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Abstract: The functional determinant of an elliptic operator with positive, discrete

spectrum may be defined as e~z (0), where Z(s)9 the zeta function, is the sum J] X~s

n

analytically continued in s. In this paper Zf(Q) is calculated for the Laplace operator
with Dirichlet boundary conditions inside polygons with the topology of a disc in
the Euclidean plane. Our results are complementary to earlier investigations of the
determinants on smooth surfaces with smooth boundaries. Our expression can be
viewed as the energy for a system of static point particles, corresponding to the corners
of the polygon, with self-energy and pair interaction energy. We have completely
explicit closed expressions for triangles and regular polygons with an arbitrary number
of sides. Among these, there are five special cases (three triangles, the square and
the circled), where the Z'(0) are known by other means. One special case fixes an
integration constant, and the other provide four independent analytical checks on our
calculation.

1. Introduction

One of the basic integrals that arises in many parts in physics is

π (1)

where A is a real, symmetric matrix with positive eigenvalues. For instance, let (1)
describe the integration of fluctuations around a classical solution in imaginary time
quantum mechanics, where the Lagrangian has been expanded up to second order.
The determinant of A then diverges, and both sides of (1) vanish. The equation is
therefore undefined as it stands. As a basic example take a one-dimensional harmonic
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potential, and the fluctuations in the imaginary time interval 0 < r < L. Then

L

xAx = ( dτ((drx)2 + ω2x2) , (2)

o

and we have Dirichlet boundary conditions for x at r = 0 and r — L. The most
straightforward way to proceed is then to go back to the Gaussian integral (1),
discretize the action by dividing the imaginary time interval into steps of length
ε, and modify the integration measure depending on the cut-off ε so that the limit
when ε goes to zero is finite. In quantum mechanics this is feasible: changing
(2ττ)~1//2 to (2πε)~1//2, and including one more factor (2πε)~1//2, turns (1) to a discrete
approximation to Feynman's sum over paths, which in the limit gives

\

and this is the correct expression in the Greens function.
π2n2

We may also observe that the eigenvalues of A are — -y- -f ω2, and the determinant
is then formally

oo / 2 2

One way to regularize the determinant is to introduce a cut-off A in the product (4),
check that in the limit of large A the result separates into one finite factor and one
factor divergent with A, and keep the finite factor as the renormalized result. For (4),
this gives the same result as (3) [26].

A regularization can also be found from the zeta function of the operator;

which converges when the real part of 5 is large enough. When this function can be
analytically continued to be regular in a neighbourhood of the origin, then

Renormalized [Det A] = e~ z ( 0 ) . (6)

For (4), this again gives the same renormalized result as (3), but the renormalization
has been hidden in the analytic continuation. The zeta function method was first
introduced in the context of regularizing expressions like (1) by Hawking [12], to
study fluctuating fields in a background of curved space.

In general it is not evident that different regularizations give equivalent results.
The proof of such equivalence is an important problem, usually involving a study
of the symmetry properties of the quantity and its divergences and renormalization.
One reason for the success of the zeta function regularization is its ability to leave
symmetries intact. In this paper we will mostly leave such considerations aside
and simply compute Zf

Λ(Q), with A the Laplace operator with Dirichlet 's boundary
conditions in a two-dimensional domain. The domains we consider are piecewise flat
with corners at the boundary and in the interior, i.e. simplicial complexes.
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Concerning alternative more direct reguarlizations of (1) in two dimensions, the
most relevant result we are aware of works only for lattice laplacians, discretized on
rectangular (M x TV) domains [8]:

GMAΓ (M+N) /M\]/4

detA~2 5 / 4 e - (l + Λ/2) 2 (MNΓl/4η(q) f -̂  J . (7)

Here, in lattice units, MN is the area, 2(M -f N) is the length of the boundary,

q — e

 π M js the modular parameter, G is Catalan's constant and η(q) is the modular
form of Dedekind. There are now no less than three terms separately diverging with the
size of the lattice. If, with hindsight, we use that for rectangular domains ZA(0) = 1/4,
we can rewrite (7) in terms of an explicit lattice spacing α:

Area , ,

y-l/af A a // a (rt \ A^Q} & — -^^4(0) log Area—B fQ\
CICL ./i r^-> Lί Λ LL yd ) c- ^ \^)

where e~B are the various remaining terms in (7) which agree 1 with e~z^(0) [16]
(see Appendix C). If nothing else, it seems likely that a discretization on a rectangular
grid, of a domain which is not itself of rectangular shape, will give rise to oscillating
terms in the cut-off. If (8) is to be generally valid in two dimensions, it can probably
only be of a smoothened discretized determinant, where the smoothening goes over
cut-off scales. Assuming that this can be done, and considering that the area, the
length of the boundary, and ZA(Q) are all integrals of local distributions, it is possible
to introduce local cut-off dependent counter-terms, such that the finite remaining piece

It therefore at least makes sense to define the renormalized determinant to be

e-zA(0)^ an(j this is the view we take in the rest of this paper. We will use the
notation Z'D(Q) for our generic case: the zeta function of the laplacian with Dirichlet's
boundary conditions in a simplicial domain D, with the topology of a disc. We will
freely change the index of the zeta function to denote various special cases, and even
contributions to the regularized determinant from some parts of the domain.

