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Abstract: We present a new version of g-Minkowski space, which has both a coad-
dition law and an SL,(2, C)-spinor decomposition. The additive structure forms a
braided group rather than a quantum one. In the process, we obtain a g-Lorentz
group which coacts covariantly on this g-Minkowski space.

1. Introduction

In recent years, there has been some speculation whether it could be possible to
regularise singularities in quantum field theories by making spacetime slightly non-
commutative. As well as the programme of A. Connes [3] based on the theory
of operator algebras, there is also a more naive approach based on the idea of g-
deformation. In this approach, which is the one we shall follow, non-commutativity
is controlled by a parameter ¢ such that one recovers the commutative case for
g = 1. This programme is motivated by examples of “Feynman-type” integrals over
two-dimensional g-deformed planes which are of the form [(...)= ¢ﬁ+1( finite),

i.e. are divergent only in the commutative case [7]. Moreover, one hopes in such
a g-regularisation scheme to preserve all symmetries as g-symmetries, using the
standard techniques for g-deforming Lie algebras, etc. One would then set g =1
after intelligent renormalisation, although, to take account of Planck scale corrections
to the geometry, one might even keep g =+ 1.

As an important element of such a g-regularisation scheme, many g-Lorentz
groups and g-Minkowski spaces have been recently proposed [17, 2, 16, 15]. One
of the points of view in these works, which will be our point of view also, is
that g-Minkowski space should have a g-spinor decomposition. Mathematically, g-
Minkowski space should be a g-deformed version of 2 x 2 Hermitean matrices and
the g-Lorentz group should act on it by conjugation by two g-deformed SL(2,C)
transformations. The role of such a g-deformed SL(2,C) can be provided by the
quantum double [17], but g-Minkowski space and the g-Lorentz group itself are
less well understood so far.

Naively, one might try to construct g-Minkowski space as quantum 2 x 2 matri-
ces, but this algebra is not covariant under the coaction of the g-deformed SL(2, C)
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[14]. The solution to this problem is to consider braided rather than quantum Her-
mitean matrices as g-Minkowski space [10, 15]. Braided matrices are an example
of so-called braided bialgebras introduced by S. Majid in [9] as a generalization of
bialgebras, for which the ordinary tensor product in the bialgebra axioms is replaced
by a braided tensor product. Braided tensor products are like super tensor products
encountered in the theory of superspaces, but with +£1 replaced by braid statistics.
There is a general construction called transmutation [12] by means of which one
can convert any suitable bialgebra, such as a usual quantum matrix algebra, into a
braided bialgebra with better covariance properties. The algebra and coalgebra struc-
ture of such a braided bialgebra are covariant under the coaction of the quantum
group. Thus braided 2 x 2 matrices as the transmutation of the well-known 2 x 2
quantum matrices are a natural candidate for the algebra of g-Minkowski space. It
is covariantly coacted upon by the g-deformed SL(2, C).

Braided 2 x 2 matrices have the same matrix coalgebra structure as quantum
matrices, but a different multiplication [10]. Similar as for 2 x 2 quantum matrices,
there is a braided determinant which is central and grouplike with respect to the
braided coproduct [10] to play the role of a g-Minkowski norm. Furthermore, these
braided matrices allow for a g-spinor decomposition [14] and can also be equipped
with a x-structure appropriate for Hermitean matrices [15].

Considering braided Hermitean matrices seems to lead in the right direction, but
a fundamental structure is still missing: so far there is no g-deformed analogue of
the additive group structure of Minkowski space. In this paper we solve this problem
and generalize the group structure on Minkowski space as a braided coaddition in
the form of a new braided coalgebra structure for the algebra of braided matrices.
The required braiding for the coaddition is a new one and gives rise to a g-Lorentz
group which acts covariantly on g-Minkowski space.

" An outline of the paper is as follows. In Sect. 2, we reformulate some classical
considerations about the Lorentz group and Minkowski space suitable for later g-
deformation. The g-Lorentz group of function algebra type is presented in Sect. 3.
Section 4 discusses braided coaddition on g-Minkowski space. Finally, Sect. 5
presents a deformation of the universal enveloping algebra of the Lorentz group
which is dual to the algebra discussed in Sect. 3.

Preliminaries

When working with matrices, we use lower-case letters for indices which run
from 1 to 2 or n, and upper-case letters for multi-indices, e.g. 4 = (apa;) =
(11),(12),...,(n(n — 1)), (nn).

