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Abstract: We study group extensions A -• Γ -> Ω, where Γ acts on a C*-algebra si.
Given a twisted covariant representation π, V of the pair si, A we construct
3-cocycles on Ω with values in the centre of the group generated by V(A). These
3-cocycles are obstructions to the existence of an extension of Ω by V(A) which acts
on si compatibly with Γ. The main theorems of the paper introduce a subsidiary
invariant A which classifies actions of Γ on V(A) and in terms of which a necessary
and sufficient condition for the the cohomology class of the 3-cocycle to be
non-trivial may be formulated. Examples are provided which show how non-trivial
3-cocycles may be realised. The framework we choose to exhibit these essentially
mathematical results is influenced by anomalous gauge field theories. We show
how to interpret our results in that setting in two ways, one motivated by an
algebraic approach to constrained dynamics and the other by the descent equation
approach to constructing cocycles on gauge groups. In order to make comparisons
with the usual approach to cohomology in gauge theory we conclude with a Lie
algebra version of the invariant A and the 3-cocycle.

1. Introduction

Group three cocycles arise from the descent equation approach to the study of the
cohomology of gauge groups. This early work was motivated by the need to
understand anomalies in gauge theories [2, 4, 10, 26]. From the viewpoint of
Dirac's constrained dynamical systems these are models with second class con-
straints. There have been many attempts to explain and interpret these 3-cocycles
[2,3,4,10,25,26, 30]. For example Dirac's quantisation condition for the charge of
a magnetic monopole [3, 10, 30] has been interpreted as the vanishing of a 3-
cocycle whilst non-vanishing 3-cocycles have been interpreted as nonassociative
algebra multiplication [4, 10, 26]. Neither of these approaches has yielded to
mathematical analysis. In [4] the conventional mathematical interpretation of
3-cocycles as obstructions was described, but the question remained: obstructions
to what? In [1] one of us pointed out an interpretation of a 3-cocycle on a group of
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symmetries of a quantum system as the obstruction to implementing an extension
of the symmetry group of the system by unitary operators on the Hubert space of
states of the theory. Mathematical questions were ignored in that discussion in
favour of presenting a simple account of this interpretation and in particular no
conditions for non-triviality of the 3-cocycle were given.

It eventuated that further development of the mathematical framework in
which 3-cocycles are "obstructions" was needed to encompass the motivating
examples. Our particular concern is with conditions for non-triviality. Although
the basic constructions may be found in the mathematical literature [22 and
references therein] they need considerable adapting in order to handle the situation
we consider. The framework we derive is capable of a variety of different interpreta-
tions and we will present several of these. The basic data is a short exact sequence of
groups

A -• Γ -> Ω = Γ/A

and a twisted or μ-representation V: A -> £/pf) by unitaries on a Hubert space
Jjf with associated 2-cocycle μ e C2(A, ΊV\ where Ψ° c ί/pf) is some coefficient
group. (Thus VdVd> = μ(d,dr) Vdd>.) This is sufficient to determine a mechanism for
producing 3-cocycles K e C3(Ω,i^). We present the main results of the paper as
theorems about group actions on C*-algebras. However the motivation for prov-
ing them depends on an insight into the underlying physics. In one of the
interpretations we consider here (which is slightly different from that in [1]) A is the
gauge group, the group Γ contains all the automorphisms of the algebra of the
system in question which we wish to consider while the symmetries of the observ-
ables will be represented by the quotient group Ω.

The more usual interpretation [1] is to take Γ/A to be the gauge group acting
by automorphisms of the field algebra for a coupled Yang-Mills-fermion system
and Γ to be the Mickelsson-Faddeev extension [2,14] oϊΓ/A by the abelian group
A. The latter is identified with a group of (7(1) valued functions on the space of
connections (on which the gauge group is acting). Then 3-cocycles would then arise
as obstructions to the existence of a representation of this extension by unitary
operators on a Hubert space. More details may be found in Sect. 5. Within this
second interpretation our aim in this paper is to lay the groundwork for an
investigation of a cohomological version of PickrelΓs theorem [17] which suggests
that the Mickelsson-Faddeev extension has no separable unitary representations.

To avoid technical problems in Sects. 1 to 3 we will assume all groups are
equipped with the discrete topology.

1.1. Constrained Dynamical Systems. To interpret our results in the context of
gauge theories we need to choose a suitable framework. The first of these is the
C*-algebraic theory of constrained dynamical systems described in [6,7]. One may
read the main theorems and examples of our paper without reference to this
physical framework.

In the terminology of [6, 7] we suppose we are given a unital C*-algebra
si (called the field algebra), a set <% c «*/ of unitaries (called the constraint set)
which is first class in the sense that the identity operator 1 is not an element of the
C*-subalgebra of si generated by {U — 11 U e <%}. Denote this latter algebra by
C * ( ^ — 1). This guarantees the existence of a distinguished class of states of
si called the Dirac states in [6, 7]:

SeΏ := {ω e ¥\si) \ ω(U) = 1 for all ί / e f } ,
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where Sf(jtf) denotes the state space of s$. We use the notation: [.], for the closed
linear span of a set. Then the algebra

Θ:= {Λe^lUAU-1 -Ae9> for all U e W)

is called the observable algebra, where

is the unique maximal C*-algebra contained in n {ker ω \ ω e yD} ( i t is a closed
2-sided ideal of (9). The algebra 01 = Θ/@ is called the physical algebra and the
physical transformations of stf are those automorphisms which descend to 01 :

Γ \= {a e kutstf \a{9) = 9} .

As Θ is the relative multiplier algebra of 3) in J / , (written M(β)), if α preserves Q) it
also preserves Θ and the descent to 01 gives a homomorphism y: Γ -> A u t ^ (i.e.
ya(θ(A)) := 0(α(v4)) for all 4̂ e #, where β:$ -• J* is the canonical quotient map).
We interpret the automorphisms of j / which lie in the kernel of y as the guage
group and denote it by A so that the quotient group Γ/A = Ω is the group of
automorphisms of the physical algebra which descend from si. Notice that the
group A d ^ of automorphisms defined by conjugation by elements of °U are in
A and that A may be strictly larger than this group. It is possible that there are
non-trivial cocycles on A which are trivial on Ad %. In any case we may suppose
that V: A -> U(J^) is a μ-representation of A on some Hubert space which carries
a representation of si. This shows how the basic data leading to a 3-cocycle can
occur in a situation in which there are only first class constraints.

In the physics literature a different interpretation is often used (and is described
above and in Sect. 5) in which one treats the elements of the Lie algebra of the
gauge group in a projective representation as imposing constraints (in the sense of
Dirac) which are necessarily second class. We do not go into the operator algebra
approach to this alternative picture in detail here. We note only that the framework
of Sects. 3 and 4 applies. We discuss the implications of the results of this paper for
this picture in Sect. 5.

1.2. Summary. The plan of the paper is as follows. In Sect. 2 we establish notation
and prove the basic results, that is give the mathematical framework for the
construction of non-trivial 3-cocycles. It involves the definition of a cohomological
invariant A which classifies actions of the group Γ on the unitaries {Vd \ d e A}. In
Sect. 3 we show how to construct a 3-cocycle given the data of Sect. 2, interpret it
and explore its dependence on choices made in the construction. We then prove the
main result (Theorem 3.4) which gives a condition for non-triviality. Section
4 contains an example of some mathematical interest in which we use continuous
trace C*-algebras to realise some 3-cocycles explicitly. Whereas the physical
interpretation we have given above depends for its realisation on representations
which have not been shown to exist, the examples in Sect. 4 are complete in all
details and indeed are of independent interest. In Sect. 5 we consider the Lie algebra
versions of the constructions of Sect. 2. In this and the final section we make
contact with the physics literature and Pickrells theorem in particular.

The exact sequence in Theorem 3.4 has already appeared in the algebra
literature [8, 12, 24], but the proofs and constructions are expressed in terms of
crossed extensions rather than cocycles. Since we are primarily interested in the
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cocycles (and indeed these are essential to the applications), we have given cocycle-
theoretic constructions of the homomorphisms and self-contained proofs of the
crucial arguments. For some of the less informative calculations and other side
issues we refer to [22], where the relationship between group cohomology and
C*-dynamical systems is investigated in the context of locally compact groups and
the Borel cochain theory of Moore [15].

2. Preliminaries

Assume as in the introduction a short exact sequence of groups

and that Γ is given as a subgroup of the automorphism group of a unital
C*-Algebra si. We suppose we are given a faithful representation π of si on
a Hubert space J f and a group Ψ* of unitaries with the property that for each d e A
there is a Όdei^ with

(Ad Ud)(π(A)) = Udπ(Λ)U^ = π(d(A))

for all d e A, A e si. Conversely we suppose each F e f defines an automorphism
of si via Ad: 'V -• A, i.e. we require (Ad V4)π(A) = π(d(A)) for some d e A which is
uniquely determined by V.

