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Abstract: U( 1) gauge theory with the Villain action on a cubic lattice approximation
of three- and four-dimensional torus is considered. As the lattice spacing approaches
zero, provided the coupling constant correspondingly approaches zero, the naturally
chosen correlation functions converge to the correlation functions of the R-gauge
electrodynamics on three- and four-dimensional torus. When the torus radius tends
to infinity these correlation functions converge to the correlation functions of the
R-gauge Euclidean electrodynamics.

1. Introduction

The compact lattice gauge field theory models introduced by K. Wilson [1] preserve
the differential geometric structures of the continuum theory. This paper is concerned
with the case where the gauge group is U(l) = R/2πZ. Let h(θ) be a real twice
continuously differentiable even periodic function with period 2π. Any such function
will be called an energy function. The main examples of interest are the Wilson [1]
energy function h(θ) = 1 — cos θ and the Villain [2] energy function

oo

exp [-βhβ(θ)] = cβ Σ, e x P i-βifi ~ 2πn)2/2], (1.1)
n— — oo

where β > 0 and Cβ is a constant chosen so that the right-hand side is one for
0 = 0.

Let βi, ί = 1,... ,d be the standard unit vectors in R^, and p be a non-negative
integer less than d. The /?-cells based at meZd are the formal symbols: (m;
eiχ,..., eip), where the unit vectors differ from each other.

Let G be one of three abelian groups: Z, R and U(l) = R/2πZ. A />-cochain
with the coefficients in G is a G-valued function on p-cells /(m; eZ ],..., elp) =
flχ_ip(m) which is antisymmetric under the permutations of the indices i\,...,ip.
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Let A — {m £ Zd : N\ ^ mz ^ A 2̂, / = 1,..., d} be a cube in Zd for some integers
N\ and Λf2. The free boundary conditions are equivalent to setting that fiχ ...Z/?(m)

vanishes except for {m G Z : N\ ^ mz ^ N29i
z¥i\,...,ip',N\ ^ m^ ^ N2 — l,k =

1,...,/?}. Dirichlet boundary conditions correspond to setting that /^.../^(m) van-
ishes except for {m E Zd : N\ -\- I S mi = N2,i=\=h9...,ip',N\ ^ m\k ^ A ,̂A: =
1,...,/?}. The conditions

fi^ipimu ..,mj+N9...9rnd) = fn..Jp(m), (1.2)

where TV = Λ^ — M + 1, for every 7 = 1,..., d and m G Z^ correspond to the choice
of periodic boundary conditions. For the periodic boundary conditions we define the
boundary operator

ε=0,h0=l

and the coboundary operator

(d*f)ilmip+ι(m) = Σ Σ(-l)ε+V/ l...-.,p+1(m + ε ^ ) . (1.4)

For Dirichlet or free boundary conditions we need to modify the definitions (1.3)
and (1.4), respectively, in an obvious way.

For the p-cochains with coefficients in Z and R the inner product is defined by

(f,9) = Σ Σ fix...ip(rty)gh...i,(m). (1.5)

For a smooth differential p-fovm / (x) = Σ / < </ fi\...iP(
x)dx11 Λ Λ djc1^ on

we introduce two lattice approximations: (/α)/1...z/,(m) = /il..i/,(flin) and

^ f̂Σ (1.6)
[0,a]χP V ^ = 1 /

The energy function /* and 1-cochain θ on A provide two 2-cochains on A with
real coefficients. These 2-cochains are defined for any indices i\ < i2 by the follow-
ing relations (A(3*θ)) lV2(m) = A((3*θ) lV2(m)), ( ^ ( 3 * 0 ) ) ^ ^ ^ ) = ̂ ((3*θ) φ 2 (m)) .
By 1 we denote the 2-cochain (l)Zl/2(m) = 1 for any indices i\ < i2.

The finite volume Gibbs state in a cube A c Zd, at inverse temperature β and
with energy function h is given by

(F)ΛJI=Z-ι\ Π jdθi(m)]F(θ)exp[-β(h(d*θ),l)]. (1.7)
Lm£Λi=l,...,d -π J

Here θ is a 1-cochain on A with coefficients in U(l) and 0 satisfies the periodic
boundary conditions. For Dirichlet or free boundary conditions some 0/(m) are equal
to zero and the corresponding integrations in (1.7) are omitted. The measure dθi(m)
is Lebesgue measure on [—π,π]. Z is the normalization constant and F is a function
of the bond variables #/(m).
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Let ()β be any translation invariant infinite volume limit Gibbs state. L. Gross
[3] proved that for Wilson and Villain energy functions h and for every smooth
differential real 1-form j on R3 the following equality holds:

lim(exp [i(A'(d*0),dV<»)]W)-i = e x P [-g\dj,dj)l2], (1.8)

where g is a strictly positive real number and d is a differential operator on the
differential 1-forms on R3. The inner product of the differential 2-forms on R^ is
similar to the inner product (1.5).

Let φ be a smooth real differential 3-form on R3 and r be any number in [1, oo).
L.Gross [3] proved also that for the Villain energy function

lim(|(A( f l f l 2 )_ 1(3*θ),# β)n ( β 92 )_, = 0 . (1.9)

In the four dimensional case B.Driver [4] proved that for the Wilson energy
function and "for all but at most countable numbers of g > 0"

lim(exp [i(h'(d*θ)9d*f)])g-2 = exp [-ocg2(dj\dj)/2], (1.10)

where (}g-2 is any translation and 90°-rotation invariant infinite volume Gibbs state,

j is any real smooth differential 1-form on R4, j a is its lattice approximation (1.6)

and the number α ^ 0 is independent of the particular choice (}g-2.
This paper is concerned with the case of the Villain energy function and the

periodic boundary conditions. We study the correlation functions: (exp [*(/,$)] W>
where j is a 1-cochain on A with the integer coefficients. The inner product (J,θ)
is not defined for a 1-cochain θ on A with coefficients in (7(1) = R/2πZ, but exp
[ί(j\θ)] is well defined. It is easy to show that (exp [i(j\θ)])Λ,β = 0 if j + dφ for
some 2-cochain φ on A with the integer coefficients (see, for example, [5]). In
view of the periodic boundary conditions we can identify the opposite vertices of
the cube [N\,N2 + l]xd and obtain a lattice approximation Ty of the torus Ύd of
radius R.