It is quite an old idea that hadrons are string-like objects [21, 23, 31] and that such
excitations appear in field theories [24] such as non-abelian gauge theories [13, 34].
In lattice gauge theories, the statistical weight of a Wilson loop, when a quark and an
anti-quark are taken apart for some time, is the area of the smallest area delimited by
the loop. A model for strings was proposed, where the action of a surface is its area
[11, 22]. It was modified [3, 6], to a form suitable for path integration [27], involving
the embedding in d-dimensional external space, xμ, and the internal two-dimensional
metric, gab,

(9)

In addition other terms invariant under reparametrization may be included in the
action (9), in particular an internal area term. Our computations are relevant to a
part of the investigations of (9). with gab fixed, the integration over xμ is just
a quadratic integral with Dirichlet boundary conditions like (1). Our calculations
hence give the finite piece of this determinant. As is well known, reparametrization
invariance of the action in (9), gives rise to Faddeev-Popov determinants, which for
smooth surfaces turn out to be determinants of laplacians acting on vector fields, with

Up to a constant factor 27/4
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modified Dirichlet boundary conditions. We have not investigated these determinants.
At least in a class of simplicial domains with a fixed number of corners, such a surface
is its own model, and we would not have any more reparametrization invariance. In
this respect, an approach closer to the simplicial discretization of (9) would seem to
be more appropriate [2].

Let us now see why it may be interesting to investigate the determinants on
simplicial disc-like domains. Smooth disc-like manifolds with smooth boundary can
always be mapped conformally onto one another. If we denote the conformal factor
σ(x\ the base metric and curvature by g and R, and the base geodetic curvature of

the boundary of k, a celebrated result [1,9, 10, 27] says that

= Z'D(0) -- dsn-dσ+ — I dskσ
4π J 6π J

+ i /

dD ΘD

σ + Rσ] . (10)

The integration constant can be computed from the upper half sphere [32]. In string
theory σ is known as the Liouville field, and we will refer to (10) as the Liouville
action, although we have not included the Liouville interaction.

On two-dimensional smooth surfaces, one can open up a corner with angle 2πα
(or πα at the boundary) with a coordinate transformation which is conformal and
regular everywhere but at the corner, where it instead has a logarithmic singularity.
The kinetic energy term in (10) will then be logarithmically divergent at the corner.
In other words, the Liouville action (10) is divergent for domains with corners in the
interior or on the boundary. On the other hand, Zf

D(Q) is a well defined mathematical
object, and it is well known from special cases, such as rectangles and special triangles,
to have a finite value, the surface being smooth or not.

It is instructive to consider the simpler quantity ZD(Q). For smooth domains
with smooth boundary it is a topological invariant, given by the Euler number as
χ(D)/6, (see for example [1, 19]). For a circle this is 1/6. For a polygon ZD(G) is a
rational function of the corner angles, (see Eq. (37)), larger than 1/6. Thus if we try
to regulate divergences associated with corners by rounding them off and taking the
zero curvature radius limit in the end, we get the wrong result for ZD(Q). We consider
the unboundness of (10) for domains with corners a mirror of ZD(0)'s dependence
on the corner angles.

Our computation gives some more explicit results on determinants, to which one
does not have access from smooth models. This can have some mathematical interest
by itself. More speculatively, it is possible that a definition of determinants by a
precise calculation of Zf

D(Q), may yield a better regularization of (9) than does (10)
and its Faddeev-Popov ghosts. Certainly, such a result would go far beyond what
is actually done here: we have not begun to address a computation of a sum over
surfaces as in (9).

The rest of the paper is organized as follows. Section 2 contains standard results
relating the zeta function to the heat kernel, in particular the variational formula
crucial for our work. Section 3 contains explicit expressions for three different heat
kernels we need. In Sect. 4 standard results on the short time behaviour of the heat
kernel are discussed, and in Sect. 5 we compute Z(0). Section 6, about the corner
contribution to Zf(Q\ contains the first hard new result in the paper. In Sect. 7 we put
all pieces together and calculate Z'(ty for a polygon; Eq. (62) is the general result.
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In Sect. 8 our formula is applied to triangles, and checked with three earlier known
cases. Section 9 gives a short outlook on further results that can be derived using the
methods in this paper.

Appendix A contains asymptotic formulae for the corner contribution. In Appendix
B we evaluate an integral which appears in the corner contribution to Z'(0), in the
special case when the opening angle is a rational fraction of π. In Appendix C we
review special domains for which the spectrum is known explicitly, and Z'D(Q) can
be dedujced therefrom. In addition to fixing an integration constant, this provides us
with four important checks of our formula.

2. Heat Kernel and Variational Formula

In this section we review for convenience some general results involving the heat
kernel relevant to our investigations [1, 28, 29, 32].

The heat kernel for the Laplace operator on a domain D, and its trace, can be
expressed, in terms of its eigenvalues and normalised eigenf unctions, as

y)e-"t, (11)

Tr(KD(t)) = θ(t) Ίΐ(e't} = θ(t) e~^ . (12)
V

The Mellin transform of the trace is the zeta function of the operator

). (13)

This equation is especially convenient for computing the zeta function at s = 0.
Since l/Γ(Q) = 0, only parts of the integral singular at s = 0 contribute. In our case
(Dirichlet boundary condition and compact domain) Ίΐ(K(f)} decreases monotonically
and exponentially to zero as t tends to infinity, so such a singular contribution to the
integral can arise only from the vicinity of t — 0.

This limiting behaviour of the heat kernel is easy to find. It depends on the local
properties of the domain only. For an internal point on a smooth domain only the local
curvature enters, and the behaviour can be found by perturbation theory around a flat
domain. Likewise, for a point on a smooth boundary the curvature of the boundary
enters, and the behaviour can be found by perturbation theory around a straight
boundary of a flat domain. In this paper we are interested in corner contributions,
so we need also the heat kernel in a sector. Fortunately, explicit expressions for the
heat kernel exist in all three unperturbed cases, the plane, the half plane, and the
sector.

