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Abstract: We obtain the exact classical algebra obeyed by the conserved non-local
charges in bosonic non-linear sigma models. Part of the computation is specialized
for a symmetry group O(N). As it turns out the algebra corresponds to a cubic
deformation of the Kac-Moody algebra. We generalize the results for the presence
of a Wess-Zumino term. The algebra is very similar to the previous one, now
containing a calculable correction of order one unit lower. The relation with
Yangians and the role of the results in the context of Lie-Poisson algebras are also
discussed.

1. Introduction

In general, quantum field theoretic models where non-perturbative computations
are known, contain an infinite number of conservation laws [1, 2]. In fact, the
solvability of several exact S-matrices in two-dimensional models can be traced
back to the Yang-Baxter relations [3,4], which in turn are a direct consequence of
the conservation of higher powers of the momentum. Alternatively, there is an
infinite number of non-local conservation laws in most of these models as well
[2, 5]. Both sets of conserved quantities can be related to the existence of a Lax pair
in the theory: demanding compatibility of the Lax pair, one arrives at conserved
charges as functions of the so-called spectral parameter implying, after Taylor
expansion, an infinite number of conservation laws.

Another set of models containing an infinite number of conserved quantities are
the two-dimensional conformally invariant theories [6, 7]. The Virasoro gener-
ators are a generalization of the energy-momentum-conserved charges. Defining
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a realization of the symmetry in terms of the null vectors implies a number of
differential equations to be obeyed by the correlation functions, which can be
integrated. In other words, a further knowledge of the underlying algebra obeyed
by the conserved quantities, namely the Virasoro algebra, together with the
differential representation of the conserved charges, permitted one to go one step
further, i.e. to the complete computation of the correlators.

Our aim here is to obtain the algebra of conserved quantities for integrable
theories. The algebra of local conservation laws is Abelian and therefore too
simple. Massive perturbations of the conformal generators are also a possibility,
since they also form a non-commuting algebra, and it would be worthwhile to
understand the algebra, as well as the role played by the conservation laws
surviving the mass perturbation [8]. For free fermions (k = 1 WZW models) the
results conform to our expectation [9].

Non-local conserved charges, on the other hand, are very powerful objects. The
first non-trivial one alone fixes almost completely the on-shell dynamics [5, 10].

Infinite algebras connected with non-trivial conserved quantities could thus be
the key ingredient for the complete solvability of integrable models, and for the
knowledge of their correlation functions. It is thus no wonder that the problem
evaded solution in spite of several attempts. Indeed, it has been claimed long ago
[11] that non-local charges might build up a Kac-Moody algebra, but the
appearance of cubic terms found by several authors showed that the algebraic
problem was much more involved [12-14]. For non-linear sigma models with
a simple gauge group, the quantum non-local charges present no anomaly [15],
and the monodromy matrix can be computed. Therefore the non-local charge
algebra should be manageable; however, as it turns out, the complete algebra was
not known, and there were hints that a possible break of the Jacobi identity might
occur [12].

We show that there is a natural recombination of the standard non-local
charges, whose algebra has an approachable structure, being composed of a linear
part of the Kac-Moody form, and a calculable cubic term. Later we add a Wess-
Zumino (WZ) term to the action, and show that both linear and cubic pieces of the
algebra acquire a further contribution.

In order to find these results we adopt the following strategy. We explicitly
compute the first few conserved charges generated by the procedure of Brezin et al.
[16]: the Dirac brackets of those charges are rather obscure, as we verify (there are
also examples in the literature [12-14]). Therefore we subsequently define an
improved set of charges in order to simplify the algebra. By inspection, we propose
an Ansatz for the general algebra of the improved charges. At this point we could
argue, based on the Jacobi identity proved in the subsequent section, that once we
have verified the algebra up to some order, there must be a set of charges whose
algebra agrees with the Ansatz.

In order to verify the Jacobi identity, we introduce a set of (non-conserved)
charges whose algebra is isomorphic to the Ansatz. In that case it is useful to start
from the analysis of a kind of chain algebra, in the sense that we commute elements
defined by chains of local currents tied by a non-local function in space. In terms of
these objects we define a linear algebra, albeit with a much larger set of terms.
Finally, by a sort of trace projection, we recover the original algebra in terms of the
saturated charges, proving the Jacobi identity in an indirect way.