Remark. The choice of Y will effect the cohomology theory that we are consider-
ing. Enlarging Ψ° can result in non-trivial cocycles becoming trivial (an example is
given in [27]). In practice y is usually specified by other considerations for
example, in the continuous trace case of Sect. 4 the automorphisms they generate
are inner or locally inner with respect to si.

Now introduce the group Ψ* = ker(Ad: Ψ° -• A) that is:

ir = {Ve-r\Vπ(A) = π(A)V for all A e si] .

Note that ΊV need not be abelian. In examples there may be additional constraints
on π which restrict iΓ, for example, irreducibility of π forces Ψ° to be the circle
group. However as noted in [27] nonabelian iV must also be considered

Now we have the following diagram of exact sequences, where V: A -> Ψ" and
ω: Ω -> Γ are sections chosen such that Ve = 1, ωe = e.

Ω
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For each of these sections, there is a noncommutative 2-cocycle. The first is
μ: A x A -+ W defined by VdVk = μ(d, k) Vdk for all d,k e A. Then

μ(d9k)μ(dk,I) = (Vdμ(KI)Vd

 ι)μ{d,kl) (d,k,l e A) (2.1)

by associativity. A second 2-cocycle σ: Ω x Ω -> A is defined by ωg-ωh = σ(g, h)ωgh

for all g,h e Ω. In this case

σ(g,h)σ(gh,f) = (ωgσ(h,f)ωg-
1)σ(g,hf) (g,h,feΩ). (2.2)

Now the 3-cocycle we will construct depends for its definition on the existence of an
action δ: Γ -> Aut Ψ* with the property that on A we have δd(v) = VdvVd

 1 for all
v e Ψ*, d e A and on stf:

Λd(δg(Vd)) =

for all g e Γ, d e A. That is δg(Vd) e ϋ^Vgdg-^ for all g, d, and thus δ defines a map
λ:ΓxA->ifrby

λ(g,d):=δg(Vd)Vθ:d

1

g-ί (deA,geΓ). (2.3)

The main question we need to address is the existence of such a δ. This is handled
by our first result.

Theorem 2.1. Given the exact sequences as above, fix a section V:A-^i^, with
Ve = 1. Let δ\Γ -> Auf#^ fee # f̂/i ŵ action on the coefficient group i¥* satisfying
δd(w) = Vdw Vd

 x for all d e A, w e ^ . Then δ extends to an action δ: Γ -> Aut ^
ί/iαί ^ (F d ) e i^Vgdg-i and δd = Aά\r- Vdfor all de A, g e Γ if and only if

for all d,k e A and there is a map λ:Γ x A -> Z(ir)nifr satisfying, for all g,h e Γ,
d,fe,ezl:

(i) λ(e,d) = λ ( ^ e ) = l ,
(ii) δg(μ(d,k)).λ(g,dk) = λ(g,d)λ(g,k)μ(gdg-\gkg-1)

δ λ h 1
(iii)

(iv) λ{d,k) = μ{d,

Proof ( =>) Let δ:Γ ^ A u t ^ be an action preserving Ψ* and such that

2(flf,d) := δg(Vd) 7 ^ - i e TT for all d G J , ^ e Γ and ^ - AdF^, d e A . (2.4)

Then

= λ(g,d)δgdg-i(δg(υ))λ(g,d)~1 since

) - 1 for all d e J , flf e Γ, i; e

and so 2(#,d) G Ψ*Γ\Z(T\ Similarly that μ(d,k)e Ψ°nZ{*V) follows from
δd(v) = VdvVd

 x for all d e A, v e Y* and the fact that δ is an action. This implies that
δd(w) = w for all de A, w e C/f.
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Requirement (i) is clear, using Ve = 1. As for (ii):

δg(VdVk) = δg(μ(d,k))δg(Vdk) = δg(μ(d9k))Hΰ,dk)Vgdkg-i

= δβ(Vd)δg(Vk) = λ(gJ)Vgdg-d(g,k)Vgkg-i

= λ(g,d)λ(g,k)μ(gdg~\gkg~1)Vgdkg-i ,

which proves (ii). For (iii), use δgh = δgδh as follows:

δgh(Vd) = λ(gh,d)Vghdh->g-i = δgδh(Vd) = δg(λ(Kd)Vhdh-ή

which proves (iii). For (iv) we use δd = Ad Vd, d e A then:

= μ(d,d-1kd)μ(Kdy1Vk for all d9keΔ ,

so that replacing k by dkd~ι we obtain (iv).
(<=) Conversely, assume we have an action δ: Γ -> Aut if and

a λ: Γ x A -> Z(i^)n iV satisfying (i) to (iv) with V and hence μ given. For d e A we
define δg(Vd) := λ(g,d)Vgdg-ι. Since V'.A^Ψ" is a section, each veV has an
expression v = wVd for some de A,w e W9 so using this, define δg(v) := δg(w)δg(Vd).
As a m a p δg\V^V this is well-defined because for all ί e f its expression
v = wVd is unique. First we show that δg e Auti^. Given two elements v = wVd,

v

f = WVd.e'T\

δg{vv') = δβ{v»VdWVd.) = δgWV^'V^WM.)

= δg(w(VdwΎd ^μid,d'))λ(g,dd'

= δg(w)δgd(w')λ(g,d)δgdg-i(λ(g,d'))μ(gdg-\gd'g-ί)Vgdd>g-ι (using (ii))

= δg(w)λ(g,d)δgd{W)δgdg-r{λ{gJ'))Vgdg-ιVgd,g-ι (by (2.1))

= δg(w)λ(g,d)δgd(w')Vgdg-iλ(gJ')Vgd,g-i (δd = Ad Vd)

= δg{υ)δg(w')λ(g,d')Vgd.g-i = δg(υ)δg(υ')

so δg is a homomorphism.
Clearly ^(ι;) - δg(w)δg(Vd) - 11 iff ^(w)/l(^, d) = 11 and Vgdg-i = 1, which is the

case iff d = e and w = 1, i.e. i; = 1. Thus δg is one to one, so δg e Aut Y*. To see that
it is an action, i.e. δgh = δgδh, let v = wVd e Y, then for all g, h e Γ:

δgh{v) = δgh{w)λ{gh,d)Vghdh-ig-i = δgh{w)

making use of (iii). Furthermore

δβ°δh{υ) = δg(δh(w)λ(h,d)Vhdh-ή = ί , ( ί i

= δgh(w)δg(λ(h,d))λ(g,hdh-1)VgMh~ίg-ι = δgh(v) .
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By definition we have δg{Vd) e ΊfVgdg-^ so to prove that

δd(υ)=VdvVϊ1(ver,deA),

set v = wVd>, then

= δd(w)μ(d,d')Vdd,Vd-ψ(d,d-1)

= δd{w)μ{dJ')μ{dd'd'\d)-ιVMd^ by (2.1)

= δd(w)λ(d9d') Vdd,d-^ = δd(υ) by (iv) . •

Remarks. (1) It is essential to start with some action on the coefficient group
iV because it occurs in (ii) and (iii). The 2-cocycle relation (2.1) holds automatically
for μ by its definition.

(2) The fact that μ and λ take their values in Jf = Ψ' r\Z(i^) means that the
cohomology is commutative. This gives the simplifications that V disappears from
(2.1), δd(w) = w for all d e A, w e Jf. Thus for twisted representations with
cocycles μ not commuting with V, no action exists as in the theorem. If we are
given a situation where Jf + iV and we want actions as in Theorem 2.1, we might
as well factor the redundant information in iV\ Jf out of the theory, to prohibit the
occurrence of cohomology over Ψ*. Usually we will assume Ψ* = .Jf
Consider 2.1 (ii):

δg(μ(d,k)) =

so if we write μ9(d,k) := δg(μ(g~1dg,g~1kg)), then μ ~ μ9 e Z2(A, Jf). Thus actions
δ as in 2.1 will only exist for μ e Z2(A, j f ) which are cohomologically Γ-invariant,
i.e. μ ~ μ9 for all g e Γ. This is also a necessary (but not sufficient) condition for
a 2-cocycle μ on A to extend to a 2-cocycle on Γ with the same coefficient group.

(3) Though the problem is essentially a group theoretical one (jtf only contri-
butes the homomorphism of the vertical exact sequence) we prefer to retain
C*-algebras in the picture for the interpretation of our results in the context of
gauge groups. When if is isomorphic to the unitaries in the centre of some
C*-algebra J*, denoted XJZ{β) we can remove the Hubert space Jf, using twisted
crossed products as in [16]. Assume we are given a faithful action oc:Γ —• Auts/
and a Borel cocycle μeZ2(A,iΓ). The twisted crossed product [16], %> =
M(Δ x α , μ ^ ( χ ) ^ ) contains a copy of Δ given by u: A -> U(^) (the unitaries in ^ )
and a copy of sd ® 0b given by a homomorphism k:stf' ® & -+<£ related by

k(ad{a) ® 1) = ud(k(a) ® 1)w* (aejtf,de A)

and uduf = fc(l ® μ(d,f))udf {dje A) .

