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Abstract: We consider a selfadjoint operator, A, and a selfadjoint rank-one projec-
tion, P, onto a vector, ψ, which is cyclic for A. We study the set of all eigenvalues of
the operator At = A + tP (t G R) that belong to its essential spectrum (which does
not depend on the parameter t). We prove that this set is empty for a dense set of
values of t. Then we apply this result or its idea to questions of Anderson localization
for 1-dimensional Schrodinger operators (discrete and continuous).

1. Introduction

Let {Aέ}tG]R be a one-parameter family of linear selfadjoint operators

(1)

in a Hubert space J$. Here A is a selfadjoint operator with simple spectrum and P
a projection (',ψ)ψ, where ψ is a normed cyclic vector for A. All the operators (1)
are selfadjoint on D(A) and have the same essential spectrum1; denote this closed
subset of R by Σ.

We will be concerned with the eigenvalues of the operators At that lie on the
essential spectrum, i.e. with the intersection σp(At) Π Σ [in the sequel, σp(B), for
any linear operator B, will denote its point spectrum]. Information about this set can
help in studying the nature of the spectrum of At.

In [SW], a necessary and sufficient condition was found for operators At to have
pure point spectrum for L-a.e. t. It was formulated in terms of the Stieltjes transform
of the spectral measure of ψ for A. This criterion was then applied to questions of
Anderson localization for random Schrodinger operators. It led, in particular, to the

1 Recall that the essential spectrum σ e s s (B) of a selfadjoint operator B (see [Gl]) consists of all
nonisolated points of its spectrum and all isolated eigenvalues of infinite multiplicity. The latter case
is impossible for operators whose spectrum has finite multiplicity, in particular for the above operators
(1) and for one-dimensional difference and differential operators considered in the following
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following statement (see also [DLS]). Let h(ω) be the random Schrodinger operator
of the one-dimensional Anderson model, i.e.

(h(ω)y) (n) = y(n - 1) + y(n + 1) + υ(n, ω)y(n) (n G Z), (2)

where ω G Ω [(i?,.i^~,P) is a probability space], and values of random potential
v(n,ω) at distinct sites n are independent real random variables with a common
distribution u(dx). Suppose v has a non-trivial absolutely continuous component and
J(log+ \x\)v(dx) < oo. Then with probability 1, for L-a.e. t G R (in particular, for
t = 0) ί/ze operator ht(ω) = h(ω) + £<50 /ztfs cw/v /?6>mί spectrum. (Here <50 denotes
multiplication by the ^-function supported at 0.)

A question arises: is the restriction "for L-almost every t" in the above result
essential? In [SW], an example is indicated where the spectra of operators (1) are
pure point for Lebesgue almost all rather than all t. However, this example does not
provide an answer to a question: what is the situation with Schrodinger operators in
12{ΊJ)Ί IS it true that for a "typical" Schrodinger operator h(ω) (i.e. for any "sufficiently
random" stochastic potential, with probability 1) the spectrum of an operator, say,
h(ω) -f tδ0 is pure point for all tl Short of that, is it true for the above-mentioned
Anderson model, where the "randomness" of a potential is maximal?

Molchanov raised a related question, which pertained to a one-parameter family
of self-adjoint Schrodinger operators Hϋ in L2(M+) [see formulas (8) and (9) below].
If a bounded stochastic potential v = v(x,ω) is ergodic and nondeterministic, then,
as it was found by Kotani [Ko], with probability 1 the operator Hϋ(ω) has only point
spectrum for L-a.e. ϋ G [0, π). Similarly, the spectrum proved to be pure point for
some explicit individual potentials (see example [Go] and general result [KMP], which
concerns Schrodinger operators in 12(Z+)), but again under the same restriction: for
L-a.e. value of the boundary phase. Molchanov raised a question: is this restriction
essential? There are known some random potentials for which almost surely (a.s.)
the spectrum is pure point for L-a.e. rather than all #. However, these potentials are
highly symmetrical. Is it true that for a "typical" individual potential the spectrum is
pure point for all ϋl

The main result of this paper states that the opposite is true: the restriction "for
L-almost every #" (or t) is quite necessary, at least when the essential spectrum Σ
has a non-empty interior (which does hold for "typical" potentials). First we establish,
for abstract operators (1), the following result.

Theorem 1. There is a thin set Z in M such that for any t G M\Z the intersection
σp(At) Π Σ is empty.

Then we apply this theorem or its idea to one-dimensional Schrodinger operators
and obtain some "negative" results, which show that the localization, though being
typical, is however extremely unstable under one-parameter perturbations.

These further results are formulated below. In particular, the answers to the above
two questions are contained in Theorems 2*, 2**, and 5.