For Hopf algebras, we use the notation and results from the standard textbooks
[1, 21]. Recall that a complex coalgebra is a C-vector space 4 equipped with
a C-linear coassociative comultiplication 4: 4 — A ® 4 and a C-linear counit ¢ :
A — C satisfying certain axioms. Elements a in 4 which obey da =a®a are
called grouplike. We use the notation da = a(1) ® a2y for the coproduct and omit
summation signs for brevity. We also use M. Sweedler’s shorthand notation [21],
where a suffix indicates the position in a matrix tensor product, e.g. 4;2B,3 means

AJBIM, ete.
A complex bialgebra is an algebra and a coalgebra in a compatible way, such

that both comultiplication and counit are algebra maps. If a bialgebra H also allows
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for a C-linear antipode S: H — H obeying -o(S®id)oAd =-0(id ®@S)o A=
noe¢, then H is called Hopf algebra. Here 1 denotes the injection of the identity. A
x-Hopf algebra [22] is a Hopf algebra equipped with an antilinear involution “*”
such that (So*)> =id, dox =(x®%*)o4, and eox = *oe.

Two *-Hopf algebras H and H' are called dually paired if there exists a bilinear
pairing ( , }: H ® H — € such that (af,x) = (a ® B, 4x), (a,xy) = (Ad,x ® ),
(L,x) = &(x), (a,1) = &(a), {Sot,x) = (o, Sx) and (a*,x) = (&, (Sx)*) for all &, f in
H and x, y in H'.

We shall also need the notion of a right comodule, which is dual to the definition
of a left module: a right comodule of a coalgebra 4 is a pair (C, ), where C is a
vector space and f a linear map f§: C — C ® 4 obeying (id @ A)o f = (fRid)o 8
and id = (id ®@¢)o f. If B is also an algebra map, then the comodule is called
comodule algebra.

Of particular interest to us are non-commutative bialgebras, for which the non-
commutativity is controlled by a so-called dual quasitriangular structure [11],
which is a convolution invertible map R : 4 ® 4 — € such that bjya)R (a2) ®
b(z)) =R (a(l) ® b(]))a(z)b(z), R(ab® c)= R@® C(l))ER b® C(z)), and R (a®
be) = R(agy ® ¢)R (ap) ® b) for all a, b, ¢ in A. In other words, R is a bialgebra
bicharacter. This notion is dual to the maybe more familiar concept of quasitrian-
gularity due to Drinfel’d [4].

One of the interesting properties of dual quasitriangular bialgebras is that
the right comodules of such a bialgebra 4 form a quasi-tensor or braided cat-
egory denoted by .#“. This means that .#4 can be equipped with a bifunctor

s M x M — M4, which was called “braided tensor product” in the introduc-
tlon and which satisfies some associativity conditions. Furthermore, for any two
objects X, Y of .#* (i.e. for any two comodules) there is a natural isomorphism
Yyy: XQY = Y®X, called braiding. For .#*, this braiding is given in terms of
the dual quasitriangular structure R and the coactions of the respective comodules

s [12] Ypp = (1 @ R) o1y o(f® ), where T denotes the twist map. If
we are now given two A-comodule algebras B and B’, we can use ¥ to define
their braided tensor product BRB' as B ® B’ equipped with the new multiplication
(@a®b)(c®d)=a¥P(b® c)d. Due to the properties of ® and ¥, the braided tensor
product of two comodule algebras turns out to be a comodule algebra again, i.e.
the braided tensor product provides a covariant way of combining two covariant
systems. Recall further that a braided bialgebra [12] is an algebra B living in a
braided category equipped with a braided coproduct 4 : B — B®B obeying axioms
similar to the bialgebra axioms, but with 4 a homomorphism to the braided tensor
product B®B. All maps are morphisms, i.e. covariant under the coaction of the
background quantum group 4. The braided matrices mentioned in the introduction
and which form our g-Minkowski space are of this type.

2. The Classical Case

In this section, we reformulate some classical considerations about the Lorentz group
and Minkowski space in an algebraic language suitable for later generalization.
As familiar from other appications, we present Minkowski space as Hermitean
2 x 2 matrices. One usually chooses this description in order to give a simple ex-
position of the covering of the subgroup of proper orthochronous Lorentz transfor-
mations by SL(2, €). This map also enables one to construct the well-known spinor
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decomposition of Lorentz tensors. If Minkowski space is given as Hermitean 2 x 2
matrices, then the Minkowski metric can be expressed in terms of the SL(2,C)

spinor metric
aw_ [0 1
“= (%)

as g'8 = e%be, ), , and the Lorentz group L is given as the subspace of real 4 x
4 matrices 4 € M(4,R) which satisfy A2A5gP? = g8, We use the convention
€pc €% = 0F for the definition of the inverse spinor metric.

In principle, we are interested in ¥(X), the algebra of continuous C-valued
functions on a subset X of R”, such as the Lorentz group L or Minkowski space
M. However, in order to avoid the discussion of convergence problems and other
complications due to the non-compact nature of these spaces, we consider only
P(X), the algebra of polynomial functions, which is almost the same as #(X),
since on arbitrarily large compact subsets X’ of X, the algebra 2(X’) is dense in
EX").

