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Abstract: We examine a family of finite energy SO (3) Yang-Mills connections over
S4, indexed by two real parameters. This family includes both smooth connections
(when both parameters are odd integers), and connections with a holonomy
singularity around 1 or 2 copies of RP2. These singular YM connections inter-
polate between the smooth solutions. Depending on the parameters, the curvature
may be self-dual, anti-self-dual, or neither. For the (anti)self-dual connections, we
compute the formal dimension of the moduli space. For the non-self-dual connec-
tions we examine the second variation of the Yang-Mills functional, and count the
negative and zero eigenvalues. Each component of the non-self-dual moduli space
appears to consist only of conformal copies of a single solution.

1. Introduction and Statement of Results

1.1 Main Results. Until recently, the phrase "Yang-Mills theory in four dimen-
sions" essentially meant the study of smooth solutions to the (anti) self-duality
equations

*F=±F, (1.1)

where F is the curvature of a connection A, usually with gauge group SU(2) or
SO (3), on a bundle over a Riemannian 4-manifold M, which may or may not have
a boundary. The moduli space of such solutions, up to gauge invariance, gives
topological information about M, a fact which was exploited by Donaldson and
others to make tremendous progress in the topology of 4-manifolds (see [DK] for
an overview).

In recent years the field has expanded in two directions. First, there is the study
of nonself-dual Yang-Mills connections. These are solutions to the full Yang-Mills
equations,

<*5F = 0 , (1.2)
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whose curvature is neither self-dual nor anti-self-dual. It was generally assumed
that, for gauge group SU(2) or SO'(3), such solutions did not exist on bundles over
the 4-sphere, until Sibner, Sibner, and Uhlenbeck [SSU] constructed such solu-
tions on the trivial 5(7(2) bundle over S4 in 1988.

The other, and more important, extension has been to consider finite-energy
(anti)self-dual connections with a holonomy singularity. The first example was
found by Forgacs, Horvath, and Palla [FHP1, FHP2]. The first general results
were the regularity theorems of Sibner and Sibner [SiSil, SiSi2]. The subject
gained attention when Kronheimer and Mrowka [K, KM] used instantons with
holonomy to study embedding of 2-manifolds in 4-manifolds. Since then others
have tried to advance the general theory of such instantons [Rl, R2], but there are
many tricky questions that are still not well understood.

In this paper we consider a family of solutions to the full SO (3) Yang-Mills
equations (1.2) on X = S4\{S + vS-}, where S+ and S_ are linked embedded
copies of RP2. This family contains solutions both with and without holonomy,
and whose curvature is self-dual, anti-self-dual, and non-self-dual. Although only
a few of these solutions have been written in closed form [BoSe], these solutions
can all be well-approximated numerically, and their asymptotic behavior as the
indexing parameters get large is well-understood [SS3]. It is hoped that these
examples will help researchers build an intuition for how singular and non-
self-dual YM connections behave.

The solutions are indexed by two positive real numbers (r, f), which reflect the
holonomy of the connection around S+ and S-, respectively. When r and t are odd
integers, the holonomy about S± is trivial, and the solution can be smoothly
extended to all of S4. These smooth solutions were previously discussed, for gauge
group SU(2), in [SSI, SS2, SS3, BoMo, Bor].

The solutions we consider are all symmetric with respect to an 50(3) action on
S4. By considering only symmetric connections, we reduce the Yang-Mills equa-
tions and the self-duality equations to a system of ODEs, which we call the reduced
YM (or self-duality) equations. Using ODE methods, we then prove:

Theorem 1.1. For each pair of non-negative real numbers (r, ί) there exists a Yang-
Mills connection on the trivial bundle over X with the following properties:

i. The holonomy around S+ is (conjugate to) exp(zπ(r+l)). The holonomy around
S- is (conjugate to) exp(ΐπ(ί+ 1)).

ii. The integral over X of the Chern-Weil form (a.k.a. the fractional Chern number) is
(r2-t2)β.

iii. If r and t are both greater than 1, or both strictly between 0 and 1, then the
solution has non-self-dual curvature.

iv. Ifr^l^t,orίft = 0, then the solution has anti-self-dual curvature. Ift7tl^:r,or
ifr = O, then the solution has self-dual curvature.

Some of these results are not new. The dimensional reduction from 4 to
1 dimensions was developed by Urakawa [U], and was applied by Bor and
Montgomery [BoMo, Bor] to this particular symmetry. In [SSI, SS2] this method
was used to prove the existence of non-self-dual YM connections with r > 1, t> 1.
The case r = l, ί = odd has been studied by Bor and Segert [BoSe] using an
equivariant ADHM construction [ADHM].
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By the Peter-Weyl theorem, deformations of the solutions can be decomposed
into irreducible representations of the symmetry group SO (3). The linearized
Yang-Mills equations for these deformations reduce to a countable collection of
ODE systems, one for each representation. By counting the solutions to these
ODEs, with appropriate boundary conditions, we deduce

Theorem 1.2. If r^.3 and ί = l , then the number of linearly independent regular
solutions to the linearized anti-self-duality equations (i.e. the formal dimension of the
moduli space) generically equals

{r} 2-4, (1.3)

where {x} denotes the greatest odd integer less than or equal to x. Ifr^l^t and
either r<3 or ί < 1, then the dimension generically equals zero.