The map u is Borel measurable and there is a bijection between representations of
A x oc,μ £& ® ^ a n ( i /i-covariant representations of the action α: A —• Aut stf. In this
context we choose Ψ^ be the group generated by {ud\de A}.

(4) As a final remark, observe that there is a special case of Theorem 2.1. where
it is clear where to look for the actions δ: Γ -• Aut W (and which seems natural
from a physical perspective). As Γ is meant to be a group of symmetries of
a physical system, it is plausible to assume there is a covariant representation for
the action α:Γ -• Aut J / , which may be twisted on A. Thus we have a group of
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unitary operators ®f on some Hubert space such that for each g e Γ there is a Y e ®f
such that Ad | ̂  Y = g. Clearly then f " c f and we have an extra exact sequence
denned as follows. Let 9£ = {Y e <&\ IY,A] = 0 for all A e <%?}, f = {we
<& I Ad I ̂  u e A} and Ψ* = Y'n3C. Observe that *V is a normal subgroup of <& and
hence we have the diagram:

1
or
ϊ

A

4
1

1

4

• rl —

1

Ω

In this diagram V: Γ -• ®J is a section, V'(e) = I, then using the fact that ^ is
normal in ^ , we can define an "action" of Γ on V by δβ(t;) := V'gvV'g'1 for all
geΓ.ver.

Now since ^ J | ^ ( ^ ( F d ) ) = gdg ι for all gf e Γ, d e zl, we have

On TT we note that V'ΛVlx e IV for all d e A, so φ: zl -> TT defined by
V'άYd1 measures the difference between V and F on A.

With the data introduced in remark (4) we can prove our second preliminary
result.

Theorem 2.2. Given the three sequences above, fix a section V:Δ -t'V, Ve = 1 as
before, then a section ViΓ-*®/, V'e=l defines an action δ:Γ ^> AutΫ" by
δg := Ad V'g such that δg(Vd) e iTVgdg-^ and δd = Ad Vdfor alldeA iff

φ(d):=VdVd

1eZ(r)nif

and μ{g,h):= VgV
f

hVgh
1eZ{^,r):={ue^\uv = vu, for alive r) .

In this case the map λ associated to δ by Theorem 2.1 satisfies

λ(g,d):= δβ(Vd)V-dg--* = φ{gdg-χ)V'gφ{drγV'g-
ιμ{g4){μ{Qάg-\g)Yι .

Proof. Write V'd = φ(d)Vd, then we have

(Ad Vd)(v) = φ(d)VdvVd

γφ(dyγ = (Ad Vd)(υ) (verjeA)

iff φ(d) commutes with i^, that is φ(d) e Z(ir)n1^. For δg = Ad V'g to be an
action, i.e. δgh = δg-δh:

δg(δh(v)) = VgVίΌVΓ^'1 = ii{g,h)Vf

ghvV^^(g,h)-1 ,
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which is equal to δgh(v) = VghυVgh
l for all v eY if and only if μ(g,h) commutes

with f, i.e. μ(g,h) e ZiβC.Ψ'). For the condition on λ:

λ(g9d) = δβ(Vd)V;4-i = V'gVάV'-ιV-d\^ = V'MdΓ'VίV'^V&

= V'gφ(d)-1V'd(μ(gdg-\g)V'gdy
1φ(gdg-1)

g g

D
Clearly if V'\Δ = V, then λ(g,d) = μ(g,d)μ(gdg~1,g)~1, thus extending (iv) of

Theorem 2.1. Moreover since the range of δ is in Ad\ir
(& c AutY^, this is only

a subclass of possible actions A : Γ -> Aut Y as in Theorem 2.1. Observe that the
existence of a section V'.Γ - > ^ as above, shows that μ is cohomologous to
a 2-cocycle μon Δ which extends to a 2-cocycle on Γ, but with a possibly different
coefficient group 9C. So this scenario can occur even when μ has no extensions to
Γ over the group W.

Next we wish to define a cohomology for the pairs (λ9 μ) introduced in Theorem
2.1, so that the classes can classify the actions δ. Start with a section V:Δ -> *V as in
Theorem 2.1 and choose another section V:A^>Yin such a way that it leaves the
action δd = AdVd = AdVd, d e A, invariant on jd. Keep the action δ: Γ -+ Aut Y*
fixed. Then there is a map φ: A —• iV such that Vd = φ(d)Vd for all d e A, and so (as
usual) the cocycle μ associated with V is related to μ by:

μ(d9k) =

= φ(d)φ(k)φ(dkΓ1μ(dΛ) =: (dψ)(d,k)μ(d9k) , (2.5)

where we used the fact that the requirement Ad Vd = Ad Vd forces
φ:Δ -+ Ψ'c\Z(Y) ( in case we had not chosen W c Z(Ύ)). Moreover

λ(g9d) :=

= δg(φ(

= φ(gdg-1Γίδg(φ(d))λ(gJ). (2.6)

Denote by Dφ the pair (λo,μo), where λo(g,d) := φ(gdg~ι)~ιδg(φ(d)) for all # e Γ,
d e A, and μ 0 — ̂ Ά? then, denoting componentwise multiplication of pairs by '•',
& = Dψ.(λ,μ).

Definition 2.3. On the coefficient group iV* fix an action

δ:Γ-+ Aut-JT, δj cz Ad\Ψ~Y

L^ί Z(Γ, A, J f) /?e ί/ẑ  5 ί̂ <9/<2// p^/r.s (A, μ) satisfying the second part of Theorem 2.1
where μ:AxA —• Z(Y)r\if =: Jf is α normalised 2-cocycle, μ(d,e) = μ(e,d) = 1
/or α// d 6 A. Then Z(Γ,A,Jf) is an abelian group under pointwise multiplication.
Introduce the subgroup

B(Γ,Δ,Jf):= {Dφ\φ:A

and define:

Λ(Γ9 A, J O := Z(Γ, A, JtT)/B(Γ9 A, JίT) .

Clearly Λ(Γ,A,,JΓ) classifies the actions δ:Γ -> Aut Y which extend the action
on W and are compatible with some section V. Now note that in Theorem 2.1 we
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characterised the actions δ: Γ -• Aut y in terms of a section V: A -> V and above
we measured with the A invariant how δ depends on the choice of V.

Remarks. This discussion left open two existence questions:

(i) given a section V does there exist an appropriate action δ (i.e. a λ\ and
(ii) given an action δ:Γ-> A u t V such that for all D e f , # e Γ,
Ad | .^^(^)) = ̂ (Adl^ϋjg"" 1 in Aut si and ^ c Inn if, is there a section V:Δ -+Ψ"
such that Aά\^δg(Vd) = gdg'1 e Aut J / and <5d = Ad Vd for all d e ΔΊ

We first consider (i). The section V determines the cocycle μ with coefficients in
the module Jf = Z(V) n iV, and the problem is to construct a compatible λ. There
are two obstructions. First, the class [μ] of μ in i/2(zl, J f ) must be Γ-invariant (this
is the content of equation (ii) of Theorem 2.1). If so then we have a 1-cocycle
g -> [μ^] [μ] ~ 1 with values in the coboundaries B2(A, Jf) and our second obstruc-
tion is the one arising from the short exact sequence

O ^ H o m ( z l , J Γ ) - ^ C 1 ( z l , J Γ ) d-+B2(Γ/Δ, j f ) -»0

when we try to lift this cocycle to φ:Γ -• C 1 (zl, Jf*). If we can lift it, taking

λ(g,d) = φ(g)(g-ίdg) geΓ,deA (2.7)

defines the required λ. The details of this argument are supplied in [22].
For (ii) we need to assume the compatibility of δ: A -> Inn i^ and the action of

A by implemented automorphisms oisί. This is covered by assuming that for each
d e A there is a w e f such that d = Ad\^w and δd = Adw so that:

δAd\^(W)(v) = wvw* . (2.8)

Then the condition Ad\^δg(υ) = g(Ad\^v)g~1 says that this w will satisfy d =
Ad\ tf\v and

We can now take V to be any section for Ad\s/:i
r -* A (by this we mean

δd = Ad\rVd).

Definition 2.4. Let Σ be the set of all such actions δ satisfying (2.8).

Theorem 2.5. For all actions δ e Σ and section V for Ad\^\i/" -> A, which define
a pair (λ,μ) e Z(Γ,A, J f ) as in Theorem 2.1, the class d(δ):= [λ,μ] of (λ,μ) in
A(Γ, A, C/C) is independent of the choice ofV, and there is a "Green twisting map" [18]
that is, a section V for Ad\^\ Ψ* -> A such that δg(Vd) = Vgdg-i, g e Γ,de A, iff\λ,μ\
is trivial.