For the application to the Lorentz group, we are particularly interested in the
case where X 'is a subset of real or complex n x n matrices M(n, R/C). For sake
of clarity, we recall some result of this special case: (M (n,C)) is a commutative
and associative C-algebra generated by 1 and the linear coordinate functionals f}
and their complex conjugates 7. It has the structure of a bialgebra with pointwise
multiplication, comultipication 4¢; = ¢ ® t; and counit &ff = ;. A coalgebra struc-
ture of this type is called of matrix multipication type. If we are given a matrix
group G C M(n,C) then Z(G) is a Hopf algebra.

For the special case of SL(2,C) one finds that #(SL(2,C)) is generated by
1, ## and 19, with relations 1t5€ = €. It is a Hopf algebra with coalgebra
structure of matrix multiplication type, antipode given by St} = ebctjead and *-
structure #4* = ¢1%,. One obtains 2(SU(2)) as a “real form” of 2(SL(2, C)). Using
these results, we find for the algebra of polynomial functions on the Lorentz group:

Proposition 2.1. The algebra of polynomial functions on the Lorentz group P(L)
is generated by the linear coordinate functional }4 on M(4,IR) with relations
MBgPL = g8 It forms a commutative x-Hopf algebra with pointwise multipli-
cation and

A= @IS, Sif=gsciSq®, Ny =i

A is shorthand for the twisted multi-index A = (ayay). Furthermore, there is a *-
Hopf algebra homomorphism ¢ : (L) — P(SL(2,€)) given by ¢(i3) = 10, 1!,
Its image is P(SL(2,C))%2, the fixed-point set of the Zy-action ¢ given by o(t) =
—t and o(t') = -1t

Composition with the map ¢ defines a push forward of comodules, i.e. a covari-
ant monoidal functor @ : .#7®) — 472D This is the spinor decomposition of
Lorentz tensors on the level of polynomial function algebras.

Next, we come to Minkowski space M in this algebraic form. Minkowski space
has an additive group structure and not a multiplicative one as the matrix groups
discussed so far. This additive group structure of spacetime is recovered as a coad-
dition on (M ):
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Proposition 2.2. The polynomial functions on Minkowski space form a commuta-
tive associative C-algebra generated by 1 and 4 linear coordinate functionals x4.
P(M) is a x-Hopf algebra with

My =x4R01+1Qxy, Sxy=-x4, ex4=0, x3=x .

Furthermore, we have x,xpg™® = 2detx = 2(x11x20 — X12%21), i.e. the norm is
given by the determinant.

The x-Hopf algebra (M) is covariantly coacted upon by Z(L) with right
coaction By : P(M) — P(L) ® P(M) given by x4 — xp ® /5. In particular, one
finds that the “norm” x,xzg?® is invariant under this coaction. Applying the functor
@ establishes that (M) is also a right (SL(2, €))-comodule algebra with coaction
(id ® @) o Brwm).

3. g-Lorentz Group of Function Algebra Type

In this section, we give a non-commutative generalisation of Z(L), making use
of the standard technique of deforming the commutative bialgebra of polynomial
functions on a matrix group as a non-commutative dual quasitriangular bialge-
bra [18]. The resulting algebraic objects are called quantum matrix groups. The
basic idea is to make the linear coordinate functionals ¢ commutative only up
to conjugation by an invertible solution R = YR @ R?® € GL(C" ® C") of the
quantum Yang-Baxter equation (QYBE) Rj,R 3R23 = Rp3R 3R ;2. Explicitly, one de-
fines A(R) to be the free associative C-algebra generated by 1 and »n? symbols
tg; a,b=1,...,n divided by the ideal generated by the relations Ryzt1f = tt1Ry;
(i.e. REGee = thtéRSS). Tt is known that A(R) is a dual quasitriangular bialgebra
with coproduct of matrix multiplication type and a dual quasitriangular structure
R:AR)®AR) - C given by R(t®@1)=R(1®¢t)=1id and R(t, ® ) =Ry,
extended as a bialgebra bicharacter [8]. The dual quasitriangularity of 4(R) follows
from the fact that the so-called fundamental matrix representations py : A(R) —
M(4,C) defined by p(£9); = R% and p_(12)} = R;!™ respect the relations in
A(R) and indeed extend to algebra maps [8]. This means that if we divide A(R)
by some further relations in order to obtain a generalisation of the Hopf algebra
of polynomial functions on a matrix group, then it is sufficient to show that these
additional relations are respected by py in order to establish dual quasitriangular-
ity of the quotient. Note, however, that these additional relations usually fix the
normalisation of the dual quasitriangular structure.

We shall now give a non-commutative version of (L) as a dual quasitriangular
x-Hopf algebra of the form

£, = A(R;)/(g-deformed metric relation) ,

where R; is an invertible solution of the four-dimensional QYBE which we in-
troduce. This algebra %, should generalise all features of (L) from Proposi-
tion 2.1. In order to obtain such a matrix R; and a g-deformed metric, we make use
of the important role which 2(SL(2,C)) plays as a building block of Z(L).
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A non-commutative version of 2(SL(2,T)) can be constructed as a “complexifica-
tion” of the standard g-deformation of Z(SU(2)) from [18]: Let

0

—qg ! 0
11 geR (1)
0

be the well-known invertible solution of the two-dimensional QYBE. This matrix

is of real type, i.e. obeys R‘c’f} = RZ;. The algebra SU,(2) is then defined as A(R)

with generators ¢ and relations t2t5€%, where

“=(%yvs %)

is the g-deformed spinor metric with inverse defined by €,.€% = ;. The algebra
SU,(2) is a dual quasitriangular x-Hopf algebra with antipode Stj = 6bcrf,e“d , k-
structure t¢* = St2 and standard dual quasitriangular structure defined in terms of
the rescaled R-matrix ¢~ '/2R.