(a) We begin with results concerning operators on Z. Let {ht} be a one-parameter
family of linear self adjoint operators ht in /2(Z) defined by

(hty) (n) = y(n - 1) + y(n + 1) + (υ(n) + tφ(n))y(n), n G Z . (3)

Here t G R; υ(-) ("the potential") and tφ(-) ("the perturbation") are real-valued
functions on Z, φ ψ 0 being non-negative and finitely supported. We denote its
support by S, so that 1 < \S\ < oo. The operators ht are selfadjoint on the linear
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subspace
1 y e Y^.,2υ2(ή)\y(ή)\z<ool.

nez

Denote the common essential spectrum of all the operators ^ by Σ. Consider the
equation hoy — Ey, or

y(n - 1) + y(n + 1) + v(n)y(ή) = Ey{n), n G Z.

For some E it may have a non-trivial solution y(n) vanishing on the support of
φ:y\s = 0. The set of all such E we denote by σ0. Evidently, each E G σ0 remains
an eigenvalue of /ιt for any £ € R, so that σp(ht) Π Σ D σ0 Π Σ for all t e R.

Theorem 2. For any υ and (/? (v reαl-vαlued, φ φ 0 non-negαtive and finitely
supported) there exists a thin set Z C l swc/z that for any t G R\Z ί/ie pomί spectrum
σp(ht) of the operator (3) satisfies

σp(ht) ΠΣ = σ0ΠΣ.

In other words, for these ί only those eigenvalues of /it remain on the essential
spectrum which are "immovable" (independent of t). Note that the set σ0 of these t
is at most finite if | 5 | > 2 and is empty if S contains a pair of neighboring points.
To be more specific: if | 5 | > 2 and / denotes the distance between the two closest
sites in S, then for all t G R\Z we have:

σp(ht) Π Σ\ = \σ0 Π Σ\ < I - 1.

In particular, if | 5 | > 2 and Σ contains a segment, Z\, then for t G R\Z the spectrum
of /if (contains i\ and) is purely continuous on Δ, up to a finite number of eigenvalues.

If \S\ = 1, then for an individual potential υ nothing prevents σ0 from being dense
in Σ, even if Σ contains a segment, so the above way of proving that the spectrum
of ht is not pure point does not work. However for a random ergodic potential some
conclusion may be derived in this case, too.

Let

(h(ω)y) in) = y(n - 1) + y(n + 1) + υ(n, ω)y(n) in e Z), (4)

where υ(n, ω) is a stationary ergodic potential, and

ht(ω) = h(ω) + tδ0 , (5)
where t G R. According to [P], with probability 1 the spectrum of h(ω) is a non-
random closed set coinciding with σess(/ι(cj)); therefore, it contains no isolated points
(see the footnoote in the beginning). Denote it by Σ.

Theorem 2*. Suppose Σ has a non-empty interior int Σ. Then with probability 1 there
exists a thin set Z(ω) C R such that for any t G M\Z(ω) the spectrum of the operator
ht(ω) is not pure point. Moreover, for these t, σc{ht(ω)) contains ΊniΣ (the closure of
intΓJ.

Here σc(ht(ω)) denotes the spectrum of ht(ω)\Mc, where J^ c = $$c(b,ώ) is a
continuous subspace of 3$ w.r.t. ht(ω), that is the subspace

{y e β%\ the spectral measure of y for ht(ω) is continuous} .

Remark. The essential spectrum of operator (4), for a "random enough" potential
υ(n,ω), actually has a non-empty interior. E.g., this is true, if for some periodic
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potential i?τ( ) = vτ{ + T) and arbitrary ε > 0, L G N, there exists with probability
1 a (random) segment of length L on which \υ(^cu) — vτ( )\ < ε. (In particular, vτ{ )
may be a constant.)

Remark. Theorem 2* works not only for random enough potentials but even for
some deterministic ones, too. In particular, for quasi-periodic potentials v with two
basic frequencies which potentials are considered in [CS], the spectrum of h(ω), as is
proved there, is a.s. pure point and has no gaps. Therefore, there must a.s. be a dense
set of values of t such that for each of them the spectrum of ht(ω) = h{ω) + tδ0 is
not pure point.

Theorem 2* may be applied, in particular, to the above-mentioned 1-dimensional
Anderson model. Actually, in this case we can say more.

Theorem 2**. Let
ht(ω) = h(ω) + tφ , (6)

where h(ω) is the random operator (2) of the Anderson model and φ the operator of
multiplication by φ( ). Suppose φ( ) obeys the same conditions as in Theorem 2. Then
there exists a.s. a thin set Z(ω) such that for any t G M\Z(ω),

σp(ht(ω)) Π Σ = 0 .

Remark. For t G R\Z(ω)9 the spectrum of ht(ω) consists of the set Σ (which is a
union of m segments, 1 < m < oo), where the spectrum is purely continuous, and at
most m • \S\ isolated eigenvalues.

(b) Define an operator hu, u G R, in 12(Z+) by the difference operation I,

(ly) (n) = y(n - 1) + y(n + 1) + v(n)y(n), n G Z+,

and the boundary condition

y(-l) - uy(0) = 0 .

