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Abstract: Generalizing earlier results of [1], we analyze here the spherically sym-
metric gravitational collapse of a matter cloud with a general form of matter for the
formation of a naked singularity. It is shown that this is related basically to the
choice of initial data to the Einstein field equations, and would therefore occur in
generic situations from regular initial data within the general context considered
here, subject to the matter satisfying the weak energy condition. The condition on
initial data which leads to the formation of black hole is also characterized.

1. Introduction

We considered recently the formation and structure of naked singularity in the
self-similar gravitational collapse of a perfect fluid with an adiabatic equation of
state, and also for a general form of matter subject only to the weak energy
condition but with an arbitrary equation of state [1]. It was shown in those cases
that strong curvature naked singularities form in the gravitational collapse from
a regular initial data, from which non-zero measure families of non-spacelike
trajectories could come out. The criterion for the existence of such singularities was
characterized in terms of the existence of real positive roots of an algebraic
equation constructed out of the field variables.

The considerations such as those in [1] and [2] provide many insights into the
phenomena of gravitational collapse. For example, the Einstein equations, under
the geometric assumption of self-similarity reduce to ordinary differential equa-
tions. This allows one to construct explicit collapse scenarios such as the Vaidya—
Papapetrou radiation collapse with a linear mass function [3], or perfect fluid
collapse [1, 4] which provide useful information on the phenomena of gravitational
collapse. It is also known that such conclusions are not restricted to self-similar
spacetimes only [2,5].
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The scenarios such as above have, however, limitations. For example, while
in [1] the equation of state is general, subject to the weak energy condition
only, the geometric assumption of self-similarity is there. On the other hand,
while [2] considers a more general collapse, the classes considered there have
other limitations. For example, the later reference there is restricted to dust
collapse (however, with a generic mass function with only C! differentiability)
whereas the former, while considering a wide class of matter (with the
condition that the mass function be expandable about the singularity), excludes
useful collapse situations due to other assumptions made there (e.g. the metric
coefficient c(vr) is also expandable about the singularity and c(v, 0) = 1). The
presently known collapse scenarios are restricted mainly to dust and perfect fluid.
While the form of matter such as a perfect fluid has wide range of physical
applications with the advantage of incorporating pressure which could be impor-
tant in the later stages of collapse, it is certainly important to examine if similar
conclusions will hold for other reasonable forms of matter. For example, as pointed
out by Eardley [6], dust could be an approximation to a more fundamental form of
matter, such as a massive scalar field. It is thus possible that the naked singularity is
an artifact of the approximation used, and not a basic feature of collapse. It is
therefore important to consider the collapse phenomena for a rather general form
of matter, without limitations such as above. This should help us to understand
gravitational collapse and the occurrence of naked singularity in a more clear
manner, which should lead to a more precise formulation of the cosmic censorship
hypothesis.

Our purpose here is to analyze the formation of naked singularities in spheri-
cally symmetric collapse from this perspective for a general form of matter, only
subject to the weak energy condition with no restriction on the equation of state.
All the presently known naked singular examples, such as radiation collapse, dust
or perfect fluid models could apply only to a rather narrow class of equations of
state. Our considerations here show, apart from other implications, that given any
equation of state, for which there does exist a spherically symmetric, naked
singularity example of present type, then for all sufficiently close equations of state
there is also such an example. We reduce the spherically symmetric Einstein field
equations to a single parabolic partial differential equation of second order. The
class of naked singular spacetimes with such equations of state is defined in terms of
solutions of this equation.

In Sect. 2 the basic equations for the collapse are set up and Sect. 3 discusses the
initial value problem to consider the gravitational collapse of a spherically symmet-
ric matter cloud which is initially non-singular. The existence of naked singularity
is characterized in Sect. 4, also examining its curvature strength. It is pointed out
that the occurrence of naked singularity or a black hole is more a problem of the
choice of the initial data for the field equations rather than the form of matter or the
equation of state. The concluding Sect. 5 briefly considers the implications.

