
Commun. Math. Phys. 164, 599-626 (1994) Communicat ions ΪΠ

Mathematical
Physics

© Springer-Verlag 1994

Some Remarks on Quasi-Invariant Actions
of Loop Groups and the Group of Diffeomorphisms
of the Circle

Yurii A. Neretin

Chair of Analysis, MIEM (Moscow Institute of Electronis and Mathematics),
Bolskoy Vuzovskii 3/12, Moscow 109028, Russia

Received: 15 September 1993

Abstract: We construct the series of quasi-invariant actions of the group Diff of
diffeomorphisms of the circle and loop groups on the functional spaces provided by
non-Wiener Gauss measures. We construct some measures which can be considered
as analogues of Haar measure for loop groups and the group Diff. These constructions
allow us to construct series of representations of these groups including all known
types of representations (highest weight representations, energy representations,
almost invariant structures, etc.)

Introdution

In [Nl, N2] there were constructed some series of quasi-invariant actions of the group
of diffeomorphisms of the circle and loop groups on functional spaces with (non-
Wiener) Gauss measures. In this paper we use results of [Nl, N2] for constructing
some "new" dynamical systems for loop groups and the group of diffeomorphisms of
the circle. The paper also contains some results which are interesting for representation
theory and the theory stochastic processes.

Let Diff00 denote the group of C°° -smooth preserving orientation diffeomorphisms
of the circle Sι = R/2πZ. Let K be compact Lie group. We denote by L°°(iΓ)
the group of C°°-smooth functions Sι —• K. We also define the groups Diff1 of
orientation preserving diffeomorphisms of class C 1 and the groups h°(K) of functions
S1 -> K of class C°.

In this paper we construct the following dynamical systems:

- the series of Diff00-quasi-invariant measures on the space Dif^/T, where T is the
group of rotations of the circle,

- the series of Diff00-quasi-invariant measures on Diff1,

- Diff00-quasi-invariant measures on the space of Cantor subsets of the circle.

- L°°(S(9(n))-quasi-invariant measures on L°(SΌ(n)). These measures are also
Diff00 -quasi-invariant



600 Y. A. Neretin

- L°°(SΌ(n))-quasi-invariant measures on spaces of maps S1 to homogeneous spaces
SO(n)/H.

Now we will briefly discuss the influence of these constructions to representation
theory. Since 1970 there were the following attempts to construct representation theory
for the groups Diff°° and L°°(iΓ).

1. The most well-known is highest weight representation theory (see [Ka, PS]).

2. Representations of Diff°° of finite functional dimension and the attempts to apply
the orbit method (see for instance [Ki]).

3. Ismagilov's paper [I].

4. "Energy representations" of h°°(K) connected with the Wiener measure (Ismag-
ilov, Vershik, Gelfand, Graev, Albeverio, Testard, Hoegh-Krohn, I. Frenkel, Malliavin,
Gross, see [AHTV]).

5. "Almost invariant structures" (Neretin, see [N1-N6]).

None of the specialists (including the author) believed that it is possible to unite
these five theories, it seemed that here we had the objects of essentially different
nature. This paper doesn't contain much representation theory. But as the result of
this paper there is union of all approaches l)-5).

1. Invariant Measure on Hubert Space

This section contains brief survey of classical results (I. Segal, Feldman, Hajek,
Prokhorov, Sazonov, L. Gross, etc.) on measures in Hubert spaces (for details see the
books of Kuo [Kuo] or Shilov, Fan Dyk Tin [ShF]).

1.1. The Canonical Extension for i2

Let us consider the real line R with the Gauss measure dμ = —j= e~x l2dx. Denote
V2π

by R°° the product of infinite (countable) number of copies of R provided by the
product v of the measures dμ.
Proposition 1.1. ί2 has zero measure in R°°.

Theorem 1.1. Let (tvt2, ...) G ίv (xvx2, ...) € R°°. Then for fixed (tvt2, ...) the
series Σtjxj converges almost everywhere on R°°.

Now let us consider infinite real orthogonal matrix A. By Theorem 1.1 for almost
all x = (xι,x2, - •) the vector

an α 1 2 . . .\ /xΛ /anxι+al2x2 + .

Ax = I α2 1 α 2 2 I I #2 I = I α 2i x i + α22x2 +

is well-defined.

Theorem 1.2. For each real orthogonal matrix A the map x ι-> Ax preserves the
measure v on R°°.

Let us denote by O(oo) the group of all infinite real orthogonal matrixes.

Remark. We saw that the group O(oc) acts on the space R°° with the measure v.
Here R°° is the space with measure, the group O(oc) doesn't act on the set R°°!
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Theorem 1.3. Let h £ £2. Then the measure v is quasi-invariant with respect to
transformations x ι—> x -f h.

1.2. The Canonical Extension for Arbitrary Hilbert Space

Let H be real Hilbert space. Let e l 5 e 2 , . . . be orthogonal basis in H. Then we
can identify H and £2, the space £2 is a subset in iJ, and so we have embedding
H 9* i2 -> R°°. Extension ίϊ of H is, by definition M°° D if.

It seems that the construction depends on a basis in H. Let e t ,e 2 , . . . and
fι,f2, . . . be two orthogonal bases in H, let us denote the corresponding extensions
by H(e1,e2, ...) and H(fι,f2, . . . ) . Let A be an orthogonal operator in H such
that Ae% — f{. Then the map x \-^ Ax from H(eX)e2, ...) to H(fx,f2y ...),
is the isomorphism of the spaces with measures. We see that H(e{,e2, ...) and
H(fι,f2, . ) are canonically isomorphic and hence our construction doesn't depend
on choice of a basis.

1.3. Gross Construction of the Canonical Extension

Theorem 1.4. Let A = (λ l 5 λ 2 , ...) be a sequence of real positive numbers and
Σ λj < oo. Let ΩΛ be the set of all x = (xx, x2, ...) G M°° ŵc/z ί t o ^ λ ^ < oo.

Then the measure of the set WX>\ΩA equals zero.

Embedding ΩΛ —> M°° is an isomorphism of spaces with measure and so we
can replace the space E°° with ΩΛ. Thus ΩΛ can be looked upon as the canonical
extension t2 of £2. It is important to notice that the space ΩA is the Hilbert space,
the scalar product in ΩA is given by the formula

Let us describe the same construction on invariant language. Let H be real Hilbert
space with scalar products ( , ), let A:H —> H be the Hilbert-Schmidt operator, let
A*h Φ 0, if h φ 0. We define in H a new scalar product

{x,2/} = (Ax, Ay).