We deform 2(SL(2,TC)) = 2(SU2)) @ 2(SU(2)) as SU,(2) x18U,(2), the
double cross product Hopf algebra [6] of two copies of SU,(2) acting on each other
in a compatible way. This double cross product coincides with SU,(2) ® SU,(2) as
a coalgebra, but has a different algebra structure given in terms of the compatible
actions. By applying the general construction from [13, Sect. 4] one obtains cross
relations R%(1 ® 1) (74 ® 1) = (¢f ® 1)(1 ® 12)RS. The double cross product has
a *-structure given in terms of the new generators # = 1 ® t¢ and /% = S1¢ ® 1
as 119, = r*%,. One obtains SU,(2) as a real form of SL,(2,T).

Definition 3.1. The g-Lorentz group ¥, is defined as the algebra A(R.) with
generators 4 divided by the ideal generated by the relations 354P = g'2. In
terms of the SU,(2) R-matrix and the g-deformed spinor metric the R-matrix Ry

and the preserved metric g*® are given by

AB  __ pCo% pbf pa1y pddy
RL CD — RﬁbORyaoRélecla .

and g'8 = qeaOaR;},Zeﬂbl. Here we used the notation R = (R?)~')2, where t, de-
notes transposition in the second tensor component. Explicitly, one finds

l/g—q O 0 g

s |0 0 —¢ 0}
g° = 0 -2 0 0
g 0 0 0

for the q-deformed metric. Its inverse is defined by gpcg’ = 54

For this algebra to be a quantum group, we need to show that R; is an invert-
ible solution of the QYBE, which can easily be established by explicit calculation.
However, by making use of a result from [10], one can show more generally that
any composed R-matrix of this form is a solution of the QYBE provided R is a
Hecke type solution of the QYBE, i.e. obeys 0 = (PR — q)(PR + ¢q~'), where P is
the permutation matrix.
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Lemma 3.2. Let R be an invertible Hecke type solution of the n-dimensional
matrix QYBE. Then

AB __ pCo% blﬂ ary ~5d0
Rep = Ry Riag Roa, Rey

satisfies the n*-dimensional Q YBE.

Proof. It is known from [10, Lemma 3.1] that the matrix P5§ = R;%ZR;OI;F b‘R;{;’;ﬁfﬁS
obeys the QYBE. (We use the notation from [10]: ¥ is a matrix and not the braid-
ing!) This means that also @5 = Y2¢ satisfies the QYBE. However, using the
Hecke property of R, one finds

AB b D od -1 —1 b Y pod
RE, = R RUPRG R20 = RIS (PR™'P + (g — g7 )P)SIERSY RO

ie. R looks like ® but with R~! + (¢ — g~ ")P substituted for R=!. It is easy
to see that R™' + (g —¢~')P obeys the QYBE and acts like R™' in mixed
QYBEs with R and R. Thus the proof in [10] for ¥ implies that also R obeys the
QYBE. 0

With this lemma, we can now prove a generalisation of Proposition 2.1 for the
algebra Z:

Proposition 3.3. (i) The gq-Lorentz group &, is a dual quasitriangular *-Hopf
algebra with matrix coalgebra structure, and antipode and x-structure

A C AD 1%A A
S)'B = chngA , Ag = AB .

The standard dual quasitriangular structure R on A(kRy) descends to a dual
quasitriangular structure on &g, where we have to choose a normalization factor
k=1/q.

(ii) There exists a x-Hopf algebra map ¢ : &4 — SLy(2,C) given by ¢(J3) =
thantgl‘. As in the commuting case, Im(¢) = SLy(2, C)*2 is the fixed-point set of
a Zjy-action.

The Hopf algebra map ¢ induces a push forward of comodules, i.e. a g-spinor
decomposition of g-Lorentz tensors.