2. Spherically Symmetric Collapse

We consider here the final fate of collapse of a matter cloud that evolves from
a regular physical data defined on an initial spacelike surface. The energy-mo-
mentum tensor has a compact support on this initial surface where all the physical
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quantities such as density, etc. are regular and finite. For sufficiently high mass,
there is no stability configuration possible for the system and the collapse results
into a space-time singularity as implied by the singularity theorems in general
relativity. This singularity is characterized by the existence of a future directed
non-spacelike trajectory in the matter cloud which is future incomplete, having
a finite affine length but no future end point.

To consider a general matter field, we note that the stress-energy tensor T4,
describing the matter distribution of a space-time can be classified as being one of
the following four types [7]. These are the possibilities when it has either in
a timelike invariant 2-plane (i) two real orthogonal eigenvectors, (ii) one double
null real eigenvector, (iii) no real eigenvector, or has in null invariant 2-plane, (iv)
one triple null real eigenvector. The matter distributions of type (iii) and (iv)
necessarily violate the energy conditions ensuring the positivity of the mass-energy
density. Furthermore, such fields have not been observed so far. Thus, we would
not attribute any physical interpretation to the same presently. The only observed
occurrence of type (ii) matter distribution corresponds to zero rest mass fields
representing directed radiation. In a spherically symmetric space-time these could
be effectively described by the Vaidya metric. The radiation collapse, as described
by the Vaidya space-times has already been analyzed in detail and strong curvature
naked singularities do form in such a collapse in generic situations, either with or
without the geometric condition of self-similarity [3, 5].

Hence, we need to examine only the gravitational collapse of type (i) matter
fields for spherically symmetric space-times considered here. This is the form of
matter and stress-energy for all the observed fields so far with either non-zero rest
mass and also for zero rest mass fields, except the special cases described by type
(ii). We take the matter fields to satisfy the weak energy condition, i.e. the energy
density as measured by any observer is non-negative and for any timelike vector
Ve,

T,VVe20. ¢Y)
For the stress-energy tensor Ty of type (i), we can write
Tab = llE‘{Eli + legEg + /13E§Eg + /14E1EI4’_ 5 (2)

where (E,, E,, E,, E,) is an orthonormal basis with E, being timelike eigenvector
and A(i = 1, 2, 3, 4) are the eigenvalues. For such a spherically symmetric matter
distribution we can choose coordinates (x' = t, r, §, ¢) to write the metric as,

ds* = — e'dt? + e*¥dr? + R%dQ? , ©)

where dQ? = df? + sin?0d¢? is the line element on two-sphere. Here v, i and R are
functions of ¢t and r and the stress energy tensor Tj given by Eq. (1) has only
diagonal components in this coordinate system (i.e. we are using a comoving
coordinate system)

Ttt’:_p, T:=pls Tg=p2=T¢¢=p35 Trt=Ttr=0 (4)

The quantities p, p;, p2, and p; are the eigenvalues of T4 and are interpreted as the
density and principle pressures. Then, the weak energy condition holds for type (i)
matter fields provided,

pz0, p+p,20, a=1,23. )
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We note that R(t,r) = 0 here is the area coordinate in the sense that the
quantity 4nR?(z, r) gives the proper area of the mass shells and the area of such
a shell at r = const. goes to zero when R(z, r) = 0. In this sense, the curve R(t,r) = 0
describes the singularity in the space-time where the mass shells are collapsing to
a vanishing volume. Such a singularity is often called a “shell-focusing.” It thus
follows that the range of the coordinates in metric (3) is given by

0sr<ow, — oo <t<iy), 6)

with 6 and ¢ having the usual range of values. The time t = t,(r) corresponds to the
value of area coordinate R = R(t, r) = R(to(r), r) = 0, where the area of the shell of
matter at a constant value of r vanishes. This corresponds to the time when the
matter shells meet the physical singularity.