Our main interest is in the derivative of the zeta function at 5 = 0. The sketched
procedure does not work directly for this quantity since the derivative of l/Γ(s) is
nonzero at s — 0. Fortunately another trick is available. It is due to the simplicity of
the expression for the laplacian in conformal coordinates (gab — e2σ(x^δab),

d). (14)

The variation of the laplacian under conformal variations of the domain is, then,

δΔ = -2δσΔ . (15)
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Hence

t» = ~t Ίτ(2δσKD(t)) . (16)

And, consequently, the variation of the zeta function can be written as

oo

δZD(s) = - ±- dtt* Ίτ(2δσΔe~Δt)

(17)

0
oo

S

Γ(s)
o

Note that the variation of the eigenfunctions does not contribute since they are
orthonormal, and that there are no convergence problems in connection with the partial
integration since, by analyticity, one may always choose s big enough. The extra
prefactor s makes it possible to apply the previous procedure also to the derivative
at s — 0 of this expression. This is a powerful technique since it is possible to go
between any two domains with this topology by conformal deformation. It is the key
to obtaining analytic expressions for Z'D(Q) for general domains.

3. The Sommerfeldt Kernel

Here we give explicit expressions for the three special heat kernels mentioned in
Sect. 2.

The heat kernel (11) satisfies the differential equation

(dt + Δx)KD(x,y,t) = Q (ί>0), (18)

Limit^o KD(x, y, t) = δ(x - y) (19)

for x e D, and Dirichlet's boundary conditions on 3D. On an infinite flat plane the
solution is the free heat kernel

KP(x, y, ί) = θ(t) -i- e-^-rt2/4* . (20)
47ΪT

The heat kernel on the half plane x2 > 0, with Dirichlet's boundary condition on
x2 = 0, can be obtained from the free case by the method of images,

KHP(x,y,t) = θ(t)
T TΓt/

The expression for the heat kernel on an infinite sector is due to Sommerfeld,
who in 1896 solved the problem of diffraction of light by a perfectly conducting
half-plane [30]. The solution takes the form of a kernel periodic in the angle variable
with periodicity 4ττ; the difference of one "direct" and one "reflected" wave vanishes
at 0 and 2π.

We need the solution to the diffusion problem in a sector with opening angle πα,
which is quite analogous. The solution of the diffusion problem at an interior corner
with total angle 2πα can be obtained in the same way, by keeping only the "direct"

term. If the opening angle is of the form — the sector can be reflected in its side 2n
n

times to precisely over 2π, and the solutions to both the diffusion problem and the
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-π π Re δ

B

Figure. The complex δ plane with the integration controus A, B, Γλ, Γ2, and the shrunken integration
contour used in Sect. 6. The shrunken contour is, for purpose of visualisation, slightly separated from
the imaginary axis

diffraction problem are obtained by the method of images. Sommerfeldt's solution is
a substitute when the reflections do not make up a full turn, and can be given (see
(24)) by a certain finite number of image charges, and a correction term. It has the
following integral representation:

exp(α cos δ) -

A+B 1 — e

dδ

(22)

(23)

A and B are paths in the plane of complex δ that go asymptotically to d=π ± oo
(see the figure). Essentially this is a superposition of free heat kernels between
x and y', where \y'\ = r' and \x — y

"

2 = r2 + r/2 — 2rr' cos(<5). In the bands

< |Re(<5)| <
(4n -f- 3)ττ

the contour integral can be taken to infinity since

Re(x — x7)2 -̂  °°> but not in between.
Ks satisfies the heat equation because it is superposition of free heat kernels, it is

symmetric in (x, y) and periodic in φ and φf with period 2πα by construction of z/α,
and it vanishes at the boundaries of the sector because it is the difference between a
direct and a reflected term. Furthermore, away from the imaginary axis it is analytic
in a.
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By deforming A and B into the straight lines π + iy, —π + iy and [—τr,τr], ι/a

can be written as

va(a,φ) = 2_] exp(α cos(2πak — φ))
k:-K2ak-φ/π<l

oo

sin(τr/α) f exp(-αcoshy) ^f

J2πα 7 cosh(?//α — iφ/a) — cos π/α
— oo

From the image charges of the "direct" term, it follows that the normalization of the
kernel is correct. If for some k an image charge wanders through the line ±π, we
ought to take half the residue and the principal value of the integral in the usual

fashion, but then α equals —, the prefactor of the integral is zero, and we have just
a solution by images. n

4. Short Times Behaviour of the Heat Kernel

The short time behaviour of the quantities appearing in Sect. 2 in the expressions for
the zeta function and its variation are on the form [4, 5, 17, 19, 20]:

Ύr(KD(t)) = ~- ~^= + ZD(0) 4- o(l) , (25)

Ύr(2δσKD(t)) = 7 - ~= ~ 6ZD(0)log(t) + 6Z'D(0) - -γδZD(Q) + o(l) , (26)
47Γt 4\/7ϊt

These expressions are easily understood using the results of the last two sections.
For example the diagonal elements of the free heat kernel equal l/(4πt). If the

free heat kernel is used instead of the true one the trace operation produces a factor of
area, so we get Eq. (25) with only the first term, and A equal to the area of D. Close
to a smooth boundary it is better to compare with the heat kernel in the half plane
(21). Compared to the free kernel it contains an extra term, the reflected term. When
this term is integrated over D it produces, in the short time expansion, a contribution

oo

1 ' - -~~'+ ~ (27)
4πt J 2 8>/7rί

o

per unit length of smooth boundary. This explains the second term in (25); C is the
length of the boundary of D. The next term in the asymptotic expansion, the t°-
term, receives contributions from several sources. For smooth domains, with smooth
boundaries, surface and boundary curvatures contribute. It is explained in reference
[1] how these are determined by perturbation theory. From that explanation it is also
obvious that there are no other more singular terms for a smooth domain. When the
domain is not smooth but has corners, either in the interior (conical singularities), or
on the boundary (corners), there are additional contributions, which we determine in
this paper. Finally, by inserting the asymptotic expansion in Eq. (13), and observing
that only t close to zero contributes at s = 0, it is easy to verify that the constant
term in the asymptotic expansion indeed equals ZD(0).