Let if be the completion of H relative to the norm ||x|| = {x,x}1/2. It is easy
to see that the operator A:H —> H extends to the well-defined (unitary) operator
A\K —• H. The probabilistic measure v in K is defined by the equality

/ exp(i{x, y})dv(y) =

Then it turns out to be K = H. To see this let us consider the orthogonal bases
e1 ? e2, . . . and / l 5 /2, . . . in H such that Aei = \fτ{\3 > 0). Let us identify H and
£2 using the basis e l 5 e 2 , . . . and embed £2 to M°°. Then the space if is identified
with the space ΩΛ

Y^Ji^{xvx2, ...)eΩΛ.

The space K is named Hilbert-Schmidt extension of H.

Proposition 1.2. Let h G H. Then the measure v on K is quasi-invariant with respect
to the translation x \-^ x + h.
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1.4. The Feldman-Hajek Theorem

Let H be real Hubert space. Let us denote by GLO(H) the group of all operators
A:H —> H of the form A = B(\ + T), where 5 is the orthogonal operator and T is
a Hilbert-Schmidt operator.

Lemma 1.1. Lei A be an operator in H. Then the following conditions are equivalent:

1. A e GLO(H),

2. A* A — E is Hilbert-Schmidt operator.

Now let A be bounded operator in H. Let us identify H and ί2. Then the map
x \-> Ax [see (1.1)] is defined almost everywhere.

Theorem 1.5. Let A E GLO(H). Then the canonical measure in H is quasi-invariant
with respect to the map x \—> Ax.

Remark. Of course, the group GLO(H) doesn't act on the set H, it acts on the space
H with measure.

Let H be a real Hubert space, A: H —> H be a Hilbert-Schmidt operator, let K
be the corresponding Hilbert-Schmidt extension of H. Let GLO(H \ K) be the group
of bounded invertible linear operators A in K such that

a) h e H implies Ah e H.

b) The restriction of A to (dense) subspace H is the element of the group GLO(H)
(with respect to scalar product in H\)

The group GLO(H \ K) acts on the Hubert space K (x \-> Ax, it is the usual
linear operator and so A:K —• K is the map of sets!) and the canonical measure on
K is quasi-invariant with respect to this action.

1.5. Space L2(H) as Bosonic Fock Space

Let O(H) be the group of all orthogonal operators in the space H. Define the
representation

T(A)f(x) = f(Ax)

of O(H) in L2(H). We want to describe the decomposition of this representation.
Let H = ί2. Let us consider the Hermite polynomials hQ(x), hx{x), h2(x), . . . :

1

(degree of h^{x) equals j).

Let Rκ C L2(1R°°) be the set of linear combinations of all polynomials

Proposition 1.3. a) L2(R°°) is the orthogonal sum

b) The restriction of the representation T on Rj is irreducible and
j-th symmetric power of the identical representation ofθ(oo) in ί2.

is irreducible and equivalent to the
i fθ() i ί
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Remark. The direct sum of all symmetric powers of a Hubert space is named the
bosonic Fock space and hence L2(H) is one of the models of the bosonic Fock space.

2. The Basic Construction

This section contains an account of the results of the papers [Nl, N2] (see also [N5,
N6]).

2.1. Sobolev Spaces on the Circle

Let us denote by Ws the Sobolev space, i.e. the space of all (generalized) real

functions f(φ) = Σcn e%nφ o n * n e circle s u c n

The scalar products in Ws is given by the formula

$ > 2 + \)scndn. (2.1)

Remarks. 1. The space W° is the usual L2(Sι).

2. If s < 0 then elements of Ws are generalized functions.

3. If s > 1/2 then functions / G Ws are continuous.

4. If s > 1 then functions f £ Ws are differentiable almost everywhere.

2.2. The Basic Construction for Diff°°

Let Diff°° act in Ws by transformations

Ts(q)f(φ) = f(q(φ))qf(φ)l/2-s (2.2)

Theorem 2.1. T3(q) G GLO(WS).

This theorem gives us the series of quasi-invariant actions of Diff°° on the
canonical extensions of Ws. The case 5 = 1 corresponds to the usual Wiener measure
(see p. 2.4).

2.3. The Basic Construction for h°°(SO(m))

Let SO(m) be the group of real orthogonal operators in Rm. Let h°°(SO(m)) be the
group of smooth functions Sι —> SO(m). Denote by W^ the space of real-valued
functions F = (fv / 2, . . . , f m ) : Sι -> R m such that f3 G W s provided by the scalar
product

3

The group h°°(SO(m)y acts in W^ by the transformations

Q(A(φ))F(φ) = A(φ)F(φ), (2.3)

where A(φ) G L°°(SΌ(m)).
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Theorem 2.2. Q(A(φ)) e GLO(W^).

Proofs of Theorems. See Sects. 2.5-2.10.

Now let us notice that the group Diff°° acts on L°°(5O(ra)) by automorphisms

A(φ) ^ A(q{φ)),

where q e Diff°°, A(φ) e L°°(5O(m)). So we can consider the semidirect product
Diff°° txL°°(5O(m)).

Let us construct the action of the group Diff°° κL°°(5O(m)) in the space W^.
The group h°°(SO(m)) acts by the formula (2.3) and the group Diff°° acts by
transformations

Corollary. We obtained the embedding

Diff°° xL°°(5O(m)) -

2.4. The Canonical Extension of Ws

Lemma 2.1. Let s{ - s2 > 1/2. Then the identical embedding WSι to WS2(f ι-> /)
is the Hilbert-Schmidt operator.

Proof Evident.

Hence W8~ι/2~ε can be looked upon as the canonical extension Ws of Ws (where
ε >0) .

Corollary 1. Let q G Diff°°. Then

Ts(q) e GLO(WS I Ws~ι/2-ε)

Proof is evident, the operator Ts(q) is bounded in each space Wχ.

Corollary 2. Let A(φ) G L°°(50(m)). Then

Let us discuss the case s = 1. The space Wι^2~ε can be looked upon as the
canonical extension of Wι. For instance L2(Sι) = W° can be looked upon as the
canonical extension Wι of Wι. It is well.known (see [Ku]) that the canonical measure
on L2(Sι) = W° is the usual Wiener measure. The support of the Wiener measure
is contained in the space CζS1) of continuous functions on Sι and so C(Sι) can be
looked upon as the space Wι.