The Einstein field equations and the Bianchi identities T§., = 0 are written as
below:

0 :
Gi = koT! = = [R(— 1+ ¢ ™R? — " R*)] = R*RkoT} , (7a)

G:=koT! = %[R( — 1+ e 2R? — ¢ 2'R?)] = R*Rk, T, (7b)
Gl=koT!=0=R —yR —vR=0, (7¢)
, . 2R . R
Tta;a=0=’Tf+Ttt<¢ +?)—’T:'//=2p2§’ (7d)
2R’ R’
Te,=0=(T!) + T,’(v’ + T) — T =25 (7e)

where ko = 8nG/c? is the gravitational constant, and in Egs. (7a) and (7b), Eq. (7¢)
has been used. The (') and () denote partial derivatives with respect to r and t. As
we consider the collapse problem, we take R < 0. Eliminating p, from Egs. (7d), (7¢)
and using (7c) imply

d rR2p g IR2ZRM —
S [T/R?R] — = [TIR*R] =0,

and we conclude that
F’ F
—_—— T'=p = ———,
RZR> " P'T TLRR

where F = F(t, r) is an arbitrary function of ¢t and r. For the Tolman-Bondi dust
collapse [8] or perfect fluid space-times [9], F is physically interpreted as mass
function. For dust collapse, F = F(r) represents the total mass within a coordinate
radius r. Thus the function F is treated as mass function for the cloud with F = 0. In
general, R’ may not be positive, however, in the cases when R’ = 0, the weak energy
condition implies from (8) that F’ = 0. In the case of gravitational collapse (R < 0), it
will be seen later from the null geodesic equations, that R’ < 0 at the singularity
implies that no rays will be outgoing and the singularity will be censored.
Using (8), Egs. (7d) and (7c) become

Ti= —p= ®)

. ., .G _H
4poRRR = —2F' + F'o+ For, (%9a)
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. G .H
—2R’+R'G+R———0 (9b)

where we have put
G=G(t,r)=e {R), H=H{tr) =e »R>. (%¢)

Integration of the remaining field equations G} = koT{, G} = ko T7 is straight-
forward and some simplification gives

1 F, F x
= — F —_ = ———
P kOR2< ,R+ T>5 D1 kORZ’ (103)
T G
(F g + 2kop,R)T == =F, == — F ¢, (10b)
) p 2G »
Gr ..Hp H,
—2T =0
2 G H H
GR GR GR (G_1+-R€)R
—2|plF,~2—F F—2_F =B+ " R.R
= [”( 26 ”R>],R+p( 26 ’R><G T G-i+d
G,+5
e (109
F
H=G-1+%. (10d)

We have used R instead of ¢ as variable in the above equations. The function
p = p(R, r) is defined in (10b), F(t,r) = F(R,r), T(R,r) = R’ and likewise G(R, r)
and H(R, r) are to be treated as functions of R and r. Here ( r) and (,) denote
partial derivatives with respect to R and r and are defined by

EREI

Or |t = const. OR |; = const. Or |R = const. ’
0 0
— =R 11
[at]r = const. [aR:lr = const. an

The two equations in (10c) are equivalent. The later equation of (10c) is obtained
from the former by the substltutlon of T from (10b). The remaining field equation
Gy = koT¢ = G = koT is then just a consequence of (10a) to (10d).

In all we have five unknowns namely T(R,r), G(R,r), H(R,r), F(R,r) and
p2(R,r), and three equations (10b), (10c), and (10d) relating them. In fact, the
functions F and p, determine the form of matter and the equation of state one is
dealing with. For example, for dust models p, =0=F y which implies
F(R, ) = F(r), and for a perfect fluid p, = — F g/R?, if the fluid has the equation of
state p + p = 0. In addition then F, =0 implies F(R, r) = F(R). Therefore, one
starts with a particular stress-energy tensor by selecting these two functions and
then the geometry of space-time or the metric functions are determined as follows.
Knowing F(R,r) and p,(R,r) one determines G = G(R, r) from (10c), which is
a second order partial differential equation, with appropriate initial and boundary
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data for G. Note that Eq. (10c) is a paraoblic type (in other words a generalized heat
wave type) second order partial differential equation and as such could be solved
with a possible set of initial and boundary conditions given by G(R, 0) = g(R),
G(a, ) = g1(r) and G(b, r) = g,(r). Equation (10b) then determines R’ = T(R, r) as
function of R and r, which on integration yields R = R(t,r). The function
H = H(R, r) is immediate from (10d). In case F gg + 2kop,R = 1/p = 0 identically,
then (10b) breaks down and one cannot determine R’ = T(R, r) from (10b). Rather
it implies (G/F ,) g = 0, thus determining G(R, r) instead of T(R, r). The function
T(R,r) in such cases is determined by integrating (10c) with appropriate initial
conditions by treating it as an ordinary differential equation for T in variable
R and specifying initial conditions accordingly.