Here υ(-) is a real-valued function on Z + . Denote the essential spectrum of the
operators hu (it does not depend on u) again by Σ.

Theorem 3. For any u> except for some thin set in R, there are no eigenvalues ofhu

lying on Σ.

In other words, for such u, σp(hu) coincides with σάϊscr(hu), the set of all isolated
points of the spectrum of hu.

(c) Let Ht denote the operator in L2(R) generated by the differential expression

ly = -y" + (v(x) H- tφ(x))y , i G l . (7)

Here v(-) and φ(-) are real-valued, locally integrable functions on R, φ( ) is non-
negative and compactly supported, and mes{x: φ(x) > 0} > 0. We assume that (7)
is of limit-point type at ±oo and consequently all the operators Ht are self adjoint

X

(one sufficient condition is: f υ_(s)ds — 0(x3), as t —» oo [DS]. Here v_(s) =
— x

max(—v(s), 0)).

Theorem 4. For all t, except for some thin set in R, there are no eigenvalues of Ht

on Σ, the common essential spectrum of all Hs, s G R.
Note that the formulation of Theorem 4 (unlike Theorem 2) does not refer to

any set σ0. It is because of the fact that no eigenfunction of Ht can vanish on
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the set 5 : = {x G R | φ(x) > 0} having positive measure. But if we admit more

general perturbations φ, namely, non-negative compactly supported measures (e.g.,

ψ(χ) — Σ ckδ(x - xk), ck > 0), then in the modified Theorem 4 the set σ0 appears
k=\ J

again, and its formulation becomes similar to that of Theorem 2.
(d) Consider now a one-parameter family of self adjoint operators Hϋ in L2(M+)

defined by the differential expression

ly = -y" + υ(x)y (x > 0) (8)

and the boundary condition

2/(0) cos tf-2/;(0) sin i? = 0 (0 < ΰ < π ) . (9)

Here υ(-) is a real-valued function, locally integrable on [0, oo). For / to be of the
limit-point type at +oo [CLJ, which is equivalent to the selfadjointness of all the

X

operators Hϋ (0 < ϋ < π), it is sufficient that J v_(s)ds = O(x3) [DS]. As above,
o

the essential spectra of all the operators H^ coincide with some closed set Σ c M .

Theorem 5.2 Let v(x), x > 0, be any potential of the limit-point type at +oo. Then
for any ΰ G [0,π), except for some thin subset 6>/[0,τr), there are no eigenvalues of
Hϋ lying on its essential spectrum Σ.

The paper is organized as follows. In Sect. 2, Theorem 1 is split into two
propositions and the first of them is proved. In Sect. 3, Proposition 2 is established,
which completes the proof of Theorem 1. In Sect. 4, "determinate" Theorems 2 and
3 are proved and the modifications are indicated that enable one to prove Theorems 4
and 5. In Sect. 5, we prove "random" Theorems 2* and 2**.

2. Proof of Theorem 1 (beginning)

Theorem 1 is readily deduced from the following two statements. Before formulating
them we define some subset of the spectral axis.

Let D be the set of all eigenvalues of all the operators At:

D: = \Jσp{At).
teR

Proposition 1. D Π Σ is a thin set in R.

Proposition 2. Let Y be a thin set in M. Then

is a thin set, too.

In order to deduce Theorem 1 from these two propositions, it suffices to set
Y: = D Π Σ and note that

σp(At) ΠY = σp(At) ΠΣ for all* G R.

This theorem was announced in [Go7]
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Proof of Proposition 1. Define a set

Q: = {ξ = (t,E) eR2\ there exists a solution y φ 0

to the equation

Aty = Ey} . (10)

We will denote by p and π the orthogonal projections of the plane

R2 = {ξ = (t,E)\t,EeR}

onto the E- and t-axis respectively. Obviously,

D=p(Q).

Lemma 1. For any non-trivial solution y ofEq. (10) we have

Proof Assume that (y1 ψ) — 0. Then Py = 0 and hence Ay = Ey; it follows that
for any μ e C\R

((A - μΓιy^) = ((E - μΓιy,ψ) = 0,

so that (y, (A — μ)~ιψ) = 0. Since ψ is cyclic for A, the closed linear span of the set

{(A-λyιφ\XeC\R}

is dense in 3%. Thus y = 0. D

Corollary. The linear space of all solutions to (10) is at most one-dimensional. D

Next we define, for M > 0, one more set in M2:

QM = {ξ = (t, E) G 1 2 | there exists a solution y to Eq. (10) such that

(y,Ψ)=l (11)
and

(2/,2/)<M}. (12)

Lemma 2. Γ/zβ ,seί Q M w closed.

