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Abstract: Representations of Quantum Groups Uε(gn), gn any semi-simple Lie
algebra of rank n, are constructed from arbitrary representations of rank n — 1
quantum groups for ε a root of unity. Representations which have the maximal
dimension and number of free parameters for irreducible representations arise as
special cases.

1. Introduction

Deformations of semi-simple Lie algebras [18, 19] appear as a common algebraic
structure in the field of low dimensional integrable systems. In many cases the
deformation parameter is an iV-th root of unity, where N can correspond, e.g. to the
number of states per site or to the lattice size in a two dimensional model. We will
denote the deformation parameter by ε, if the parameter is an JV-th root of unity
(N the smallest integer such that εN = 1) and by q in the general case.

The theories of chiral Potts [4, 5] type models, which saw dramatic develop-
ments in recent years [6-8, 12, 24], are closely tied to the representation theory of
the quantum group Uε(sl(n, C)) in the case of ε being an iV-th root of unity. The
progress in the theories of chiral Potts models was partly stimulated by the better
understanding of its deep connection to the representation theory of quantum
groups.

The representation theory in the case of ε an N-ih root of unity is much richer
than for generic q, and several deep results by De Concini, Kac, Procesi [15,17,16]
and Lusztig [20-23] exist, laying the foundations of the general representation
theory in the roots of unity case. Also considerable progress has been made in
directly constructing representations of quantum groups Uε(gn). Accelerated by the
development of chiral Potts type models, much interest was devoted to find
non-highest weight representations of Uε(gn) [25, 1-3,9-11]. Finite dimensional
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non-highest weight representations, which do not exist in the representations
theory of Uq(gn)9 are a new interesting feature of the representation theory in the
roots of unity case. Non-highest representations of minimal dimension play a role
similar to that played by fundamental representations of Lie algebras [10]. The free
parameters which are characteristic of non-highest weight representations appear
in the form of spectral parameters in chiral Potts type models.

In this article we will show, that starting from an arbitrary representation of
Uε{gn-ι) one can construct a representation of Uε(gn). The Lie algebras gn and
gn-1 will usually, but not always lie in the same series of Lie algebras.

De Concini, Kac [15] showed that the maximal dimension and number of
parameters for representations of UB(gn) for odd N is given by NA+(g"ϊ and dimgn,
respectively. In this expression A + (gn) (= 1/2(dim gn — ή)) is the number of positive
roots of the Lie algebra gn. We use here and in the following the term dimension of
a representation to denote the dimension of its representation space. The repres-
entations which will be constructed in this article, are of dimension greater than or
equal to

For ε-deformations in the case of the Λn,Bn, Cn and Dn series such representations
will be given in Sect. 3. The exceptional £ 6 , £ 7 , £ 8 , F4 and G2 cases of quantum
groups are discussed in Sect. 4. The number of free parameters in all constructed
representations is greater than or equal to 2(Δ + (gn) — A + (gn-1)). Representations
of maximal dimension and number of free parameters arise as special cases for odd
N and are discussed in Sect. 5. These representations coincide with the maximal
cyclic representations of Date et al. [13] in the An case, and with the representa-
tions of [26] in the Bn, Cn and Dn cases. Conclusions are given in Sect. 6, and in the
appendix two relations which are important for the construction of representations
in the case of Uq(Es) and Uq(F±) are written down explicitly.

2. Definition of Uq(gn)

In this article we will use the definition of quantum groups given by the relations
among its Chevalley generators. The quantized universal enveloping algebra
Uq(gn) of a semi-simple Lie algebra gn of rank n is generated by An Chevalley
generators {ei9fi9 ί*1} which satisfy the commutation relations

ttfjtΓ^q-^fj (1)

and the Serre relations

(2)
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The matrix atj is the Cartan matrix of the Lie algebra gn, ά{ non-zero integers
satisfying diaίj = djaji. The ^-Gaussian is given as

m
n\q [ m - B ] , ! [ « ] , ' L J β ' j-Λq-q-1-

and the curly bracket is defined by {x}q = (x — x~1)/{q — q'1)- Further, we extend
the algebra by adding the elements tf/k, keZ. In case we specialize q to be
a primitive JV-th root of unity the letter ε is used instead (εN = 1). We will not make
use of the Hopf algebra structure of Uq(gn).