This paper is divided as follows: in Sect. 2 we review the algebra obeyed by
Noether local currents based on Refs. [17,18]. In Sect. 3 we consider the canonical



Algebra of Non-local Charges in Non-linear Sigma Models 381

construction of higher non-local conservation laws. We introduce the improved
charges and write the Ansatz for their complete algebra. We also define the algebra
of saturated charges, which turns out to be isomorphic to the algebra of conserved
charges. We derive the chain algebra structure, the corresponding Jacobi identity,
and relate the results to the case of non-local charges. In Sect. 4 we review some
results on Yangian algebras and verify that the first pair of charges provides
a concrete realization of that structure. In Sect. 5 we introduce the WZ interaction
to derive the corresponding algebra. We leave Sect. 6 for conclusions.

2. Current Algebra of Non-Linear Sigma Models

The current algebra of classical non-linear sigma models on arbitrary Riemannian
manifolds (M) is known [17], Indeed, consider a non-linear sigma model on M,
with metric Qij(φ\ and the maps φl(x) from two-dimensional Minkowski space Σ to
M. The sigma model action is given by

S = ^2 I d^η^g^d^d^ . (1)ZΛ £

The phase space consists of pairs (φl(x\ π/(x)), where π is a section of the pull-back
φ*(T*M) of the cotangent bundle of M to the Minkowski space via φ, and the
canonical equal-time Poisson brackets read

y). (2)

From the action (1) we find the canonically conjugated momenta, given by the
expression

πi = ^ 2 9 ί j Φ j ' (3)

We suppose that there is a connected Lie group G acting on M by isometrics, such
that a generator of the Lie algebra g of G is represented by a fundamental vector
field

XM(m) = £t<fx m\t = 0 (4)

on M; the Noether current may be defined as

XίiM} (5)
/

We define also the symmetric scalar field j as

( j , X ® Ύ ) = ̂ gt}(φ)Xi

ίlΎ
i

M. (6)

In terms of basis t" of g, such that [ίfl, tb] =fabctc, we have

-/*=/;'•
j=j°bta®tb, (7)
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and we find the current algebra

OoWJoM} = -f'jfaWx - y) ,
{jo(χ)JΪ(y)} = -fβtej\(χ)S(χ - y) +jab(y)δ' (χ-y),

{jo(χ)Jbc(y)} = - (/'"Ύ'M +fa*j'*(χ))δ(x - y) ,
tiϊ(χ)Jbc(y)} = o ,

= o . (8)
In order to give explicit examples although without loss of generality, we specialize
to the 0(N) case, with Lagrangian

JS? = - dμφidμφh y φf = 1 , (9)
2 i = ι

and Hamiltonian density

tf =-(πf + (?;2), (10)

where π/ = φ, . We have to impose the constraints

< p ? - l = 0 and φ^ = 0 . (11)

Dirac brackets can be easily calculated and read

[<Pi(x)9 <pj(y)} = 0 ,

{<pi(x)9 πj(y)} = (δij - φiφj)(x)δ(x - y),

(πt (x), πj(y)} = - (φ^ - φjnί)(x)δ(x - y) . (12)

In terms of phase space variables the conserved current components may be
written as

(jo)ij = φiπj-φjπi9 (13a)

(Ji)ij = <Pi<p'j-<Pj<p'i- (13b)

Notice that jμ is an antisymmetric matrix-valued field. On the other hand the
intertwiner field given in (7) is symmetric,

We observe that the Hamiltonian (10) can be written in the Sugawara form,

+Λ 2 ) . (14)

It is convenient to present the current algebra in terms of matrix components,
which follows from the elementary brackets (12):

{(Jo)ij(x), (jo)ki(y)} = (δ°jo)ij.ki(x)δ(x - y) ,

= (δ°h)ij.ki(x)δ(x -y) + ( δ - j ) i j t k l ( x ) δ f ( x - y) ,
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= - (5 */)y. «(*)*(* - j) , (15)

where
(δ ° A)ijtkl ΞΞ δikAμ - δnAjk + 5,.,/lifc - δ fcΛi, , (16)

(δ * Λ)/M/ = δikAjt - δnAjk - δjiAik - δjkAn . (17)

Further useful properties of the product defined in (16) are listed in Appendix A.
The algebra of components (8) can be easily re-derived from (15) using the property
(A.8).