Proof. (i) We know from Lemma 3.2 that R; satisfies the QYBE since the
SU,(2) R-matrix (1) is of Hecke type. Thus, apart from a simple check of Hopf
algebra axioms, there remain two non-trivial statements to be shown: firstly that the
operation “x” is a x-structure on a Hopf algebra, and secondly, that R defines a
dual quasitriangular structure, i.e. that it is compatible with the g-metric relation.
In order to show that “x” respects the algebra relations in %,, note that using
the relations R% = R4 and €,, = —€*, one can show: Rf%, = R;,%i;R{;},f Rj;;,‘jﬁifg

_ pboB paogy pd1d pacy _ pBd B __ ar  Bby _ . aay pboB _ Bd
_‘ROtCORﬂblRyal Rdoé—RL[-)C-,, and gA —qeaO“Rﬁbogﬂl = g€ ORaal Cblﬂ—g .
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Therefore,
(RYZpAG D) = RZ‘BCD/I,?iE
Bi .5 4C
=R, perilg
A 4B pBC
= AeA5Ry Fi
= KR e

= (pAeR ze)"

and also (14ABgP)* = )»f—,/l’é-gﬁc_ = g% = (4"B)*. Thus, “+” can be extended as
an anti-algebra map. The other axioms can be easily checked, e.g. (S0 *)*(43) =
S0 x(g5cA59"") = 95c9perE9 T 9 = 75

In order to show that R descends to a dual quasitriangular structure on %,, we
only have to prove that the fundamental representations defined above respect the
metric relation. By explicit calculation one can show g —2R{E, RPM 4P = 4185

and ¢?R; \AR; 1B gP = g'B5E, and hence

P+(/1é/1§)gCD)1E-" = P+(ﬂ-é )fler(/lg)ggCD
=g R{euRlBr9™
= g"?5;
= P+(9AB)1€ >
PP = p- (WD) 9
= 4R, e Ry i 9%
= g**o%
=p-(g")F -

This is the place where one needs the normalisation factor x.
(ii)) We have to prove that ¢ can be extended as a *-Hopf algebra map. Using
the algebra structure on SL,(2, C), which can also be written as thdR‘C‘g £ = R,

d pcbia _ jcpadstb .
or 19 R = 1CR%11%,, one can show:

QU ZERE D) = 95U RIO R RO RY

— ftag e pa19o (tbg  S1 pdohg pbihy 910
=t eotathlbOt folb, RyoaoRylcle1ho

_ RggggtTaOeotTgoboRelbo 4 S1 pbihy g91¢0

a1 fo hltbl gic1 " dhy
_ pd0ag pe1bo pfiaitdy L thy  pYico by 4
- RboeoRa]foRblhl t gOt aORdlhOtg] tC]

_ pY0a0 perbo pf1ar pbihgstdy 91 41c
_RboeoRalfoRblthglaot 90td1t holey

= ORGHABAE) »
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A 4B, CD c1% gtdo b1 pd
o(lcipg™") = quo“tTCantgllRﬁiiotT ObOtdieﬂ 1
_ te to aldO cy by pd

= g€ cout Uyt doquO’zz 1g,€ !

— ayd c1by
= q€agdyRe €

= o(g"?).

This also implies ¢(1) =1 and @(SA) = S(¢(4)). Similarly we find for the copro-
duct:

A(p(Zg)) = At™0qty1) = 110,181 @ 170, 131 = (48) ® (25) = (¢ @ @)(A75) ,
the counit e(p(A4)) = 04 = @(&(44)), and the *-structure:
PO = () = 111,20 = (Mo, )" = p(2h)* .

Thus ¢ can be extended as a x-Hopf algebra map. O

4. g-Minkowski Space

We follow the general approach of [13] to construct a g-Minkowski space with
braided coaddition: Let R be an invertible solution of the n-dimensional QYBE and
let R’ be a second matrix such that they satisfy the mixed QYBEs,

R,R13R; = RysRi3R},, RinRi3Ry; = R3Ri3R; . 2)

Define an algebra of quantum covectors V*(R') as the free associative C-algebra
generated by 1 and n generators x, with relations x,x; =xdxcR’;g . Similarly, the
algebra of quantum vectors V(R') is generated by 1 and v*’s with relations v%® =
R“y?1¢. The algebra V*(R') is a right A(R)-comodule with coaction x, — x, ® 2
and the braiding between two copies of V(R') is given by ¥(x, ® xp) = x4 ® x.R%.
For V*(R') to be a braided Hopf algebra in with braided coaddition Ax, = x, ®
1+1®x, ex; =0 and Sx, = —x, in 4P the two matrices R and R’ have to
satisfy the relation

0=(PR+1)(PR' —1)= (PR —1)(PR+ 1), 3)

where P denotes the permutation matrix. This relation ensures that 4 extends as an
algebra map.