Some of the results in this article are most conveniently given in terms of Weyl
algebra generators. The Weyl algebra W is defined by the commutation relation
among its two generators x, z,

xz = qzx . (3)

We denote by W a copy of this algebra with generators x, z.
In the roots of unity case one can define a N dimensional representation

(CN) of W, depending on the two parameters g, h, by
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We will retain the notation σgh also for representations of tensor products of Weyl
algebras W. In this cases the letters g, h denote the set of parameters
g := {#!, . . . , gι) and h := {hu . . . , ht}, with I the number of W algebras in

3. The An9 Bn, Cn and Dn Series

In this section we want to demonstrate how one can construct, starting from an
arbitrary representation of a quantum group Uq(gn-ι) a representation of Uq(gn),
in the cases of the Λn,Bn, Cn and Dn series of quantum groups. The next section will
be devoted to the more complicated case of exceptional quantum groups. As a first
step we investigate the algebra Uq(gn-ι) which is defined as the algebra given by
Uq(gn) generators J ^ , ( l ^ i ^ n - 1 ) and δu ^ r

ί

± 1 , {\_%i^ή) which satisfy the
defining relations (1,2). Representations of algebras ί/g(^n-i) arise immediately
from representations of Uq(gn-ι\ and in turn representations of Uq(gn) itself will be
defined in terms of Uq(gn_ x) representations. This will be discussed in the following.

The Cartan matrices in the Bn and Cn correspond to Dynkin diagrams with the
first root being the shortest or longest root, respectively. For the Dn case we fix the
notation in a way such that the Dynkin diagram nodes 1 and 2 are both connected
with node 3. The integers dt = 1 for 2 ̂  i ̂  n in all cases and d1 = \, 1/2,2,1 in the An,
Bn, Cn and Dn series, respectively.

Lemma 3.1. Let

( i = l , . . . , n ) ,
(ί= 1,. . . , n — 1) be the generators ofUq(gn-ι) and

ψi) ( i = l , . . . , n - l ) the generators of Uq(gn^).
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Then one obtains an algebra homomorphism p from Uq(gn-χ) to Uq(gn-ι) by taking
p(^i)=f»P(£i) = ei, p(^n = tr{ ( i = l , . . . , n - l ) and p{Sn) = O. The action of the
algebra homomorphism p on the generators 9~^1 depends on the complex parameters
λn and is defined by

ι = l
n - 1

q'"U if1

far t?β(Λ-i)

far C/e(Bn-i)

/or t/^c-!)

ίΓ1 /or

The above algebra homomorphism p can be extended to define representations
of the quantum group Uq(gn). The above lemma, together with the theorem below
shows how any representation of Uq(gn-ι) gives rise to a representation of Uq(gn) in
the An9 Bn, Cn and Dn series.

Theorem 3.2. The following formulas define algebra homomorphisms p from the
quantum groups Uq(gn) to ((x) {W) (x) Uq(gn- x ) , /or #„ the Λn, Bn, Cn and Dn series of
semi simple Lie algebras. The composition π := (σgh (x) id) p defines an algebra
homomorphism in the roots of unity case.

a) p:
n

i = 1 Wt)®Uq{A»-i)

b)

c)

p ( / ), p ^ ), p(ί, ) as in the Bn case (i> 1)

d)

ρ{f\ p{et\ ρ{ti) as in the Bn case (i>2)
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In these formulas expressions of type xf<g) #) were abbreviated writing xf«^. Fur-
ther, we set # o = 0 and x[1 = xf* = 0, z{ = zf = 1 ι/ ί/ie index i is out of range.

Taking £7ε(#M-i) in an arbitrary representation β\ then the algebra homomor-
phisms π becomes a representation π' of dimension ^Δ+^n)-Δ+{gn-i) times the dimen-
sion of p'. The number of free parameters in π' becomes 2(Δ +(gn) — A +(gn- 0) plus
the number of free parameters in p'.

This theorem can be proven by directly verifying the defining relations of the
algebras. We omit the details of these calculations.