3. The Initial Value Problem

Consider now a spherically symmetric cloud of matter collapsing gravitationally to
give rise to a space-time singularity R = 0 at the center r = 0. Our problem is to
characterize the conditions under which this could be naked, and those in which
the singularity is completely covered by an event horizon formed during the
collapse. Thus, for example, for a homogeneous gravitational collapse of dust
described by the Oppenheimer—Snyder models, the resulting singularity is fully
covered by an event horizon. On the other hand, if inhomogeneities are present,
strong curvature naked singularities do form in such collapse scenarios (see e.g.
[21).

We define regular initial data on a spacelike hypersurface ¢ = t; from which the
collapse starts. On the surface t = t; we require physical quantities such as density,
pressures, etc. be non-singular. Matter has a compact supportont =t;andr =r,
denotes the boundary of the object. One requires appropriate boundary conditions
to match the interior metric of the cloud to the exterior. The exact boundary
conditions will depend on what the exterior spacetime is, which could be vacuum
Schwarzschild or a radiating Vaidya metric etc.

The space-time singularity occurs at the time ¢ = to(r), which corresponds to
R(t,r) = 0. Let t = t,(0) > t; be the first point of the singularity, which is the time of
the singularity occurring at r = 0. (If ¢ = ¢¢(0) is not already the first point of the
singularity curve t = to(r), it could be made so by a simple translation of the
coordinate r.) Thus, this implies a boundary condition that for ¢; < t < t,(0), the
center of the cloud r = 01is a regular center. In terms of the functions above defining
the gravitational collapse, this amounts to the requirement,

— < ®© (12)

at the regular center r = 0 for t; <t < to(0). We are interested in analyzing the
nature of this first shell-focusing singularity R = 0 which we call a central singular-
ity when it occurs at r = 0. Thus, we assume that there is a neighborhood of the
central singularity such that R’ > 0 for r > 0.

Basically we would require certain general differentiability conditions for func-
tions F, p, and R and take F(R, r) and p,(R, r) to be at least C> for R > 0 and R(t, r)
as C? for all t and r.
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As mentioned earlier, the choice of a particular matter distribution is made by
selecting the physical quantities F and p,. Since the data at the initial hypersurface
is non-singular, this puts restrictions on the values of these functions at the initial
surface t = t;. That is, one has to choose F such that at the initial surface F ,/R?R’

< o, F g/R?* < oo and p, < co. Therefore, the condition that initial data be
non-singular means a proper choice of free functions F and p,.

To make this clear, one could use the coordinate freedom left in the rescaling of

the coordinates r and ¢t without any loss of generality, so that at t = ¢,

R, 1) =r. (13)

Att = t;, the quantities p, py, p,, etc. do not diverge at r = 0. Since the initial data is
to be non-singular at r = 0 on this surface, the first derivatives of F must have the
following behavior at r = 0,

[(Er)R=r/r2]r=O< OO, [(ER)R=r/r2]r=0 < 0, [pZ(r’ r)]r=0 < © . (14)

Similarly, requiring that G(R,r) < oo at this R =r surface at r =0 puts
restriction on the choice of p, and second derivatives of F. That is, from Eq. (10b)
one has

15
IF. Jxr 19
att = t; and therefore ¥ = 1/G + co. This ensures that the initial data is nonsin-
gular at ¢ = t;, We do not discuss further implications of the conditions such as
above, but the point is the choice of a non-singular initial data and boundary
conditions restrict the functions F and p, suitably ensuring their proper choice.