Proof. Only the last statement needs proof. If a Green twisting map exists, then
λ = 1 = μ, so [/l,μ] = 1. Conversely, let [ i , μ ] = 1, i.e. there is a map φ:A -> Jf
such that

λ(g,d) = φigdg-'r^iψid)) and μ(d,fc) = φ(d)ψ(k)φ(dky1 = F.F.F^1

for some section F. Define f: zl -> TT by Fd = ̂ ( d ) " 1 Vd, then ^ = AdVd = Ad Vd for
all d e A and

= δβ(ψ(d)Γ1Φ(gdg-ί)δβ(ψ(d))Vβάβ-ι

= ψ(gdg-1Γ1Vgdg-ί = Vgdg->,

i.e. F is a Green twisting map. •
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Remark. In the particular situation of Theorem 2.2, for actions of the form
δg = Ad\r Vg, where V: Γ -> ®J is a section with F^ = 1, we have δ e Σ and the pair
(X,μ) defined by the triple V',Γ,A must be cohomologous to (λ9μ) for any other
choice of section V.

3. The Three Cocycle

In this section we will produce a 3-cocycle K: Ω3 -> iff CΛZ{V) from the framework
of the preceding section, interpret it and work out conditions for nontriviality. Start
with the section ω:Ω -> Γ with corresponding cocycle σ.Ω2 -+ A as in (2.2):

σ(g,h)σ(ghj) = {ωgσ{hj)ω^)σ{g,hf) for all/, #,/z e β

and take the image of this relation in A under a chosen section V for Ad | ̂ : f -> zί
associated with an action (5 e Γ (and thus a pair (σ,λ) e Z(Γ,A,Jf)). So:

V(σ{g,h)σ(gh,f)) =

= V((ωβσ(h,f)ωϊ1)σ(g,hf))

= μ(ωgσ(hJ)ω-\σ(g,hf)y1V(ωgσ(hJ)ωe:
1)V(σ(g,hf))

= μ(ωgσ(hJ)ω-\σ(g,hf)Γί

. λ(ωβ9 σ(h,f)Γ γδωg{V{σ{hJ))) V(σ(g, hf)) ,

so that on abbreviating the notation V(g, h) := V(σ(g,h)) we get

K(g,hJ)V(g,h)V(ghJ) = δωg(V(hJ))V(g,hf) (3.1)

for all g,h,f e Ω, where

K(g9 ft,/) := μ(σ(g9 h\ σ(gh9 / ) ) " V(ω,σ(/z, / ) ω " 1,σ(^, hf))λ(ωg9 σ(ft,/)) . (3.2)

Then by definition K: Ω3 -• JΓ = Z ( ^ ) n TfT.
Our aim is to prove that K is a 3-cocycle, but before doing so we make one

comment on its definition. Observe that δq(v) := δωq(v), v e jf, q e Ω defines an
action of Ω on Jf, because δωq preserves Z(ir)r\if^ = C/f and δωq.ωr = δσ{^r)ωqr =
^σ(9,ι )^rj however since σ(q,r) e A, δ e Σ9 so δ_σ{q,r) e Inn ̂  and thus
δσ(q,r) \z(f)^ir = id, so ̂ ( 5 r = 3^r. Moreover, this action δ is independent of ω, for if
ω' is another section, there is a map φ:Ω -^ A such that ω^ = φ(q)ω(q) and so

using δ ^ ^ U - id.

Theorem 3.1. With the preceding notation and Σ φ 0, we have for δ e Σ, and section
V for kA\S0\'V -> A and a section ω:Ω -+ Γ,the expression (3.2) defines a 3-cocycle,
Ke Z3(Ω,Jf) that is for all q9r,s9teΩ:

δq(K(r9 5, t))K(q9rs9 t)K(q9 r9s) = K(qr95, t)K(q,r,st) . (3.3)

Proof. We use Maclane's argument ([13], p. 126, Lemma 8.4) and evaluate

L := δωqlδωr{V(s9t))V(r9st)]V(q9rst)
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in two different ways:

(i) L = δωqlK(r9s9t)V(r9s)V(rs9t)'] V(q9rst) by (3.1)

= δωq [K(τ9 s, t)δωq(V(r9 s))δωq(V(rs, t)) V(q9 rst)

= δωq(K(r, s9 t))K(q, r, s) V(q, r) V(qr9 s) V(q, rs)'1

• K(q,rs9t) V(q,rs) V(qrs, t) V(q9rst)'1 V(q9rst) by (3.1)

= δωq(K(r9 s, t))K(q, r9 s)K(q, rs, t) V(q, r) V(qr, s) V(qrs, t) .

(ii) L = δωqωr{V(s,t))δωq{V{r9st))V{q9rst)

= δσiq,r)(δωqr(V(s,t))K(q,r,sή)V(q,r)V(qr,st) by (3.1)

= δσ(q>r)\K(qr9 5, ί) V(q9 r, s) V(qrs, t) V(qr9 st)~x] K(q, r, st) V{q, r) V{qr, st) .

So relation (3.3) will hold iff

V(q9r)V(qr9s)V(qrs9t) = δσiq,r)[V(qr,s)V(qrs,t)V(qr,sή-^V(q,r)V(qr,st) ,

where we made use of δσiqtr)(K(qr,s,t)) = K(qr,s,t) since σ(q,r) e A. That is

(AdV(q9r))(U(q9r9s9ή) = δσiq,r)(U(q9r9s9ή) ,

Where U(q, r, s, t) = V(qr, s)V(qrs, t) V(qr, sty1. Thus since it is a property of δ e Σ
and a section V for Aά\^\ V -> A that δd = Ad Vd for all d e A, we have

which completes the proof of (3.3). •

From Eq. (3.1) we see that K depends on the choices of δ, V and ω. By analogy
with the 3-cocycles in Maclane [13], we expect the class [X] of K to be indepen-
dent of V and ω.

Theorem 3.2. Given the hypotheses of Theorem 3.1,

(i) the cohomology class of Ke Z3(Ω,JΓ) is independent of the choice of section
Vfor Ad\^\V^ A

(ii) the cohomology class of K is independent of the choice of section ω:Ω -»Γ.

Proof (i) Using Theorem 2.5 we show that if (λ9μ) - (λ\μ') in Z(Γ, J , Jf), then
K ~ K' for the corresponding 3-cocycles. Now (λ, μ) ~ (λ\ μ') means there is a map
ψ:A -+Jf such that

λ'(g,d) = ψ(gdg-1y1δg(ψ(d))λ(g,d) VgeΓ,deA,

μf(d,k) = φ(d)φ(k)φ(dky1μ(d,k) W,fc e A .

So by (3.2):

~ι= ψ(σ(g9 h))-^(a(gh9 / ) ) " V(*(& h)σ(gK f))μ(σ(g9 h\ σ{gh9 f))
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- μ(ωgσ{hj)ω;\σ(g, hf))φ(ωgσ(h, / ) ω ~ ι)~1

δωg(ψ(σ(hj))λ(ωg,σ(hj))

= ψ(σ(g,h)Γ1ψ(σ(ghJ)Γίψ(σ(g,hf))

δωg(ψ(σ(hJ)))K(g,hJ) using (2.2)

= Pig.hr1 pighJΓ1 p(g9hf)δωg(p(Kf))K(g9hJ) 9

where p(g,h) := φ(σ(g,h)\ and so K ~ K'.
(ii) The proof is complicated and unenlightening but routine. We refer the reader
to [22] for details noting only that the method is to choose a second section
ω' :Ω -• Γ with consequent 3-cocycle K' and map n.Ω -> Γ such that ω^ = nsωs

for each s e Ω and prove that K' = δ(ξ)K, where

ξ(r9 s) = λ(ωr, ωrnsω~ *) μ(nrωrnsω~ iσ(r9 s\ n~ 1 )~ V f e 1 -> nrs)

• μ(nrωrnsω~λ, σ(r, s)r1μ(nr,cornsω~ 1)~1 .

D

Our interpretation of the 3-cocycle K will rest on the next theorem. Observe
that if K is trivial, that is there is a 2-cochain p: Ω2 -• Jf such that

then substitution in (3.1) produces:

(3.4)

that is

W{g9h):=p(g9h)-ιV{g9h) (3.5)

is a non-commutative 2-cocycle.

Proposition 3.3. Given the hypotheses of Theorem 3.1 and hence a 3-cocycle K asso-
ciated with δ e Σ, assume that K is trivial. Then

(i) the extension defined by

S\=Ω^r with multiplication (guu1)(g2,u2) = (gιg2,u1δωg^u2)W{gug2)),

is a group (where W is given by (3.5)).
(ii) The map v: & -> Aut s/ defined by

v(g,u)(A) = uωg(A)u~ι, Ae stf,g eΩ,uei^

is an action.
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Proof. The proof is standard, but we include it for completeness.
(i) Since ωe = e, W(e,g) = 1, the identity of $ is (e,t). The inverse of (g,u) is
(g" 1 , W(g~ί

9g)~1δωg-i(u~1)) and so it is only necessary to verify associativity:

(guu1)[(g2,u2)(g3,u3)'] = {gu

= (9i929uίδ(Ogι(u2)W(gl9g2))(g39u3)

that is, we need to prove that

= W(gug2)δωgJu3)W(gig2,g3)

Now

and thus (also using (3.4)), both sides of (*) are equal to

W(gug2)δωgJu

(ii) To see that v is in action:

(u2)W(gl9g2))(A)

Ae jtf,gieΩ,uίeir . Q

As a result of this last proposition we conclude that if K is trivial there is an action
v of an extension $ of Ω by V on stf. Thus for a given action δ e Σ (and section
ω:Ω ->Γ) we interpret [X] in the terminology of Sect. 1.1 as the obstruction to the
construction of this extension $ of the physical transformation group Ω by the group
of implementers of gauge transformations Y*.