Thus we need to find a g-Minkowski R-matrix Ry, which satisfies (2) and (3)
with R;. We solve this problem more generally for any composed R-matrix R from
Lemma 3.2

Lemma 4.1. Let R be a Hecke type solution of the QYBE. Then the R-matrix

IAB _ p—10cq pbiopai B 5 yd
RCD - Rboa ORﬁlloRytlf[Rclg ’ (4)

and the matrix R from Lemma 3.2 satisfy (3) and the mixed QYBEs (2).
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Proof. We have to show PRPR’ = PR’ PR = PR — PR’ + 1. The first term can be
rewritten as

(PRPR')g = RpcR
b1y pdoa 750 —leey pdyi DV
= (R RS Ry Rart) (R RS R RL[2)

_ paBpb1y pdox p—1eeg pc1d pvfy
= Ry Rocy RpagRaga Bop Rels

— a1 pb1y pe1d pvfo
- 5?813711,0 RéélRV}lRelﬁ >

and indeed equals the second term
(PR'PR)z: = RpCRE?
_ p—ladg paif pbiy 30cy peot pdiipcitt pvf
- Raoﬁ RV[‘?Q Raé‘IRdlaR)doRﬂé(;Rv}lelé)
_ R—ladORalﬁRblyReos Rclél’évfo

agB TiyboTtoc)adg TS eE
_ sa0 paiB pbiy peid 5vfo
= Oc Ry Roe, Ryg Reyp -
Using the Hecke property PRP = R~! + (¢ — g~ ")P of the matrix R, we can further
simplify this expression as:

—17b — b d BV
(PRPR')E = 60RUI(RTI + (g — PR RS

AB -1 B peiby 3vf
= 0 + (g — g~ VIRRL L RYIRYS

This is equal to the third term:

AB 1AB AB __ SAB —loey paifpb1y 59 eo% a1 B pb1y 56
Szr + PREE — PRGE = 3¢ + R, JORIRSY R0 — REOVRIRSY RYL

__ <AB —1ae 0%~ pa1 B pb1Y 5o F,
= 03F + (R, 5 — Rg R RS RS

- by 59
= 0fp + (g — g RRIRI RS
Hence, R and R’ satisfy (3). In order to show that R and R’ satisfy the mixed
QYBEs, recall from [10] that ® and R’ satisfy (2) and use an argument similar to
the one employed in the proof of Lemma 3.2. (]

Thus for any Hecke type solution R of the QYBE, the algebra of quantum covec-
tors ¥*(R’) is a braided Hopf algebra with braided coaddition Ax, = x4Q1 + 1Qxy
in the braided category .#“4®). However, V*(R’) is nothing but the algebra of
braided matrices B(R) from [10]. Denoting R’ from (4) in the case of the SU,(2)
R-matrix by Ry, we define g-Minkowski space M, as 2 x 2 braided matrices
V*(Rp) = B(R). It is necessary to introduce a new name for this algebra in order
to avoid confusion: braided matrices B(R) were constructed as the transmutation of
the algebra of quantum matrices A(R) and have the structure of a braided bialgebra
with a braided coalgebra structure of matrix multiplication type. g-Minkowski space
M, on the other hand is a braided Hopf algebra with braided coaddition and lives
in a different category. It has the same algebra structure as B(R) which is sufficient
to ensure a g-spinor decomposition as an algebra map M, — V(R)QV*(R) [14].
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The explicit algebra relations in M, were given in [10] as

ab = q*ba, ac = g*ca,
ad =da, be=cb+ (1 —g?)a(d —a),
bd =db— (1 —q~2)ab, cd=dc+(1—q )bc,

where x = (a,b,¢,d). Central elements in this algebra are the braided trace qd +
¢~ 'a and the braided determinant det = ad — g*ch. Reflecting the fact that ordinary
determinants are multiplicative but not additive, the braided determinant is grouplike
only in B(R), but not in M,.

The appropriate *-structure on B(R) was discussed in [15]. Its axioms are slightly
different from the ones recalled in the preliminaries. The main difference is that for
braided bialgebras one requires 4 o*x = 10 (* ® x) o 4, where 7 is the twist map.
In [15] it was shown that (x,)* = x; defines such a -structure on B(R) and it is
easy to see that this also defines a *-structure on M, as braided group with braided
coaddition.

Similar to the commutative case, where the norm on Minkowski space is given
by the determinant of the corresponding matrices, we find

Proposition 4.2. The g-norm on g-Minkowski space is given by xxpg® = (¢7' +
q)det, is central and also real with respect to *.

Next, we have to address the question of the coaction of £, on g-Minkowski
space. The problem is that M, is an .#,-comodule, but not a braided Hopf algebra
in .#%4 because we had to rescale R; in Proposition 3.3 with a normalization factor
Kk = 1/g in order to obtain a dual quasitriangular structure on #,. This normalization
is different from the one required in Proposition 4.1, which ensures that M, is
a braided Hopf algebra in .##RL). This problem of different normalisations was
already encountered in [13]. It can be solved by extending £, by a single invertible
grouplike element ¢ which commutes with A. Let CZ denote the C-vector space
with monomials ¢% a € Z as basis. It has the structure of a commutative and
cocommutative Hopf algebra with Ac = ¢ ® ¢, &g = 1, S¢ = ¢~!'. We form the tensor
product of £, with CZ and denote this extended g-Lorentz group by ,S?q. The
advantage of this construction is that one can define a dual quasitriangular structure
on CZ by R(¢“*®c?) =%, a, b € Z, which extends to a dual quasitriangular
structure on jq and “absorbs” the normalization factor x. With the g-Lorentz group
thus extended, one finds:

Proposition 4.3. g-Minkowski space M, is a right L -comodule x-algebra with
coaction 8 My ¥4 X ® JBc. Moreover, it is a braided Hopf algebra with braided

coaddition in M*4. The braided coaddition is a right P -comodule morphism
between comodule algebras, i.e. & 4-covariant.