The space-time singularity appears at the point R = 0, r = 0, and therefore the
behavior of various functions near the singularity is important. To examine this, we
get after some simplification from Egs. (10a) to (10d),

|:[F, RRIR=r *+ 2kop,(r, )7 + [F,rR]R=r:| + — o
r=0

p= ;C—OJIZ—F<A,X + %) p1= — ;{—% P2 =p2(X, 1), (16a)

X, = P (s =) (16t)

‘z[ﬁ% (o na)| VT P (rs 5 ~nx) ]
—u f:;‘“ , (160)

H=f+%, (16d)

where we put for the sake of convenience G(X, u) = 1 + f(X, u) and introduce two
variables u = r* (o = 1 is a constant), X = R/r* = R/u and the following notation:

F, F(R,ry F
n=nX,u) ===, A=AX uW=——=—,
r r u
1 R’ T
= = X, w)=—2—g=7=- 17
P P(X; u) A,XX+ 2k0p2u2X’ ﬁ( au) ru—l ra‘l ( )
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Here G, H, 5, A and B are all functions of X = R/u and u = r* The constant o > 1 is
to be chosen so that f = T/r*~! does not vanish or go to infinity identically as
r— 0 in the limit of approach to the singularity along all X = const. directions.
Here (| x) and () represent partial derivatives with respect to X and u respectively.
The weak energy condition implies for these functions,

T>o0 4.4
p=" g
Equation (16c¢) is a second order partial differential equation for G(X,u) =1 + f
and is solved by specifying the initial and boundary conditions on G(X, u).
Knowing G, the rest of the unknowns are then immediate from Eqgs. (16a) and (16d).

The values G(X,, 0) =1 + f(Xo, 0), f(Xo, 0) for some positive X = X, are of
significance in our analysis. The function (X, 0) can be calculated from (16b) once
f(X,0) is fixed except as mentioned earlier in the case where 1/P =
A, xx + 2kop,u*X = 0 identically (for example, this will hold for the case of dust). In
such a case the function B(X, 0) could not be calculated from (16b), rather it implies
1 + f(X, u) = ng(u) where g(u) is an arbitrary function of u. Thus f(X, u) is deter-
mined from (16b) instead of B. Then (X, 0) is again chosen (by selecting g(u)) and
B(X, u) is then determined by integrating an ordinary differential equation (knowing
G = 1 + f actually (10c) becomes an equation for f) to find f(X, u) given below

fx (f+x)x
1+f f+é

f + 4
f+x

Now, B(X, 0) can be determined from integration of the above.

The initial values of G(X,u) = 1 + fand B(X, u) at X = X, u =0 have to be
chosen while selecting a particular model of spherically symmetric gravitational
collapse and this has to be a physically reasonable choice. In fact (16¢), which
determines f is a parabolic type second order partial differential equation and as
such could be solved with a given set of initial data which could be of the form
f(X,0), f(a, u) and f(b, u). Similarly in the special case when 1/P = 0 identically,
one can choose B, = (X, 0) as part of the initial condition to solve the resulting
ordinary differential equation determining (X, u). Hence the spacetime subject to
the chosen form of matter is determined by the solutions of either the second order
parabolic partial differential equation (16c) or the second order ordinary differen-
tial equation (19) as the case may be. The input to these equations comes from the
prechosen form of matter by the way of functions P, A and # (i.e. F and p,). The
initial data is given as a set of appropriate values 4, b, ¢, 4, ufor X, u, f,f x, f ,in Eq.
(16¢)and ay, by, B4, B, for X, u, B, B, x in case of Eq. (19). The existence of solutions
of equations such as (16¢) or (19) (as the case may be) has been studied and these
have been shown to exist with a suitable arbitrary choice of initial and boundary
data under quite general conditions. In fact, under fairly general conditions
solutions exist with arbitrary choice of f (X, 0) and f x(X, 0) in case of the parabolic
partial differential equation (16c) and similarly with arbitrary choice of f(Xo, 0) in
case of the ordinary differential equation (19).

Therefore, the point is that for a given form of matter (i.e. given F and p,), the
values of B(X,, 0) (or f x(Xo, 0)) and f (X, 0) at some positive value of X = X, are

>0, kou’X’p, + A x+ % >0. (18)

(19)
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part of the initial data and the solution to field equations with these initial values
represents one of the spacetimes with the above specified form of matter. Hence,
one can make a suitable choice of these functions. One such reasonable choice
could be as follows. If the usual Lorentz—-Minkowskian geometry is to be valid in
an infinitesimal neighborhood of the regular center r = 0, then one must require
that the circumference 27R of an infinitesimal sphere about the center be just the 27
times its proper radius edr. In other words,

e¥=[R) at r=0=>G=1 at r=0. (20)
Hence, f(X) = G(X, 0) — 1 = 0 is one of the many possible initial conditions.