Let fn..Λp(x) be the coefficients of a real smooth differential p-fovm on the torus

Ύd. We define the integer valued /?-cochain on TjJ,

(fN,b)h..,P(m) = [Nbfl{..Λp(2πRN-χm)], (1.11)

where N = N2 - N\ + 1, b is a strictly positive integer and [r] is the integer part
of the real number r. In order to define the continuum limit we need to know how
the constant β in the Villain energy function (1.1) depends on the lattice spacing
parameter a = 2πRN~ι. B.K. Driver requires that being multiplied by β(a) the scalar
product (1.5) of two lattice approximations (1.6) of the smooth differential 2-forms
(electromagnetic field strength is the differential 2-form) tends as a —> 0 to the usual
scalar product of these smooth differential 2-forms multiplied by the constant g~2.
This requirement implies that β(a) — g~2ad~4. For the dimensions J = 3,4 we get
β{a) = (ag2)~ι and β(a) = g~2, respectively. Due to Theorem 4.1 from [4] for
the dimensions d > 4 this scaling implies that the continuum limit on the current
sector of U{\) gauge lattice models is degenerate. We choose the non-standard
scaling, when β(a) = g\1a~d~2h', where b is a strictly positive integer introduced
above. We require that being multiplied by (β(N))~ι the scalar product (1.5) of two
lattice approximations (1.11) of the smooth differential />-forms tends as N —> oo
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to the usual scalar product of these smooth differential /7-forms multiplied by the
constant g2. Let the function /(x) on the torus Ύd be equal to one. By the definition
(1.11) the 0-cochain fN &(m) = Nb. The definition (1.5) implies that (fN ι»fN b) =
Nd+2b. Choose β(N) such that β{N)-\fκhJNyb) = g2(2πR)d, where (2πR)d is the
volume of the torus Ύd and g > 0, i.e. *β(N) = g-2(2πR)~dNd+2b. It seems that
this geometrical definition of the continuum limit may be useful also for the U( 1)
gauge models including the interaction with the fermions. In the next sections it will
be proved that for any real smooth differential 2-form φ on the torus Ύd

9 d = 3,4,

= e x P [-02(d*φ,G(d*φ))/2] , (1.12)

where d* is the adjoint operator of the differential operator d9 the operator G is the
Green operator for the Laplace-Beltrami operator on the differential 1-forms on the
torus Ύd and the inner product of the differential 1-forms on the torus is similar to
the inner product (1.5).

When φ = dj the right-hand side of the equality (1.12) is a torus analogue of
the right-hand sides of the equalities (1.8) and (1.10) for α = 1. Due to (d*)2 = 0
the substitution φ — d*ψ into the right-hand side of the equality (1.12) yields 1 and
we obtain a torus generalization of the equalities (1.9). It is important to note that
the right-hand side of the equality (1.12) coincides with the correlation function of
R-gauge electrodynamics on the torus [7]. As the torus radius R tends to infinity the
limit of (1.12) gives the correlation function of R-gauge Euclidean electrodynamics
[7]. We studied the continuum limit (1.12) of the correlation functions of the free
U(l) gauge model. We believe that the limit (1.12) may be applied for the study
of the correlation functions of the (/(1) gauge model which includes the interaction
with the fermions.

The remaining sections are devoted to the proofs of the equality (1.12) for

2. Three Dimensional Torus

The /?-cochains with the coefficients in the abelian group G = Z, R, U(\) = R/2πZ
satisfying the periodic boundary conditions (1.2) form the abelian group Cp(Ύd

N,G),
where N = N2 — N\ + 1. In order to simplify the situation we assume that N\ =
0 , ^ = N - 1. Now the definition (1.7) for the correlation function may be rewritten
in the form

(exp [UΘ)])Ύd β = Z - ; / exp [ι(/,0) - β(hβ(d*θ),l)]dθ , (2.1)
N "ci(T*i/(i»

where a 1-cochain j e Cι(Ύ^,Z) and exp [i(j9θ)] is a character of the compact

group Cι(Ύd

N,U(l)). The Villain energy function hβ(θ) is given by (1.1). Here dθ

is the normalized Haar measure on the compact group Cι{Ύd

N,U{\)) and ZΎd is

the normalization constant.
By [5, Lemma 1] the correlation function (2.1) isn't zero only for the boundaries

j = dφ, where φ e C2(Ύd

N,Z\ and

(exp [i(dφ9 θ)])Ύd β = Z-d

ι J exp [i(φ9 φ) - β(hβ(φ% 1 )]dφ , (2.2)
N' NHd
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where the group of coboundaries B2(Ύd

N,U(l)) is the image of the homomorphism

<3* : C\Ύd

N, U{\)) -> C2(T^, [/(I)) and dφ is the normalized Haar measure on the

compact group B2(Ύd

N, ί/(l)).
It is easy to compute the Fourier transform of the function (1.1),

2π

l/2π/exp [inθ - βhβ(θ)]dθ = Cβ(2πβ)~ι/2Qxp [-(2β)~1n2] . (2.3)
o

By using the Fourier transform on the group B2(Ύd

N, t/(l)), due to the formula (2.3)
and [5, Proposition 1] we obtain

-Jcg

β(2πβΓ9/2(exp [Kdφ,θ)])τd β = Z-Jcg

β(2πβ

x Σ exp \-l/2β(φ + ΣmιZi>Φ + ΣmiZi)]> ( 2 4 )
meZg L ι = l z = l J

where zi,...,z^ form a basis of the group of 2-cycles Z2(T^,Z) which is the ker-

nel of the homomorphism d : C 2(T^,Z) —> C ^ T ^ Z ) . The symmetric g x g matrix

Qtj = (zi,zj) is positively definite and invertible. Let us introduce the dual basis

zι — Σj=ιΩψlZj. For every / = l,...9g the 2-cochain zι G Z2(T^,R) has the fol-

lowing properties: (z/?z7) = δυ and (zl9Zj) = Ω^1. Let Z 2 (T^,Z) be a free group

with the basis z\,...,zg. The group Z 2 (T^,Z) may be defined also as the maximal

subgroup of Z2(T^,R) so that for any elements z e Z 2(T^,Z) and z G Z 2 (T^,Z)

the inner product (z,z) is an integer.
Applying the Poisson summation formula

Σ fin) = Σ/^/(*)exp [2πinx], (2.5)
n n

we can rewrite the relation (2.4) as

(exp [i(dφ,θ)])τi β = z χ > ^ d e t QTXllwτ* β(dφ)Θ((φ,z)\2πiβΩ-1), (2.6)

where

Wj^/dφ) = exp ί-l/2j8

is the correlation function calculated for R-gauge electrodynamics on the lattice T^
in the paper [6] and the Riemann θ-function

\ 9 9 Ί
®(y|ω)= Σ e x P \iπJ2mkωkmj + 2πiJ2mjyj\ (2.8)

mGZgf L j,k=l j=\ \

depends on the vector y G C9 and on the symmetric g x g matrix ω with the posi-
tively definite imaginary part. In our case ω = 2πiβΩ~ι.

Taking the trivial 2-cochain φ = 0 we obtain

^ ^ i S Ω - 1 ) . (2.9)
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The substitution of the equality (2.9) into the right-hand side of the relation (2.6)
gives

*§*geggp . (2,0,
This formula was obtained in the paper [6] for the Wilson energy function but only
in the weak-coupling region when the inverse temperature approaches infinity.