Next we wish to find conditions for the nontriviality of K. Such triviality conditions
are best expressed in terms of an exact sequence

H2(Γ,JΓ) UA{Γ9Δ9JΓ) ^H3(Ω,Jf)

whose existence is proven below. The homomorphism χ:A(Γ9Δ9$Γ) ->i/3(Ω, Jf) is
given by the formula χ(λ, μ) = K, where K is given by Eq. (3.2) for a particular choice of
ω. Then from Theorem 3.2, χ respects cohomology classes so lifts to produce the
desired homomorphism χ. The homomorphism ζ:H2{Γ,X) -* A(Γ, Δ, J Γ ) is given by

where for μ e Z2(Γ, Jf) we have

λ(g9d):= μ(g9d)μ(gdg~1

9gy1



Group Actions on C*-Algebras, 3-Cocycles and Quantum Field Theory 403

and μ = μ\ΔxΔ (cf. remark below Theorem 2.2 for motivation). Then ζ respects
cohomology classes so lifts to the desired homomorphism ζ. The next result is the main
theorem of the paper.

Theorem 3.4. Assume that Σ Φ 0. Then

(1) there is an exact sequence

where the homomorphίsms £, χ are as defined above,
(2) the pair (λ, μ) produces a trivial [K~\ if and only if[λ, μ] e Ran ζ, or equivalently if and
only if there is a pair (λ\μt) ~ (λ,μ)for which μ' extends to Γ and

λ'(g,d) = μ'(g,d)μ'(gdg-\gy1 (geΓ,deA).

Proof Only (1) needs proof of which we adapt the arguments in [22].
Given that for a choice of section ω:

χ(λ, μ)(g9 h, f) = μ(σ(g, h\ σ (gh, f))"1- μ(ωgσ(h, f)ωg\σ(g, hf)) λ(ωg9 σ

we see immediately that

so using Theorem 3.2, χ lifts to a well-defined homomorphism χ:Λ(Γ,A,yΓ) -•
H3(Ω, X\ For C, we first show that

ζ(μ)eZ(Γ9Δ9χ-) Vμe H2(Γ,Jf) .

Now condition (i) of Theorem 2.1 is clear since λ(e,d) = μ(e, d)μ(d, e)~Λ = 1 = λ(g,e).
For condition (ii) of Theorem 2.1:

λ{g9d)λ{g9k)μ{gdg-\gkg-1)

= μ(g,d)μ(gdg~\g)~ίμ{g,k)μ(gkg~\gy1μ(gdg~\gkg~1)

= μ{g,d)μ(gd,k)μ(gdg~\gky1μ(gdg~\gk)μ(gdkg~\g)~1

= μ(g,d)μ(gd,k)μ(gdkg-\g1Γ1

= δg(μ(d,k))μ(g,dk)μ(gdkg-\gΓ1

= δg{μ(d9k))λ{g9dk) for all g e Γ, d,keΔ ,

using δd(w) = w \/d e A, w e Jf\
For condition (iii) of Theorem 2.1:

δg(λ(h, d))λ(g9 hdh'1) = δg(μ(K d)μ(hdh~ \ h)~ ̂ μfa hdh~') μ{ghdh~' g~ \ g)~'

xμ(g,hd)μ(g,hdh-1)μ(ghdh-1g-\gy1

= μ(ghj)μ(ghdh'ίg~\gh)~1μ(ghdh~1g~\gh)

= λ{gKd).

Then (iv) of Theorem 2.1 is true by definition of ζ and so ζ(μ) e Z(Γ,A,3f).
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Next we show that ζ respects cohomology: let μλ ~ μ2, which means there is
a φ\Γ -• Jf such that μγ = {dφ) μ2. Hence we have μί ~ μ29 where μt are the
restrictions onto Ax A. Moreover

λi(g,d) = μι(g,d)βi(gdg'\g)~1

that is, (λuμj = Dψ-(λ29μ2). Thus (lifts to a map ζ:H2(Γ,Jf) -+Λ(Γ,A,Jf).
For the homomorphism property: ζ(fiι μ2) — (̂ 1 'λ2,μi *μi) w e use

λi(g,d) = μi(g,d)μi(gdg~\g)~1 ,

so that

C(μi μ2) = (ΛΊ> MI) * (^2, μ2) = Γ(μi) C(μ2)

Next we need to establish exactness of the given sequence. First we show χ ° ζ = 0,
that is, ran ζ c Ker χ. Let (A, μ) e ran ζ so there is a μ e Z2(Γ, Jf) such that

λ(g9d) = μ{g,d)μ{gdg~\g)~1 .

Then for all g, h, fe Ω and a choice of section ω,

= μ(σ(g, h\ σ{gh, / ) ) " ιμ{ωgσ{h, f)ω~ \ σ(g9 hf))λ(ωg9 σ(h, /))

- μ{ωgωhωgh\ ωghωfωgh

ι

f)~ *μ{ωgωhωfωϊ/ ω~ι, ωgωhfωgh

ι

f)

• μ{ωg, ωhωfωh/ )μ{ωgωhωfωh/ ω~ 1

9ωgy
i

= μ(ωgωhωgh\ ωghωfω~h] )~ ^μ(ωg, ωhωfωH/)

f\ ωhfω~h])

hfY
x (using the 2-cocycle relation (2.1) on the

2n d and 4th terms)

= μ(ωgωhω~h\ ωgh)~1 μ(ωgωh, ωfωgh

ι

f)~ιμ(ωgh, ωfωgh})

. μ(ωg9 ωhfωgh

1

f)~1μ(ωgωhωfωhf9 ωhf)

• μ(ωgωhωf, ωghf)δωg(μ(ωhf9 CD'H})'1)

(using μ(ab~\bc) = μ(ab'ί9b)μ(a9c)δab-i(μ(b9c))~1

on the 1 s t and 3 r d μ)

= μ(ωgωhωgh

γ

9 ωgh)~ίμ(ωgh9 ωfω~h\)δωg{μ(ωhωfωhf

ι, ωhf))

μ(ωg9ωhωf)

• μ(ωg9 ωhf)~ιμ{ωgωhf, ωgh))~ιμ{ωgωh, ωf)~ιδωg<Oh(μ(ωf, ωgh}))

where we used (2.1) on the 4 t h and 6th terms, then on the 5 th and 8 th terms, and using
(2.1) on } 1 }
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Now apply (2.1) to the 4 th and 7th μ's, regroup and set

β(g, h) := μ(ωgωhωgh

ι,ωgh)μ(ωg,ωh)~*
to get

K(g,hJ) = ^

. μ(ωgωhf,ωgh])~ιδωgh(μ(ωf9ωgh

ι

f)) (recall δωg(Oh = δωgh on jf)

= β{g, h)~1δtOg{β(h9 f))μ(ωg, ωhf)~ 1μ(ωgh9 ωf)μ{ωghωf, ωgh] )

•μ(ω gωh f,ω g h))~ ι (using (2.1) on the 2n d and 4 t h μ's) .

Now μ(ab~x

9b) = μ(ab~1,bc)μ(a,c)~1δab-ί(μ(b,c)). So with a = ωgωhf, b = ωghf9

c = cύghf we see that

μ(ωgωhf9ωghj)~ι = ) )

and when a = ωghωf instead, we have

μ(ωghωf,ωghf) = μ

So on substituting these into the expression for K

K(g,hJ) = β(g,hΓ1δωg(β(h,f))β(g,hf)β(gh,f)-ί =(dβ)(g,h,f),

that is, χ ° ζ = 0.
For the more difficult part of proving that if [Λ, μ] e Ker χ, then [A, μ] e ran ζ,

we first need the following lemma, stating that K is the boundary of a cochain
p over Γ (but not necessarily over Ω).