As for Eq. (26), applying —t — on both sides, and using Eq. (16), one verifies the
at

singular ί-dependent terms. The constant term can be verified as follows. Consider
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Eq. (17). Split the integral into two by introducing a small cut-off, ε, and dividing
the integration interval into two, (0,ε) and (ε, oo). Drop the second integral as it can
contribute neither to <5Z(0) nor to δZ'(ϋ), since the prefactor has a double zero at
s = 0. Insert the short time expansion (26) into the remaining term. Choose s > 1
so that the integral converges, and perform the integration, term by term. Then, by
analytic continuation, let s tend to zero.

As a side remark we compare the zeta function definition of the determinant of
the laplacian with its definition, in for example reference [1] as the integral

oo

Λ - - I — K

ε

Using Eqs. (16) and (26), we see that the variation of this integral under conformal
deformations is precisely the negative of (26), with t replaced by ε. In other words, this
determinant equal our determinant, exp(—Z'(0)), up to a simpler factor exp(7Z(0)),
and cut-off, ε, dependent factors involving area, circumference, and Z(Q).

5. The Corner Contribution to Z(0)

According to Sect. 2, ZD(0), and the variation of Zf

D(Q) under an infinitesimal
conformal variation of the domain, can be obtained as traces, i.e. as integrals over the
domain, of quantities which only depend on the local properties of the domain. And
according to Sect. 4 it is sufficient, for getting them, to determine the constant terms
in the short time expansions of Ύΐ(KD(t)) and Ύτ(2δσKD(ty).

In this and the next section we consider a part of this problem. We assume that
the domain has a corner with opening angle πα, and that the infinitesimal conformal
deformation changes this opening angle. We restrict our attention to what happens
very close to this corner, and assume that we may approximate it with an infinite
sector (with a large distance cut-off, when needed).

In this section we consider the heat kernel, i.e. we determine ZS(Ό), which was
first given as an integral by Kac [17], and in explicit form by Ray (cited in [19]). We
will here follow the procedure used for internal corners by Dowker [7].

Sommerfeldt's heat kernel (23) is the difference of an "image term" and a "direct
term," and so is its trace. As in Sect. 3 we deform the integration contour, A + B, into
two straight lines, Γλ -f Γ2, encircling the strip | Im<5| < π in the extended complex
<5-plane. Then we have to subtract the residues of the poles passed. In the direct term
there is one such pole, at 6 — 0. In the reflected term, which depends on the angular
coordinate φ, there is a pole at δ = — 2φ if — 2φ > — π, and a pole at δ = 2πα — 2φ
if 2πα - 2φ < π. If a < 1/2 there are even more poles in the reflected term, but
since the final result is analytic in a it is sufficient, to consider the case α > 1/2, and
we do so here. The density of the trace of Sommerfeldt's heat kernel is thus divided
into four pieces (r and φ are polar coordinates in the sector)

Ks(r, φ, r, φ, t) = -/Q(r, φ, t) + /α(r, 0, ί) + Plα(r, φ, t) + P2α(r, 0, t ) , (29)

which we now consider one by one.
From the pole in the direct term comes the piece P2α(r, 0,f) = l/(4πt). This is

precisely the first term in the asymptotic expansion (25). It makes no contribution to
Z5(0).
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PlQ;(r, (/?, t) comes from the two poles in the reflected term. Together the two
residues manifest the φ — > π/a — φ symmetry of the system. They contribute the
same to the trace, so for our purpose we may replace them by twice the first one, i.e.

- c o s v . (30)

The pole is passed only when φ < π/2, so in taking the trace this term should be
integrated over the first quadrant (although remember, the opening angle of the sector
lies in the interval π/2 < πa < π). For performing this integration it is convenient
to go to cartesian Coordinates, x — r cos(</?), y — r sin((p). The contribution from Pl

to the trace is then

σo oo ~ oo

/

f —2 -V- f -2
dx I dy - e * = I dx —7= . (31)

J 4πί J

This is recognised as the second term in the asymptotic expansion of the heat kernel;
the divergent integral is the length of the boundary of the sector. It makes no
contribution to Zs(0).

The reflected integral term is

I _ e-ι(δ+2φ)/a

Λ+r2

(32)

In forming the trace, φ is integrated from zero to απ. The change of variable
z = exp(2iφ/ά) transforms this φ integral into a contour integral around the unit
circle in the complex z plane

απ

r dφ a_ f dz
J i _ e-i(6+2φ)/a 2i J z- e~iδ/a ' ( }

This contour integral is zero or aπ depending on if δ lies in the upper or lower half
plane. But the δ integration, around the strip |Re<5| < π, should be performed first.
Then the contributions from the two sides of the strip will cancel in the z integral.
So Ia(r, φ,t) makes no contribution to ZS(Q) either.

Finally, the direct integral term is

f

J
(34)

The trace operation means integrating over the sector. For convenience we integrate
r up to infinity, but note that all relevant short time contributions come from r close
to zero. We get

(35)
1 _ e-iδ/o 1 _ cos(£) ' ^ J

Γ1+Γ2
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This integral equals the residue at zero, and it gives Z(0) for the sector, which we
denote Za(0) since it depends on the opening angle

Za(0) = Ύr(Ks(t))t0_pΆΛ = 1 (I - αV (36)
Δ^ \α /

Since the whole contribution comes from the corner, we can immediately write down
Zp(0) for an arbitrary polygon with corner angles πα ΐ? i = 1, . . . , n,

(37)

6. The Corner Contribution to Z'(0)

In this section we calculate Z'D(Q) for the infinite sector by repeating the calculation
in the last section for the variation of Ύr(KD(t)) under a conformal deformation.