Corollary. The Wiener measure in C(Sι) is quasi-invariant with respect to transfor-
mations

where p e Diff°°.
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2.5. Strongly Equivalent Scalar Products

Let H be Hubert space with scalar product ( , ). Let { , } be another scalar product
in H. We say that ( , ) and { , } are strongly equivalent if there exist C > 0 and
a Hubert-Schmidt operator T in H such that

Now we want to replace the scalar products (2.1) in the spaces Ws to strongly
equivalent scalar products which are more convinient.

A) Let s be nonnegative integer, s = n. Suppose

n-\ 1Ί1

Bn(f,g) = S^f^\θ)g^\θ)-\- f^n\φ)g^n\φ) dφ . (2.4)
3=0 o

Lemma 2.2. The scalar products ( , ) n

 and Bn(f, g) in Wn are strongly equivalent.

Proof Evident.

B) s = k + 1/2, where k is nonnegative integer. Let

K

3=0

2-τr 2τr

+ / / c t g

0 0

Lemma 2.3. a) Bk+ι/2( , ) is the scalar product in Wk+ι/2.

b) Scalar products Bk+ι/2( , ) and ( , ) j K-+ 1/2 «^ strongly equivalent.

Proof. It is easy to see that

Z7Γ

j e^dψ = sgn(n)einφctg ( - — - j e^dψ = sgn(n)e

o

Now the lemma is evident.
c) 2s φ Z. Let us consider the following bilinear form in the space C°°(Sι) of real
smooth functions

2π 2π

Bs(f • *-Jf
0 0

sin f(φ)g(ψ)dφdψ. (2.5)

It is a well-known invariant form in the representation theory of SL2 (R) (see
[GGV]) and we will discuss some of its properties.

a) The integral (2.5) is convergent if s < 0. In this case

where

( ) 1/2) "
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b) The bilinear form-valued function s ι-> Bs(f,g) is meromorphic on C. The poles
of this function are the points s = O,1/^, I , 3 / 2 ,

c) In the case -1/2 < s < 1/2, s Φ 0 the form # 5 is positively defined. In the case
2s G R\Z the form Bs is nondegenerate and its negative inertia index is finite.

d) Let us fix 2s € M\Z. Then the Stirling formula for .Γ-function gives

cn(s) = C |n 2s
oo (2.7)

Hence the form i? s( , ) is well-defined on the Sobolev space Ws.

Corollary. Let 2s φ Z. a) There exist the positive defined bilinear form Bs on Ws

such that the form
<ψ = Bs-Bs (2.8)

has finite rank (φ(ein^, e-
iτnφ) = 0 if \n\ of \m\ are sufficiently large).

b) The scalar product Bs is strongly equivalent to the scalar product (2.1).

Proof a) see the property d),

b) see the formula (2.7).

2.6. The Proof of Theorem 2.1 in the Case s < 0, 2s φ Z

We have to prove that T*(q)Ts(q) — E is a Hilbert-Schmidt operator in the scalar
product Bs( , •),

Bs((T*(q)T(q) - E)f, g) = B8(T(q)f, T(q)g) - B8(f, g).

Let Bs = Bs -f ψ [see (2.8)]. The rank of the form ψ is finite. Hence the rank
of ψ(T(q)f,T(q)g) also is finite. So it is sufficient to prove that the operator R(q)
defined by the equality

B8(T(q)f,T(q)g) - B8(f,g) = (R(q)f,g)8

is a Hilbert-Schmidt operator.

Bs(T(q)f,T(q)g)-Bs(f,g)

-l-2s

f{q(φ))q\φ)ιί2~s g(q(ψ))qf(ψ)ι/2~s dφdψ

2π 2π

sin

0 0

2π 2τr

φ-ψ

0 0

sin
φ-ψ

-l-2s

f(φ)g(ψ)dφdφ. (2.9)

Let p be the diffeomorphism inverse to q. We replace the variable in the first
summand: θ = q(φ), K = q(ψ). Then (2.9) equals

2π 2π

0 0

1

sin

l+2s
f(θ)g(κ)dθdκ.
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Let us denote the expression in square brackets by K(θ^ K). Then

I
K(θ, K) =

sin

2s+l

where

λ(0, K) =
p\θ)p'(n) sin2

λ(0, K) ,

l/2+s

s m 2

1.

It is easy to see that λ(0, ft) is the smooth function on the torus Sι xS\ λ(0, 0) = 0,
λ(0, ft) = λ(ft, 0) and hence in a neighbourhood of the diagonal θ = K we have

where the function μ(0, K) is smooth in a neighbourhood of the diagonal θ = K. Hence
λ(0,«) can be represented in the form

λ(0,«) = sin

where τ(0, K) is the smooth function on the torus S'1 x Sι. Thus

sin

Lemma 2.4. Let L(φx, (p2) ^^ a function of the torus.

Then the operator Q defined by equality

2π 2π

0 0

α Hubert-Schmidt operator in Ws iff

(m2

(2.10)

(2.11)

Proof. Consider the orthogonal (in the scalar product ( . ) s), basis hn(φ) — (ϊι2 H-

,/ιr?) = (n + I) "7 (ra~ -f I) "7 α m n .

Now let us represent the function K(θ, ft) in the form

fc-l

D
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where

sin

sin

l-2s+j

\-2s+k

where functions μx(θ), . . . , μk_x{θ), μk(θ, K) are smooth.

It is quite clear that for sufficiently large k the function Lk{θ,κ) satisfies the
condition (2.11).

Let us prove that

τmθ —i
e e

satisfies the condition (2.11) (the cases of Lx, . . . , Lk_ι are analogous. Let us replace
variables

Then

Let

l-2s

Now we can rewrite (2.11) in the form

(2.12)

It is easy to see that

Hence the left side of (2.12) is less than

2-/2 \βt

But αk rapidly decrease and hence the second multiplier is finite. Recall [see (2.7)]
that

and hence the second multiplier is finite.
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2.7. The Proof of Theorem 2.2 in the Case s < 0, 2s φ. Z

Let us calculate

Bs(Q(A(φ))FuQ(A(φ))F2) - Ba(Fι,F2)

- 2 s - l

sin ( — — I (A(φ)Fι(φ),A(φ)F2(φ))dφdφ

609

2τr 2τr

-SI
0 0

2τr 2τr

0 0

sin
φ-φ

- 2 s - l

(2.13)

where ( , ) denote the usual scalar product in R n . The expression (2.13) equals

2π 2π

Fι{φ),F2{φ)dφdφ,

0 0 sm
φ-φ

l+2s

where At denote the transposed matrix.
Let L(φ, φ) be the term in the square brackets. Then

/ i \ —2s

. [ψ-Φ
sin '

where r((p, ̂ ) is smooth operator-valued function. Now we can repeat the estimates
from 2.6.