3. Improved Non-local Charges and Their Algebra

Non-local charges may be generated by a very simple algorithm [16], starting out
of a current jμ obeying

Sμjμ = 0 ,

dμjv - dvjμ + 2(yμjv] = 0 . (18)

Given a conserved current J(

μ

n\ one defines the associated non-local potential χ(n)

through the equation

J(

μ

n) = cμva
vχ(n), (19)

and build the (n + l)th order non-local current

χ<->] . (20)

Such a current is also conserved as a consequence of Eq. (18). Here we have to
mention that for the first non-local current J (

μ

l ) the coefficient in front of the
cummutator in (20) must be taken as 1 instead of 2. We call the corresponding
conserved integrals,

QW = $ d x J M ( x ) , (21)

the standard charges, since they constitute the usual set found in the literature. We
use the "hat" notation to distinguish these charges from a new set to be defined
later on. It is worth writing the explicit formulae of the first pair,

, (22)
1> = ldx(jl + 2j08-1j0), (23)

where the operator δ"1 is defined by Eq. (B.I) in Appendix B.
However, it turns out that the algebra satisfied by this standard set of charges is

not transparent enough [12-14]. In the search for a more suitable basis of charges
we find out an algebraic algorithm, where the charge β(1) plays a fundamental role,
generating an improved set of conserved charges {β(π)}, n = 0, 1, . . . . Indeed the
first pair coincides with the standard one,

ρ(o) = ρ(θ)9 ρ(i) = ρ(D (24)
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The remaining charges are defined iteratively by means of the Dirac brackets with
<2(1): we verify that the bracket {Q(1), Q(n)} always produces a term of the form
(δ° A) for some A, which we call the linear piece; and other essentially different
terms as (B ° C), with B and C different from the identity matrix (δ\ coming from
surface contributions, which we refer to as the non-linear piece (n.l.p.). Therefore we
can take A as a definition of the charge Q(n+ l\

(δoQ<"+») = {Q«\QM}-(n.lp.). (25)

While the standard charges are defined through an integro-differential algorithm
the improved ones are generated by an algebraic procedure (where β(1) plays the
role of a "step" generator). The reader may find in Appendix B the expression of the
first six improved charges. We remark though that the new set can actually be
related to the standard one. Nevertheless the following examples

ρo) = 1 ρo) + H g(1) _ 2 £d)(£(θ))2 _ - βWβOβί0) - - «5<°>)2 ρ(1) (26)

show that we have a non-linear transformation of basis, with wide consequences for
the algebraic structure. Indeed from the above definitions and the current algebra
given in (15) we obtain, after a rather tedious calculation, the following Ansatz:

m— 1 n — 1

{QU\Qu} = (δ°Qi'+m\a- Σ Σ (δ(p)δ<'I)°e(ra+π~p~'~2)). M / > (27)
p=0 q = 0

which is the first main result of this paper. It consists of a cubic deformation of
a Kac-Moody algebra. Such simplicity opposes the standard algebra available in
the literature. In fact, taking the results from [13] for instance, one learns that the
non-linear part of the algebra of standard charges is not so simple as a cubic term:
quadratic, as well as cubic and even higher powers of charges come out, so that in
general one has a polynomial whose order increases with the order of the charges
involved. One can easily verify this behavior by substituting the transformations
(26) into the Ansatz (27).

After defining the algebra (27) we can make the definition (25) of the improved
charges more precise,

(n - 2)β/ + 1 ) EE {βj}>, β«} + "Σ tr (β^

β^β'"'1''']-^. (28)
p = 0

The algebra (27) has been introduced as an Ansatz. This guess-work was based
on preliminary and rather tedious calculations (in fact we have checked the validity
of (27) up to the 5th order). In proposing the cubic form of the Ansatz to all orders
we should also verify that the Jacobi identity is indeed satisfied. This aim is
achieved observing that the saturated piece of the charges gives rise, on its own, to
an isomorphic algebra.