Lemma 3.5. For each (λ9μ) e Z(Γ99A, Jf), de/ϊne p e C2(Γ, J f) by:

p(gί,/i) := λ(ω^,/zωΛ"^μigω'*,ωβftωh"
xω~ ι)μ{ghωh ιωg\σ(g9h)) Vg9h e Γ

(where we use notation ωg = ωgΔ and σ(g,h) = σ(gΔ,dΔ)). Then

K(gΔ9hΔJΔ) = pig^Γ'pig

= (dp)(g,h,f)

Proof. Note that on Jf, δω = δff, so

^ω~\σ(g9hf))

ωh1ωg

ι,σ(g,h))~ι

/ 1)~1μ(ghωgh

1

9 ωgh fωj 1ωgh

1)~1

ιω-h\σ{ghj)yι . (3.6)

Now note that by the Theorem 2.1 (iii), the first A-term is

δg[λ(ωh9fωjί)~] = λ(ωgωhjω}ι)λ{ωg,ωhfω]1ωh

1y1

= λ(ωgh,fωjx )λ(σ(g9 h)9 ωghfωjι ωgh

ι)

= λ(ωgh,fωj 1)λ{ωg, ωhfωjx ωΛ" ί)~1μ(σ(g9 h\ ωghfωj * ω^ 1 )
1 1 1 ) ) " 1 , (3.7)
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and by Theorem 2.1 (ii), the next two A-terms are

λ(ωg9 hfcύh/)λ(ωg, hcoh1)'1

= λ{ωg,ωhfωh/)μ{ωghωh 1ω~ί

9ωgωhfω^ωg

 1 ) g /

= λ(ωg9ωhfω]1 ω," 1 )λ(ωg,ωhωsω^)μ(ωgωhfωj1 ωh~
1 ωg

 1,ωgσ(h, f)ω~1)

• δg[μ(ωhfωj1 ωΛ~
λ, σ(h, f))~1μ(hωϋ' \ ωhfωhf

ι)~1'\

• μ{ωghωhλω'1\ωgωhfω^ω~γ) . (3.8)

Thus on collecting all Λ-terms in (3.6), substituting and cancelling we get:

λ(ωg9 σ(h,f)) x μ-terms in (3.7) x μ-terms in (3.8) .

Now the δg μ-terms in (3.6) cancel with the δ^μ"1-terms in (3.8) because

Thus

(dρ)(g,h,f)

= λ{ωg, σ(h9 f))μ(σ(g9 h\ ωghfωj1 ω ^)

.μ(ωgωhfωj1 ωΛ"1 ω~\σ(gf,h))~1μ(ωgωhfω~f

 xωΛ~xω^\ωσ(Λ/)ω"ι)

ωΛ"1 ω~ \ ωgωhfω^ ω~ ̂ μigω' \ ωghfωϊ/ ωg

 1)

ϊ/ ω~ \ σ{g, hf))μ{gω~x, ωghωϊ 1ω~1)'1

Λ ω~\σ(g,h))~Λ μ(ghωgh\ωghfωjΛ ωgh

x)~Λ

= λ(ωg9σ(h9f)) μ(ωgωhfω~f

ιωκxω~

• μ(σ(g9h\ωghfωj 1ωgh

ί)μ(ghωH *ωg \σ(g9h))~ 1μ{ghωgh\ωghfωj 1ωgh

1)~1

-μ(ωghωh 1 ω~\ωgωhfω^/ω~ι)μ{gωg

 x,ω^Λ/ωΛ"/ω~1)

• μ (gω g

 x, ω^ /zωΛ~
x ω ~ 1 ) " x

• μ{ωgωhfωj1 ωΛ~1 ω^"x, ωgσ{h, f)ω~ ^μighfωζ/ωg *, σ{g9 hf))

• μighfωj1ω^1 ,σ{ghj)~x

= λ(ωg9σ(h9f)) μ(ωgωhfω] 1ω^ λω~ \ σ(g9 h))'1

• {μ{ghωhlωg\ωgωhfω}ιωgh

1)} ~1{μ(ghωh1ωg

1

9ωgωhfωHf

ιω~1)}

- μ{ωgωhfω~f

ιω^ω~γ,ωg σ{hj)ω~ 1)μ(ghfωh/ωg' \ σ{g, hf))

-μ(ghfω]1ωgh

ι

9σ{gh9f))~1
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= λ(ωg9 σ(h, /)) μ(ωgωhfωj* ωΛ~* ω~ *, σ(g, h))~ι

• μ{ghωh

 1 ωg\ωgωhfωj1 ωgh

1)~1μ(ghω:

h * ω ~ \ ω g ω h f ω ^ ω g

1 )

g \ωgσ(hj)ωg~
1)

g

-[μ(ghfωj1 <x>h *ω~\ω gσ(h9 f)ω~1)~1

• μ(ωgσ(h, f)ω~ \ σ(g, hf)) μ(ghfωj1 ωΛ"1 ω~ \ ωgσ(h, f)ω~1 σ(g, Λ/))]

• μ(ghωj1 ωh

 1 ω~x, σ(g, h))

• μ(σ(gf,Λ),σ(gh9 f))~ιμ{ghfω}1 ω^1 ωg \σ(g,h)σσ(gh,/))"1 ,

so using (2.2) we obtain the cancellation. On regrouping:

(dp)(g,Kf)

= λ(ωg,σ{h, f))μ(σ(g, h), σ{gh, / ) ) " 1μ(ωgσ(h, f)ω~ \ σ(g, hf))

\σ(g, ιω

1 ω~1,cOgCOhfcOh/ωg

 ι)μ{ωgωhfω]1 ωΛ~xω~\ωgσ(h, f)ω~1)

- μ{ghfω}1 ω^1 ωg\ωgσ{hj)ωg

ιy1 μίghfω}1 ωΰ1 ωg\σ{g,h))

= K(g, ft, / ) μ(ωgωhfωj1 ωft"
1 ω^" :, σ(#, ft))"1

• μ(ghfωj1 ωh"x ω~ x , σ(#, ft))

= K(g,h,f). D

The final step is to show, using this lemma, that if [K] = χ[λ, μ] = 0, then there
is a θeZ2(Γ,Jf) such that (/I, μ) = ζ(θ). Equivalently μ = θ\AxΔ and
λ(g,d) = θ(g,d)'θ(gdg~1,g)~1, so that kerχ c ranC Now since [X] = 0, there is
some normalised τeC2{Ω,Jf) such that K = dτ. Define τ G C 2 ( Γ , J f ) by
τ(g9h):=τ(gA,hΔ). Then ^(p τ " 1 ) = K K'1 = 1, and so we set 0 : = p τ - 1 e
Z 2(Γ,JΓ). Trivially

0 h χ j = (p τ " 1 ) L x z i = pLx4 = μ

Moreover since τ(gf,ft) = 1 if either g or ft e zl, we see that

θ(g,d)'θ(gdg-\g)-1 = p(g,d)p(gdg-1,g)-1

= λ(ωg9d)μ(gω~ \ ωgάωg

 1 )μ(gdω~ \ σ(g9 d))

• λ(e9 g)'ιμ{gdg~\ gω~ ι)μ{gdω; \ σ{gdg~γ,g))~γ

= λ(ωg9d)μ(gω~\ωgdωg

 ι)μ(gdg~\gω; 1)~1

= λ(ωg,d)λ(gωg

1,ωgdωg

ί) by Theorem 2.1(iv)

= λ(g,d) by Theorem 2.1 (iii) .

Thus K e ran ζ. Π
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Summary: The circumstances in which this framework will produce a nontrivial
3-cocycle K are that (λ,μ)φmnζ and this will be the case when either:

(i) μ does not extend to Γ over j f (but remember we must still have that
μ ~ μ9\fge Γ or else K will not exist), or

(ii) μ does extend to Γ over Jf, but there is no extension μ which satisfies

λ(g9d)

Note finally that in 3.4 we have used only part of the long exact sequence contained
in [22].

4. Examples

In the absence of constructive approaches to gauge field theories which enable us to
exhibit representations of gauge groups on Hubert spaces which also carry a rep-
resentation of the "field algebra" we turn to more conventional C*-algebras for
examples of the three cocycles of the previous section. The examples we construct
here are for continuous trace C* algebras which bear some formal similarities to
the algebras one would expect to arise in quantum field theory. To keep the
discussion brief we assume familiarity with [18, 23].

Example 4.1. For the first example consider the commutative diamond:

of principal T-bundles, in which both p and q are the Hopf vibration. Then there is
a continuous trace algebra A with spectrum S3^ and an action α: R -> Aut A
inducing the given action of T = R/Z on S3 = A and such that the spectrum
(A xa Ry is isomorphic as a principal circle bundle to q:S3 -+ S2 = A/R. (Noting
that H4(S2,Z) = 0, this is a corollary of [21, Theorem 3.1]. It also follows by
applying [23, 4.12] to any stable algebra whose Dixmier-Douady class δ(A)
satisfies p,(δ(A)) = [q\, where p, is the map in the Gysin sequence

= H3(S2,Z) H2{S2,Z) H4(S2,Z) =

with [p]u denoting the map which takes [g] to the cup product [p]u[g].
Exactness of this sequence also tells us that there is just one class δ(A) mapping
onto [g] under /?,.)



