g, k) + 14 1]
= [Vg,a1> 0] + [Va,04,10]
=Vyga,, + B(L9,d1 k) + vy g, + #(d, [9,k]) -
Equating these and using the Jocobi identity and linearity of v we get

0,(n(d, k) + A(g,[d, k]) = n([g,d], k) + n(d,[g.k]) .
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For (iii):
01g.m(a) = A([ g, h],d) + Vygg.m.a1
= (0,0, — 8,0,)(vg) = 0,(A(h,d) + vy, q1) — 0,(A(g,d) + V4 4)
= 0,(A(h,d)) — 04(A(g,d)) + A(g,[h,d]) + vig,tn.an
— A(h,[g,d]) — v, 1g,am 5
so using linearity of v and the Jacobi identity, we get
ML g,h1,d) = 8,(A(h,d)) — 8,(A(g,d)) + A(g,[h,d]) — A(h,[g,d]) .
For (iv): 84(v,) = [v4,v,], SO
Md, k) + Vg 1y = Vg + p(d k)

( =) The converse is a straightforward adaptation of the proof for the group case.
Starting from an action d:I' - Der #” on the coefficient algebra and a map
4 satisfying (i) to (iv), define a map é:I" - Der ¥~ by

3,(W +vy) = 8,(w) + A(g,d) + vy, forallwe# ,gel,deAd,
and verify that it is an action as claimed. O

Next we want to know how to obtain from a pair (4, u) a 3-cocycle K: 2% — 4.
As at the group level, we want to obtain K by finding the image of the 2-cocycle
relation of ¢ under v, express this in terms of a coboundary of v°¢ and then the
remainder is K.

The 2-cocycle relation for ¢ is: for all g, h, f € 2:

[y, 0(h, f)] — [o4,6(9, /)] + [, 0(g,h)]
—o([g.h].f) +a([g.f1h) —a([h [1g)=0
and its image under v: 4 — ¥ is (using the notation v(g,h) := v(a(g, h))):
v([og,0(h, f 1) — v([on.6(g, /)]) + v([o),6(g,)])
—o([g,h], /) +v(Lg, f 1) —o([h,f1,9) =0,
so that,
00, (0(h, f)) — Mg, a(h, [)) — 8,(v(g, ) + Ay, 6(g, f))
+ 04, (0(g, ) — My, 0(g.h) —v([g,h], f) + v([g, f1.h) —v([h, f1.9)=0.
So we set
K(g,h, f):= May,a(h, [)) — Man,0(g, [)) + Moy, a(g,h) = (0v)(g, h, [)
= 0,,(0(h, /) =04, ((g, f)) +0,,(v(g, h)) —v([g,h]. f)
+o([g, f1.h) —o([h f1.9) .
Theorem 5.2. The expression
K(g,h, f) = Ay, a(h f)) — Mwy,0(g, ) + Moy, 06(g,h))
defines a 3-cocycle, that is,
00y (K(h, £,5)) — 00, (K (9, £,5)) + 8, (K(g, h,5)) — 00, (K(g, P, [))
— K([g,hl. f.s) + K([g, /1. h,s) — K(Lg.5]. . f)
— K([h,f1.9.5) + K([h,s1.9,f) — K([ f.s).9:) = 0. (5.1)
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Proof. This is lengthy but straightforward verification of Eq. (5.1) making use of
the listed identities in Theorem 5.1, the 2-cocycle identity for ¢ and linearity and
anti-symmetry of the 2-cocycles.

Remarks. Observe that g has vanished from the Lie algebra version of K in
contrast to the group situation. This is due to the fact that in constructing the Lie
algebra version we are assuming additional regularity (locally smooth cocycles on
a Lie group rather than cocycles on a discrete group). This translates in our Lie
algebraic construction into linearity of the sections v, w. It means that the condi-
tions in Theorem 5.1 are more restrictive than those in Theorem 2.1. In fact
a change in u will definitely affect K but indirectly through 4. The question of
non-triviality at the Lie algebra level requires different techniques and will not be
pursued here. It is relevant however to the discussion in the concluding section.