2.8. Duality

Let / e Ws, g G W~s. Let us consider the pairing σ:Ws x W~s

formula
2π

,9)=

given by the

(2.14)

Let f eWs. Then the function

is linear functional on W~s. Following lemma is evident.

Lemma 2.5. The norm of the functional ίj onW~s equals to the norm of the function

f in Ws. Thus the map f *—»• ίf is isometry ofWs and the space dual to W~s.

Furthermore the pairing σ is Diff00-invariant:

σ(Ts(q)f,T_s(q)g) = σ(f,g)

for each q e Diff30. Hence the dual operator to Ts(q) is T_s(q)~ι.
Thus the two following conditions are equivalent:

Ts(q) e GLO(WS) «• T_s(qΓι e GLO{W~S).
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Now Theorem 2.1 is proved for all s such that 2s φ Z.
Analogously the pairing W% x W~s —> R given by

2π

7n{Fι,F2) = j{Fι{φ),F2{φ))dφ

is Loo(SΌ(n))-invariant:

Thus Theorem 2.2 is proved for all s such that 2s ^ Z.

2.9. 7%e Proof of Theorem 2.1 in the Case s £ N

Let us calculate

Bn(Tn(q)f,Tn(q)g)-Bn(f,g)

2τr

0
2π

0

(other summands have finite rank and we don't write them)

2π

J f{n)(q(φ))q'(φΫ/2g{n)(q(ψ))q'(φΫ/2dφ

0

2π

+ Σ f Rυ(φ)f(n-ι\q(φ))gn-j\q(φ))dφ
0<i<n0<j<ni+j>0

0

(where Λΐ:7 are some smooth functions)

2π

/ ( n ϊ ) ( " ^ ) ^ + ... .

Let us consider the form

2π

J Rxj (φ) f^Ήqiφ)) 9{n~j\q(ψ)) dφ = J RZJ (φ) f{n-%\φ) g{n~j\φ) dφ ,



Quasi-Invariant Actions of Loop Groups 611

where Rijiφ) — R%j(q(φ))q'(φ)~ι. This form is the continuous map Wn~τ x

Wn~i —» M. Hence the operator &i3 defined by the equality

2π

= J
is the pseudodifferential operator of the order —(i -f j). But i + j > 1, and thus ^
is Hilbert-Schmidt operator (see [T]).

Remark. In the case n — 1 (the Wiener measure) the following nice formula
containing Schwartz derivative is obtained:

1 Γ v"Ϋ1 Γl Ό"1 3 (v"
- Bx(f,g) = J f(p(φ))g(p(φ)) ^- P~ - - ^

2.10. The Proof of Theorem 2.2 in the Case s = n EN

Let us calculate

2τr 2π

= J((A(φ)F1(φ))in\ (A(φ)F2(φ))(n)) dφ - J (F[n\φ\ F2

(n]

0 0

(we omit terms of finite rank)

2ττ

[A{φ)F\(φ), A(φ)F2 (φ)) dφ

o
2π 2π

+ .>o,ξl,>oo
The first summand and the last summand are equal. For other summands valid
arguments are in 2.9.

2.11. We Omit the Proof in the Case s = k + 1/2

3. Decompositions of Dynamical Systems (the Case of the Group DifF°)

In Sect. 2 we constructed a series of embeddings Diff°° to the groups
GLO(WS I Ws~ι/2~ε) and hence the series of quasi-invariant actions of Diff°° on the
spaces with Gauss measures. Recall that the group Diff°° acts on the space Ws~ι^2~ε

by the formula

Ts{q)f(φ) = f(q(φ))q'(φΫ/2-s (3.1)

2π

- J F\n\φ)F?\φ)dφ .

and Ts(q) G GLO(WS | Ws~1/2~ε). We want to discuss ergodic properties of these
actions for different s > 0.
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α The Case s = 0

3.1. This Case is Not Interesting

The space W° is the usual L2(Sι). The group Diff°° acts in L2(Sι) by orthogonal
operators

T0(q)f(φ ) = f(q(φ))q'(φΫ/2,

and thus we have the embedding Diff°° -> O(W°) C GLO(W°).
The representation of Diff°° in L2(W°) is the direct sum of symmetric powers of

representation T0(q) (see 1.5).

β. The Case 0 < s < 1/2

3.2. The Scalar Product

Let us consider the following scalar product

2π 2π

Bs(f *-II
0 0

sin
φ-φ

- l - s

f(φ)g(ψ)dφdψ (3.2)

in Ws. We have seen that this scalar product is strongly equivalent to the scalar
product (2.1).

The group Diff°° acts in Ws by the formula

Now let us consider Mobius transformations of the disk \z\ < 1 on the complex plane:

az + β
M

a β

β a βz + ά

where | α | 2 — \β\2 = 1. The group of all Mobius transormations is isomorphic to the
group PSL2Φ). Mobius transformations map the circle \z\ = 1 to itself. Hence we
obtained the canonical embedding

PSL2(R) -» Diff°° ,

and we can identiy PSL2(M) with the subgroup in Diff°°.

Proposition 3.1. Let q e PSL2(R). Then the operator Ts{q) is orthogonal.

This proposition is a well-known fact (Bargmann (1948), see [GGV]). The rep-
resentations Ts of the group PSL2(R) are called "representations of complementary
series" (0 < s < 1).

Remark. Of course all strongly equivalent scalar products in Ws are equivalent for
our purposes. But in the case 0 < s < 1 the scalar product (3.2) is the best (it is the
only P5L2(M)-invariant scalar product in Ws).

In particular transformations from PSL2(R) preserve the measure on Wfl.
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3.3. Ergodicity

Proposition 3.2. Let 0 < s < 1. Then the action Ts ofPSL2(R) on the space Ws is
ergodic.