We assume that the corner with opening angle πα is described by coordinates
(ρ,0), ρ > 0, 0ε[0,π], such that the ordinary polar coordinates r, φ are

reiφ = z=-waeχ = - e(Q+lθ} a eχ (38)
a a

and vary the opening angle a and the scale parameter λ. The scale factor eσ is given
by

σ = aρ + λ . (39)

And its variation is

δθί
δσ = δaρ + δ\ = — (log(αr) - λ) + <5λ . (40)

a

According to Sect. 4, we have to determine the constant term in the short time
expansion of the trace of the variation of σ times the heat kernel. We do this by
repeating the steps in the last section. The trace density is divided into four pieces
in the same manner as there, and we take the liberty to denote them the same way,
although they refer to a different density

2δσ(r)Ks(r, φ, r, φ, t) = -/α(r, φ, t) + /α(r, 0, ί) + Plα(r, φ, t) + P2α(r, 0, t). (41)

We consider the four pieces one by one. As in last section, P2 depends on t as
1/t, so it does not contribute.

From last section we know that a constant term in δσ makes no Pl contribution.
But δσ also has a log r term. By the same procedure as in last section, and in addition
a cut off, x0, in x, we get a contribution to the trace,

~ ,2

I dx j dy ̂  log(x2 + y2) ̂  e * . (42)

Since only small y can give relevant contributions, we perform the x integral first,
then expand in a power series in y and get

oo

J
dy ((2x0 Iog(x0) - 2x0) + πy + O(y2)) Ξ. e~ τ . (43)
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The second term in the expansion gives the relevant t independent contribution to the
trace

Tr(2«5σ^s(ί))Pιto_part = -g. (44)

As in the last section, and by the same argument as there, the reflected integral
term gives no contribution. This is so because the variation of σ does not depend on
φ.

There remains the contribution

oo πα

Tr(2£σ^(t))Jdirect = j dr r j dφ (^ (log(αr) - λ) + δλ

o o

- 1 1 f dδ -(i-co~
x -- / - —r- e 2t . (45)

4πt 2πa J 1 - e~l6/a

The x integration can be performed using the formula

<-*~'

/ dxlog(x)e~x = Γ'(l) = -7.

o

After r and φ integration we have

(46)

o

dδ 1
— cos(<5)

2̂

x ( — ( log ( ) — 7 — 2λ ) -f- 2δ\ } . (47)
\ α \ \1—cos(ί)y / /

Apart from the logarithm term, it is the same integral as in the last section. The
logarithm is real for δ = ±π. Therefore its branches are different on different sides
of the imaginary axis. We shrink the integration contour, Γ{ + Γ2, to a small circle
of radius ε around the origin plus straight lines along the rest of the imaginary axis
(see the figure). The straight lines make a contribution

ioo
-2πiδa f dδ f I 1

-8πα

r dδ ( ι_
J I - cos(<5) V l - e -

oo

f di
J sinh2(

coth hf- . (48)
—δa f dy 1 ( y

^ coth —
2(?//2) \2α

ε

A partial integration, which makes integration with respect to a easy, transforms this
into (terms tending to zero when ε tends to zero are dropped)
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Adding the contributions from the small circle we have

Ύτ(2δσKs(t))I(Άκct = 1 f I - α V^ (Iog(4α2ί) - 7 - 2λ) + 2δλ

. (50)
sinh2(y/(2α))

ε

Acording to the asymptotic expansion formulas (25, 26) the coefficient of the
logt term in Ύr(2δσK(t)) should equal —δZ(0). The present results for the sector,
-6ZS(0)) = δa(l/a2 + 1)/24, and log* coefficient in (50) equal to δa(l/a2 - l)/24,
seem to disagree with this general result. However, as is clear from the discussion
in Sect. 4, the domain must be bounded. Although we have computed the localized
contributions from a corner, approximating the corner with an infinite sector, in reality
we must think of these contributions from a compact domain, and of the sector as e.g.
a corner in a polygon. The opening angles of the corners are then not independent,
because the exterior angles sum to 2π. Our variation is hence only determined up to
terms leaving this sum invariant, that is, up to terms linear in

To get the variation of the total corner contribution to Z'(0), we add the Pγ

contribution (44) and subtract the — δZ(G) (logt -1- 7) piece. We drop the scale factor
λ for the rest of this section. It is straightforward to write the result as a total variation.
We choose a form which exhibits its behaviour under α — » 1/α. Finally removing the
variation sign we get a quantity which we call ^(0), since it depends on the opening
angle απ,

(51)

(52)

We stress again that terms constant and linear in α in (51) are not determined by our
derivation, we have simply chosen them at our convenience. An alternative expression
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for the same quantity is

Z'a(V) = -^ (- - a}(Ί - log 2) - -̂  (- + 3 + α) logα + J(α) , (53)
12 cx. 12 α

. (54)
12

This expression shows that our Zf

a(ty vanishes for opening angle π. In Appendix
A we discuss the derivation of the alternative expression as well as the asymptotic
behaviour of Zf

a(0) for a large small or close to one.

7. Z'(0) for a Polygon

In this section we derive an expression for Zf(0) for the Laplace operator in an
arbitrary polygon. The Schwartz-Chris toff el formula

u

= eλ° / du1 Y[(uf - elφ»z(u) = eλ° du1 (uf - elφ»Γβ" (55)

maps the unit circle in the complex it-plane on an n- sided polygon with exterior
angles πβ^, provided only

Conversely, an arbitrary polygon can be described this way. We can interpolate
smoothly between one polygon Pl (at a = 0), and another polygon P2 (at a — 1) by
taking

za(u) = eλ° du'\Π (u1 - (57)

Every intermediate figure is then again a polygon, which means that we may without
restriction consider variations of λ0 and the /^, but leaving the branch points eτφl/

fixed. This simplifies somewhat the following argument.
Since the surface is flat, and the sides are straight, all contributions to Z'(Q) come

from the corners, and are as given in last section. The opening angle and scale factor
at corner μ are described by

αμ = 1 - /?μ , (58)

λμ = λ0-^/? l /log|e^-e ί^|. (59)

v^μ

According to last section, the variation of Zf(0) for the polygon can be written

β λ - i δβ\ . (60)
μ μ μ μ
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Consistency requires that also the last term is a total variation. And, indeed, using
(56) and (59) one finds