Remark 3.3. Representations with dimensions equal to NA+^n)~^+(gn-i) a n c j
2{Δ +(gn)-A +{gn- i) + i ) free parameters are obtained by taking the trivial repres-
entation p'Q of t/ε(fifΛ-1)(pΌ(eI ) = O, pΌ(/i) = O, pΌ(ίi) = l> l ^ i ^ n - 1 ) to define β
in Lemma 3.1. In the case of Uε(Λn) the resulting representations π' are minimal
cyclic representations [1,2,9,10,12]. Further representations of dimension
NΔ+^n)-^+(gn-i) w e r e discussed in the quantum 50(5) case in [2] and for quantum
50(8) in [11].

Remark 3.4. The algebra homomorphism π defined above for the An series is cyclic
in the sense that the Chevalley operators in the algebra homomorphism π to the
power of N are non-vanishing scalars for generic values of parameters. The explicit
expressions are given in the following formulas:

(«-« T

These formulas also show that restricted representations (nf(f)N = 0, π'(ei)N = 0,
π/(fc ί)

N=l), as well as semi-cyclic representations (either π(f)N = 0 or π ' ^ ^ O )
can be derived from the cyclic representation by specializing some or all of the free
parameters. Cyclic and semi-cyclic representations of Uε(Λn) in dimensions higher
than the minimal dimensions were discussed in [1, 14].

Theorem 3.2 allows to construct a representation of Uq(gn) from representa-
tions of smaller rank quantum groups Uq(gn- x) with gn and gn- x being Lie algebras
of the same series. To show that they need not to be necessarily from the same series
we present as an example how a representation of Uq(C3) follows from a repres-
entation of Uq(A2). We define O'q{A2) to be the algebra given by the generators Su

&"tι, (z= 1,2, 3) and J^2, #3 of a Uq(C3) algebra. Similarly to 3.1 one can give an
algebra homomorphism β from U'q(A2) to Uq(A2) by setting β(£'1) = 09

~1) = qλltΐ2/3t2

4'/3 and the other generators equal to Uq(A2) generators.
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Example 3.5. The map p: Uq(C3)-^(®^=1 Wt) (x) U'q(A2) given below, defines an
algebra homomorphism. The composition π := (σgh ® id) p gives an algebra
homomorphism in the roots of unity case. Taking O'ε(A2) in an arbitrary repres-
entation p' one obtains a representation π' of UE(C3) with dimension N6 times the
dimension of p'. Twelve free parameters arise from taking representation σgh of
(®f=i Wi) and further free parameters can arise in the representation p\

4. The Exceptional E6, EΊ, Eg9 F4 and G2 Quantum Groups

So far we did not describe the actual construction method which leads to the
algebra homomorphisms which were given in the previous section. The procedure
will be outlined in the following in the case of the exceptional quantum Lie algebras
and the An case will appear as an example.

The construction method is based on a set of relations in Uq(gn). The relations
needed to derive algebra homomorphisms of quantum Lie algebras in the E6, EΊ,
E8 and F 4 cases are given in the following. We denote divided powers of
/, generators / / / [ ; ] ! by f\s\

Relations 4.6. In Uq(gn) we have the commutation relations (compare [13, 26])

c)/,/!"=u+iy./v+1),
(") / ί/iΛ >/ (/ 2 )=Λ i )/ (/ 2 + 1 )c-Λ +72+

if aik = aki=-ί,

+ftί-7ΨiΨk1+2% if β« = -2, αtt = - 1 ,

i v ) e ί / ω = / ω β / + / r i ) { 9 * ( 1 - ')ίi}ρ4(j

(v) tjψ = (fMϊfu,
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(vi) fjψ^fffi and / W = . / W if aik = 0,

(vii) Relation in Lemma 7.14, Appendix (used only in the E8 case),

(viii) Relation in Lemma 7.15, Appendix (used only in the F4 case).

We will use the above relations to commute single generators / i 5 e{ and
ti through monomials of / factors of type

f^ fϊ* (4)
(l = A+(gn) — Δ + (gn-1)). We say a generator fu et or tt commutes with such
a monomial if the multiplication of the generator on the monomial from the left
gives a sum over monomials of the same type multiplied by a single or no generator
from the right. In this sense we say that ft commutes with the monomial f[h)f{i2)

according to relation (iii) in 4.6, if aίk = aki= —1. One can find monomials with
/ factors for all quantum Lie algebras Uq(gn) which commute with all of its
generators. Moreover, the relations 4.6 will be sufficient to commute the generators
of Uq(E6), Uq(E7), Uq{E8) and C/g(F4) with monomials in the corresponding al-
gebras. The Uq(G2) case will be treated separately.