5.1. Interpretation of Lie Algebra Cocycles and Concluding Remarks. To connect
up with the field theoretic viewpoint [2, 31] we need some further discussion.

Let M denote a three dimensional manifold (representing the spatial degrees of
freedom) and we take I'/ 4 to be the Lie algebra of the gauge group which for the
present purposes is taken to be the group of smooth maps from M into a compact
Lie group G with Lie algebra g. Then we take I' to be the Faddeev—Mickelsson
[2,14] extension of I'/ 4 and 4 is a non-central abelian Lie algebra. For concrete-
ness, if o/ denotes the affine space of connections on the trivial principal bundle
P over the 3-dimensional manifold M and g is the Lie algebra of the compact group
SU(2), then 4 may be taken to consist of IR-valued functions on &/ which are linear
in the connections and their derivatives. This is because for this case the Faddeev—
Mickelsson 2-cocycle ¢ on I'/ A which defines the extension I' takes its values in the
space of such linear functionals on .&/.

One may construct a C*-algebra % on which I' acts as derivations [5]. We
denote this action by 4 +n.(A), xeI', A e % remarking however that for the
purposes of the present discussion it is not essential to describe & explicitly. For
the moment assume that & is represented irreducibly by bounded operators on
a Hilbert space # say by n:%# — B(H). The usual procedure now would be to
assume that the map v above is a projective Lie algebra algebra homomorphism
from 4 to the unbounded self-adjoint operators acting on a common dense
invariant domain & < # with cocycle u and that we have an (unbounded)
self-adjoint operator v, for each x € I" such that

[v.,m(4)] = n(n:(4), AeF .
Now v, for x € I' defines a derivation on v(4) by
vD s [vxavD] .

By our previous results, a scalar valued 4 satisfying the conditions of Theorem 5.1
exists and hence a corresponding 3-cocycle. If this 3-cocycle is non-trivial then it is
not difficult to check that {v, | x € I'} do not form a representation of I'. So one has
an obstruction to the usual desiderata of quantum field theory.

In fact much of the preceding apparatus is redundant. The field algebra & is
only required to force a scalar valued pair g, 4. All one really needs are the Lie
algebras of the diagram at the beginning of this section.

One may now ask whether the 3-cocycles obtained by the descent equation
[2,31] could arise in this way. The answer is negative however because the descent



Group Actions on C*-Algebras, 3-Cocycles and Quantum Field Theory 415

equation method does not simultaneously construct 2-cocycles and 3-cocycles on
the same group. This is because the Lie group SU(2) has non-trivial cohomology in
odd dimensions only and the descent equation method works by pulling back
(using the evaluation map) forms representing these cohomology classes. It follows
that the degrees of cocycles on a given algebra I which may be constructed via the
descent equation method must all have even degree, ruling out the simultaneous
construction of 2- and 3-cocycles by this method. However one might conjecture
that our approach will shed some light on Pickrell’s theorem [17] which suggests
that the Lie group corresponding to I' has no separable continuous unitary
representations. As we noted in the previous paragraph, if the operators v, xe I’
can be chosen so as to provide a representation of I', then voe, as a map from
I'/AxT'/A to the unbounded self-adjoint operators on &, must satisfy the 2-
cocycle identity. A straightforward calculation then shows that if our three cocycle
if non-trivial one has a contradiction. Thus one cannot have the desired representa-
tion of I'. To deduce a version of Pickrell’s theorem from this, we would have to
show that, for any map 4 defined on I'/4 xI'/4 to the unbounded self-adjoint
operators on ., must satisfy the 2-cocycle identity. A straightforward calculation
then shows that if our three cocycle if non-trivial one has a contradiction. Thus one
cannot have the desired representation of I To deduce a version of Pickrell’s
theorem from this, we would have to show that, for any map 4 defined on I'/4 x 4
as above, the corresponding 3-cocycle is non-trivial. Considerable further work
seems to be needed however to prove this.

On the other hand work in progress indicates that the 3-cocycle arising from
the anomalous commutators in QCD [4] fits into the framework of this section.
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