The definition of the group Z 2 (T^,Z) and the definition (2.8) imply that

θ((φ,l)\2πiβΩ-ι)= Σ exp [-2π2β(z,z) + 2πί(0,z)] . (2.11)

To obtain the equality (2.10) we used the Fourier transform on the group

Our space Ύd is a product of groups U(l) and a lattice approximation Ύd

N = Zd

N,

where a group ZN = Z/NZ. In order to study the groups Z2(Ύd

N,Z) and Z2(Ύd

N,Z)

we use the Fourier transform on the group Zd

N. The Fourier transform of a />-cochain

feCp(Ύd

N,R) is defined by

/,7..., ,(1) = Σ exp \2πiN-ιΣlkmk] fiχ...ip{m), (2.12)
m<EΛ L * = 1 J

where 1 G A and a cube A = {m e Z^ : 0 ^ mz ^ TV — 1, z = 1,..., d}. We denote
the group of functions (2.12) by Cp(Ύd

N,R)~.
The following relation

N-\
N~ι Σ exp [2πiN~ιkm] = δm$ (2.13)

holds for any integer -N +l^m^N— I. The relations (1.5) and (2.13) imply

) . (2.14)
i'l <...<ip\EA

The right-hand side of the equality (2.14) we denote by (f~,g~)
Applying the Fourier transform (2.12) we can rewrite the equalities (1.3) and

(1.4) as

(3/~), 1...«/,_1(l) = Σ ( e x p [2πiN-ιltQ] - 1)/~1...I/,_1(1), (2.15)

(3*Γ)/1....P+1(1) = Σ ( - l ) " + 1 ( e x p [-2πiN-Ίik] - l ) / ~ ̂  (1). (2.16)
]^—\ ι\ — ιk — ιp+\

Therefore a lattice Laplace-Beltrami operator is given by

d

(Φ*d + dd*)f~)h..ΛΛ\) = Σlexp [2πiN~ιlk] - 1|2/Γ , (1) (2.17)

k=\ '"p

A j9-cochain / is said to be harmonic if the expression (2.17) equals zero.

Lemma 2.1. Any harmonic p-cochain f e CP(Ύ^9R) is constant.
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Proof. Taking the inner product (2.14) of the functions f~χ Λ (1) and (2.17) we get

that /7-cochain / Z l / / ?(m) is harmonic iff for any k = l,...,<ί,

(exp [2πiN-Ίk] - 1 )/£..,-„(!) = 0 . (2.18)

Hence / ~ , (1) isn't zero only for lk = 0,fc = 1,... ,d. By using the inverse Fourier

transform we have that the /?-cochain //^.^(m) is constant.

Let P be an orthogonal projector on the subspace Z2(ΎN,R) of the linear space

C2(Ύd

N,R). Lemma 2.1 and the equalities (2.15)—(2.17) imply that

[2πiN-ιlk]-lA d */~ J (1). (2.19)

Due to equalities (2.15) and (2.16) we may consider the second term in the right-
hand side of (2.19) to be equal zero at 1 = 0. We denote the right-hand side of the
relation (2.19) by (Pf~)hi2(l).

Proposition 2.2. The Fourier transform (2.12) of every 2-cycle z e Z2(Ύ3

N,Z) has
the form: for any permutation i\,i2,h of the numbers 1,2,3

zZlZ 2(I) = ci\χi2\\) + (exp [2πιN ll3] — l)[bl2l3(\) — biιi3(\) + ciχi2i^(\)\ , (2.20)

where a 2-cochain ajj2(m) is independent of the variables mjvmj2, a 2-cochain
bjχj2(m) depends on the variables nijχ,mj2 only and it is equal to zero if one
of these variables equals N — 1, a 3-cochain cZl;2Z3(m) equals zero if one of the
variables m\,m2,rnz is equal to N — 1. The above cochains determine the 2-cycle
given by (2.20) uniquely.

Proof By using the formula for the sum of geometric progression we get

z~2(l) = z£2(l)|/.3 = o + (exp [2πiN~ιlJ3] - 1 ) ^ ) ^ ( 1 ) , (2.21)

where

(Z% 2 ;, 3(1) = ̂ Σ J ^ Σ exp ^πzW-^^/^^ + ̂ m^j^^m).

(2.22)

Since a function ^ 2(1) is antisymmetric under the permutation of the indices i\J2

the substitution //3 = 0 into two equations (δz~)M(l) = 0 and (cz~)/2(l) = 0 pro-

vides two equations (expβπzTV"1/^] — l)z^2(l)|/z =o — 0, k = 1,2. Hence a func-

tion z~ (1)1^ =o is not equal to zero only at llχ = 0, ll2 = 0 and by the relation

(2.13) we have

z^2(l)| / z 3 =o = N2δliιβδιi2fiaiχi2 , (2.23)

where a constant aiχil is antisymmetric under a permutation of the indices i\J2.
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The equation ( 3 0 ^ ( 1 ) = 0 and the equalities (2.21), (2.23) imply that

(2.24)
£=2,3

Let us introduce the function

N-l

6~ (1) = δh o Σ exp [-2niN~\N - 1)/Π(.

N-l

—<5/z 9o<5/z ,0 Σ e x P [—2πiN~ι(N —
2 i' ,/' =o

(2.25)

By definition the function (2.25) satisfies Eq. (2.24) and therefore it satisfies
the equation &£z 3(l) + ^ 2 ( 1 ) = N2διt i0[διt ,0/3 (//3) + <?/, ,0/2(^2)]- ^ n e definitions
(2.22) and (2.25) imply that the Fourier expansion of the left-hand side of this
equation does not contain the components with ml2 = N - 1 or mi3 = AT - 1. It is
easy to show now that b^ (I) + 6£z (1) = 0. Hence the function ££z 3(l) is antisym-
metric under a permutation of indices i2,h- By the definitions (2.22), (2.25) and
the relation (2.13) all components in the Fourier expansion of the function 6£Z3(1)
are integers. Then the function fe£l3(l) is the Fourier transform (2.12) of some 2-

cochain fcZ2/3(m) G C 2 (T^,Z). Due to equality (2.25) a cochain 6Z2/3(m) depends on
the variables ml2, wz 3 only and it is equal to zero if one of these variables equals
N- 1.

We define the function cz~/2Z 3(l) by the following equality:

,«5/,2,o
 NΣ exp [-2πiN-\N - , ^ l 2 ; 3 ,,
/ ; ,1'. = 0 ' 3

(2.26)

A function Cζ^i}) is obviously antisymmetric under a permutation of indices /i,z*2-
By definitions (2.22), (2.25) and (2.26) its Fourier expansion does not contain
the components with rrik =N — 1, where k is one of the numbers 1,2,3 and the
remaining components are integers. It is easy now to verify that a function c~i2^(\)
satisfies Eq. (2.24) and therefore it is antisymmetric under a permutation of indices
i2,h' Hence it is antisymmetric under a permutation of all indices i\j2,h Then
a function cz~2Z3(l) is the Fourier transform (2.12) of some 3-cochain c/1/2Z 3(m) G

C 3 (T^,Z) which equals zero if one of the variables m\9m2,ms is equal to N — 1.
Now the equalities (2.21), (2.23) and (2.26) imply the equality (2.20), where

a function fl^ 2(I) is the Fourier transform (2.12) of some 2-cochain ^ ^ ( m ) G

C2(Ύ3

N,Z) independent of the variables wip/wl2. By definitions the cochains in the
expansion (2.20) determine the 2-cycle defined by (2.20) uniquely.
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Let Sn be a symmetric group, i.e. a group of all permutations of the numbers
1,...,«. For any permutation σ e S3 and for any point m G T^ we introduce three
2-cochains from C 2 (T^,Z) by defining their Fourier transforms

(δiuσ(\)δi2tσ(2) - 5I 1,σ(2)5I 2,(T(i))

xexp [2πίN~\{N - l)(/σ(i) + /σ ( 2)) + mσi3)lσ(3))] ,
(2.27)