Proof. One can show by explicit calculation that the generators A of %, obey
Ryi217y = Jp21Ry. This then implies that M, is a right £ ,-comodule algebra with
coaction f§:xy +— xp ® Aﬁ. Since ¢ commutes with the generators of £,, we im-
mediately find that g-Minkowski space is also a right =?q-comodule x-algebra with
coaction ﬁMq : x4 — xp ® ABc. The coaction by ¢ measures the degree (scaling di-
mension) of monomials in x, and is often called dilation element [20, 13].



260 U. Meyer

It remains to show that 4 : M, — M,QM, is a right .5,” -comodule morphism.
On the generators of M,, the coaction ﬁM satisfies (4 ® id) o BM = ﬁchqu o 4.

Since both 4 and the coactions ﬁMq and ﬂMq®Mq are algebra maps this extends to

M,. Thus the entire structure of g-Minkowski space is covariant under the coaction
by the g-Lorentz group. a

Next note that the g-metric g*# does not only determine a g-norm in M,, but
it can also be used to raise and lower indices of g-Lorentz tensors in a covariant
fashion:

Proposition 4.4. There is a g-metric induced braided x-Hopf algebra zsomorphtsm
G : V*(Ry) = V(Ry) given by x4 — v = xpg"®, which is also an & ,-comodule
morphism.

Proof. V(Ryy) is a braided Hopf algebra in .# Z ¢ with generators v, braided coaddi-
tion Av? = v!®1 + 1@v", *-structure (v!)* = v, and coaction B : v! — v® @ SA4c.
In order to prove that G extends as a *-Hopf algebra isomorphism, note that one

can show by explicit calculation that REL, = grpgroRe 595 g . This implies

G(xk)G(x) = x49%x5g"8 = xcxpROG 59" g8 = ngFCngEDgFPgEQRA%ZBgKAgLB

REL-G(ur)G(ug). Furthermore, G is a x-homomorphism: G(xg)* = x4g%*

G(xg) = G((xk )*). On the generators, we can also immediately verify that G o 4 =
A0G and SoG = GoS. Because of the algebra homomorphism properties of G,
4 and S, this result extends to products. It remains to show that G is a right
&,-comodule morphism. On the generators, we have fo G(xx) = x4 ® Aig"P¢ =
ug?* @ SAc = (G®id)o ﬁMq(xK ), and since ﬁMq, B and G are algebra maps, this
extends to M,. O

For sake of completeness, we also list the explicit form of the braiding between
two copies of M,, which is quite different from the braiding on B(R) with its
multiplicative braided coalgebra structure [10]:

Y(a®a) =q2a®a,

Ya®b)=b®a,

Y(@a®c)=¢*c@a+(¢* — a®c,

YaRd) =d®@a+ (> - 1Dbc+(1—¢g Ha®a),

Y(b®a)=¢*a®b+(¢* - 1)bRa,

P(bRb)=¢’b®b,

PbRc)=c®b+(l —g H)d®a+a®d
+(1-gHhRc+2-g Ha®a),

Pbed) =dob+(¢@ - 1)bed-q2a)+(1-g?)ax®b),



g-Lorentz Group and Braided Coaddition on g-Minkowski Space 261
Y(e®a)=a®c,
P(e@b)y=b@c+(l-g Haca,
P(c®c)=¢*cQc,
P(c®d)=¢*d®c+(¢* - 1)c®a,
Yd®a)=a®d+ (" - 1)bc+(l—g?ara),
Yd®b)=¢*b@d+(¢* —1)a®b,
Y(d@c)=c®d+(q —1)(([d-qg a)@c—(1-q " )x®a),
Ydod)=¢"d @d+(* = 1)(c®b—qghQc—q (1 —g 2)a®a).

Finally note that since M, is a braided group in the category of right jq-
comodules, one can apply the results of [13] and construct a g-Poincaré group as a
semidirect product M, > ;. Similar to the double cross product, the algebra struc-
ture is given in terms of compatible actions. The resulting Hopf algebra structure
is given explicitly in [13].

5. g-Lorentz Group of Enveloping Algebra Type

Instead of deforming the function algebra #(L), we would also deform the universal
enveloping algebra of the Lorentz group. However, the standard procedure for g-
deforming enveloping algebras is not applicable in this case, since the Lorentz group
is not simple. We shall rather use the relation U(so(3,1)) = U(su(2)) ® U(su(2))
and the standard g-deformation U,(su(2)) of the enveloping algebra of the simple
Lie group SU(2) to construct a g-deformation of U(so(3,1)). We also investigate
how this algebra is related to the g-Lorentz group of function algebra type.