Proof Let Q M 3 ξ n = (tn,En) -* ξ = (t,E) e R2 (n -> oo). Denote the
corresponding solutions to (10) satisfying (11) and (12) by yn. The sequence {yn}^Lι
is bounded in 3$, and by the weak sequential compactness of closed balls in Hubert
space we may assume that yn converges weakly to some vector y e 3$. Evidently,
y satisfies relations (11) and (12). Moreover, y satisfies (10). Indeed, as far as

and yn-^y (in such a way the weak convergence in 3@ is denoted), we have:

Ayn ^ z, where
Ey. (13)

The selfadjoint operator A is closed, i.e. its graph is a closed and hence a weakly
closed linear subspace of 3$ Θ 3%. Consequently, y belongs to the domain of A and
z = Ay. Therefore, (13) implies (10). And it follows from (10), (11), and (12) that
ξ = (t,E)eQM. D
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Further, let T be any positive number; we define two more sets Qj^ G R2,
ΌΎ

M G R, setting

and
Dτ

M:=p{QT

M).

Both sets are closed (regarding the former it is obvious, while the latter is closed
because for any segment A c R the set

M M

is an ^-projection of a compact set and, therefore, is compact itself).
s far asAs far as

oo oo

M=l T=l

Proposition 1 is a consequence of the following statement.
For any positive M and T, the closed set D]^ Π Σ is nowhere dense in R.
In other words, the set

ΠΣ) = (int£&) Π (intI7)

is empty. One can say more. The following assertion is true.

Proposition 1*. The set (int-D^) Π Σ1 w empty-

The proof exploits the following three lemmas.

Lemma 3. Let ξ = (t,E), ξ' = (t1\E') belong to Q and y1y
/ be solutions to the

corresponding equations (10) any Atιy
r = Efyf> normalized by conditions (11) and

(y'lψ) = 1 respectively. Then

t'-t = (E'-E)(y',y). D (14)

It follows from Lemma 3 that the set Q C R x D is a graph (up to a permutation of
axes) of some map r : D —• R:

Q = {ξ = (t, E) e R2 I E e D, ί = r(£7)} .

fte res

continuous):

Lemma 4. Tfte restriction τ\nτ satisfies Lipschitz condition (and, in particular, is
M

\τ(Ex) - r(E2)\ < M\Eλ - E2\.

Proof. Make use of (14), (12), and the Schwarz inequality. D

For ξ = (t, E) G Q, we will denote the unique vector y, satisfying (10) and (11),
by yt (the uniqueness is ensured by Corollary to Lemma 1).

Lemma 5. As QM 3 ξ' —> ξ(e QM), we have

£' w ί

Proof. In the converse case, there exist a vector z G J& and a sequence ξn

( 4 Ξ Q M , ξ G Q M ) so that for all n = 1,2,...,

(15)
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where ε is a positive constant. In view of the weak sequential compactness of closed
balls in Hubert space, the sequence {y^n} (after some "thinning out," if necessary)
may be thought of as weakly convergent to some vector y. This vector satisfies
relations (11), (12), and (10). By Corollary to Lemma 1,

y =

and since (y,ψ) = (y^,ψ) = 1, it follows that y = y$. Therefore, y^n ^yξ. But this
contradicts (15). D

Since distinct points ξ — (£, E) from Q have distinct ^-coordinates (Lemma 3),
an alternative notation yE for y^ is also possible.

Lemma 6. As Dj^ 3 Ef —> E(e Dj^), we have

Proof. This assertion is a mere consequence of Lemmas 3, 4, and 5. D

Proof of Proposition 7*. Assume the converse. Then there exists some point Eo G
Π Σ. Let ε > 0 be so small that the segment

is contained in the open set int D^. Then for any E G Δ there exist some t e [-T, T]
[namely, t = τ(E)] and solution yE to Eq. (10) such that relations (11) and (12) are
satisfied.

For E G Δ we will write tE instead of τ(E). The function E ^ tE: Δ -> M,
according to Lemma 6, is differentiable and satisfies the relation

Let t i—> £"* be an inverse function. It maps the segment f^,^] ( w n e r e ^ — tEi,
j = 1,2) onto the segment Z\ = [E 1 ? JE?2].

Let E G Δ and £ = t £ . By (10), yE is an eigenvector of the operator At = A+tP,
and the corresponding eigenvalue is E. According to the Corollary to Lemma 1, this
eigenvalue is simple.

Denote by μt the spectral measure of the vector ψ for At. This measure is defined
by

) , (17)

where < (̂ ) is the resolution of the identity corresponding to At, and X is an arbitrary
Borelian subset of R. Since &t({E}) is the orthogonal projection onto the vector
yE/\\yE\\> the spectral measure μt has at the point E = ϋ?t an atom, whose mass is

dE
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[we make use of (16)]. Therefore,

oo t-2 L2

J μt(Δ)dt> ί μt(Δ)dt> ίa(

^ d t = E2-Eι = \Δ\. (18)

h

Now we need the following statement.

Lemma 8 (see [DLS]).
oc

j μt(Δ)dt=\Δ\.

(We need only the inequality " < " ; this fact is essentially proved in [DLS].
Formally, the proof in [DLS] refers to one- and quasi-one-dimensional Schrodinger
operators, but actually it is suited to the general case as well).