(l)

Π ( e x P
U=2,3

- e x p [2πiN-ι(N- l )

xexp [2πiN-\(N-1)1 σ{ι)], (2.28)

Π ( e x P [2πiN~ιmσ{k)lσ(k)]
k=1,2,3

-exp [2πiN-\N - 1 )/,(*>]) (exp [-2πiN-Ίσ(3)] - I ) " 1 . (2.29)

The inner product (2.14) of the 2-cochains given by their Fourier transforms (2.20)
and (2.27) is equal to #σ(i)σ(2)(^σ(3)) It is antisymmetric under a permutation of
the indices σ(l), σ(2). The function (2.27) has the same property. Hence the in-
dependent functions (2.27) are related to three permutations σ G S3 satisfying the
condition σ(l) < σ(2). The inner product (2.14) of the 2-cochains given by their
Fourier transforms (2.20) and (2.28) is equal to 6σ(2)σ(3)(m). Since it is antisym-
metric under a permutation of the indices σ(2), σ(3) the independent projections on
the subspace Z 2(T^,R) of the 2-cochains given by the Fourier transforms (2.28)
correspond to three permutations σ G S3 satisfying the condition σ(2) < σ(3). The
inner product (2.14) of the 2-cochains given by their Fourier transforms (2.20) and
(2.29) is equal to cσ(i)σ(2)σ(3)(m). Since it is antisymmetric under a permutation
of all indices σ(l), σ(2), σ(3) the only projection on the subspace Z 2(T^,R) of
the 2-cochain given by the Fourier transform (2.29) corresponding to the identity
permutation σ e S3 is independent. Thus we have proved the following

Proposition 2.3. Every element z G Z 2 (T^,Z) has the following form:

zlχl2{m) = {Pz)hh(m), (2.30)

N-\

£ I l ί 2 (m)= Σ Σ
σGS3;σ(l)<σ(2) &σ ( 3 )=0

N-2

σ£Sy,σ(2)<σ(3) kσ{1),kφ

x (έ[σ(2),σ(3);Λσ(2),*σ(3)])ί1ί2(m)

+ * Σ ci 2 3(k)(c[l,2,3;k]) i l / 2(m), (2.31)
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where P is the projector (2.19), the 2-cochains (ά[σ(l),σ(2);A:σ(3)])Zl/2(m),(£[σ(2),
σ(3);A:σ(2),A:σ(3)])zμ2(m) and (c[l,2,3;k])/ lZ 2(m) are defined by their Fourier trans-
forms (2.27), (2.28) and (2.29). The integer valued functions flσ(i)σ(2)(£σ(3))>
£σ(2)σ(3)(£σ(2),&σ(3)) and δ\23(k) in the equalities (2.30), (2.31) are independent and
they determine the element (2.30) uniquely.

As explained above for the continuum limit T^ —• T3 of the correlation func-
tion (2.10) we need to choose the special sequence (1.11) of the 2-cochains φN €
C2(Ύ3

N,Z) and the inverse temperature β = β0N
3+2b, where β" 1 = g2(2πR)3 > 0

and b is a strictly positive integer.

Proposition 2.4. Let a θ-function Θ((φ,z)\2πiβΩ~ι) be given by the equality

(2.11). Then for any sequence ΦM G C 2 (T^,Z) and for any numbers β0 > 0,y > 3,

lim Θ((φN,ϊ)\2πiβ0N
yΩ~ι) = 1 . (2.32)

Proof It follows from the equalities (2.16), (2.27)-(2.29) and (2.31) that: for
0 ^ mum2,m3 ύ N - 2,

(d*i)i23(m) = ci23(m), (2.33)

for 0 ^ m\,m},m3 ^ N - 2,mj = N - \J — 1,2,3,

N-2

(3*f)i23(m) = (-iy+1Z?1-3(mi,m},m3) - Σ <?i23(m)|m^m/ , (2.34)

for 0 ^ πij ^ N-29mι9mj,m3 = N - \J = 1,2,3,

(5*f)1 2 3(m) = (-iy+ι(άι73(mj + 1) - άς^mj))

N-2

— Σ Sgnσ Σ ^M3)(^7>^(3))
σ£S3 J=σ(2)<σ(3) m' =0

N-2

Σ sgnσ Σ bσ(2)j(mf

σ{2)9mj)
σG5>3;σ(2)<σ(3)=y m

f . . . = 0
σ{2)

+ "Σ ci23(m')L=»; , (2-35)
mf

k=0;kφj ]

where sgnσ is a parity of permutation.
Due to equalities (2.27)-(2.29) for 1 ^ iui2 ^ 3 we get

0Oi7,i2(O) = Σ α,lί2(A:) . (2.36)

By definition the terms in the right-hand side of the relation (2.19) are orthogo-
nal to each other. Now the equalities (2.15), (2.16), (2.36) and the obvious estimate
for any integers h,k = 1,2,3,

-exp [2πiN-χlk]\2) ^ 1/6 (2.37)
k=\ J
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imply the following estimate

\Θ((φ,z)\2πiβΩ-ι)-l\ S Σ exp \-2π2βN~3

P£eZ2(Ύ3

N,Z)

X

σ£Sy,σ{\)<σ{2) vm=0

N-\

((δ*f)1 2 3(m))2] - 1 . (2.38)

Since

m - l

^σ(l)σ(2)(fW) = ^σ(l)σ(2)(0) + Σ (^σ(l)σ(2)(^ + 1) ~ ^σ(l)σ(2)(^)) ? (2.39)

it is possible to consider ασ(i)σ(2)(0) and the right-hand sides of the equalities
(2.33)-(2.35) as the summation variables in the sum (2.38). It follows from the
equality (2.39) that

N-\_ N-2

Σ aσ{i)σ{2)(m) = ̂ άσ (i)σ (2)(0) + Σ (N ~ m ~ l)(^σ(i)σ(2)(w + 1) - άσ{ι)σ{2)(m)) .

(2.40)

Extending the summation over the integer variables άσ(i)σ(2)(0) in the sum (2.38)
into the summation over ασ(i)σ(2)(0) G N~ιZ in view of (2.40) we get the extended
sum (2.38), where the independent summation variables are the right-hand sides of
the equalities (2.33)-(2.36). Now if we leave in the second exponent (2.38) the
components (2.33)—(2.35) only we obtain the obvious estimate for this extended
sum and therefore for the left-hand side of the inequality (2.38),

\Θ((φ,z)\2πiβΩ-1)- 1| ^ (Θ(0\2πiβN-3))3(Θ(0\iπβ/3))N3~ι - 1 , (2.41)

where N3 - 1 is the total number of the component (2.33)-(2.35), i.e. the total

number of the generators of the group of 2-boundaries on T^.
Since for any strictly positive integer n the following estimate n2 > n holds,

the definition (2.8) of the one dimensional ^-function implies that for any t > 0,

1 < <9(0|/0 < 1 +2(eπt - I ) " 1 . (2.42)