Commuting a generator se{fh ei9 ί j with a monomial of type (4) using exclu-
sively the relations 4.6 we denote by rel(s/*^l} f\f). To apply relations 4.6 in this
way will be the first step in a construction procedure which leads to representations
of Uq(gn) in the exceptional cases.

The second step introduces the Weyl algebra generators. We shall give a rule
Ω which applies on expressions of the following type:

nrdι+ • • • +rljlf(ji+*i) ^ ^ , f{jι + aι)s , (5)

wherein the integer quantities j u . . . Jt are regarded as "free variables" and rk,
α fceN, l^k^l. The factor 5 is either 1 or a single Uq(gn) generator / w , em9 t^1,
(l^m^n)Aϊa,b are two expressions of type (5) and β a rational function in q which
does not depend on the jks, then Ω satisfies Ω(α + b) = Ω(α) + Ω(b) and
Ω(βα) = βΩ(α). The rule Ω applies on expressions (5) according to the following
assignment:

Ω: qr^+ +'Ύ|Λ+αi> . . .fϋ'+^s ^xϊzϊ1'1 . . . xΐzΓ'S . (6)

If s= 1, fm9 em, t^1 then S= 1, J ^ , δn9 3~±\ respectively. Capital δu ^ and 3~fl are
generators^a second Uq(gn) algebra, and will generate in the coming examples the
algebras C/β(fifΛ-i).

To illustrate the working of the above two steps in the construction procedure
of an algebra homomorphism we consider the An case of Sect. 3.

Example 4.7. The expressions for the algebra homomorphism p from Uq(An) to
Wι® - - ®Wn® UqiAn-^ in Theorem 3.2 can be constructed in a unique way
using relations 4.6 and Ω. If one defines y to be

then the formula for p(/ f) in Theorem 3.2, a) is given by i2(rel(/fj;)), using relations
(vi,ii) in 4.6 and (6). Similarly, one obtains p(eί) = Ω(rel(eί};)) and p(ί ί) = Ω(rel(ίίj;))5

using the relations (iv,v,vi) in 4.6 and (6). The monomial y which is used to
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construct the algebra homomorphism p in the Uq(Bn) and Uq(Cn) case (Theorem
3.2,b),c))is

Λ,_fUl)fU2) Aj«-l)Ajn)Aj«+l) Λhn-i)

y—JnJn-X 'Jl J \ J 2 ' ' J n >

and a similar monomial

v _ Ajl)f (jl) Ajn-l)f(jn)Ajn+l) Ajln-l)

y—JnJn-l' Jl J 1 / 3 / n >

is used to derive the algebra homomorphism in the Uq(Dn) case.
We start the investigation of the exceptional quantum Lie algebras with the

Uq(E6), Uq(Eη\ Uq(E8) cases and define the following numbering of the nodes in the
corresponding Dynkin diagrams

The integers dt are equal to 1 for all i. Let us introduce the algebra Uq(D5) being
generated by # ; + 2 , &i, ̂ fι^Uq(E6). Similarly, one can define Uq(E6) as J % 7 , Sh

3~ΓleUq(EΊ) and Oq(EΊ) as given by the generators J % 8 , δi9 ^fleUq{E^).
Algebra homomorphism p in case of these algebras arise analogously as in Lemma
3.1 by taking

respectively.
Let us abbreviate monomials of generators in Uq(gn) of type

fUk)f{jk+l) . . . f(jk + l-ί)f(jk + l)
J i J ί + 1 J ί ± / + l J i±l

by /S/+/. Using this notation we define the following monomials in Uq{Eβ\ Uq{EΊ)
and Uq(Es)9

yβ —J 63/ 1 J 46J 25/ 1 7 42 5

v _ Aj\)AU)fUl) fO'll) f 0"lβ) f On) f 0l9)f 02l)f 023)f O24)
yi—J Ί3J 1 J 4-ΊJ 26 J 1 J 45 / 34 / 23 J 1 / 47 >

,, _ Ah) AJl) Ah) Ajll) fUl9) f{J2θ) f{J2l) AJ2β) AJ29) f{j3θ) Aj33) AJ3β) f{J39)

J8 —J 83/ 1 J 487 27 7 1 / 46 / 35 / 24 / 1 / 42 J 53 J 64 J 1 ?