Consider the improved basis: from the examples listed in Appendix B we see
that each one of them has a higher-order piece, containing the maximum number of
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current components (the component ;0) in the integrand. Inspired also by the
saturated character of the algebra (27) we propose the definition of the saturated
charges

Q<"> = Q™ta, (29)

βΓ= ^tr(ίV' f β O f Πd*ί/ f l o "-(so,...,*,), (30)2 i=o

where the non-local densities

/«« * (X0, . . . , * „ ) = Jo°(Xθ)Φθ - Xl )7o ' (* l ) ' *(Xn-l ~ *-) # (*,) (31)

can be seen as linear chains of current components j'o(Xi) in a given basis {ta} for the
O(N) algebra, connected by non-local c functions. We emphasize that the saturated
charges Q(n) are not conserved quantities. Nevertheless we can prove that they
realize the algebra (27) and use this fact to verify that the Ansatz satisfies the Jacobi
identity.

We first define the space of all possible chains and derive their algebra from
Eq. (8). Then, from the definition (30) we project the results into an algebra of
saturated charges. After some arid computations and with the help of the identity
(A. 16) we obtain the following result:

{Qam\Qίn)} = tr(tatbQ(m+n))-mΣ "Σ tr(taQ(ί)Q(j}tbQ(m+n-l-j-2)). (32)
i = 0 j = 0

By means of formula (A.8) one recognizes that it is isomorphic to the Ansatz (27).
Although this algebra has been derived for the O(JV) model, one can rewrite the
traces appearing on the r.h.s. of (32) in terms of the structure constants of the group
and therefore generalize that algebra for other groups.

Concerning the Jacobi identity, we begin by stressing that the above realization
of the Ansatz was built up from the elementary current component j0: as the Dirac
brackets {jo(x)Jo(y)}9 given in Eq. (8), obey the Jacobi identity by hypothesis, and
since the chains are defined in Eq. (31) as products of j0-components, it follows that
the algebra of chains also satisfies the Jacobi identity. On the other hand, the
saturated charges are constructed by simple integrations and linear combinations
of chains, therefore implying that the algebra (32) obeys the Jacobi identity as well.

If we had considered the algebra of all chains, including those having the
component)!, the corresponding integrations and trace-projections would lead us
to the algebra of improved charges. The Jacobi identity of the algebra obtained in
this way would follow from the algebraic properties of (8) as well. The role of the
intertwiner field is marginal due to its character as a projector.

From the relation between chains and saturated charges, we also understand
how the linear and cubic parts of the algebra (27) are constrained: both are
constructed from the same chains, with the same number of current components.

4. Yangian Algebra

Here we comment on the connection between the algebra (27) and Yangian
structures. As was discussed by Drinfeld in Ref. [19], Hopf algebras play a very
important role in the framework of the quantum inverse problem [20]. There are
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two classes of Hopf algebras that can be specially recognized as central issues in
conformal field theories and integrable models, namely affine Lie algebras [20, 21]
and Yangians [21, 22]. In the last case, it has been shown that the problem of
finding rational r-matrices boils down to the determination of irreducible repres-
entations of Yangians.

The Yangian Y(A) is defined in terms of a Lie algebra A by a linear mapping

J:A -> Y(A) .

Taking J ( I a ) = Ja, Ia e A9 we have the following commutation relations:

[/«,/*] =/α*/c, (33a)

[/«,Λ]=/β*Λ, (33b)

[Λ, [Λ, /J] - [/«, EΛ, Λ]] = aabcdef {/„, Ie9 If} , (33c)

Λ], I7r, Λ]] + [CΛ, Λl [Λi, Λ] = (<*abcdeffrsc + <*rscdeffabc){ld, I ' e, If} ,

(33d)

where /,&<. are the structure constants of the algebra A9 aabcdef =
and {Xί9 X2, X^} = Σ X i X j X k corresponds to a total symmetrization.

It follows from Eq. (27) that the charges Q(0) and Q(1) generate, via Dirac
brackets, the Yangian of the O(N) algebra. This classical manifestation of the
Yangian structure was studied in Ref. [23] and the algebra of non-local charges
identified as a Poisson-Hopf algebra.

We therefore conclude that the general properties of Hopf algebras underlie the
Ansatz (27). Indeed non-local conserved currents in two dimensions and their
algebraic structure have been studied in [24] and the fact that Yangians are
realised in quantum field theories by the non-local currents was proved in [25] and
further analyzed in [26]. Consequences for lattice models have been discussed
recently [27].

However we notice that the algebraic relations (33) do not define uniquely the
remaining charges {Q(n}\ n ̂  2}. In Sect. 3 we have compared the standard and
improved sets and verified that they are related by (non-linear) combinations. They
do obey different algebras, although sharing the generators β(0), β(1).