By using this estimate we have

0 < (Θ(0\iπβ0N
y/3))N3-1 - 1

< ^ V - i y ; v 3 - * ) 2 * ( e χ p [π2βoNy/3] _ x)-k { 2 4 3 )

k=l

The estimates (2.41)-(2.43) imply the relation (2.32).
In order to compute the continuum limit of the correlation function (2.10) it is

necessary to calculate the continuum limit of the correlation function (2.7). Let us
consider again the J-dimensional torus, d > 2. Due to [8, Sect. 22, Proposition 1]
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for any 2-cochain φ e C 2(T^,Z),

(Φ, Φ) ~ Σ(Φ,Zi)(Φ,Zi) = (Φ, QΦ), (2-44)
/=i

where Q is the orthogonal projector on the subspace of the 2-coboundaries B2(Td

N,
R). Lemma 2.1, the relations (2.14)-(2.17) and the relation exp [2πiN~ι(N-
l)m\ — exp [—2πiN~ιlm] for any integers l,m imply that

d (N-l)/2 / d \~λ

(Φ,QΦ) = ΣN~d Σ Σlexp [2πiN-ιlk] - 1

x |Σ(exp [2πiN-ιIλ] - I)φ7(l)\2 . (2.45)
λ=\ μ

Here we assume N to be odd. Let a 2-cochain φ^,b £ C2(T^, Z) be constructed from
the coefficients φlχl2{θ) of a smooth differential 2-form on the torus Ύd by means
of the definition (1.11) for some strictly positive integer b. From the definitions
(1.11) and (2.12) we get

2πR 2πR d

= (2nR)~d J dθx " J dθdexp [iR-ιΣlkθk]φiιi2(θ). (2.46)
0 0 k=\

Hence the limit (2.46) is a square summable function of the variable 1 e ΊJ1. Now
the relations (2.45) and (2.46) imply that

N-^-oo '

+l2

dΓ
ι\(d*φ);(\)\2 , (2.47)

where d* is the adjoint operator of the differential operator d

d

(d*φ)μ(θ) = —Σ,'iJirΦλμ(θ) - (2.48)
λ=\ λ

Now it follows from the relations (2.7), (2.44) and (2.47) that

exp \-(g2/2)(2πRΓdit Σ R2V\ +

(2.49)

It is interesting to note that the right-hand side of this relation is a correlation
function of the R-gauge electrodynamics on a torus [7]. The equalities (2.10), (2.32)
and (2.49) imply the equality (1.12) for d = 3.



(7(1) Gauge Theory on a Torus 239

If the differential 2-form φ has a compact support independent of the radius R
of a torus then by using the equalities (2.46) and (2.49) it is easy to prove that

= exp [-(g2β)(2π)-d$ddp{p\ + • • • + p2

dy
ι \(d*φχ(p)\2], (2.50)

where the operator J* is defined by the same equality (2.48) and a function / ^ ( p )

is an usual Fourier transform of a function fμ(x) on the Euclidean space R^.
The right-hand side of the equality (2.50) is a correlation function of the R-gauge
Euclidean electrodynamics [7].

3. Four Dimensional Torus

In order to prove the relation (1.12) for d — 4 we have to obtain the four dimen-
sional versions of Propositions 2.2, 2.3, and 2.4.

Proposition 3.1. The Fourier transform (2.12) of every 2-cycle z e Z2(Ύ4

N,Z) has
the form: for any permutation λ £ S4

) = aKm2)(\) + Σ
σ,τES4;σ(k)=k,k=l,2;τ(k)=k,k=3,4

x [(exp

)r μ τ ; (1))+ l/2( Π (exp [2πiN-ιlm] - 1))
£=3,4

where a 2-cochain βA(iμ(2)(m) is independent of the variables m^\)9m^2)> a 2-
cochain b^V,3Jιn) depends only on the variables mχ(2),rnλ(3),mλ(4) and it is zero
except for 0 ^ mλ(2),mλ(3>) ^ N - 2,mλ(4) = 0; a 3-cochain (cW 4 ) )); t (iμ ( 2μ(3)(m)
is zero except for 0 ^ w2A(i)»^(2)5^(3) = ^ ~ 2,m;u(4) — 0; α l-cochain
b[λ(2) {λ(3% ;.(4)}](m) w symmetric under a permutation of the extra indices /l(3),/l(4)
α«ύί it satisfies the symmetry equation

Σ £μ<7(2);{/σ(3)X4)}](in) = 0 , (3.2)
σG5"4 ;σ( 1 )= 1 ,sgnσ= 1

a l-cochain b^2);{λ(3),λ(4)}](m) depends only on the variables rnλ(2)>mλ(3),fnλ(4)
and it is equal to zero if one of these variables equals N — 1; a 2-cochain
^μ(i)/(2);{/(3),/(4)}](in) is symmetric under a permutation of the extra indices
λ(3),λ(4) and it satisfies the symmetry equation

φ ( μ ( ) ; { (
σe£4;σ(l)=l,sgnσ=l

a 2-cochain cμ(iμ(2);{^(3)^(4)}](in) equals zero if one of the variables mu...,m4

equals N — 1. The above cochains determine the 2-cycle given by (3.1) uniquely.
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Proof. Let λ £ £4 be a permutation of the numbers 1,2,3,4. Applying the formula
for a sum of a geometrical progression we get a expansion for a Fourier transform
(2.12) of a 2-cycle from Z2(Ύ4

N,Z%

Π ( e χp
k=3,4

(z~)um
N-l N-\

Σ Σ
7 W / ( 1 ) » / W A ( 2 ) = O '

xexp

It is obvious that the function (3.5) is symmetric under a permutation of the extra

indices λ(3),λ(4). By an argument analogous to the one given in Proposition 2.2

the function z~(ι)λ{2)(L)\ιλ{3)Jλ{4)=o has the form (2.23). The function z%l)λ{2)(l)\im=0

may be considered as a Fourier transform (2.12) of a 2-cochain which is not

zero only for mχ^) — 0. In view of the equality (2.15) it is evident that the func-

tions z~ 2 (l) | / ; ( 3 ) = o,*i,*2 = l , . . . , λ ( 3 ) , . . . , 4 , of the variables / i , . . . , / λ ( 3 ) , . . . , / 4 form

a function from the group Z 2 ( T ^ , Z ) ~ . Now by Proposition 2.2 for the function

z ^ 1 ) ; ( 2 ) ( l ) | / = 0 the expansion (2.20) holds. Since a function ^ 1 ) ; ( 2 ) ( 1 ) satisfies

the equation (<3z~);L(i)(l) = 0, it follows from the relation (3.4), the explicit form

\ i
( )

(2.23) of the function zχl\)χ(2)(^\
=° a n c^ t n e e x P a n s i ° n s °f the type (2.20)χl\)χ(2)(^\b(3)>b(4)

for the functions z^l)λ(2^ϊ)\ιm=0, ^ 1 ) Λ ( 2 ) (I) |/ A ( 4 ) =o that the function (3.5) satisfies

the equation
/ A ( 4 )

Π (exp [2πiN-Ίm] - 1)
£=2,3,4

(Z )/(iμσ
σ€54;σ(l)=l,sgnσ=l

(3.6)

where the identity permutation and two cyclic permutations of the numbers 2,3,4
leaving invariant the number 1 are represented as the set {σ e S4 : σ(l) = 1,
sgnσ = 1}.