4. The Existence of Naked Singularity

The existence of a naked singularity in space-time is characterized by the presence
of outgoing families of future directed non-spacelike geodesics, which are past
incomplete and terminate in the past at the singularity.

, Radial null geodesics for a spherically symmetric space-time (3) are given by
ds* =0,

de dydk  K'
o djdk KOS @1
%C[e“’K'] + (KN e W —e W] =0, 2)

where K' and K" are the only non-zero components of the tangent vector
K® (K =0,K? = 0) and k is an affine parameter along the null geodesics. The
singularity appears at the point R(t, r) = 0, r = 0, therefore if there are outgoing
future directed radial null geodesics terminating at the singularity in past, then
R — 0 as r —» 0 along these geodesics.

We have from the above,

dR 1 (o dt\ _ (=$HJG [ [T+4\p_
& (R ) = e (1 T = v

Note that in the case of collapse, since R < 0, dR/du becomes negative if R’ < 0.
Hence, in such a case the geodesics are all ingoing and the singularity is censored.
For an outgoing geodesic dR/du must be positive and hence we require that R" = 0
at the singularity. It further follows that if dR/du is negative (for R < F, dR/du is
negative) geodesics become ingoing (in the sense that the area coordinate R starts
decreasing). Note that F(R, 0) > 0 implies dR/du — — oo at the singularity and so
the geodesics are all ingoing, which corresponds to a Schwarzschild type situation
where mass is already present at the center r = 0. When F = 0 at the first point of
the singularity, the situation may correspond either to a black hole or a naked
singularity. For example, in homogeneous dust collapse, F oc r* and F = 0 at the
first point which is covered by horizon. The point R = 0, u = 0 is a singularity of
the differential equation (23), and hence in order to determine whether geodesics do
terminate at the singularity or not one has to analyze the behavior of characteristic
curves in the vicinity of the singular point. If radial null geodesics do terminate at




126 LH. Dwivedi, P.S. Joshi

the singularity then we have

. R ) R
Xo= lim (——) = lim (d—) = U(X,,0). (24)
R-0,u>0\U R-0,u—0\dU

If a real and a positive value of X, satisfies the above equation then the singularity
could be naked. On the other hand, if the above has no real positive roots, clearly
the singularity is not naked with no families of non-spacelike trajectories coming
out. Therefore, the necessary condition for the singularity to be nakedis V(X) =0
has a real positive root X = X, where

- f(X,0) + 492 B(X, 0) _
V(X)=<1— / A ) =X =0. 25)

As pointed out earlier, one could select /(X 0) (or #(X, 0) as the case may be) as
an initial data and rest of the unknowns in the above equation, namely (X, 0) > 0
is implied by the field equation. That V' (X) = 0 has a real positive root is a neces-
sary condition for the singularity to be naked, but need not be a sufficient
condition. To examine this, consider the equation of radial null geodesics in the
form u = u(X) given by

ﬁi{ 1<dR X>=U(X,u)—X‘

(26)

du u u

Integration of the above yields radial null geodesics in the form u = u(X). Let
X = X, be a simple real positive root of V(X) = 0. If geodesics are to terminate at
the singularity R = 0, u = 0, then u — 0 as X — X, along the same. We could then
decompose V(X) as

V(X) = (X — Xo)(ho — 1) + h(X), 27)
where h(X) is chosen such that is contains higher order terms in X — X,
dh
WX =1 — =0. 28
(Xo) [dX:lX=X0 (28)

Using Egs. (27), (16b) to (16d), (17), and (28) we get for hy,

ho = X3Po(x — 1) (ﬂo ’10‘10( 1—% ))_ 1—%3 __XoMo, (29)