Group Actions on C*-Algebras, 3-Cocycles and Quantum Field Theory 409

Now we apply Theorem 2.2 of [23] to the above system which then identifies
the diamond of bundles with the spectra of the algebras as indicated:

A/R

Here Ind denotes the induction of representations and Res takes a covariant pair
(π, U)toπ. Because H2(A,Z) = H2(S3,Z) = 0, the fibration Res is trivial, and α | z is
inner by [18]. Hence we are essentially in the situation of Sect. 2 and 3. Now we
know from [20] that q is the trivial fibration if and only if α is given by a Green
twisting map on N, and hence if and only if the pair (λ, μ) (which is well defined
because α | z consists of inner automorphisms) is also trivial. But we have construc-
ted q to be non-trivial forcing the class of the pair (λ,μ) to be non-zero in
Λ{R,Z;C(X9T)). From [23, Theorem 4.1] we have H2{R,C{X, T)) =
0 = H3(R, C(X, T)) and hence the exact sequence

H2(R,C(X,T)) ->Λ(R9Z;C(X,T)) ^ H3(T,C(X,T)) -+ H3(R,C(X,T))

implies that [K] = Δ([λ9μ~\) is non-zero in H3(T,C(X, T)).

Remark. Note that the two cocycle μ is zero as α | z is inner so that the class we have
constructed is in the kernel of the map Λ(R9Z; C(X9 T)) -+ H2(Z, C(X, T))-indeed
the second cohomology of Z with any coefficient group is trivial.

Example 4.2. Let Γ be a discrete group, Δ a central subgroup and suppose we are
given a continuous trace C*-algebra B with B = X and a cocycle

σ e Z2(Δ9 UZM(B)) = Z2(Δ, C{X9 T)) .

We say that oc:Δ -^lnn(B) has Mackey obstruction σ = c(α) if there is a map
u\Δ -• UM(B) (UM(B) denotes the unitaries in the multiplier algebra of B) such
that oίd = Aάud and ucud = σ(c,d)ucd. Let K denote the C*-algebra of compact
operators on a separable Hubert space. If B is stable there is always such an action,
for by [9, Theorem] we can find such an action β of Δ on C0(X,K) and take
α = 1 (x) β on

Now let

A = Ind^(J5,α) := {feί«>(Γ,B)\f(γd) = ad

for all d e Δ and the map yΔ -• || f(y) \\ vanishes at oo on Γ/Δ} .

Because α fixes X = B, A is a continuous trace C*-algebra with spectrum Γ/Δ x X
and a natural action τ of Γ by left translation: τ y(/)(χ) =f(y~1χ). The homeo-
morphism which gives A is induced by the map M:ΓxB -> A defined by

Lemma 4.1. The automorphism τ\Δ is inner and the Mackey obstruction c(τ\A) is
given by

c(τ\A)(c,d)(γA9χ) = (1 ® σ)(c9d)(γA,χ) = σ(c,d)(χ) .
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Proof. If d £ A, then because A is central

τΛf)(y) =f(d~1y) =f(yd~1) = ad(f(y))

We define vd e M(Ind Δ B) by choosing a section c:Γ/A -> Γ (recall that Γ is discrete
and so there is no topological problem in choosing a cross section) and setting
vd(y) = 0L~{yΔ)-ιy(ud). It is easy to check that υd e M{h\άΓ

ΔB) and it is unitary because
ud is. Further, for any c, d e A we have

αc(Wd) = ucuduf = σ(c,d)σ(d,c)~1uducuf = σ(c,d)σ(d,c)~1ud ,

so that oίc(ud) implements ad = Adud. Thus for each y9 υd(y) implements ad and

Advd(f)(y) = vd(y)f(y)vd(y)* = ««(/(?)) = τd(f)(y) •

Since

vcυd(y) = a;{yΔ)-^{ucud) = ocΓ{}ΔΓιγ(σ{c9d)ucd)

= σ(c,d)a;(yΔ)-iγ(ucd) = σ(c,d)vcd(y) .

If we identify (lndΔ Bf with Γ/A x X so that the unitary group of the centre of the
multiplier algebra of B is just C(Γ/AxX,T) then this says precisely that
vcvd = (1 ®σ(c,d))vcd.

Now we may apply the analysis of Sects. 2 and 3 with *V equal to the unitaries
in the multiplier algebra oϊA, if the unitaries in the centre of the multiplier algebra
of A and the section Vd given by vd. The lemma implies that the cocycle μ of
Theorem 2.1 is given by μ = 1 ® σ.

Using Theorem 3.4 (namely the exactness of the long exact sequence at A) the
3-cocycle K which is the image of the pair (λ,μ) in H3(Γ/A, ΊV) vanishes if and only
if (λ,μ) is the restriction of some v e H2(Γ, if). In particular, only if μ extends to
a cocycle v:ΓxΓ <-W.

Now if v: Γ x Γ -+ C(Γ/A x X, T) is a cocycle extending μ = 1 (x) σ and Γ/A is
finite then

p(y>x)(χ)= Π v(y,x)(yA,χ)
yΔeΓ/Δ

will be a cocycle bounding μ |Γ/M|. (Notice that for example p \{Δ\ xX is not a cocycle
because the action of Γ enters in the last variable.) On the other hand if we seek
a cocycle v:ΓxΓ -• C(X, T) extending μ, then this amounts to making a different
choice for Ψ" and hence a different choice for Ψ* (namely C(X,T)). Thus for
example, with Γ = ZxZ, A =3ZxZ, X = T and μ((3m l 5wj, (3m2,w2)) = z " i m 2

?

then μ cannot possibly extend to a cocycle on Γ x Γ . For if so the bicharacter
v obtained by antisymmetrising v would satisfy

which would only be consistent with μ((0, l),(3,0)) = z2 if we had a continuous
cube root for the function z -»z2 on T.

Remark. Note that this illustrates the sensitivity of the non-triviality question to
the choice of coefficient group.
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5. The 3-Cocycle a Lie Algebra Context

The literature on gauge group chomology actually mainly discusses Lie algebra
cohomology (see [31]). It seems useful therefore to consider what our constructions
yield in that context. Hence assume that the groups A,Γ9Ω,y,W are all Lie
groups with Lie algebras J , Γ , ί 2 , ^ , ^ a n d that the homomorphisms considered
previously are locally C00 and hence we obtain the diagram below also for the Lie
algebras. Also assume the sections V: A -> y and ω: Ω -> Γ are locally C °°, and so
define linear sections v: A -> ̂ , v(0) = 0, and ω: Ω -• Γ, ω(0) = 0. We now have
the diagram:

The relations VdVk = μ(d,k)Vdk and ωgωh = σ(g,h)ωgh have the Lie algebra
versions:

[>d, VΩ = V[d,k] + μ(d, k) for all d, k e A ,

and [ωg9ωh] = ω{g,h] + σ(g,h) for all g9h e Ω ,

where μ:A x A -• Wand σ:ΩxΩ -> A are Lie algebra 2-cocycles involving the
infinitesimal versions of the actions

δd(w) = Vdw VJ1 (of A on ΊV) and ωgkω~γ (of Ω on zJ) ,

that is,
d w = [ud,w] and g-k = [ωg,k~] .

Our first task is to obtain a Lie algebra version of Λ(Γ,A,Jf) and hence an
analogue of Theorem 2.1. Introduce

and a Lie algebra action δ: Γ -> Der # ^ a s a map satisfying

^ + δh = δ̂  + Λ and 5[βfΛ] = [ ^ A ] e D e r # .

(Observe that whilst Der Ψ* is not closed under composition, it is closed under the
commutator, and is thus a Lie algebra.)

Theorem 5.1. Given the exact sequences above and a Lie algebra action
δ: Γ -> Der Won the coefficient Lie algebra Wsuch that

δd(w) = [vd, w] for all d e A, w e W,
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then there is an extension to a Lie algebra action δ: Γ -»Der if such that

and δd(v) = [vd, υ] for all g e Γ, d e A, v e if .

if and only if

μ(d,k)eZ(i^)nir=:Jf for all d,ke A ,

and there exists a m a p λ:Γ x A -• J Γ such that for all g,he Γ, d,k,e A:

(i) λ(O,d) = O = λ(0,O),

(ii) ί,(/ι(d,fc)) + A(^[d,fe]) = /ι([fif,d],fc) + μ(d,lg,k])
(iii) A([fif,A],d) = δg(λ(h,d)) - δh(λ(g,d)) + A(^,[A,d]) - λ(Kίg9dl)
(iv) λ(d,k) = μ(d,k).

Proof. ( =̂ >) Assume an action δ: Γ -> Der ̂  exists as above. Define

λ{g,d):=δg{υf)-ΌίβtdΊeir9

for g e Γ, de A. Now

δ[d,dv) = lυ[dtk]9v] = [ [u d J » f e ] ,ϋ] - [>(<*,£),t;]

= ( ί d 5 k - δkδd)(v) = [υd9 [υk, t;]] - [i>k, [»d, i;]] for all v e if, d9 k e A .