δ

μ

So (60) integrates to

— V* 7'~

^ z

f ro) - V^ μ

/ ^ i P/J, 10 / / i log |e(^-λo) - e^-^l + C. (62)

Note that the coefficient of λ0 equals 2ZP(Q) (37). We will determine C = 0 below.
This is our final formula for ^(0) for an arbitrary polygon. We find it interesting

to interpret — ^ Z'(O), the result of a functional integration as in Eqs. (1) and (6), as

an action for a static configuration of point masses, with self-energy and pairwise
interaction energy. The interaction energy is proportional to the logarithm of the
distance in parameter space between the point masses. We do not know if there is a
similar expression involving instead the physical distance. We note that the self-energy

is not quite physical: —^Zf

a(0) is positive for α > 1, but negative for 0 < a < I

(see Eq. (83)).
It may also be instructive to consider the behaviour of Zf(ΰ) as two corners

approach, as φλ —> φ2, let's say. Z'(Q) the increases indefinitely. This signals a new
divergence appearing when the corners meet. But the zeta function regularisation
is subtle, it automatically regularises the new divergence, replacing the would-
be divergent expression with a finite one of different analytic form, containing
Zί-/3ι-A<°>

To find more explicit expressions we consider more special domains. In the rest
of this section we specialize to a regular polygon. Then the interaction term is

βμβv

12

n-l

3 (n _ 2) ̂  -^ ^ >- 3 (n - 2) '

and the radius of the circumscribed circle is, from (62)

i

β = eλ° /W(l - ^n)~2/n - eλoΓ f 1 + -\Γ (l - -} /r(l - -} . (64)
J V nj V n / / V nj
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Z'(Q) for a regular polygon is, then

% (O)regular n-gon ~ n^l-2/n(^) ~ ^/ _ 2\ ~*~ 3 I ^ "̂ " n - 2 ) °̂ ~^~ ̂  ' ^^

where λ0 should be replaced by the radius by (64). In the limit n —> oo we get a
circle

^'(O)circie = - 2 ̂  ^(0)|α=1 + ̂  log R + C. (66)

Equation (89) contains an explicit expression for the first term. Comparing our
expression with an existing result in the literature [32] we find that the integration
constant C is zero.

Using the formulae in Appendix B, Z'(0) for regular polygons can be expressed
in terms of the gamma function. In particular we have used (103) to check that our
formula for regular polygons agrees, for the square and the equilateral triangle, with
calculations based on explicit expressions for the eigenvalues, see Appendix C.

8. Z'(0) for a Triangle

For triangles the origins of the corners in parameter space in the Schwarz-C hristoffel
transformation (55) can be moved around the unit circle independently by Moebius
transformations, so we may choose, without loss of generality, φv = 2πίv/3,
v = 1,2,3. Then the interaction term simplifies

μ v 1r»σ \P%(PV — P^"

= _ lθg3 ^p βμβ»

24 JΪ 1 ~ ̂

Iog3 χ , / ^ _ α i=_ l o g 3 Z r ( 0 ) > (67)
24 ,= 1,2,3

and Z'(0) for the triangle becomes

™ Ό). (68)
z/=l,2,3

The scale factor λ0 may be expressed in terms of the area, A, of the triangle

For the three special triangles discussed in Appendix C, for which Z'(0) has been
determined by other means, we can take out expression for Zx(0), (68), and, since
the α's are rational, express the Z^'s in terms of gamma functions using Eq. (103).
It may be checked that indeed the expressions in Appendix C are reproduced.

A(α1,α2,ce3) is a normal area for which the second term in (68) vanishes. By
numerically solving for about the first one thousand eigenvalues of the laplacian in
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isosceles triangles, and then estimating the analytic continuation of the zeta functions,
Luck found that the quotient

ryl f(}^

(70)
^ Zτ(0)

varies surprisingly little over the triangles (taking the normal area) [18].
We can express this ζτ as

Γ z' (0)L-J Oίr> \ '

Cτ = ̂ l__. (71)

P=l,2,3 P

We find that it has a maximum for the equilateral triangle, where it equals 4.591151....
The minimum of CT *s obtained as an angle tends to zero, and the value follows from
the asymptotic expansion (83):

lim IH^ = 2(! - loS2) - 24C7(-1) = 4.583813 . . . . (72)

It is interesting to note that extremal properties of Z'(Q) in classes of smooth surfaces
have previously been used by Osgood et al. [25].

9. Outlook

In an earlier version of this work2 we included an alternative derivation of the
results of Sects. 5 and 6, based on the concept of a zeta function density, i.e. the
Mellin transform of the diagonal elements of the heat kernel (the integral of the zeta
function density over the domain then gives the usual zeta function). The separation
of finite and diverging pieces is then performed once and for all, and the actual
computations are somewhat easier. In the interest of not introducing non-standard
quantities, and keeping simple things simple, we have chosen here to just present
the calculations using the short-time properties of the heat kernel, along the lines of
Dowker's computation of Z(0).

The derivations in Sects. 5 and 6 can be repeated almost without change for an
interior corner (a conical singularity). Apart from the simple contribution to Z'a(0)
from the reflected term (see (44)), Za(G) and Z^(0) from an interior corner of opening
angle 2πa will just be twice Za(0) and Z'a(0) from a corner at the boundary with
opening angle πα. We expect that the separation of Zf

D(0) into self-energies and pair
interactions is also basically correct if there are corners in the interior.