The algebra of standard charges is usually summarized by the algebra of their
generating functional, the monodromy matrix T(λ). The problem can be for-
mulated in terms of a Lax formalism: one defines the Lax pair

2λ
Lμ (x; λ) = r~ ̂ v ~ C"V^'V '

and the transfer matrix T(x9 y\ λ) via the equations

;λ) = 0, /ι = 0,1, (35)

for which the integrability condition [<30 + LQ9dι + L 1 ] = 0 is equivalent to
Eqs. (35). The solution [28] of Eq. (35) is then given by a path-ordered exponential,

) d£ (36)
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and the monodromy matrix T(λ) = T( oo , — oo λ) generates the standard non-
local charges Q(n} through

λn+lQ(n} . (37)

Its Poisson bracket relations are given in terms of a classical r-matrix:

= [ r ( λ 9 μ ) 9 T ( λ ) ® T ( μ ) ' ] 9

— μ
(38)

In principle one can extract the algebra {β(m), Q(n}} from Eq. (38); for instance, the
brackets involving Q(0) and Q ( 1 ) follow easily.

Finding the complete algebra is cumbersome, though. However, as concerns
the on-shell dynamics, this is not a real problem because conservation of the first
pair of charges is sufficient. Indeed, one can prove that there is no particle
production [10] and only the 2 -* 2 scattering has to be computed, since in that
case the S-matrix factorizes [29]. Moreover, Poincare transformation properties of
the fields and non-local charges can be used to obtain the action of the latter on
asymptotic states. Indeed, for the commutation relation of the charge Q(l) with the
generator τ of Lorentz transformations, one generally finds

where y is a normalization constant, which depends on the group I for the O(N)
ivr 9 \ \

case 7 = — 1. One finds [5] for the action of Q.Φ on asymptotic one-

particle states

βί j ' l f l fc) = i y O { δ j k \ O i y - δ ί k \ 0 j y } , (40a)

while for a two-particle state, it is computed from [30]

= lim $ d x d y ε ( x - y ) ( φ l \ j 0 ( t , x ) \ φ l ) < φ 2 \ j 0 ( t , y ) \ φ 2 y
f-* ± X

almost completely fixing the on shell dynamics.
The above procedure gives results equivalent to the solution of Yang-Baxter

equations. Following [31] one can consider the particle multiplets as fundamental
representations of the Yangian Ύ(Λ). In particular, the well-known fusion proced-
ure is equivalent to the decomposition of a product state into Y(A) irreducible
components [32]. For theories with purely elastic scattering a closed bootstrap
program may be fulfilled [32, 33].

Concerning symmetry transformations, it is also known [35] that Yangians
correspond to (quantum group) symmetries of many integrable models. These
symmetry transformations are generated by the non-local charges through a Lie-
Poisson action [35] (as opposed to the more familiar Hamiltonian action). Here we
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exemplify the transformations generated by the first few improved charges of the
O(N) sigma model,

+ (βί.υC - CC)* + OΓCί
for which we have verified the following commutation relations

i, (42)

agreeing with the result [δ%\ δ^ = (δ°δ ί w + Λ ))/j,w found in [11]. Notice that one
cannot find a "Hamiltonian" generator G ( 1 ) such that δ(l)Φ = {G(1), Φ}, which is
at present understood as the root of preliminary misunderstandings about the
algebra of charges.

It is also worth mentioning that a number of technical difficulties may arise
when the theory does not possess the ultra-locality property, that is when the
algebra of the space component of the Lax pair - in our case the time component of
the current 7o(x) - contains terms other than δ(x) distributions. The appearance of
δ'(x) terms (as in the WZNW model of Sect. 5) means that one should also modify
the δ(z) part with s-terms in order that the Jacobi identity be satisfied. This
problem has been discussed at length by Maillet [34] (see also [28]).

On the other hand, the purely algebraic construction that we have used
circumvents the non-ultralocality problems and provides a concrete classical
realization of the Yangian algebra, obeyed by the generators Q(0), Q (1) and the
remaining charges.

From the studies of the quantum case, it is known that the standard non-local
charges satisfy commutation relations of Yangians and one would expect the same
algebra at the classical level. In this sense one could interpret the algebra (27) as
another presentation of the Yangian, in terms of a particular set of conserved
charges whose immediate virtue is to provide a concise, transparent and explicit
form for the complete algebra.