Proof. We have to show that there exist unique P5X2(IR)-invariant vectors in L2(WS).
The representation of PSL2(W) in L2(WS) is the direct sum of the symmetric powers
SkTs of representation Ts (see Sect. 1.5). The symmetric power S°TS is the one-
dimensional representation. Decompositions of tensor products of representations of
PSL2(R) are known (see [Re]), and it is known that a one-dimensional representation
cannot appear in decompositions of tensor products of representations of PSL2(R).
Thus there are no PSL2 (M)-invariant vectors in the symmetric powers SkTs for
fc>0. D

γ. The Case 5 = 1/2 (Highest Weight Case)

3.4. The Scalar Product

The case s = 1/2 is exceptional. In this case the representation Ts = Txj2

Tι/2(q)f(φ) = f(q(φ))

of the group Diff°° is reducible. It is evident that the subspace R 1 of all constants
as Diff°°-invariant. By this reason it is more natural to consider the action of Diff°°
in the factor-space Wι/2 = Wι/2/R.

Let us provide Wχl2 by the scalar product

2π 2τr

(f,9) = J y ctg (^γ^j f(φ)g'(Ψ)dφdψ. (3.3)
0 0

The usual considerations show that Tλ(q) G GLO(Wι) (see [N2, N6]).

Proposition 3.3. The action of PSL2(W) in W1/2 is ergodic.

Proof. Let q G PSL2(R). The operators Tx/2(q) are orthogonal in the scalar product
(3.3). Now we can repeat the proof of Proposition 3.2.

Remark. This action allows us to construct highest weight representations of Diff°°,
see Sect. 6.1.

δ. The Case s = 1 (The Wiener Measure)

3.5. Invariant Subsets

Let us consider the following subsets in the space of all Wiener trajectories:
Ω+ - the set of positive functions [i.e. f(φ) > 0 for each φ]
i?_ - the set of negative functions.
Ωo - the set of functions which have zeroes.
It is evident that subsets j?+, Ω_, Ωo are Diff°°-invariant and it is evident that

they have nonzero measures.
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3.6. Integrals

Let / G Ω+. Let us consider the following functional on Ω+:

2π

0

Proposition3.4. I(Tι(q)f) = I(f).

Proof. Evident.

Thus the functional /(/) is Diff°°-invariant and the subsets

also are invariant.

Hypothesis, a) The conditional measures μc on the "surfaces" /(/) = C exist for
all C > 0.

b) The measures μc are Diff°°-quasi-invariant.

3.7. Imprimitivity Systems

Let a group G act on a set M. Let M = (J M α be a partition of M (i.e. MaΠMβ = 0

if a Φ β). The partition {Ma} is called an imprimitivity system if for arbitrary
g G G and α G A the set #Mα is one of the subsets Mb. Let M = \J Ma be the

aeA
imprimitivity system. Then we have the action of the group G on the factor set A
(by definition ga = b if gMa — Mh).

Now let the set M be the space with probabilitic measure μ. Let M = {J Ma

be a partition. We define the measure a on the factorspace A. By definition a subset
E c A is measurable if the subset (J Mα is measurable in M. Let E1 c A be

the measurable subset. Then a(E) = μί [j Ma\.
\aeE J

Remark. For some partitions M = | J Ma the measure α o n i has pathological

properties. In fact it is necessary to control measurability of the partition (see [Ro]).
Lower measurability of partitions in all cases is quite evident.

Proposition 3.5. Let us consider quasi-invariant action of the group G on space M
with a measure μ. Let M = (J Ma be an imprimitivity system. Then the canonical

measure a on A is G-quasi-invariant.

Proof. Let E C A, a(E) φ 0. We have to prove that a(gE) φ 0. Indeed

begE J \aeE

aeE J \ \aeE
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But μ( \J AίΛ = a(E) φ 0, and hence (by a quasi-invariance)
\a<ΞE J

3.8. Projectivization of Ω+

The following lemma is evident.

Lemma 3.1. Let us define for each f e Ω+ the subset M^ — {g e Ω+\g/f — const}.

Then the system of subsets M^ is an imprimitivity system.

Let S be the set of all substs M$ (in other words S is the space of positive
functions defined up to a multiplier). Let σ be the projection of the Wiener measure
on Ω+ to 5. By Proposition 3.5 the measure σ on S is Diff°°-quasi-invariant.

Let Diff1 be the group of C^-diffeomorphisms of the circle preserving orientation
and let T be the group of rotations of the circle.

Let p be an element of the homogeneous space Ί^Diff1, this means that p is a
diffeomorphism defined up to equivalence p ~ rθ op, where rθ e T is a rotation of
the circle. Let us define a map i?:T\Diff^ —>• S given by

Lemma 3.2. The map R is bijection.

Proof. Let / E S. We can think that / is a fucntion normed by the conditon /(/) = 1,
see (3.4). Let

ψ

QΦ-J fHφ) '
o

Then the map Q is inverse to the map R. D

We se that it is possible to identify the space S and the space T\Diff^\ and thus

we constructed a Diff00-quasi-invariant measure on the homogeneous space

3.9. The Measure on the Space of Cantor Subsets of the Circle

It is well-known that the set of zeroes of the "general" Wiener path f(φ) e Ωo is a
nowhere dense closed subset (see [L]).

Let J% be the space of closed subsets of the circle (provided by natural borel
structure [I]). Let us consider the projection ω: ΩQ —> ,% defined by the following
rule: the set π(/) is the set of zeroes of a function /. It is evident that the map
π commutes with the action of the group Diff00. Let the measure q on M be the
image of the Wiener measure on Ωo. Then by Proposition 3.5 the measure ρ on M is
quasi-invariant.
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ε. The Case 1 < s < 2

3.10. Let s > 1

Then the space Ws consists of continuous functions and we can repeat all consider-
ations of Sects. 3.5-3.8 (and Sect. 3.9 if s < 3/2).

The invariant integral on Ω+ in this case is given by the formula

2τr

ζ. The Case s>2

3.11. Lett> 3/2

Then elements of the space Wι are C 1 -smooth functions. Thus the space Ws =
Ws-ι/2-ε j n t n j s c a s e c o n s j s t s of functions with continuous derivatives.

Again we have three invariant subsets: the set Ω+ of positive functions, the set
Ω_ of negative functions and the set Ωo of functions which have zero.

For the case Ω+ it is possible to repeat all considerations of Sects. 3.5, 3.8.