AJ^θ)f(J46)f(J5l)f(J52) (Π\

/ 72 / 84 / 1 / 38 I'/

Similar to Example 4.7 one can obtain the expressions for algebra homomor-
phisms in the case of Uε(E6)9 Uε(E7) and Uε(Es) by using relations 4.6 and Ω.

Theorem 4.8. The following expressions define an algebra homomorphism p in the
case of the quantum groups Uq(E6), Uq(EΊ) and Uq(Es). The composition π :=
{σgh®\ά)*p defines an algebra homomorphisms in the roots of unity case. The
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mappings p are defined by

e6) p:Uq(E6)-+(<£>Wk)®U'q(D5),

e7) p:

e8) p:Uq(Es)^(®Wk)®Uq{E7),

π = 6, 7, 8 .

Taking U'ε(D5), Oε(E6)9 Oε(EΊ) in an arbitrary representation p', one obtains repres-
entations π' which dimensions are given respectively by iV16, N2Ί and N5Ί times the
dimensions of p\ The number of free parameters of the representations π' is 32, 54
and 114, respectively plus the number of free parameters in a representation p'.

The remaining two cases of exceptional Lie algebras are discussed in the
following theorems. We fix the numbering of nodes in the Dynkin diagram for the
F 4 case as

The integers d{ are defined as dλ=d2 = 2, d3 = d4=\. We write U'q{B3) for the
algebra generated by J^ + 4 , Su ^tl£ Uq(F4). Similarly to Lemma 3.1 one can give
an algebra homomorphism p in the case of Oq{B3) starting from Uq(B3) and
defining ρ(^4) = qλHΪ1/212

 1t3

 3 / 2 . Using of the relations 4.6 and the operation Ω in
the Uε(F4) case, one can again define the algebra homomorphism in a short way.
^/Let y4 denote the monomial y4=f{l4fψ

)fψίfψ4fψ
2)fψι).

Theorem 4.9. The following expressions define an algebra homomorphism p from
Uq{F4) to W! ® - W15 ® O'q(B3) in a unique way and by composition with σgh an
algebra homomorphism in the roots of unity case,

f) p: UJF4)

Taking O'q(B3) in an arbitrary representation p' one obtains a representation π' of
dimension N15 times the dimension in p'. The number of free parameters in π' is 30
plus the number of free parameters in p'.

Let G2 be defined by the Cartan matrix with α n = 2, a12= —3, a2ι= —1 and
a22 = 2. The integers dt are given as dγ = l,d2 = 3. In the following Uq(Λι) is defined
by the Uq(G2) generators ^,SUS2, ?Γ\ι> Fψ. In analogy to Lemma 3.1 one can
easily give a corresponding algebra homomorphism p, starting from U'^Ax) and
taking ^ 3 / 2

Theorem 4.10. The following formulas define an algebra homomorphism p from
Uq(G2) to Wi ® - ® W5 ® U'qiAx) and by composition with σgh an algebra
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homomorphism π := (σgh (x) id) p in the roots of unity case.

g) p:Uq(G2)

{Z2Z41} {q2}xϊ X

Taking U'ε(Ai) in an arbitrary representation p' one obtains a representation π' which
dimension {number of free parameters) is N5 (10) times (plus) the dimension (number
of free parameters) of p\ respectively.

5. Representations of Maximal Dimensions

The representations constructed in Sects. 3 and 4 depend on the arbitrary repres-
entation p' of the corresponding ΰε(gn-ι) algebras. In this section we want to show
how a natural choice of this representation of Uε(gn-ι) leads to representations of
Uε(gn\ which have maximal dimensions and number of parameters for odd JV.