Let us introduce the function

[-2πiN-\N - l)l'λ{

'/(I)
7 V - 1

exp [-2πίN-\N -

7—1

^ ;£
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By using the inverse transformation for the Fourier transformation (2.12) we obtain
from the function (3.7) the 1-cochain %(2);{/(3),;.(4)}](m) which is symmetric under
a permutation of the extra indices λ(3),λ(4). Due to (3.5), (3.7) it depends on the
variables m;^2)^λ(3)^λ(4) only and it is equal to zero if one of these variables
equals N — I. By definition the functions of the (3.7) satisfy Eq. (3.6). Now the
arguments similar to those given in Proposition 2.2 lead to the statement that the
inverse Fourier transform of the functions of the type (3.7) satisfy Eq. (3.2).

Let us define the function Cμ ( 1 μ ( 2 ) .r ; ( 3 ) ; ( 4 ) | ]( l) by t n e following equality:

exp [-2πiN-\N - \\l'λ{

The definitions (3.5), (3.7), (3.8) and the relation (2.13) imply that the function
c[7(iμ(2);{/(3),χ(4)}](1) i s t h e Fourier transform (2.12) of the cochain cμ(iμ(2),{Λ(3),Λ(4)}]
(m) G C 2 (T^,Z) which equals zero if one of the variables wi,...,m4 is equal to
N - 1. It follows from the definitions (3.7), (3.8) and Eqs. (3.2), (3.6) that the func-
tions cπ(iμ(2) {;(3);(4)}]0) a r e symmetric under permutations of the extra indices
λ(3),λ(4) and satisfy Eq. (3.6). Now since the 2-cochains cμ(iμ(2);{A(3),λ(4)}](m)
equal zero if one of the variables m\9...,m4 is equal to N — 1, applying the argu-
ments of Proposition 2.2 we get that these 2-cochains satisfy Eq. (3.3).

The expansions (2.20), (3.4), (3.8) and the equality of the type (2.23) imply the
expansion (3.1). Due to the construction the cochains contained in the expansion
(3.1) define the 2-cycle given by (3.1) uniquely.

For any permutation σ e S4 and any point m G ϊ J w e introduce five 2-cochains

from C 2 (T^,Z) by defining their Fourier transforms

xexp [2πiN-\(N -

+Ήθ(3)/θ(3) + mO(4)/θ(4))] , (3.9)

Π ( e x P [2πiN-ιmσ{k)lσ{k)]
=2,3

-exp [2πiN-ι(N - l)/σ(*)])j(exp [-2πiN-ιlφ)] - I ) " 1

[2πiN~\N - l)/σ(1)] , (3.10)

(^[[σ(2);{σ(3),σ(4)}];m])z7/2(l)

= (^z1,σ(l)^2,σ(2) ~ ^i1,σ(2)^i2,σ(l))exp [2πiN~l(N -

x(exp [2πiN~λrnσ(2)lσ(2)\ — exp [2πiN~ι(N —
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x [ Π ((exp PπΰV-'m^)/^)] - exp [2πiN~\N - l)lσ(k)])
U=3,4

x(exp [-2πiN-Ίσik)] - I)" 1 ) + Σ (exp [2πiN-ιmστ{4)lστ(4)]
τeS4;τ(k)=k,k=l,2

-exp [2πiN-ι(N- l)/στ(4)])(exp [-2niN~llax{4)] - lΓ ' JVδ/^J , (3.11)

,σ(3);(σ(4));m])17/2(l) = (δhMl)δi2,σ(2) - δ,uσ(2)δl2Ml))Nδ,σ(4)β

x[ Π (expPTπTV-'m^)/^)] - exp [2πiN~λ{N - \)lσ(k)])
U=l,2,3

x( exp [-2π«V-1/0(3)] - I ) " 1 , (3.12)

Π ( e x P
/c=l,2

- exp [2πiN~\N - l)lσ(k)})
U=3,4

- exp [2πiN'ι(N - l)/σ(/t)])(exp [-2πW-'/σ(i)] - I)" 1 )

+ Σ ( e xP [2πίW"'ffiστ(4)/στ(4)] - exp [2πiN~ι(N -

x(exp [-2πW-1/σl(4)] - l Γ ' Λ ^ . o ] . (3.13)

The inner product (2.14) of the 2-cochains given by the Fourier transforms (3.1)
and (3.9) is equal to ασ(i)σ(2)(m). The function (3.9) is antisymmetric under a per-
mutation of the indices σ(l), σ(2) and it is symmetric under a permutation of the
indices σ(3),σ(4). Hence the independent functions (3.9) are related to six permuta-
tions σ G S4 satisfying the conditions σ(l) < σ(2), σ(4) < σ(3). The inner product
(2.14) of the 2-cochains given by the Fourier transforms (3.1) and (3.10) is equal to
*σ^2)σ(3)(m) ^ m c e ̂  *s antisymmetric under a permutation of the indices σ(2),σ(3)
the independent projections on Z 2(T^,R) of the 2-cochains given by the Fourier
transforms (3.10) correspond to twelve permutations σ £ S4 satisfying the condition
σ(2) < σ(3). The inner product (2.14) of the 2-cochains given by the Fourier trans-
forms (3.1) and (3.12) is equal to ̂ } 2 w 3 ) ( m ) . Since it is antisymmetric under a

permutation of the indices σ(l), σ(2), σ(3) the independent projections on Z2(Ύ4

N,R)
of the 2-cochains given by the Fourier transforms (3.12) are related to four per-
mutations σ E S4 satisfying the condition σ(l) < σ(2) < σ(3). The inner product
(2.14) of the 2-cochains given by the Fourier transforms (3.1) and (3.11) is equal
to &[σ(2);{σ(3),σ(4)}](m) These functions are symmetric under a permutation of the
indices σ(3), σ(4) and satisfy the symmetry equation (3.2). This equation allows
to represent ^σ(2);{σ(3),σ(4)}](m), where σ(2) > σ(3),cr(4), as a sum of the func-
tions 6[σ(2);{σ(3),σ(4)}](in), where σ e S4 and σ(3) > σ(2) or σ(4) > σ(2). By using
the symmetry under the indices σ(3),σ(4) we can add the condition σ(3) > σ(4).
Thus the independent functions &[σ(2);{σ(3),σ(4)}](m) a r e related to eight permutations
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σ e S4 satisfying the condition σ(2), σ(4) < σ(3). Therefore the independent pro-
jections on Z 2(T^,R) of the 2-cochains given by the Fourier transforms (3.11)
correspond to eight permutations σ e S4 satisfying the condition σ(2), σ(4) < σ(3).
The inner product (2.14) of the 2-cochains given by the Fourier transforms (3.1)
and (3.13) is equal to C[σ(i)σ(2);{σ(3),σ(4)}](m) These functions are antisymmetric
under a permutation of the indices σ(l), σ(2) and they are symmetric under a per-
mutation of the indices σ(3), σ(4). They satisfy the symmetry equation (3.3). Ap-
plying the arguments given above it is possible to assume that for the independent
functions C[σ(i)σ(2);{σ(3),σ(4)}](m) the condition σ(2),σ(4) < σ(3) holds. The antisym-
metry under a permutation of the indices σ(l), σ(2) enables us to add the condi-
tion σ(l) < σ(2). Summing up we have σ(l) < σ(2) < σ(3),σ(4) < σ(3). These
conditions are equivalent to the conditions σ(l) < σ(2) < σ(3), σ(4)φ4. Thus the
independent projections on Z 2(T^,R) of the 2-cochains given by the Fourier trans-
forms (3.13) correspond with three permutations σ e S4 satisfying the conditions
σ(l) < σ(2) < σ(3), σ(4)φ4. Hence we have proved the following:

Proposition 3.2. Every element z e Z2(T^,R) has the following form:

f / l l 2(m) = (Pf) / l / 2 (m), (3.14)

N-\

zhi2(m)= Σ Σ dσ{ι)σ(2)(k)(ά[σ(l%σ(2y,k])iιl2(m)
σeS4;σ(l)<σ(2);σ(4)<σ(3)kσ{3),kσ(4)=Q

+ Σ NΣ bi%%(k)(b[σ(2), σ(3); (σ(4)); k])ίli2(m)
σGS4;σ(2)<σ(3) A:σ ( 2 ),£σ ( 3 )=0

N-2

N-2

+ Yl Y]

x ( c [ σ ( l ) , ( 7 ( 2 ) , ( 7 ( 3 ) ; ( σ ( l 2

N-2

+ Σ Σ qσ(l)σ(2);{σ(3),σ(4)}](k)
5 ( l ) ( 2 ) ( 3 ) ( 4 ) 4 A Λ 0

])/ l / 2(m) (3.15)

where P is the projector (2.19), the 2-cochaίns (α[σ(l),σ(2);k])I l l2(m),(6[σ(2),

σ(3); (σ(4)); k]) / l l 2(m),(i[[σ(2); {σ(3), σ(4)}];k]) lV2(m), (c[σ(l), σ(2), σ(3); (σ(4));
k])/lZ2(m) α«(ί (c[[σ(l),σ(2);{σ(3),σ(4)}];k])/ l i 2(m) are defined by the equalities
(3.9), (3.10), (3.11), (3.12) and (3.13) respectively. The integer valued functions

Γ( σ ( 4 ) ) // 7 \ zΓ // 7 7 \ -(σ(4))

( ) ( ) ( q σ ( 1 ) σ ( 2 ) ; { σ ( 3 ) > σ ( 4 ) } ] ( k ) are independent and they determine the
element (3.14) uniquely.

In order to obtain the four dimensional version of Proposition 2.4 it is necessary
to know the explicit expressions similar to (2.33)-(2.36) of the independent func-
tions contained in (3.15) through the 2-cochain (3.15). The definitions (3.9)—(3.13)
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and (3.15) imply that for i\ < i2,

(3.16)

where i-$ < U and i\,..., U is a permutation of the numbers 1,... ,4.
It follows from the definitions (2.16) and (3.9)-(3.13) that

Σ
τ<ES4;τ{p)=p,p=l,2

x exp [2πiN-\(N-\)(lσ{l)

x (exp p π i Λ T 1 ^ ^ ) - l)/ffT(3)]

- exp [2πiN~ιkστ(3)lσ<3)]),

[2πίN ι(N-l)lφ

[2πiN-ιkσ{p)lσ{p)] - exp [2πiN~\N - l)lσ{p)])\ ,

J

Σ Σ
τ£S4;τ(p)=p,p=l,2
xexp

x
p=2,3

N-l

x Σ exp [2πίN~

[2πίN-ιkστ(p)lστ{p)] - exp [2πiN'ι(N -

(3.17)

(3.18)

(3.19)

z ( 3 ) ,σ(3)

= 1,2,3

(a*c[[σ(l),σ(2);{σ(3),σ(4)}];k])-2Z3(l)

= Σ Σ sgn/?(5V(1),σ(i)(3/p(2),σ(2)^(3),στ(3)
τeS4;τ(p)=p,p=\,2 peS3

x Π (exp [2πtfVr-1^(/,)/στ(/,)]--exp [2πiN~ι(N
lp= 1,2,3

Λ^-l

x ^ exp

(3 2 °)

(3.21)
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We notice that the functions (3.17)—(3.21) have the same properties with respect to

σ(l), . . . , σ(4),k as the cochains contained in the expansion (3.1) have. In particular,

the functions (3.19) and (3.21) satisfy Eqs. (3.2) and (3.3), respectively.

Let us consider four permutations σq £ S4 satisfying the conditions oq{\) <

σq(2) < σq(3),σq(4) = q9q = 1,2,3,4. In the relations (3.17)—(3.21) we substi-

tute the indices ip = σq(p\p = 1,2,3. Now it is easy to show that the inverse

Fourier transforms of the functions (3.17)—(3.19) and (3.21) are equal to zero

for 0 ^ mσq(\),rnσ(J(2),nϊσq(3) ^ N — 2,mσq^) = 0 and the inverse Fourier transform

of the function (3.20) isn't zero if the sets of numbers {σq(l),σq(2),σq(3)} and

{σ(l),σ(2),σ(3)} coincide. If σ(l) < σ(2) < σ(3) this condition implies σq =

σ. Therefore we have proved that for 0 ^ ^ ( i ) , ^ ( 2 ) , % g ( 3 ) ^ N -2,mσq{4) =

0,q= 1,2,3,4

(d*Z)σq(l)σq(2)σq(3)(™) = ^ ( i 4 ) ^ ( 2 ) σ , ( 3 ) ( m ) ( 3 2 2 )

The right-hand sides of the relations (3.22) provide all four independent functions

^O4)σ(2)σ(3)(m) c o n t a m e d m m e expansion (3.15).

Let us substitute in the relations (3.17)—(3.21) the indices ip = σq(p), p,q =

1,2,3. The inverse Fourier transforms of the functions (3.17)—(3.19) are equal

t o z e r o f o r 0 ^ mσq{x),mσq{2),mσqi3) ^ N - 2 , 1 ^ mσq(4) ^ N - l9q = 1 , 2 , 3 , a n d

by the above arguments the inverse Fourier transform of the function (3.20) is

equal to 6ffqt<yUP=i.23 δkσ{p>mσ{pV if σ G S4,σ(l) < σ(2) < σ(3). The inverse Fourier

transform of the function (3.21) isn't zero if the set of numbers {σq(\\σq(2\

σq(3)} coincides with one of the sets {σ(l),σ(2),σ(3)} or {σ(l),σ(2),σ(4)}. The

set of the permutations σ e S4 satisfying the conditions σ(l) < σ(2) < σ(3), σ(4)

Φ4 consists of three permutations σq,q = 1,2,3. Since σq(3) = 4 the sets of num-

bers {σqι(l),σqι(2\σqι(3)} and σqi{\\σq2{2),σq2(4)} do not coincide. The set

of numbers {σqι(l)9σqι(2),σqι(3)} and {σq2{\),σqi{2),σqi(3)} coincide only for

σqι = σq2. Now it is clear that for 0 ^ mσq(ι)9mσq(2)mσqi3) ^ N -2,1 ^ mσq(4) ^

N- 1,0=1,2,3,

q()
+ Σ %(lK(2);{σ g (3),σ 9 (4)}](m)L σ ? ( 4 r m ^ 4 ) (3.23)

)~

The linear combinations with integer coefficients of the right-hand sides of the

relations (3.22), (3.23) enable us to obtain all the three independent functions

qσ(i)σ(2);{σ(3),σ(4)}](m) contained in the expansion (3.15).