3.12. Set ΩQ

" G e n e r a l " f u n c t i o n f e Ω o h a s a f i n i t e e v e n n u m b e r o f z e r o e s tγ, . . . , t2p a n d

f%) Φ 0.
Let ί?QP be the set of functions / € Ωo which have 2p zeroes. It is evident that

the sets Ωo

p are invariant, it is easy to show that measure of Ωo

p is not zero.

For each / e Ω^p we construct the following collections of numbers

h

Jl(f) = J imf^dφ, ..., I2

s

p(f)
h

It is evident that the collection

il(f),i2

s(f)

defined up to cyclic permutations of type

1 2 3 4

2m 2m + 1 2m + 2 2m 4- 3

is invariant of the function /.
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4. Decomposition of Dynamical Systems (Loop Groups)

4.1. Invariants

Let us consider the action of the group L°°(SΌ(m)) in W^ constructed in Sect. 2.3.

Let s > 1/2. Then the canonical extension W% of W% can be looked upon as the
subspaceinL2(51,IRn).

The following statement is evident.

Proposition 4.1. Let s > 1/2. For each arc(α,/3) C Sι the functional

is V™(SO(rn))-invariant.

Let s > 1. Then W^ can be looked upon as some space of continuous functions

(for 5 = 1 we have Wiener measure, for 5 > 1 elements of the space W^" 1 ' 2 " 6

are continuous functions (for small ε > 0)). It is evident that for each φ0 £ Sι the
functional

Jφo(f) = (f(Ψo)J(Ψo))

is L°°(5O(m))-invariant.

4.2. Remark Random Walking on Random Sphere

Let s > 1. Here we again have the question of conditional measures:

a) Let r{φ) be a nonnegative continuous function. For which r(φ) does there exist a
conditional measure on the set of functions / 6 W^ satisfying

Jφo(f) = r(φ0)

(for each φQ)7

b) Is this measure L°°(5O(m))-quasi-invariant?

Remark. I don't know the answers to these questions. Of course conditional measures
exist almost everywhere, but there are no general theorems which provide quasi-
invariance.

Remark. In the case s = 1 it is possible to interpret such measures as random walking
on spheres of random radius.

4.3. Non-Wiener Walkings on the Sphere

Let s > 1 (and m > 1). Let Ω c W^ be the set of paths / e W^ which don't pass
zero. It is simple to show that the measure of W^\Ω is zero (for our purposes it is
sufficient to know that the measure of Ω is not zero).

Let S'm~1 be an (n— l)-dimensional sphere. Let L°(S'm"1) be the set of continuous
functions Sι -> S171'1. The group L°°(50(m)) acts on L°(5'm-1) by evident way.
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Let us consider the equivariant map π from Ω c W^ to L 0 ^™" 1 ) defined by
formula

^ (4-1)

where r(φ) = y/(f(φ)J(φ)).
Let vs be the projection of the canonical measure in W^. By Proposition 3.5. The

measure va on lP(Sm~ι) is L°°(SΌ(m))-quasi-invariant.

Remark. The measure vλ is not a Wiener measure on paths on the sphere.

4.4. Diff°° -quasi-invariance of the Measures us

The group Diff00 acts on L°(5 m " 1 ) by replacing the variable:

where q(φ) G Diff00.

Proposition 4.1. The measures vs are Diff00 -quasi-invariant.

Proof. Let Diff00 act in W^ by the transformations

It is easy to see that Ts(q) e GLO(W™) (it is an evident variation of Theorem 2.1).
Thus the group Diff00 acts on the space W^. It is evident that the map π given by
the formula (4.1) is Diff00-equivariant. Now we can apply Proposition 3.5.

5. Comments (Dynamical Systems)

5.7. Quαsi-Invαriαnt Measures on Diff1

Let Diff1 be the group of C 1 -smooth diffeomorphisms of the circle. In Sect. 3 we
constructed some series of Diff00-quasi-invariant measures on Ί^Diff1 depending on
parameter s > 1. Let us denote these measures by μs.

Let us consider the map

λ Diff1 ^Sι xCϊΛDiff1)

defined by the formula

λ(p) = p(0) x p,

where p £ TyDiff1 is the projection of p e Diff1. It is easy to see that λ is a
topological isomorphism.

Now let us provide the space 5 1 x (Έ^Diff1) by the product μs of the Lebesgue
measure dφ on Sι and the measure μs on Έ^Diff1. The measure μs is Diff°°-quasi-
invariant. But

sι x (TVDiff1) ^ Diff1,

and thus we can consider μs as a Diff00-right-quasi-invariant measure on Diff1.
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5.2. Quasi-Invariant Measures on Loop Groups

Let s > 1. Our purpose is to construct L°°(5O(n))-quasi-invariant measures on the
group L°(SΌ(n)) of continuous functions Sι -* SO(n).

Let us denote by L$(SΌ(n)) the group of continuous functions g:Sι —> SO(n)

satisfying the condition #(0) = E. Let L0°°(5O(n)) = L°°(SO(n)) Π Lg(5O(n)).

Step 1. The canonical embedding L°°(SΌ(n)) -» L°°(5Ό(n(n+1)/2)). Let us denote
by Mn the space of real symmetric n x n matrices.

The space M n is a n(n -f l)/2)-dimensional real Euclidean space provided by the
scalar product

(X,Y)=tr(XY).

Thus we can identify the spaces Mn and RN, where JV = n(n + l)/2.
The group SO(n) acts in M n = R N by the transformations

It is evident that such transformations are orthogonal, i.e. κ(g) G SO(N). Hence the
group Lg° (5O(n)) acts in W^ by the transformations

κ(g(φ)):X(φ) h-> gt{φ)X{φ)g{φ). (5.1)

We have κ(g(φ)) G Lg°(5O(JV)), and hence

- . - • G

Let v G Mn = RN. Let us denote by W^[υ] the set of functions / G Wj^[v]

satisfying the condition /(0) = υ. It is easy to see that the sets W^~ ε[v] are
Lg°(5O(n))-invariant.

Step 2. The construction of the conditional measures on W^~ ~ε[v]. Let us notice

that V^~1 / 2~ ε[0] is linear space and Wf^O) = M ^ " 1 / 2 " ε [ 0 ] . It is quite evident that

<g(φ)) e GLO(WS

N[0] \ P i^~ 1 / 2 " ε [θ]) .