Rearranging:

-lμ(d,k),υ] = lv,[_vd,vk-]-] + [v,,[^,ι;]] + [ M ^ ] ] = 0

by the Jacobi identity. Hence, μ(d,k) e Z(if)n(W) and we denote this latter
algebra by J>Γ. Similarly, let g e Γ, d 6 J, then for allveΨ*:

(δgδd)(υ) = δg([vd,vy = [δg(vd),υ^ + [υd9δg(υ)2

= lλ(g9d),ύ] + [^ f l f ],t;] + lvd,δg(vft

= ίδ[g,d] + δdδg)(v) = [υίgtdl,ύ] + [»d,^(t;)] .

Hence [λ(g, d), v] = 0 or all i; e TΓ, that is, λ: Γ x A -• JΓ. Using »(0) = 0, (i) now
follows.

For (ii) consider 5^([t>d,t>k]) = [δg(vd),vk~] + [»d,5ff(t?fc)]. The left-hand side of
this expression is

δβ(*[d.k] + μ(d,k)) = δβ(μ(d,k)) + hgΛdw + Λ(^ W,*]) ,

while the right-hand side becomes:

lλ(g,d) + v[gίd],vk~] + [υd,λ{g9k) + ^, f c ] ]

Equating these and using the Jocobi identity and linearity of v we get

δg(μ(d9k)) + λ(g9ld9k]) =
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For (iii):

= (δgδh - δhδg){vd) = δg(λ(h,d) + i>[M]) - δh(λ(g,d) + » [ M ] )

= δg(λ{h,d)) - δh(λ(gj)) + A ( & | M ) + ΌίgΛhtdu

- λ(h,[g,d]) -v[hΛgtd]] ,

so using linearity of v and the Jacobi identity, we get

λ(lg,h],d) = δg(λ(h,d)) - δh(λ(g,d)) + λ(g,[h,dV - λ(h,[g,d^ .

For(iv): δd(vk) = [υd,vk~\, so

λ(d,k) + v[dΛ] = v[dΛ] + μ(d,k) .

( <=) The converse is a straightforward adaptation of the proof for the group case.
Starting from an action δ: Γ -• Der ̂  on the coefficient algebra and a map
λ satisfying (i) to (iv), define a map δ: Γ -> Der ¥ ^ by

<̂ (w + »d) = <^O) + A(gf,d) + »[g,d], for all w e ̂  g e Γ, rf e J ,

and verify that it is an action as claimed. •

Next we want to know how to obtain from a pair (λ, μ) a 3-cocycle K: Ω3 -» JΓ.
As at the group level, we want to obtain K by finding the image of the 2-cocycle
relation of σ under υ, express this in terms of a coboundary of v ° σ and then the
remainder is K.

The 2-cocycle relation for σ is: for all g,h,feΩ:

[ω,,σ(ft,/)] - [ωfc,σ(0,/)] + K,σ(#,/z)]

- σ(Lg9K]J) + ̂ ([^/],Λ) - σ(lhjlg) = 0

and its image under v:A -+ Ψ* is (using the notation »(gf,Λ) := υ(σ(g,h))):

- HίgMf) + HίgJlh) - v{[hj\g) = o,

so that,

δωftiKf)) ~ λ(ωg,σ(hj)) - δωh(υ(g,f)) + A(ωΛ,σ(^/))

+ δωj{υ(g9h)) - λ(ωfMgM - υ([g9h]9f) + HlgJlQ ~ HίKflg) = 0 .

So we set

K{g9h9f) := l K , σ f t / ) ) - A(ωh,σ(^,/)) + A(ω/9σ(flf,A)) = (dv)(g9h9f)

= δωg(υ(hj)) -δωh(v(gj)) +δω/(υ(g9h)) -v(lg9h]9f)

+ HίgJlh)-v(lhJlg).

Theorem 5.2. The expression

K{gXf) = λ(ωg,σ(hj)) - λ(ωh9σ(g9f)) + λ(ωf,σ(g,h))

defines a 3-cocycle, that is,

δωg(K(h,f,s)) - δωh(K(g,f,s)) + δω/(K(g,h,s)) - δω,(K(g,h,f))

- K([g,hlf,s) + K([g,flh,s) - K{lg,s],h,f)

- K(ίh,flg,s) + K{[h,s\,gJ) - K{ίf,s],g,h) = 0 . (5.1)
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Proof. This is lengthy but straightforward verification of Eq. (5.1) making use of
the listed identities in Theorem 5.1, the 2-cocycle identity for σ and linearity and
anti-symmetry of the 2-cocycles.

Remarks. Observe that μ has vanished from the Lie algebra version of K in
contrast to the group situation. This is due to the fact that in constructing the Lie
algebra version we are assuming additional regularity (locally smooth cocycles on
a Lie group rather than cocycles on a discrete group). This translates in our Lie
algebraic construction into linearity of the sections v, ω. It means that the condi-
tions in Theorem 5.1 are more restrictive than those in Theorem 2.1. In fact
a change in μ will definitely affect K but indirectly through λ. The question of
non-triviality at the Lie algebra level requires different techniques and will not be
pursued here. It is relevant however to the discussion in the concluding section.

5.1. Interpretation of Lie Algebra Cocycles and Concluding Remarks. To connect
up with the field theoretic viewpoint [2, 31] we need some further discussion.

Let M denote a three dimensional manifold (representing the spatial degrees of
freedom) and we take Γ/A to be the Lie algebra of the gauge group which for the
present purposes is taken to be the group of smooth maps from M into a compact
Lie group G with Lie algebra g. Then we take Γ to be the Faddeev-Mickelsson
[2,14] extension oϊ Γ/A and A is a non-central abelian Lie algebra. For concrete-
ness, if stf denotes the affine space of connections on the trivial principal bundle
P over the 3-dimensional manifold M and g is the Lie algebra of the compact group
51/(2), then A may be taken to consist oϊWL-valued functions on stf which are linear
in the connections and their derivatives. This is because for this case the Faddeev-
Mickelsson 2-cocycle σ on Γ/A which defines the extension Γ takes its values in the
space of such linear functional on srf.

One may construct a C*-algebra $F on which Γ acts as derivations [5]. We
denote this action by A t->ηx(A), x e Γ, A e #" remarking however that for the
purposes of the present discussion it is not essential to describe #" explicitly. For
the moment assume that SF is represented irreducibly by bounded operators on
a Hubert space ffi say by π: 3F -• B(H). The usual procedure now would be to
assume that the map v above is a projective Lie algebra algebra homomorphism
from A to the unbounded self-adjoint operators acting on a common dense
invariant domain £f c j f with cocycle μ and that we have an (unbounded)
self-adjoint operator vx for each xe Γ such that

Now vx for x G Γ defines a derivation on v(A) by

By our previous results, a scalar valued λ satisfying the conditions of Theorem 5.1
exists and hence a corresponding 3-cocycle. If this 3-cocycle is non-trivial then it is
not difficult to check that {vx | x e Γ} do not form a representation of Γ. So one has
an obstruction to the usual desiderata of quantum field theory.

In fact much of the preceding apparatus is redundant. The field algebra J^ is
only required to force a scalar valued pair μ, λ. All one really needs are the Lie
algebras of the diagram at the beginning of this section.

One may now ask whether the 3-cocycles obtained by the descent equation
[2, 31] could arise in this way. The answer is negative however because the descent
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equation method does not simultaneously construct 2-cocycles and 3-cocycles on
the same group. This is because the Lie group 5/7(2) has non-trivial cohomology in
odd dimensions only and the descent equation method works by pulling back
(using the evaluation map) forms representing these cohomology classes. It follows
that the degrees of cocycles on a given algebra Γ which may be constructed via the
descent equation method must all have even degree, ruling out the simultaneous
construction of 2- and 3-cocycles by this method. However one might conjecture
that our approach will shed some light on PickrelΓs theorem [17] which suggests
that the Lie group corresponding to Γ has no separable continuous unitary
representations. As we noted in the previous paragraph, if the operators vX9 x e Γ
can be chosen so as to provide a representation of Γ, then v ° σ, as a map from
Γ/A x Γ/A to the unbounded self-adjoint operators on y , must satisfy the 2-
cocycle identity. A straightforward calculation then shows that if our three cocycle
if non-trivial one has a contradiction. Thus one cannot have the desired representa-
tion of Γ. To deduce a version of PickrelΓs theorem from this, we would have to
show that, for any map λ defined on Γ/A x Γ/A to the unbounded self-adjoint
operators on y7, must satisfy the 2-cocycle identity. A straightforward calculation
then shows that if our three cocycle if non-trivial one has a contradiction. Thus one
cannot have the desired representation of Γ. To deduce a version of PickrelΓs
theorem from this, we would have to show that, for any map λ defined on Γ/A x A
as above, the corresponding 3-cocycle is non-trivial. Considerable further work
seems to be needed however to prove this.

On the other hand work in progress indicates that the 3-cocycle arising from
the anomalous commutators in QCD [4] fits into the framework of this section.
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