Irreducible representations of quantum groups Oε(gn) in the roots of unity case
exist only in dimensions smaller than or equal to NA+{ϋn) and the number of free
parameters is maximally dim(#w), for odd N [15]. The simplest representation of
this type is the non-highest weight representation π' '= σgh*p of Uε(Aι) which is
defined in terms of Weyl algebra generators by

Representation π' has dimension N and the map σgh together with the complex
parameter λγ gives rise to the 3 free parameters of the representation. Starting from
this representation one can step by step construct representations of higher rank
Lie algebras, using inductively representations p of of Uε(gn- J and representations
π' of Uε(gn). A representation of Uε(gn) obtained in this way will have 2A + (gn)
number of free parameters induced by the free parameters of the mappings σgh and
in addition n parameters λt coming from the definition of p (see e.g. Lemma 3.1).
Also, the dimension of such a representation is induced by the map σgh and adds up
to NA+(9n\ This gives rise to the following theorem.

Theorem 5.11. Using inductively the representations of Theorems 3.2-4.10 to define
representations of O^A^,. . . , Uε(gn-2), t4(^«-i) one obtains representations of
Uε(gn) which have maximal dimensions and number of free parameters for odd N, in
all cases of semi-simple Lie algebras gn.



Roots of Unity: Representations of Quantum Groups 303

Remark 5.12. In the case of UB(Λn) one obtains the maximal cyclic representations
of [13]. In [13] it is also proven, that this representation is generically irreducible.
In the case of quantum SO (5) irreducible representations of maximal dimension
were obtained in [3]. For the general Bn, Cn and Dn series the representations of
maximal dimension of Theorem 5.11 coincide with those in [26], for which the
irreducibility for odd N was established in the simplest examples.

Remark 5.13. The construction of algebra homomorphisms and representations
for Uq(gn) was based on the action of the generators ehfh tfl on monomials of
length Δ+(gn) — Δ+(gn-1). Such monomials were defined e.g. in Example 4.7 and in
(7). Adjoining these monomials according to the inductive procedure of Theorem
5.11 gives monomials fVι) - f\f of length l = A+(gn). In all cases of quantum Lie
algebras discussed above the ordering in these monomials corresponds to the
ordering of simple reflexions in a longest element in the Weyl group of gn.

6. Conclusions

Starting from an arbitrary representation of U^Λ^ one can construct representa-
tions for all higher rank semi-simple Lie algebras by "adding" the additional
generators which arise with the adding of a new node to the Dynkin diagram. The
dependence of the constructed representations of Uε{gn) on the algebra UE(gn-ι)
results in representations of quantum groups in dimensions greater than or equal
to NA+(βn)-A+(θn-ι)^ Only comparably very few representations in such dimensions
were previously known. Even more representations, especially highest weight
representations of Uε(gn) can be found by specializing some or all of the free
parameters. Although, the constructed representations do not yet lead to repres-
entations of quantum groups at ε an JV-th root of unity in all possible dimensions
for irreducible representations, one could hope that this problem might be settled
in the future.

The minimal and maximal cyclic representations of Uε(An), which are both
special cases of the above described representations are basic algebraic structures
related to the generalizations of the chiral Potts model in [7,13, 24]. The next step
is to find statistical models related to representations of the other ε-deformed Lie
algebras gn discussed above. In analogy to the Uq(sln) case one would expect that
starting from the affine extension of an ε-deformation of an arbitrary semi-simple
Lie algebra gn one could find algebraic varieties which determine relations among
the spectral parameters to allow the existence and the construction of the intertwin-
ing ^-matrix of two representations. This article is meant to be a small contribu-
tion to the research going in this direction.

But applications of roots of unity representations are not restricted to chiral
Potts type models. Many further applications are found to lie in the development of
other integrable models, conformal field theory (e.g. fusion rules), and areas in
mathematics such as the representation theory of affine Lie algebras or the theory
of semi-simple groups over fields of positive characteristic.

Acknowledgement. I am greatly indebted to M. Jimbo and T. Miwa for many discussions and
their steady interest in this work, and to the Research Institute of Mathematical Sciences, Kyoto
University for its kind hospitality.
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7. Appendix

In the case of applying the construction procedure of Sect. 4 to derive algebra
homomorphisms for Uq(E6), Uq(EΊ) quantum Lie algebras only Uq(Λ2) type rela-
tions in 4.6 were necessary. For the construction of representations in the case of
E8 and F4 it is necessary to use two further relations in Uq(E8) and Uq(F4).