It is finally interesting to compare, in the smooth boundary limit, our action, (62)
with the Liouville action, (10). In this limit all corner angles are close to π, so (62)
reduces to

Z'P(0) « ̂ ircle(0) + l- λ0 - 1 Σ βμβυ log le*** - e^" , (73)
μ,v

μ¥"

where the double sum can be interpreted as the ordinary electrostatic interaction
energy of a collection of charges on the unit circle. The base space is now the unit

Gδteborg ITP 93-6, available as hep-th/9304031 at hep-th@xxx.lanl.gov



250 E. Aurell, P. Salomonson

disc, with R equal to zero and k equal to one. We use coordinates (ρ,φ) such that
u ~ exp(0 + iφ). The conformal factor is, according to (55),

σ(u) = log —
du

(74)

Since the unit disc is mapped to a polygon, just inside the boundary of the unit disc

the argument of — is a saw-tooth function, with steps of height πβv at φ = φv.

Hence, at ρ = 0~,

d τ l (dz\
— Imlog —
dφ \duj

(75)

By the Cauchy-Riemann equations, the left-hand side of (75) equals — n - <9σ, with n
the inwardly directed normal. The double sum in (73) can then be rewritten as

1 Γ Γ

-7TT dφ[l-fi dσ(0-,φ)]P \ dφ![l - n - dσ(^~,φ')}\^\e1^ - e^' , (76)
12πz J J

where the principal part is taken on the inner integral, and the normal derivatives are
evaluated just inside the unit circles.

In the limit when the charges tend to a smooth distribution, the inner integral in
(76) may be closed, and we have

1 f
/ dφ[l — n - dσ(0 , φ)] [λ0 — σ(0, φ)}. (77)

12π J

The line integral over σ and its normal derivative is by Gauss' law seen to be identical
to the kinetic energy term in (10), while the other integrals in (77) vanish. Finally,
the line integral in (10) over the normal derivative vanishes, and the line integral in

(10) over σ is just equal to ^ A0. Hence we recover the Liouville action result for

disc-like flat domains with a smooth boundary.

A. Asymptotics of Z'a(Q)

In this apendix we collect some formulae and investigate Z'a(Q) for a large or small
or close to one.

Large and small a. To get an asymptotic series for small α for the integral (52) in
the expression for Z'a(Q) we first expand the factor involving y^/a in a power series
using the formula

4

X

= = _ + _ _ _ + Γ78Ϊ
ex-l ^ nl 2 6 - 2 ! 30-4!

n=0

Then we integrate term by using the formula

oo

/

dx
-^τγ '̂ (?9>
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The first terms have s < 0. Then we use the same procedure as described in the
penultimate paragraph of Sect. 4 and used on Eq. (26) to get an expression for the
integral from ε to infinity. We get the following expressions:

oo

Γ dx _

J e*-l~~

oo

dx I I I 7 1
— - = - + - logε + - - - Iog2π + ^'(ε),
ex - 1 x ε 2 22

ε
oo (80)

I dx ι__ i _ι_ j_

ε
oo

These formulae may be used to compute the difference between the integrals in the
two expressions for Z'a(0) in Sect. 6,

J(α) = Js(ά) + — (α + 3 + - J l o g α
24 a

^ (7 - Iog2π) - a ( ̂  + ζ'(-l)} ,
4 \ IZ /

(81)

which proves the equivalence of the two alternative expressions, (51) and (53), for
Z^(0) at the end of that section.

By using the formulae we also get the asymptotic expansion for the small opening
angle for J5(α),

I. + 3 + /

v ' n+i an , (82)
*-^ n(n + 1)

and for the corner piece of Z'(G),

(83)

For small α the leading behaviour is (0.190992.. .)/α.
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Using the symmetry under a —» — we have the asymptotic expansion for large a:
a

Z-(0)™~ΐ^(^ +3 +

+ α ( — ( l -log2) log2π-2C/(-1

Γ(Ή\ R .
(84)

for which the leading behaviour is -—aloga.

a close to one. We find it convenient to express J(oί) using yet another integral and
write

J(α) = J(α) - OiΛ J, (85)

where J has the integral representation

oo

1 , / u \ a I
φ, (86)

2μ \2aJ . 2 f μ\ 12
4sιnh ( ̂  '

and the difference has the integral representation

oo

ΔJ = I dx I - ( χ

l_ 2 + —J-Γ" )

•C'(-l). (87)

(e*-l) (e* - I)3

o

o 24 4

The derivative of J(α) can be expanded around a — 1, and the successive terms
evaluated in Mathematica, which gives

J'(l+ε) = -~ε+^-ε2 + ̂ ), (88)
36 lo

and putting the various terms together we have for a corner on the boundary:

Z(+ε(Q) = Q log 2 - 1 - 1 log(2π) - C'(-l)) e

B. Corners with Opening Angle πp/q

The integral J(α) in the corner contribution to Z'a(Q) can be reduced to a finite sum
when a is rational, α = p/g. The derivation of this formula is the content of this
appendix. We assume that p and q are relatively prime positive integers, and start from
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the expression (51), (52) for Za(Q). The substitution y = ^/pqx brings the integral
Js(o) into (as before, the limit ε —» 0 is tacitly understood)

oo

+ 7 ί E - j l - f ' ,90)
/ x epx — 1 eqx — 1

The integrand now contains a rational function of ex. This rational function is first
decomposed into partial fractions

1 1 1 ex p + q I

(ePχ - 1) (e*x - 1) pq (ex - I)2 2pq ex - I

1 e
(e2πiμq/p _

^ ^

and then the phase in the denominator is eliminated using the identity

e2πιμ/p P x(p-m)

m=l

We now have an expression containing double sums of integrals over x. The integrals
can be performed using the formula

CO

/

dx e(1~α)x 1 / 1 \ 1
-- ϊ—r = - - - - α (7 + logε) + logΓ(α) - - log(2π) . (93)
X 6 1 £ γ Z y Z

ε

The next step is to simplify the double sums. Some pieces are easy. For example, the
formula for the sum of a geometric series is sufficient for checking cancellation of
1/ε2 and 1/ε terms. Other double sums are on the form