By Lemma 8, both inequalities in (18) actually turn into equalities. This means
that for L-a.e. t e R the restriction of the measure μt to the segment Δ either reduces
to one atom at the point Et (when tλ < t < t2) or is the zero measure. In both cases
the essential spectrum of the operator At contains no inner points of Δ.

On the other hand, the essential spectrum of At is independent of t and coincides
with Σ for all t\ therefore, we have

(intzi) Π Σ = (Eo - ε, Eo + ε) Π Σ = 0 .

In particular, Eo fi Σ, which contradicts the assumption.
Proposition 1* is proved, and, along with it, Proposition 1 is proved, too. •

3. Proof of Proposition 2

Let Y be a thin subset of the E-axis. We are concerned with the set

X: ={t eR\σp(At)ΠY ^ 0} .

Since for any fixed t the set {E e R | (£, E) e Q} coincides with σ (At), the set in
question, X, can be obtained as follows:

X = π(QΠp-\Y)). (19)

Our aim is to prove that X is a thin set if such is Y. Let {Yn} be an increasing
sequence of closed nowhere dense subsets of R whose union contains Y. Further, Q
is a union of an increasing sequence of compact sets, e.g. the sets

QiM)- =QMnp-\[-M,M])nπ-\[-M,M]), M = l , 2 , . . . .

Hence it is enough to establish the following statement.

Proposition 2*. Suppose K is a compact subset of QM and its E-projection, p(K),
is nowhere dense. Then its t-projection, π(K), is nowhere dense as well.
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(Applying this statement to the compact sets KM = Q{M) Πp~ι(YM) (M =
oo

1,2,...), we shall obtain, in view of (19): X C | J π(KM), the summands π(KM)
M=\

being nowhere dense. Therefore, it will be proved that X is thin).

Proof of Proposition 2*. Assume that, on the contrary, there exists a compact set
K ζ: QM s u c n t n a t i t s ^-projection, p(K), is nowhere dense but its t-projection,
π(K), contains a non-trivial segment, /.

Consider the set, W, of all compact sets K' (K1 C K), for which π(K') 2 /. Put
W in partial order by inclusion. Let Z be an arbitrary chain in W\ set

K:= f] K>.
K'ez

It is easily seen that K G W. Therefore, any chain in W is bounded from below.
By Zorn's lemma, there exists at least one minimal element, say Ko, in W. We may
assume that K = Ko, i.e. assume from the very beginning that the compact set K is
minimal: if K' dK,K' φ K, K' compact, then π(Kf) does not contain the segment
L (In fact, obviously, π(Kf) § π(K) = /).

Consider the map ξ \-^ y^ :K -+ J$, which associates to any ξ = (t, E) e K the
above solution y^ of Eq. (10). Since K C Q M , by Lemma 5 we have

/ ^ V as K3i'->i{eK). (20)

Let {en}^Lx be an orthonormal basis in 3$. Consider a sequence of functions
on if:

As m —> oo, J m ( O converges pointwise to Jκ(ξ), the restriction of the function
ξ ι-> | |y ξ | | 2 :Q ^ 1 to K. It follows from (20) that each of the functions Jm(ξ) is
continuous on K. By virtue of Baire's theorem (see [O]), the limit function, Jκ(ξ),
is continuous at some point ξc G K.

L e m m a 9 . As ξ , ξ 7 i e n J to ξ c ( ξ , ξ' ^ K ξ φ ξ ' ) 9

~E^E'^Jκ{ic)'

Proof. By Lemma 3,

As K 3 ξ —> ξc, we have: y^ ^y^c and (due to the choice of ξc)
These two relations are well-known to imply the strong convergence y^ -^ y^c.
[Proof: (yξ-yξ^yt-ytc)= \\yξ\\2-(yξ,yξc)-(yξc,yξ)+\\yξc\\2 -*0.] Similarly,
yC _^ ŷ c Hence, in view of the continuity of the scalar product in 3$, we obtain:

It follows from Lemma 9 and positivity of the function Jκ( ) that if U is a small
enough neighborhood of the point ξc in R2, then for any ξ, ξf G Kυ: = K ΠU
(ξ φ ξ'; U denotes the closure of U) we have not only E φ E' but also t φ tf. So,
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both projections of the compact set Kυ, p{KV) and π(Kv\ are homeomorphic to it
and, consequently, to each other.

By the assumption, p(Kjj), being a subset of p(K), contains no non-trivial
segments or, which is the same, no homeomorphic images of the segment [0,1]; hence,
π(Kσ) contains no non-trivial segments as well. Therefore, π(KΓ\U), being its subset,
is nowhere dense in /; now it follows from inclusions π(KΓ\U)Uπ(K\U) I) τr(K) 2 I
that the set π(K\U) is dense in / and, being compact, contains /.