= —_— + — —_—T
fo(Bo — OCXo)2 Py Yo Bo \Xo— 4o 4o Xo— 4o 2Bo
where

Mo = r’(XO’ 0)9 AO = A(XO’ O)a PO = P(X05 0) s (30)

uH ,
Yo =[1, X1u=0,x=x,, 90 = [ XA x — Alu=0,x=x,» Mo = [ H, J (31)
u=0,X=X,

Writing S = S(X, u) = U(X, u) — U(X, 0) + h(X), we could write (26) as

dXx ho—1 S
- (X = Xg———="—. (32)




Naked singularity in spherically symmetric Gravitational Collapse 127

Note that because of the way S(X, u) is defined S(X, 0) = 0, i.e. in the limit u — 0,
X — X, we have § — 0. Integration of the above is straightforward by multiplica-
tion of an integrating factor u ~" * 1 and we get

X —Xo=Dubo—! f o= 1fSy—ho+lgy, (33)

Here D is a constant which labels different geodesics. If geodesics described by the
above equation do terminate at the singularity, u — 0 as X = X, in the above. To
see this, note that as X — X, u — 0 the last term of the above always vanishes near
the singularity since S — 0 as u — 0, X — X,. The first term, i.e. Du*~! vanishes
only if hy > 1. It follows that the integral curve (radial null geodesic) D = 0 always
terminates at the singularity R =0, u = 0 with X = X, as tangent. Further, if
ho > 1, a family of outgoing radial null geodesics terminates at the singularity in
past, each curve given by a different value of the constant D.

It follows that if V(X)=0 has a real positive root, then the gravitational
collapse would terminate in a singularity which would at least be locally naked. As
we have discussed earlier, such a condition basically corresponds to the choice of
initial data for the differential equation (16¢c) in the form of the choice of
f(Xo) = G(X,, 0) — 1, or in the choice of f(X,, 0) in (19) as the case may be. Our
analysis here implies that for all the presently known naked singular spherically
symmetric examples with equations of state such as dust or perfect fluid, etc., there
is a similar naked singular spacetime for all nearby equations of state in the sense
defined by the existence of solutions of the parabolic differential equation discussed
above. It is thus clear that for a wide range of spherically symmetric gravitational
collapse, irrespective of the form of the matter, or a particular equation of state,
a naked singularity would form in the above sense.

Next, we determine the curvature strength of the naked singularity. This is
determined in terms of the curvature growth in the limit of approach to the naked
singularity.

Consider the scalar quantity

¥ = R,,K°K" . (34)

For the space-times (3), using (21) and (22) and the fact that K® is a null vector, we
get

. ' F' F ezw(Kr)z ”eZW(Kr)Z
¥ = T{K*K, = T{K'K, + TIK'K, = [—1? — i:l = IR (35)
The singularity is said to be a strong curvature singularity [10] if
lim kK% + 0. (36)
k-0
We therefore have
kZ’,,eZl[I(Kr)Z
lim k2% = lim —————. 37)
k—0 k-0 BR?
Using the equations above and ’'Hospitals rule we get
lim k> oc 12 . (38)

k-0 ﬁ(Z)
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Therefore, as long as 7, + 0 the strong curvature condition is satisfied. In other
words, in all the situations the singularity would be strong if the energy density (i.e.
p + p1 = n/Pu*X?) does not vanish in the neighborhood of the singularity.

5. Concluding Remarks

In this paper we have shown that the phenomena of naked singularity is dependent
on the initial values chosen for solving the field equations, in that for all sets of
regular initial values which produce at least one positive root of the equation
V(X) = 0, the singularity would be naked.

It follows that a naked singularity could develop in a generic situation involv-
ing spherically symmetric collapse of matter from non-singular initial data. There-
fore, in order to preserve the cosmic censorship hypothesis one has to avoid all such
initial data and hence a deeper analysis of Eq. (25) is required in order to determine
such initial data and the kind of physical parameters they would specify. This
would, in other words, classify the range of physical parameters to be avoided for
a particular form of matter. More importantly, it would also pave the way for the
black hole physics to use only those ranges of allowed parameter values which
would produce black holes, thus putting the black hole physics on a more
reasonable footing.
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