However we do expect that the improved charges will surpass this initial
advantage and become an useful tool in off-shell scattering calculations. Indeed it is
not clear that the simple outcome of the on-shell picture will persist and one would
need charges of higher genera in order to obtain constraints strong enough to
determine the correlation functions. This more difficult problem is currently under
investigation by the authors.

5. Algebra of Non-Local Charges in WZNW Model

We first re-analyze the current algebra for the principal chiral model with a Wess-
Zumino term. This model [36] contains a free coupling constant λ and, for special
values of λ, is equivalent to the conformally invariant WZNW model, while the
ordinary chiral model is taken from the limit λ-+Q. Therefore, the current algebra



Algebra of Non-local Charges in Non-linear Sigma Models 389

derived below is a generalization of the current algebras for these two special cases.
For the WZNW model, at the critical point the current algebra is known to consist
of two commuting Kac-Moody algebras, while for the ordinary chiral model, it has
been presented previously.

We begin by fixing our conventions. The target space for the chiral models to be
considered here will be a simple Lie group G (which is usually, although not
necessarily, assumed to be compact) with Lie algebra g, and we use the trace in
some irreducible representation to define the invariant scalar product ( , ) on g,

normalized so that the long roots have length N/2, as well as the invariant closed
three-form ω on g giving rise to the Wess-Zumino term. Explicitly, for X, Y, Z e g,
we have,

(X,y) = -tr(XY), (43)

while

ω(X,Y,Z) = l-tτ(XίY,Z]). (44)
4π

Obviously, ( , ) and ω extend to a bi-invariant metric ( , ) on G and to a bi-
invariant three-form ω on G, respectively: the latter can alternatively be repre-
sented in terms of the left-invariant Maurer-Cartan form g~ l dg or right-invariant
Maurer-Cartan form dgg~l on G, as follows:

1)3. (45)

[Due to the Maurer-Cartan structure equation, this representation implies that
ω is indeed a closed three-form on G, and the normalization in Eqs. (44) and (45) is
chosen so that ω/2π generates the third de Rham cohomology group H3(G, Έ) of
G over the integers, at least when G is simply connected; cf. Ref. [37].]

In part of what follows, we work in terms of (arbitrary) local coordinates ul

on G, representing the metric ( , ) by its components gtj and the three-form ω
by its components ωijk. Then the total action of the so-called Wess-Zumino-
Novikov-Witten (WZNW) theory is the sum

S = SCH + nSwz , (46)

where the action for the ordinary chiral model, SCH is given by (1), and the
Wess-Zumino term is

Swz = τ J Px^tOwWdKpdrf'd^ = \φ*ω. (47)

Here, φ and φ are the basic field and the extended field of the theory, respectively,
i.e. φ is a (smooth) map from a fixed two-dimensional Lorentz manifold I" to G and
φ is a (smooth) map from an appropriate three-dimensional manifold B to G,
chosen such that Σ is the boundary of B and φ is the restriction of φ to that

boundary. The conformally invariant WZNW model is obtained at λ = v/4π/|n|,
while the ordinary chiral model can be recovered in the limit λ -> 0.

Before proceeding further, we find it convenient to pass to a more standard
notation, writing g and g, rather than φ and φ, for the basic field and the extended
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field of the theory, respectively, and using the explicit definitions (43) of the metric
( , ) on G and (44) of the three-form ω on G. Then

ICH = —^Tz J α ΛT ιrlί/ ^nQQ d vg), (48)

while

Swz = ̂  } dr J d2x^ tr(g~l Srgg~' dμgg~l dvg) . (49)

(Here, the extended field g is assumed to be constant outside a tubular neighbour-
hood Σ x [0,1] of the boundary Σ of B, and r is the coordinate normal to the
boundary.) Next, we decompose the currents^ and Jμ, both of which take values in
gL® g/?, into left and right currents, all of which take values in g: jμ = (jμjμ\
Jμ = ( J μ , J*). Explicitly,

•L 1 -i R ! -i

and, by definition,

Jμ = (nμv ~ <*εμv)jRv = +-^(ημv-θίεμv)g~ldvg , (51)

nλ2

where α = ——. The scalar field j, when viewed as taking values in the space of
4π

endomorphisms of gL θ g/?, is given by the (2 x 2)-block matrix

- Ad(0Γ

In other words, for X = (XL, XR) in gL @

1
9 XR - M(g)'lXi) (53)

It can be shown that the covariant currents Jμ defined by Eqs. (51) differ from the
Noether currents^ for the chiral model with a Wess-Zumino term by a total curl,
and that current conservation (which for both types of currents has the same
physical content, because a total curl is automatically conserved) is equivalent to
the equations of motion.