P P-{ 2πiμm/p

V /(ra) V -^-. — -. - , (94)
Z^f J V } Z^ e2πτμq/p _ j ' v >
m=\ μ=l

with / some function of ra. In order to reduce them, we introduce a parameter a less
than, but close to, α = 1 — δ, so that we can expand the denominator. In the end the

— »limit α —» 1 is taken,

^~^ g2πiμm/p ^

Z^i e2πiμq/p _\ ~ \ _ a

μ=l

-, P oo
1 ^ are2πi(m+qr)μ/p

l-a
μ=\ r=
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We now perform the μ summation first. It gives zero, except when ra + qr is a
multiple of p\ then it gives p. For each r there is precisely one m in the interval [l,p]
which fulfills this condition, namely the one for which p - m is the least nonnegative
remainder of the division of rq by p. Let us name this remainder R(rq,p), that is

(95)

The m which makes the μ summation nonzero is, then, m(r) =p — R(rq,p\ and

P

Σ
m=\ μ=l r=0

1 -a? ̂
r=0

r=0

In the limit δ —» 0 we obtain the following formula for the double sum (94):

"-I e2πtμ/p PZ

Z y J x

m=l μ=l ^ ^ r=0

Use of this formula brings Js(p/q) to the form

= lUp+ 3 +α) l θ g ( ε ) + J-

•

<97)

The sums here, except those containing log(,Γ), can be expressed in terms of Dedekind
sums. The Dedekind sum 5(p, q) can be defined, when p and g are nonnegative
relatively prime integers, as
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There is no more explicit expression for the Dedekind sums, but they satisfy an
identity called Dedekind's reciprocity relation

(99)

(By the way, this relation, together with the identity S(q + np,p) = S(q,p\ provides
an efficient method for calculating S(q,p).) By Dedekind's reciprocity relation the
log(ε) terms do indeed cancel. Using Dedekind's summation symbol, and Gauss'
gamma function multiplication formula

=(2π)^pHrω, (100)

m=0

the expression for Js(p/q) can be brought to our final form

C'(-i)
2 12 \q pj pq

24pq
lθg(pq>) + (S(p, q) - S(q, p)) log -

This expression is inserted into (51) to get the desired expression for Z'D(0). Since
Zf

D(ty lacks p -̂» q symmetry, we have chosen to eliminate one of the Dedekind sums
using the reciprocity relation. The final result of this appendix is then

- - (P - -} C;(-D
4q ov 12pg ov ' q ̂  p

1 . .^(1Q, Λ , (qι+ I - + S(g,p) log -
I2pq °^' \4

,.; i-=)^(
li^-Ci'^H1" j α°2)

where .R(j?, g) and S(p, q) are defined by (95) and (98) respectively. For the special
case p = 1 this reduces to
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C. Integrable Domains

In this appendix we collect the cases known to us, where one has deduced the
derivative of the zeta function at zero directly from explicit knowledge of the
spectrum.

In a rectangle with side lengths α and 6, the eigenvalues of the laplacian with
Dirichlet's boundary conditions are

a

The zeta function around the origin is

^rectangle W ~ T ?

i (105)

\ log(αδ) - log \2^ (?) * η(q)] ,
H tt

where η is the modular form of Dedekind,

1 oo

= q24 llO-O q = e - . (106)
m=l

Three triangles tile the plane by reflections in the sides: the equilateral (^, ^, ^);

the bisected equilateral (^, 3, ^), and the right angle isosceles ( 2 5 4 5 4 ) - Let us also

include the square, (5, ^, f ? |)» in our list. In these domains (and in rectangles) one

can express the eigenmodes of the laplacian as superpositions of plane waves [14,
15]. We normalize their areas such that α is the length of the sides of the square and
the equilateral, the lengths of the legs in the right angle isosceles, and the length of
the longest side in the bisected equilateral. The eigenvalues are, then,

/ 7 Γ \ 2

E(! ! ! ! x = I - (n2 + m2), n > 0, m > 0 ,

E( ! i i \ = - ) (n2 + m2) , n > m > 0 ,
α /

2 (107)

E( i , i \ = [ — ) (n2 -f m2 + nm) , n > 0, m > 0 ,
--

2

(n + m -f- nm) , n > m > 0 .
4 \
— - 2 2

The corresponding zeta functions can be written in terms of Riemann's zeta- function
and Dirichlet's L-series [15]
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as,

_ Vπ
V i i ι \ — ό 1 ~

U ' 4 ' 4 / 2 \a

4π

-2s

- C(2s)),

And these may in turn be resolved into sums of Hurwitz' zeta functions

(108)

with different arguments α. Using [33],

c(o,α)=5-α, έc(s'α)|-°=log^i'
and the normal areas (69) determined by the Schwarz-Christoffel transformations,

Λ _ 7τ Γ(α0)Γ(α1)Γ(α00)

2 Γ(l-α0)Γ(l-o1)Γ(l-o0 0)'
(109)

one finds, after some algebra, the following expressions for the determinants for the
triangles:

Area
(110)

(111)

Area
(112)

and for the square

\2'2'2'2

π2s (113)

The eigenvalues of the laplacian in the upper half sphere of radius one are 1(1 +1).
If one imposes Dirichlet's boundary conditions at the equator, one selects out the
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eigenmodes odd under reflection in a plane through the equator. Each eigenvalue will
then be / times degenerate. The zeta function of this spectrum is

.

from which one can derive [32]

= 2C'(-1) + \ log 2π - I . (1 15)

The hemisphere can be mapped conformally to a disc with radius R. The difference of
the regularized determinants on the hemisphere and on the disc can then be evaluated
by computing the Liouville action (10) of the conformal factor [32]:

^disc(O) = \ log 2 + \ log π + i log R + 2ζ'(- 1) + ̂  . (116)

Equation (116) has also been checked numerically to great accuracy by computing
the eigenvalues from the zeros of Bessel functions, and directly investigating the
analytical continuation of the zeta function [18].
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