Let f(φ) G Wjy [0]. Then v-\-f(φ) G W_jy-[υ], and hence we can identify the spaces
W^[0] and W^[υ]. The action (5.1) of Lg°(SO(n)) in Ws~l/2-£[v] corresponds to
the affine action

g(φ):X(φ) *-+ g\φ)Xg(φ) + g\φ)vg(φ) - υ

in V^~1 / 2~ ε[0] ^ ^ [ 0 ] . The functions gt(φ)υg(φ) - υ are smooth, hence

Hence (see Sect. 1.3) the canonical measure in Vt̂ ^ 2~ε[0] = W^[0] is quasi-

invariant with respect to transformations (5.2). But we have identified W^"~^2~ε[0]

and Wχ~l ~ε[v] and thus we obtained Lo°(SΌ(n))-quasi-invariant measure on the

set W'N-i/2-e[v}.

Step3. Imprimitivity system on W^~ι'2~ε[υ\. Let L c Mn be the set of matrices

with pairly different eigenvalues. Let v G L. It is easy to see that the manifold

Mn\L has codimension 2. Hence the "general path" f(φ) G W^~ι'2~ε[υ] doesn't
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intersect Mn\L (we omit the simple proof of this fact). Let Ω{v) be the set of paths

f(φ) G Ws-^2-ε[υ] which don't intersect M^L.
Let us denote by Δn the set of all collections (ίι, . . . , ίn) of pairly orthogonal

lines in Rn. The group SO(n) acts on Δn by the evident way. It is clear that the space
Δn is SΌ(n)-homogeneous and the stabilizer of a point is some finite subgroup Γ
(Γn is the semidirect product of the symmetric group Sn and Abel group (Z/2Z)n ,
i.e. Γn = Sn x (Z/2ZΓ- 1).

Define the canonical 6Ό(n)-equivariant map π:L —• Δn. Let X e L, then π(X)
is the set of eigenlines of X.

Denote by lP(Δn)υ the set of continuous functions g:Sι —> Δn satisfying the
condition g(0) = υ. Let / G Ωv. Then π(f(φ)) G L0(Z\n)π ( υ ). So we constructed
Lo°(SΌ(n))-equivariant map Ωv —> L(Z\n)π ( v ), and hence (by Proposition 3.5) we
obtained Lo°(SΌ(n))-quasi-invariant measure on L°(Z\n)π(υ).

Step 4. Lifting to L°(5O(n)). The space Δn is not simply connected, the fundamental
group of Δn is the finite group Γn. Let us denote by L°(Z\n)| ( v ) the set of paths
p(φ) G LP(Δn)^v) homotopical to constant path. It is easy to show that the measure

( )

Let λ:SO(n) —+ Δn be the canonical SO(n)-equivariant projection such that
λ(E) = π(v). This projection identifies the spaces L§(SΌ(n)) and h°(Δn)^(v) and
hence we obtained left Lo°(50(n))-quasi-invariant measure on LQ(5O(Π)).
Step 5. We identify the spaces h°(SO(n)) and SO(n) x Lg(SΌ(n)) by the following
way:

g(ψ) -> (f(P),g-\0)g(φ)) G SO(n) x L°(5O(n)).

Consider the product μs of the Haar measure on SO(n) and the measure on L°(5O(n))
constructed above.

Lemma 5.1. 77z<? measure μs is left h°°(SO(n))-quasί-invariant.

Proof. Let /ι(ί) G Lg°(5O(n)), 6 G 5O(n), g(t) G Lg(5O(n)). Then

and for each fixed b G SO(n) the conditional measure on the fibre q(0) = b in
L°(5O(n)) is Lg°(SΌ(n))-quasi-invariant. Hence μ s is Lg°(SΌ(n))-quasi-invariant.
The quasi-invariance with respect to SO(n) C h°°(SO(n)) is evident.

Remark. In fact the support of the measure μs is contained in the group

h[s~ι/2](SO(n)) of all loops of the class C[s-^2\

5.3. Diff°°-Quasi-invariance

Let us denote by Diff̂ ° the group of smooth diffeomorphisms q of the circle satisfying
the condition q(0) = 0. It is quite evident (see 4.4) that the measures μs on L°(5O(n))
are Diff̂ ° -quasi-invariant.

I think that μs is Diff°°-quasi-invariant, but I couldn't prove it. In any case there is
no problem to construct Diff50-quasi-invariant measure on L°(SΌ(n)). Let us consider
the automorphism rθ:g(φ) —>• g(φ4-θ) of the group L°(5O(n)). Let μθ

s be the image
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of the measure μs with respect to the automorphism rθ. It is easy to see that the
measure

~μs = J μθ

sdθ
0

is Diff°° txLoo(S0(n))-quasi-invariant.

5.4. Two-Side Quasi-Invariant Measures on Groups

Proposition 5.1. Let G be a group and H be a subgroup. Let us consider a left
G-quasi-invariant measure μ(g) on G. Then the convolution of the measures μ(g)*μ(g)
is two-side H-quasi-invariant.

Proof Evident.

(I am grateful to A. M. Vershik who told me this remark.)

For this reason we have the possibility to obtain two-side Diff°°-quasi-invariant
measures on the group Diff°° and two-side L°°(5O(n))-quasi-invariant measures on
L°(SO(n)).

5.5. Measures on Loops on Homogeneous Spaces

Let μ be a two-side L°°(SΌ(n))-quasi-invariant measure on h°(SO(n)). Let H be
a subgroup in SO(n). Consider the projection SO(n) —> SO(n)/H. Then we have
the projection L°(SO(n)) to lP(SO(N)/H and hence we have a L°°(SΌ(n))-quasi-
invariant measure on LP(SO(n)/H).

5.6. On Shavgulidze Measures

Shavgulidze constructed a family of quasiinvariant measures on the groups of
diffeomorphisms (see [N6], [Kh], [Sha]). The relations of Shavgulidze measures and
our constructions are not known.

6. Comments (Representation Theory)

6.1. Highest Weight Representations 6>/Diff°°

Let H be complex Hubert space. Let us consider H as a real Hubert space HR.
By definition the group SPU(H) consist of real-linear operators in HR of the form
A = U(1+T) where U is unitary (complex-linear) operator and T is Hilbert-Schmidt
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operator. It is clear that SPU(H) is the subgroup in GLO(HR). Let us consider the
space W1/2 constructed in Sect. 3.4. Let us consider Hubert transformation in
given by formula

(
π J

It is easy to see that / is orthogonal operator in real space W ι and I2 = — 1. Let
us introduce complex structure to Wι, by definition the operator / is multiplication
on imagine unite.