For sake of clarity, we first recall some standard constructions: For any algebra
of quantum matrices A(R), there is a canonical dual given by the bialgebra U(R)
[18, 8] with generators /4= and relations RIF[E = [FIfR and RII; = [T IFR.
The dual pairing is given by (tl,lzi) = R*, where R = Ry, and R~ = R,;'. This
bialgebra is universal in the sense that there exists a bialgebra map to any other
bialgebra dually paired with A(R) [8].

In the special case of the SU(2) R-matrix, U(R) is known to be related to a
deformation of the universal enveloping algebra of su(2). The algebra U,(su(2)) is
defined as U(R) with the further relations implied by the ansatz

H _H _
o (97 0 - (T 4%a-ahHx-
g q-q Xy ¢ 7 0 g7

Using M. Jimbo’s convention [5] and the usual -structure for U,(su(2)) one finds
explicitly:

H
2

qrX+q

H
2

= inﬂ:’ [X+,X_] = u_, H* — H, X; :X;F )
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This algebra is a quasitriangular *-Hopf algebra with coalgebra structure of matrix
multiplication type and a well-known quasitriangular structure # and is dual to
SU,(2) as a =-Hopf algebra (i.e. not only as bialgebras). The generators of U(R)
are given by It = 2 (¢, #?) and I~ = (1, #7'D)R~1?) in terms of the pairing
and the dual quasitriangular structure and we also have (7] ® 72, %) = g~ /2R3,
where © denotes the generators of SU,(2). We used the notation Z = () @ 23
and omitted summation signs.

A natural g-deformed generalization of U(so(3,1)) is given by the twisted
square [19] Uy(su(2)) ®2 U,(su(2)) of two copies of the standard g-deformation
of the universal enveloping algebra of su(2) [5]. The twisted square has the
tensor product algebra structure and a “twisted” coalgebra structure given in
terms of the standard quasitriangular structure # on U,(su(2)) as dz(x® y) =.
%2_31A13(x)4124( ¥)%3 and corresponding antipode Sy = £,1(S ® S )g?zjl. It also has
a x-structure defined by (lf@l;t)* zﬂﬂ(lf*@)lf“*)%;l'. The -Hopf algebra
pairing between U,(su(2)) and SU,(2) then extends to a *-Hopf algebra pairing be-
tween the twisted square and the double cross product SU,(2) <1 SU,(2) [13]. The
twisted square is quasitriangular, but has more than one quasitriangular structure,
one of which was given in [19]. For our purposes we need a different quasitriangular
structure:

Lemma 5.1. Z; = ,@lﬁlﬂzzxﬂ]y@ﬁ defines a quasitriangular structure for Uy(so

3, 1))

Proof. Using the fact that # obeys the axioms of a quasitriangular structure (as
given e.g. in [8, Sect. 1.5]) we obtain:

RiAR(DRL" = Ry RoaR3 Rz (Ryy A3 424 R0z )Ry R Ry Ry
= Ry (Rradoa Ry N R3 A3 A5 ) R
= Ry Ay A31 Ray
=10449,
(id @ Ap)(RL) = Rys'(id 12 ® AssAse)Ry; RoaRi3 Rz R

= Ry5' (id ® As)( Ry Roa)id ® Azs N R13R23) Ras
= Rys' Ry Ry RosRosRrs R 13 Ros B3 Ras
= (R R P15 P25 N( Ry RoaRr3 R3)
=Rz -

The proof of (4 Q@ id)(AL) = R 13%L23 is similar. Thus % is a quasitriangular

structure for the twisted square. O

By virtue of the *-Hopf algebra map ¢, %, is then also dually paired with the
twisted square U,(so(3,1)), and one finds

Proposition 5.2.
(9(28) © @(AD), A1) = KRG .
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Proof.

(P() ® (), L) =(STL © T8 @ ST @ 1), Ry RouB3 s

= (St Ry ) (ST R0 (x5, By (30, Ry

(St5) R2)) (ST, R (W1, R 1)) (T > R2y)
=(St ® Stj . A) () @ Sth , A7)
(5! ® T, R) (72, © ST, R)

__—1pCo% pb f pa17 pddy
=q RﬁbORyaORélecla

_ —1pA4B
=9~ R/cp >

using (t; ® 12, #) = ¢~ ?Ryi, and R% = g~ '¢,4,R" " and the properties of quasi-
triangular structures as given in e.g. [8, Sect. 1.5]. O

On the other hand, however, there is the canonical dual of %, given by the
algebra U(xR;). This bialgebra maps into the twisted square with a bialgebra map

Y U(kRy) — Uy(so(3,1))

defined according to the general construction from [8] by (/5 4) = " (p(if),
AP and Y(lz 1) = (p(if), %, "V, '®. With Proposition 5.2 it follows that
this map has the property (¢(1;), w(in )) = KRE':, i.e. the restriction of the pairing
between the double cross product and the twisted square to the images of ¢ and ¥
recovers the standard pairing between £, and its canonical dual.
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