On the other hand, the compact set K\U is a proper subset of K (it does not
contain ξc). This contradicts the assumed minimality of K. Proposition 2* and thereby
Proposition 2 are proved, so the proof of Theorem 1 is complete. D

4. Proofs of "Determinate" Theorems

Proof of Theorem 3. Here 3% — /2(Z+) and the operator hu is generated by the
difference operation /,

(ly) (n) = y(n - 1) + y(n + 1) + v(n)y{n) (n > 0),

and the boundary condition
y(-l) = uy(0).

Denote by e (j = 0,1,2,...) the vector of the canonical basis associated to the site
j G Z + . It is easy to see that

hu = h + uP,

where h = h° corresponds to the Dirichlet boundary condition y(— 1) = 0 and P is
the orthogonal projection y H-> (y, eo)eo. Since

fc-l

hkeQ = YJή{v)ej + ek (fc = 1,2,...),
j=o

where c*(v) (j = 0 , 1 , . . . , k — 1) are polynomials in v(0),v(l),... ,v(k - 1), it
follows that e0 is a cyclic vector for /ι, and hence Theorem 3 is a mere consequence
of Theorem 1. D

Proof of Theorem 2 does not reduce to a direct application of Theorem 1. However,
the proof is partly parallel to that of Theorem 1 and exploits one of its intermediate
results.

Denote by L>* the set of all eigenvalues of all the operators ht:

Theorem 2 is a consequence of the following two propositions.

Proposition 3. D* Π Σ is α thin set in M.

Proposition 4. Let Y be α thin set in R. Then

is α thin set} too.
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To deduce Theorem 2 from these two propositions, it is enough to set Y: = L>* Γ)Σ
and note that

(σp(ht)\σ0) ΠY = (σp(ht)\σ0) Π Σ .

Proof of Proposition 3. Let a and b (a < b) be any entire numbers such that
[α, 6]nZ 2 S. In the Hubert space, Z2(6+1, oo), of all the square-summable sequences
{y(n)}^=b+i w i t n the usual scalar product we define an operator, h+, generated by
the difference operation I,

(ly) (n) = y(n - 1) + y(n + 1) + υ(n)y(ή), n > 6 + 1, (21)

and the Dirichlet boundary condition

2/(6) = 0 .

In a similar way we define an operator h_ in 12(—oc,α - 1). The essential spectra
of the operators h+ and /ι_ we denote by JC+ and Σ_ respectively. According to
[Gl], a real number ϋ7 belongs to Σ+9 if and only if there exists a sequence of finitely
supported functions yk{-) G /2(6 + 1, oo) (k = 1,2,...) such that their supports go to
+oo (say, yk(n) = 0 if n < fc), and

(22)

where εfc —> 0 (fc —> oo). Similar criteria are valid for Σ+ and Σ (Σ was defind
above as the common essential spectrum of all the operators ht, t e R. In this case
the finitely supported function yk( ) G 12{Έ) must satisfy (22) and vanish on the
"segment" [—/c, k] Π Z). It follows that Σ = I7+ U Z"_; since the union of any two
thin sets is thin, Proposition 3 will be ascertained, if we prove the following statement.

The intersection D* Π Σ+ is thin.
To prove this, we consider two families of operators, {hf}uem and {h™}ueR The

operator h\ acts in Z2(6+ 1, oo) and is generated by the difference operation (21) and
the boundary condition y(b) = uy(b + 1 ) . The operator h^ acts in I2(b + 2, oo) and
is generated by the same difference operation I (for n > 6 + 2) and the boundary
condition y(b -j- 1) = uy(b + 2).

According to the above characterization of the essential spectrum, the essential
spectra of all these operators are the same and coincide with Σ+. Define the sets

and
D2:={Jσp(hϊ).

ueR

Applying Proposition 1 to both families of operators, we obtain: Dγ Γ\Σ+ and D2Γ\Σ+

are thin sets. Since for any non-trivial solution y to the equation hty = Ey, or

yin - 1) + y(n + 1) + (v(n) + tφ(ή))y(n) = Ey(n), (n E Z), (23)

we have either y(b + 1) ^ 0 or y(6 + 2) ^ 0, it follows that L>* C .Dj U £>2. Hence,
D* ΠΣ+ C (D1 Π Σ"+) U (D2 Π Σ"+) and, therefore, D* Π Γ + is thin. Proposition 3
is proved. D

Proof of Proposition 4 is similar to that of Proposition 2 but differs in some details.
The proof exploits an obvious lemma, analogous to Lemma 3.
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Lemma 10. Let y(-),y(') belong to 12(Z) and satisfy the following equations:

hty = Ey,

h~ty = Ey.

Then

(t-t)(y,y)φ = (E-E)(y,y). Π

Here we denote by ( , •) the scalar product in Z2(Z) and by ( , •) a quantity

_ (24)

We must prove that the set

X = {t e R I (σp(ht)\σ0) Π Y ^ 0}

is thin if such is Y. Define the set

Q: = {ξ = (£, E) G R2\ there exists a solution y(-)

to Eq. (23) such that y\s ψ 0} .