Theorem 6.1 (see [PS], [N2, N6]). Let q G Diff°°. Then Tλ(q) e SPU{W1/2).

The group SPU( ) is the classical group of automorphisms of the canonical
commutation relation; this group has well-known representation in the bosonic Fock
space (so-called "Weil representation" (see, for instance [N6])). The restriction of
"Weil representation" to Diff°° gives highest weight representations of the group
Diff°°. Small variation of this construction gives all highest weight representations of
Diff°°, see [N6].

Remark. Let ρ be the highest weight representation of Diff°° constructed above. Let

π be the natural representation of Diff°° in L2(Wι/2). Then

7Γ = ρ (8) ρ ,

where ρ* is a contragradient representation.

6.2. Almost Invariant Structures

The constructions of Sect. 2 and construction 6.1 are special cases of "almost invariant
structures" [N1-N6].

Olshanskii [01, 02] discovered some natural family of infinite dimensional ana-
logues of classical groups (so-called "(G, K)-pairs") and constructed many represen-
tations of such groups.

As was shown in [N1-N6] there exist many embedding of the groups Diff°°
and L°°(iΓ) to Olshanskii's (G, X)-pairs, those embeddings allow to construct many
representations of Diff°° and h°°(K) in bosonic and fermionic Fock spaces.

For some examples of "almost invariant structures," see Sect. 7.

6.3. Representations of Finite Functional Dimension

The group Diff°° has actions on finite dimensional spaces (for instance on Sι, on
Sι x S 1 , on tangent bundle T * 5 1 , etc.), and hence it has unitary representations
in functional spaces on finite dimensional manifolds (for a description of such
constructions, see [Ki]). In some exceptional points "almost invariant structures" give
direct sums of representations of finite functional dimension (see, for instance the
case s = 0 in Sect. 3).

It is interesting to notice that "almost invariant structures" Sects. 2-3 connect
highest weight constructions (s = 1/2) and "trivial" construction (s = 0).
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6.4. Ismagilov's Construction

Section 3.9 gives untrivial examples for the theory developed in the paper [I],

6.5. Energy Representations

It is quite clear that the "energy representations" of loop groups (see [AHTV]) are
related to our construction in the point 5 = 1.

7. Actions of DifΓ° and L°°(SO(n)) on White Noise

7.1. The Group UO(H Θ iH)

Let H be a real Hubert space. Let Hc = H Θ iH be the complexification of H.
Denote by UO(H ® iH) the group of operators

satisfying the conditions

1. g is complex linear (i.e. K = N, M = -L).

2. L = —M is Hilbert-Schmidt operator.

The group UO(H Θ iH) contains the subgroup O(H). This subgroup consist of
' K 0

matrices, Q R y

7.2. Embeddings o/Diff°° to UO( )

Let s e R, 5 φ 0. Let us define the integral operator Js in the complex space L2(Sι)
by the formula

2π

0 sin
2

where λ is defined by the condition

J3l = l.

It is easy to check that

Let us define real subspaces Hf C L2(Sι):

feH±<=ϊ JJ = ±f . (7.2)

The condition J2 = 1 implies L2(Sι) = i/+ Θ ifs~. Observe next that

Hence / G Hf implies if e / ί^. Thus the space L2{Sι) can be looked upon
as the complexification (H*)c of the space ffj~. Now let the group Diff°° acts in

2 1 ) = ( # s

+ ) c = H+ Θ iiί s

+ by the transformations

Theorem 7.1 (see [N6]).
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7.3. Embeddings of the Group L°°(SO(n)) to UO( )

Let L2(Sι, C n ) be the space of L2-functions Sι —> C n . Let us define operator Js in
L2(Sι, C n ) by the same formula (7.1). Let us define real subspaces Hfn C L2(Sι, C n )
by

Let the group L°°(SΌ(n)) acts in L2(S\Cn) ^ (Hf)c by the usual way

Theorem 7.2.
Q(g(φ))eUO(H+nΘiH+n).

7.4. Embeddings UO(H 0 iH) to GLO(H 0 iH)

Now we want to construct series of embeddings UO(H 0 iH) to the group
GLO(H 0 iH) of space H ΘiH (the space H ΘiH is looked upon as real Hubert
space). Thus we will obtain quasi-invariant actions of the group UO(H 0 iH) in
H 0 iH, and hence we will obtain quasi-invariant actions of the groups Diff°° and
L°°(5O(n)).

Let

be an element of UO(H 0 iH).
Fix ft G R, let

f ί L \ / cosh ft sinh κ,\~ι f K L

—L K) \ sinh ft cosh K) \~L K

( cosh ft sinh ft λ
x I I

\ sinh ft cosh ft /

It is easy to see that r κ is the embedding UO(HΘiH) to the group GLO(HφiH). In
the case ft = 0 we have the non-interesting embedding UO(HφiH) —» O(HφiH) C
GLO(H 0 iff), but in other cases this construction give untrivial representations of
UO{ -).

7.5. Affine Action ofUO(H 0 iH)

Let Z be the space of self-adjoint real-linear Hilbert-Schmidt operators

τ=(c
The space Z is the Hubert space with respect to the scalar product

<Γ1,T2) = tr(Γ1Γ2).

Let the group UO(H © iH) act on the space Z by the affine transformations
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where g e UO(H®iH), T G Z. The transformations T -> gιTg are orthogonal in Z
and gtg — EeZ. Hence (see Sect. 1.3) the Gauss measure in the canonical extension
Z of Z is quasi-invariant with respect to transformations σ(g).

Thus we obtained the quasi-invariant action of the group UO(H 0 %H) (and hence
Diff°° and h°°(SO(n)) in Z.

7.6. Comments

A. By definition white noise is the space L2. Thus we constructed in Sects. Ί.2-1A
the series of quasi-invariant actions of Diff°° and h°°(SO(ή)) on the sum of two
copies of white noise.

B. Analogous constructions exist for all "compact" almost invariant structures, see
[N6, 02]. Compact almost invariant structures also give actions of Diff°° and h°°(K)
in fermionic Fock spaces.

Acknowledgements. I am very grateful to A. M. Vershik, P. Malliavin, R. S. ϊsmagilov, G. I.
Olshanskii for discussions of this subject.
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