Lemma 7.14. Let fu...,f8be generators in Uq(E8). Then the generator f± com-

mutes with the monomial f^f^f^f^f^f^f^f^f^ as following:

f f(ji) Ah) Ah) Ah) Ah) Ah) Ah) Ah) AJ9)
7 l 7 4 J 5 J 3 J 4 J 1 J 4 J 5 J 3 J 4

— J4 7 5 J3 J4 7 l J4 JS JZ J4 7l

. AJι-l)Ah-l)Aj3-l)f(h-l)AJ5 + l)AJ6 + l)AJ7 + l)f(h + l)AJ9 + l)r , , : , / , π
+ 7 4 J5 J3 J4 Jϊ J4 J5 J3 J4 L ~ Js +7ό +^9 + A J

I AJi-l)AJ2-l)AJi-l)f(h)AJ5 + l)AJ6 + l)AJi + l)f(h + l)Ah)r 7 : , , , , , π
+ J4 J5 J3 J4J1 J 4 J5 J3 ί 4 L —JA ~Jβ + J δ +Jl + l J

+ J4 7 5 J3 J4 Jί J4 J5 J3 J4 L

+ J 4 J5 J 3 J 4 / 1 7 4 J5 J3 J4 L~73~rj7

Λ-J2 -h +u +h

The proof of this lemma is solely based on the v42-type Serre relations which define
the commutation relations among the ft generators.

Lemma 7.15. Let fl9. . . , f4be generators of Uq(F4). Then the action of f3 on the

monomial f^f^fψ^f^f^fψ^ is given by

f Aji) Ah) Ah) Ah) Ajs)AJ6) Ah) Ah) Ah) Aho) f On)
J3J 4 J 3 J 2 J \ J 3 J 2 J 3 J 4 J 3 J 2 J 3

_ f α i - i ) f α 2 + i ) f ( ; 3 ) f θ 4 ) f ( i 5 - i ) f 0 6 - i ) f 0 7 - i ) f ( j 8 ) f 0 9 + i ) f 0 i o + i ) f ( A i + i ) f

-J 4 J 3 J 2 J I J 3 J 2 J 3 J 4 J 3 J 2 J 3 U

~T-J 4 J 3 J 2 J I J 3 J 2 J 3 J 4 J 3 J 2 J 3

x[ji i+79 + l-7s]
i fθi-i)fθ2 + i)fθ'3)fθ4)f(;5-i)fθ"6-i)fα7)fθ8 + i)fθ9 + i)f(;io + i)fθii)

+ 7 4 7 3 J 2 J I J 3 J 2 J 3 J 4 J 3 J 2 J 3

x [2/io+l-77-79]
. Aji-i)AJ2 + i)AJ3)f(h)AJ5-i)AJ6-ί)Aji)AJβ + i)Ah)Ajio + i)fϋii + i)

+ / 4 7 3 J 2 J I J 3 J 2 J 3 J 4 J 3 J 2 J 3

x [7Ί1 + 1—77]

1 Ah -1) f O2 +1) Ah)Au) Ah -1) Ah)Ah) Ah + V f (h +1) Ajio) Aju)

+ 7 4 7 3 7 2 7 1 7 3 J 2 J 3 J 4 J 3 J 2 J 3

x [-2/6+77+79+1]
+ 7 4 7 3 J 2 J \ J 3 J 2 J 3 J 4 J 3 J 2 J 3

x [-75+79+1]
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"TV 4 / 3 J2J1J3J2J3J4 J 3 J 2 J 3

x [-75-77+78 + 1]

. fOi)fO2 +1)Λn)Λu) fϋs)f(J6)f(ji) fUs)Hh)Λho)Λhi)
+ J 4 J 3 J 2 J i J 3 J 2 J 3 J 4 J 3 J 2 J 3

x [-7i+7*2+1] .

The identity of this lemma was obtained using the commutation relations among
fi generators with terms fψ in the cases of Uq(A2\ Uq(B2) and Uq(C2).

With the help of the above lemmas it is possible to construct the representation
of Uε(E8) and Uq(F4) in Sect. 4.
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