Since for any fixed t the set {E G R | (£, E) G Q} coincides with σp(ht)\σ0, the set
X can be written in the form:

X = π(Qnp-\Y)].

For M > 0 we define a subset Q M of Q by

Q M : r= [ξ = (t5 E) E 1 2 | there exists a solution

y{ ) to (23) satisfying

(2Λ2/)φ = l (25)
and

(y, y) < Λ^} (26)

It follows from the weak sequential compactness of closed balls in the Hubert space
and the finiteness of S = supp^ that QM is closed in R2. To prove Proposition 4, it
is enough to establish the following statement.

Proposition 4*. Let K be a compact subset ofQM andp(K) be nowhere dense. Then
π(K) is nowhere dense as well

Proof Let us assume the converse: there exists a compact set K C QM such that its
^-projection, p(K), is nowhere dense but its ̂ -projection, π(K), contains a nontrivial
segment, /.

Since K C QM, for any ξ = (t,E) G K there exists a solution y^(-) to (23)
satisfying relations (25) and (26). Such a solution, if chosen to be real-valued, is
unique up to multiplication by ±1 (the standard Wronskyan argument). Suppose that
such a selection of y^( ) is made for each ξ G K.

Lemma 11. There exists a map (£',£) ι-> c(ξ',ξ):K x K —• {+1, -1} swc/z that for
any ξ0 G AT,

and
ι2

φ(S)
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Here l2

φ(S) is the Hubert space of all real-valued functions on S with scalar
product (24).

Proof. For any ξ', ξ e K set

- 1, otherwise.

The rest of the proof is similar to the proof of Lemma 5. D.

Corollary. Let ξ0 6 K. There exists a strictly positive δ such that for any £, ξf G K
with \ξ - ξo\ < δ, \ξf -ξo\<δ,ξφ ξ', we have: E φ E'.

Proof In the converse case, there exist two sequences ξ^ —> £ 0, ξf- —> ξ0 (ξj e K,

ξ'3 e K, ξj φ φ such that E3 = E'j9 j = 1,2,.... Lemma 10 shows that

(yξj,yί>J)ψ = 0, j = 1,2,.. ., while by Lemma 11

Proof of Proposition 4* (the end). We have: p(K) is nowhere dense but π(K) contains
some segment /. As above, the compact set K may be thought of as minimal: if
K' C K, K1 φ K, Kr compact, then π(Kf) does not contain the segment I.

Now make use of a sequence of functions on K:

(ξ€K,m=l,2,...);

they are continuous by Lemma 11 and converge pointwise to the function

JK(O = \\yξ\\2, (ξeK).

We see as above that Jχ{0 has a point of continuity ξc 6 K. Then we establish the
following statement, analogous to Lemma 9.

Lemma 12. As ξ, ξ' tend to ξc (ξ, ξ' eK; ξφ ξ')9

t-t'

E-Ef

(Note that E φ E for small enough \ξ - ξc\, \ξ' - ξc\, by Corollary to Lem-
ma 11.) D

The end of the proof, that is proving the fact that the compact set K is not
minimal (contrary to the hypothesis), is similar to the corresponding part of the
proof of Theorem 1. This completes the proof of Proposition 4* and thereby that
of Theorem 2. D

The proof of Theorem 5 is carried out along the same lines as that of Theorem 1.
The part of the solution y^ to (10) is played by the solution y# E( ) to the Cauchy
problem

—y11 Λ~ v(x)y = Ey , (x > 0),

2/(0) = sin??, y'(0) = ,
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(if it is square-integrable), and the part of Lemma 1 by the identity

oo

sinO?! - ΰ2) = -{Ex - E2) I yEι^ι(
χ^E2^x>)dx'

o

Furthermore, instead of the spectral measure μv specified by (17), we use the measure
π

ρ — ρϋ, defined in [CL], and instead of Lemma 8, the identity J Qϋ(Δ) dϋ = \Δ\ (see
[Ko]). o

Finally, the proof of Theorem 4 is derived from that of Theorem 5 in the same
manner as the proof of Theorem 2 from that of Theorem 3.

5. Proofs of "Random" Theorems

Proof of Theorem 2*. Let μ3(ω) be the spectral measure of e (the vector of the

canonical basis, associated to site j £ Z) for h(ω), Lω

3 be the /ι(α;)-invariant subspace

of 12(Z) generated by e3, and Σ" be the essential spectrum of h(ω)\Lω. Obviously,

Σ^ consists of all non-isolated points of the support of the measure μ3(ω). Fix j — 0.

Lemma 13. Σfi = Σ with probability 1.

Proof Assume the converse. It is easy to see that then there exists a rational interval /
such that IΠΣ φ 0 but with a positive probability ΪΠΣQ = 0. (/ denotes the closure
of /.) The latter relation implies that the restriction of the spectral measure μo(ω) to
/ consists only of a finite number of atoms: \σ(h(ω)\Lω) Γ\I\= :no(ω) < oo. [Here
σ(B) denotes the spectrum of an operator B.) With the same positive probability we
h a v e f o r a n y j e Z : / Π Σf = 0, o r \σ(h(ω)\Lω) Π Ϊ \ = :nά(ω) < o o .