Let us substitute in the relations (3.17)—(3.21) the indices ip = σq(p\p =

1,2,3,q = 1,2,3,4. The inverse Fourier transforms of the functions (3.17), (3.19)

and (3.21) are equal to zero for mσq{X) = N - 1,0 ^ mσq{2),mσq{3) ^ N - 2,mσq(4)

= 0. Let us consider the inverse Fourier transform of the function (3.18). It is

not zero if two sets of numbers {σq(\),σq(2),σq(3)} and {σ(l) ,σ(2),σ(3)} co-

incide. Due to conditions m>σq{\) = i V — 1,0 ;§ mσq(2),^σq(3) S N — 2 this implies

σ ( l ) = σq(l). The additional condition σ(2) < σ(3) gives σ = σq. Applying simi-

lar arguments and the arguments given for the proof of the relation (3.22) now we
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can prove that for mσq(J) = N - 1,0 ^ mσq(2),m^(j),mσq{i) <± N - 2,mσq(4) = Q,j =

1,2,3,9=1,2,3,4,

N-\ , .„.

- Σ <(iK(2y,(3)(«n)k ϊ ( / ) =< ω ( 3 2 4 )

The linear combinations with integer coefficients of the right-hand sides of the
relations (3.22) and (3.24) allow us to compute all the twelve independent functions

bσ(2)σ(3)(m) contained in the expansion (3.15).
Let us substitute in the relations (3.17)—(3.21) the indices ip = σq(p),p,q —

1,2,3- The inverse Fourier transform of the function (3.17) is equal to zero
for mσq{\) = N — 1,0 ίkmσq(2),mσq^ ^ N — 2. Let us consider the inverse Fourier

σ q

q q q
transform of the function (3.19). It is not zero if the set of numbers {σq(l),σq(2),
σq(3)} coincides with one of the sets {σ(l),σ(2),σ(3)} or {σ(l),σ(2),σ(4)}.
The additional conditions mσq(\) = N — 1,0 ^ rnσq(2),mσq(3) S N — 2 imply that
σq(l) = σ(l). If we suppose that σ(2),σ(4) < σ(3), the sets {σ^(l),σ^(2),σ^(3)}
and {σ(l),σ(2),σ(4)} do not coincide because of σq(3) = 4#=σ(2),σ(4) < σ(3).
There remains one possibility that the sets of numbers {σ^(l), σ^(2), σ^(3)} and
{σ(l),σ(2),σ(3)} coincide. Due to the condition σ(2) < σ(3) this implies σ —
σq. These and analogous arguments yield for mσq(j) = N — 1,0 ^ mσq(i),wh^u),
mσq{3) ύ N - 2,1 ^ mσq{4) ^N- \J = \χq = 1,2,3,

mσq(4)-l_

Σ *^
σq(4)=0

-(σ(4))

where τn is the unique non-trivial permutation of the numbers 1,2 and Lj is a linear
combination with integer coefficients of its variables.

The case mσq^ — N — 1,0 :§ rnaq{\^mσq^) ^ N — 2 needs a special considera-
tion. Let us choose two permutations σq G S^q = 1,2. They have the following
property : σq(2) = 3,σ^(3) = 4. If σ(l) = σq(3) = 4 and σ(2),σ(4) < σ(3) the
sets of numbers {σ(l),σ(2),σ(4)} and {σ^(ί),σ^(2),σ^(3)} cannot coincide be-
cause of σq(2) = 3 φσ(2),σ(4) < σ(3). The remaining arguments are similar to the
above used ones and for mσqQ) = N - 1,0 ^ mσq{\^mσq{2)^ N - 2,1 ^ ^ ( 4 ) ^
N - l,q= 1,2 we get

mσq(4)-\ _

d * ( m ) = Σ ^ ( l ) ; { σ ^ ( 2 ) , σ ί ( 4 ) } ] ( m ) L ^ ( 4 ) ^

"Vr0 "

The linear combinations with integer coefficients of the relations (3.22)-(3.26) give
all the eight independent functions £[σ(i){σ(2)σ(4)}](m) contained in the expansion
(3.15).

Let us substitute in the relations (3.17)—(3.21) the indices ip — σq(p), p =
1,2,3, q = 1,2,3,4. The inverse Fourier transform of the function (3.17) for mσn) —
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"Qj) = mσqQ)=N-U0 S mσqU) ^N-2;j = l,2,3;0 ^ mσq{4) ^N - \;q = 1,

2,3,4; isn't zero if two sets of numbers {σq(l),σq(j),σq(3)}, {σ(l),σ(2)} coin-
cide and if the set of numbers {σq(l),σq(2),σq(3)} coincides with one of the sets
{σ(l),σ(2),σ(3)} or {σ(l),σ(2),σ(4)}. Let us suppose that σ(l) < σ(2), σ(4) <
σ(3). Then the above mentioned conditions imply that for σq(J) > σq(4) we get
σq(J) = σ(3),σ ?(4) = σ(4) and for σq(J) < σq(4) wej^et σq(j) = σ(4), σq(4) =
σ(3). Now it is simple to prove that for mσq(\) = r^σqlj) — mσq(3) — N — l O ^
mσq(j) ^ N -2;0 <Ξ mσq{4) ^ iV - l y = 1,2,3# = 1,2,3,4; the following relation
holds:

*>,c), (3.27)

where Lj(b,c) is a linear combination with integer coefficients of the independent

functions ^2)σ(3)(k)?V(2);{σ(3),σ(4)}](k)?^ί4)i(2)σ(3)(k) a n d [̂σ(l)σ(2);{σ(3),σ(4)}](k).
The linear combinations with integer coefficients of the right-hand sides of the
relations (3.22)-(3.27) give all the twelve functions βσ(i)σ(2)(^σ(3) + l,mσ(4)) -
βσ(i)σ(2)Oσ(3),mσ(4)), flσ(i)σ(2)K(3),%(4) + 1 )-βσ(i)σ(2)Oσ(3),/wσ(4)), where permu-
tations σ G 5 4,σ(l) < σ(2), σ(4) < σ(3).

Applying the relations (3.16) and (3.22)-(3.27) it is possible to modify the
proof of Proposition 2.4 for the four dimensional case.

Proposition 3.3. Let a θ-function Θ((φ,z)\2πiβΩ~~ι) be given by the equality
(2.11). Then for any sequence φN £ C2(T^,Z) and for any numbers β0 > 0,

y > 4,
lim Θ((φN,z)\2πiβ0Nm-{) = 1 . (3.28)

N-+oo

The relations (2.10), (2.49) and (3.28) imply the relation (1.12) for d = 4. For
d — 2 this relation is also fulfilled but now the right-hand side of (1.12) has the
continuum form of (2.7) for g = 1. When the torus radius tends to infinity this
correlation function of type (2.7) converges to the trivial correlation function of the
R-gauge Euclidean two dimensional electrodynamics [7].
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