Now in terms of an arbitrary basis {ta} of g, with structure constants fabc

defined by [ίΛ, ίfc] =fabctc

9 the various currents are represented by their com-
ponents

= (Λ , tLa) = - tr(7μV), jf* = (jμ, tRa) = -

ta), (54)
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and the scalar field j by its components

M ( : f L a /ov fLb\ ( i t R a /Oι +Rb\ tr ίta t^\ ί ̂ ^\
'lab — (7) f 09 * ) — U> *• ™ *• / — ^2 v ' ' l^^J

;«» = (j, rL« (x) ίΛ f c) = — tr ( f f-
J ία^ίb), (56)

where
+La ί+a f\\ +Ra if\ +a\ (ζ.'Ί\t = (t , 0), t = (0, t ) . (57)

With this notation, we see that the current Dirac brackets imply the following
brackets relations for the components of the currents^:

ηΛδ'(x - y) ,

o (58)
They must be supplemented by the commutation relations between the compo-
nents of the currents jμ and those of the field j:

= -fΛjbd(x)δ(x - y) ,

{Jι"(*)Jbc(y)} = o ,
{h"(χljbc(y)} = o . (59)

Finally, the components of the field j commute among themselves:
{jab(χ),jcΛ(y)} = v.

Using the explicit representation of the theory in terms of group-valued fields, it
is very simple to check the results using the decomposition of the momentum in
terms of a local and a non-local piece as was done in Ref. [5].

We are now in a position to generalize the previous results for the WZNW
model. Classically, the equations of motion are given by the conservation laws

dμ(jRlί - αc'V?) = 0 ,

Bμ(JLμ + αe'Vί) = 0 . (60)

The currents j*'L satisfy the zero-curvature condition
Λ R,L Λ >R,L . ϊ2r-R>L -R,L-ι /\ / / r ι \dμjv - Svjμ + λ2 ljμ 9 j v ] = 0 . (61)
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Concerning the covariant currents J*'L, the above equations imply

(62)

so that one coud follow the algorithm described by Eqs. (18)-(21) to build up new
conserved non-local charges. In particular, the first one reads

βL(1) = f ώc(jf + λ2J^d~lJ^ - αj£) . (63)

On the other hand, the algebraic construction of improved charges described in
Sect. 3 can also be performed for the WZ case with few modifications. The chain
algebra construction is extended as well as definition of saturated charges. In this
case we need to use the following Dirac bracket for the current JQ (written in
matrix components)

{(J0

L)0.(x),(J0

L)k/(y)} = (δoJ^iMl(χ)δ(x - y) -f *(δoδ)ljtklδ'(x - y) , (64)

and we are led to the following Dirac brackets (we suppose m ̂  n with no loss of
generality):

m— 1 n— 1

{QF,Q$} = v°Q('+m>)ij.u- Σ Σ (Q(p)Q(q}°Q(m+"-p-q-2))n,u

(δoρ<Ή "-ι>) f M J_ £ £ (β<p)β( ) oQ ("+"~p~ ~3V« (65)

P = 0 g = 0 /

or equivalently, denoting by { , }wz the bracket for the Wess-Zumino model and
{ •> }CH f°r previous brackets of the chiral model, we summarize the results by
(n^m)

{Q(m\ Q(n)}wz = {Q(m\ Q(n)}cH + 4α{β("-1>, Q(n)}CH . (66)

Some remarks are in order now. First, concerning the chain algebra, it clearly
goes through the Wess-Zumino case. Therefore, the Jacobi identities are valid here
as well. The algebra for the right sector follows directly from (66) through α -> — α.
Also the mixed brackets {QL(m\ QR(n)} vanish since {( j£),,(x), (-/*)*/ 00} = 0. We
observe that, due to the non-ultra-local contribution in the bracket (64) the
Yangian generated by QR>LW\ Q*,L(I) acquires an extra term as compared with
Eq. (33b). Such extension is parametrized by the coupling α and the complete
dependence on α can be summarized by the result (66).