These events, for some j and jf (j < j ' ) , must combine, so that with a positive
probability the spectra of restrictions of h(ω) to Lω

3 and Lω, are finite in J [consist of
Πj(ω) and n3,(ω) points respectively].

It is easy to see that the deficiency index of the /ι(u;)-invariant subspace of /2(Z),
generated by e- and ejf, is not greater than j ' — j - 1. Consequently, with a positive
probability

\σ(h(ω)) ΠΪ\< n3(ω) + njf(ω) + (/ - j - 1 ) < oc ,

so that
σes8(Λ(α;))n/ = 0.

Since with probability 1
σQSS(h(ω)) = Σ,

we obtain Σ Π / = 0, which contradicts the assumption. Lemma 13 is proved. D

By the hypothesis, intJC φ 0. Lemma 13 shows that for all ω in some set ΩQ of
full measure in the probability space Ω, we have Σfi — Σ. Applying Theorem 1 to
the restrictions ht(ω)\Lω (t £ R), we obtain: if ω G i?0, then σ (ht(ω)\Lω)C\Σ = 0 for

all t e R\Z(ω), where Z(ω) is thin. Since σp(B) U σc(B) = σ(B) for any selfadjoint

operator B, we see that for the above ω,t the relation σc(ht(ω)\Lω) D intΣ1 holds.

Theorem 2* is proved. D
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Proof of Theorem 2**. By virtue of Theorem 2, it is enough to prove that a.s. σ0 = 0:
no eigenfunction of h(ω) vanishes on S. Note that we impose no restrictions on the
distribution v of v(0).

Without loss of generality, we may assume that S = {0}. Furthermore, it is enough
to prove that for some fixed countable set W c l , a.s. σo\W = 0: since, according
to [P], any fixed E is an eigenvalue of h(ω) only with zero probability, then the proof
will be complete. The countable set W will be specified below.

In the notation of independent random coefficients υ(n,ω) we will omit ω. A real
number E belongs to σ0 if and only if E is an eigenvalue of each of the two random
operators h+ and h~, i.e. σ0 = σp(h~)Πσp(h+). Here h+ is a selfadjoint operator in
/2(N) specified by the difference operation l+:

(l+y) (n) - y(n - 1) + y(n + 1) + v(n)y(ή) (n > 1)

and the boundary condition y(0) — 0; h~ is defined similarly in 12(—N).
Since the restrictions of v to N and to — N are independent of each other and the

random set σp(h~) is at most countable, the set σo\W = (σp(h~)\W) Π σp(h+) is
a.s. empty if for any fixed E e R\W a.s. E $ σp(h+).

Assume that for some fixed E with a positive probability the solution y(ri) of the
random Cauchy problem

(n > 1), (27)

2/(0) = 0, 2/(1) = 1

belongs to Z2(N). The intersection of this event and its j-shift, for some j > 0, has a
positive probability (we use the shift invariance of the probabilistic measure). Since
a square summable solution of (27), if any, is unique up to a constant multiplier, it
follows that with a positive probability the solution y{ ) to the above Cauchy problem
vanishes at site j . Let j be the minimal positive integer with this property. Therefore,
the event

X- = {y(j) = 0; y(n) φ 0 (n = 1,2,... ,j - 1)}

has a positive probability.
Consider an at most countable set N: = {E eR\ v({E}) > 0} of all atoms of

the distribution v and define events Y", 1^,1^,... , 1 ^ _ 1 , whose union is the whole
probability space Ω:

Y: =
γ

First,

γk:

Yk) = 0, (fc = l , 2 , . . . , j - l ) . (28)

Indeed, fixing all υ{n) (n φ k) and varying υ(k), find the conditional probability of
the event X ΠYk. Since y(k) Φ 0 (by the definition of X), there is only one value
of v(k) for which y(j) = 0. (Proof: if v*(k) is another value with the same property,
then, by Green's formula, (υ*(k) - v(k)) (y(k))2 = 0). As v(k) φ TV, the above
conditional probability is zero, and hence (28) is true.

Furthermore, let the event X ΠY take place. Note that y(j) is a polynomial in E
of degree j — 1, whose coefficients depend on ^(1), υ(2), ...,v(j — 1). Each of them
belongs to the countable set N, and hence E must belong to the countable set & of
zeros of all the corrresponding polynomials. If we set W: = J5, then for E G M\W
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the event X Π Y is impossible. Tn view of (28), we have Pr(X) = 0. Theorem 2** is
proved. •
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Note added in proof. Some results close to ours were obtained independently by R. del Rio, N,
Makarov, B. Simon (see [RJMS], [S]). Their method of proof is different from outs.
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