6. Conclusions

We have computed the classical algebra of conserved non-local charges of the
so-called improved basis. The result is characterized by the order n of the non-local
charges Q(n\ which in fact can be defined in terms of its genus [30], as computed
from scattering theory. Therefore, classifying the genus, one verifies that in the
right-hand side of the Dirac algebra, only the possible highest genus contributes
with a non-vanishing coefficient. The algebra obtained is a saturated cubic defor-
mation of a Kac-Moody algebra and consistent with the Yangian algebraic
structure found in the literature by alternative methods.
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This result permits us to try to obtain constraints on the correlation functions
of the theory, similarly to the massive perturbation of the k = 1 WZW model [9].
This problem evaded solution for several years, but with this approach, one should
be able to accomplish such desired constraints, once one knows a realization of
charges in terms of integro-difTerential operators. Indeed, for the asymptotic
charges one finds such representations [5, 10].

Further problems related to the role of monodromy matrices are at present
under investigation; in particular, it would be interesting to find and interpret
a generating functional for the improved non-local charges. Concerning the quan-
tum theory, we recall that, for sigma models with a simple gauge group the
quantum non-local charge algebra must be the same as we have computed
substituting Dirac brackets by ( — /) times commutators [15].

Finally, we remark that the WZNW theory presents an algebra that is analog-
ous to the chiral case. In fact, the WZNW theory has been treated using the Bethe
Ansatz [38], with results analogous in some sense to the sigma model case, and one
expects many similarities between them. The usefulness of such interpolating cases
has been stressed in [39].

Acknowledgements. We would like to thank Prof. A. Salam for the hospitality at the International
Centre for Theoretical Physics, Trieste, Italy, where part of this work was done.

Appendix A

We list here some useful formulae concerning the special O(N) product A ° B and
the constraints involving the currents) and jμ.

The product A ° B is defined as follows:

(A o B)lJtU = AfrBjt - AuBJk + AβBik - AjkBn , (A.I)

and possesses the properties

(A o B)iMI = (BoA)u.kl = MO β'k0 , (A.2)

(A o B)UtkaCal - (*<-> /) = (A o BC)IJM + (AC o B)ijtkl, (A.3)

(A o B^iCaj - (ιV>/) = (A o CB)UM + (CA ° B)ijtkl, (A.4)

Cίa(A o B)ajM - (i++j) = (CA o B)ljtkl + (A o CB)y t k ί, (A.5)

Aia(B°C)abtklDbJ - (i~j) = (ABoD'G)^ + (D*B°AC)iJ9lΛ , (A.6)

Aka(B o QijtabDbl -(*<->/) = (BA< o CD)iJtkl + (BDo CΛ%.W , (A.7)

±ttfk(A°B)iJtkl = lτ(taAl*B). (A.8)

Now we list the constraints among the currents:

(jμ °jv)ij,kl = (jμ)ίj(jv)kl + (jv)ij(jμ)kl , (A.9)
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(j°J)y.H = 0, (A U)

The 0(N) ί-matrices, contracted by a factor faιbjC, merge as follows

-- tr(ί f l ί+1 ••• tamtata° •-• tίli)faιbjctΐ(tbj " tbntbtb° " t b j ~ l )

= -tτ(tc x(ίΛ < + 1 ••• tίtmtata° '- ί"1'1 4- ( — )mtai-1 ••• ta°tatam '- tai+

Appendix B

We choose the antiderivative operator as

f-1, *<0

d-lA(x) = -ldyc(x-y)A(y\ c(x) = 1 0, x = 0. (B.I)

(+1, x > 0

With this definition we have antisymmetric boundary conditions for the potentials

X(n)( ± oo ) = ± I dx J<M)(x) = ± βw . (B.2)

The first six improved non-local charges read

= J dx(2/0 + 2j, 3- Vo - 2δ- Vα/i - 45" VoJo^ '70) ,

y, + 8/0 3-Vo + 2/15- I7,

~ ' J o + d ~ ~ " "

β '*' = I dx {6/0 + 10;, d~ ' Jo - 105- ' joji - 24δ~ ' Wo 3" ' jo

-4(a- 1 j ι j 0 5~ 1 j ι+3~ 1 jo j ι3~ 1 j ι+3

+ 8 [δ- ' (5- ' JoJo)OΌ d~ l j, + j, 3" ' jo )
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(B.3)
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