The mechanism by which the dimension of the moduli space jumps is extremely
simple. Let d be the distance from a point to the singular set S+. The natural
boundary conditions at S+ are that certain components of the connection remain
bounded as d -• 0 if the holonomy around S+ is trivial, and go to zero as d -> 0 if
the holonomy is non-trivial. Solving the linearized anti-self-duality equations in
a particular representation of SO (3) gives solutions that behave like d(r~M)/2> where
M is an odd integer that depends on the representation. If r > M the solution goes
to zero as d -» 0, and so satisfies the boundary conditions. lΐr = M then the solution
approaches a finite limit at d = 0, and so is still admissible. However, if r<M the
solution blows up at 5+ and is disallowed. Counting the contributions of the
representations that have Mrgr, we get formula (1.3).

The boundary conditions that lead to formula (1.3) are natural but not unique.
When r and t are not both odd integers, one has a choice as to how big a space of
connections to consider, and how big the corresponding gauge group should be. By
making these choices in a reasonable but non-standard way, one can get boundary
conditions weaker than those that lead to formula (1.3). These alternate boundary
conditions, which we call weak regularity, give a moduli space with a slightly
different dimension.

Theorem 1.3. If r^.3 and ί = l , then the number of linearly independent weakly
regular solutions to the linearized anti-self-duality equations generically equals

({r} + l ) 2 - 4 (1.4)

when r is not an odd integer, and r2 — 4 when r is an odd integer. If t< 1, then the
dimension generically equals

l (1.5)

when r is not an odd integer, and r2 — 1 when r is an odd integer.

For t=l, these results concur with the general results of Kronheimer and
Mrowka [KM], who studied anti-self-dual connections with orientable singular
sets. As in [KM], the discontinuities in the dimension of the moduli space all occur
when the (50(3)) holonomy is trivial. Notice also that the dimension (1.4) is always
even. This suggests the possibility of computing a Z2-valued Donaldson poly-
nomial on the fundamental class of 5_ (S_ is a deformation retract of S4 — S+).

Direct comparison with [KM] is complicated by the fact that our singular set
S+ is non-orientable. The C 2 bundle associated to our principal bundle does not
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split into a sum of line bundles near S+. It splits locally, but parallel transport
along a generator of πί(S + ) interchanges the two factors. To get a reasonable
"monopole number" /, we must lift to the double cover of S+9 compute the first
Chern number there, and then divide by two. If we take the holonomy parameter
α to be half the fractional part of (r-fl)/2, then l={r}/2 and the "instanton
number" k equals ({r}2 —1)/8. If we take a to be 1/2 minus the fractional part of
(r+l)/2, then / = - { r + 2}/2 and k = ({r + 2}2-1)/8. In either case, / is not an
integer.

With these identifications, the formula (1.4) for weakly regular solutions gives
the same dimension as [KM]'s formula (1.6), where S+ is understood to have genus
1/2 and self-intersection number — 2. Similarly, our formula for the energy agrees
with [KM]'s formula (1.7).

The second variation of the Yang-Mills functional (the YM Hessian) also
decomposes as a direct sum of operators, one for each irreducible representation of
SO (3). This is important for the non-self-dual connections, as it allows us to count
the negative and zero eigenvalues of the Hessian, one representation at a time.
When r and t are small odd integers, numerical diagonalization of the Hessian
indicates that

Index of Hessian of (r, t) connection = . (1.6)

In the (anti)self-dual cases this index is of course zero. In the non-self-dual cases,
this index greatly exceeds the lower bound found by Taubes [Tl], and is always
a multiple of 8.

For the smooth non-self-dual cases we also find that, after gauge fixing,

Nullity of Hessian of (r, t) connection = 12 , (1.7)

regardless of the values of r and t. These zero modes all come from conformal
symmetry, so there appears to be no interesting structure to each component of the
non-self-dual moduli space.

1.2 Outline of Paper. In Sects. 2.1-2.3 we quickly review the dimensional reduc-
tion and the derivation of the reduced Yang-Mills and reduced self-duality equa-
tions. This is largely taken from [SS2], with appropriate changes for having
symmetry group (and gauge group) SO(3) rather than SU(2). These sections are
terse and the proofs have largely been omitted. For a more detailed discussion of
this construction the reader is referred to [SS2].

In the remainder of Sect. 2 we discuss the decomposition of a deformation of an
equivariant connection into representations of 50(3). We also consider the differ-
ence between SO(3) connections and SU(2) connections. Although we consistently
work with SO(3) in this paper, almost all the results apply equally well to SU(2).

In Sect. 3 we study the reduced (anti)self-duality equations and prove The-
orem 1.1

In Sect. 4 we study the linearized anti-self-duality equations and prove The-
orems 1.2 and 1.3.

In Sect. 5 we study non-self-dual solutions to the Yang-Mills equations, and
numerically investigate the index and nullity of the Yang-Mills Hessian, arriving at
formulas (1.6) and (1.7).
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2.1 Symmetry on S4. We consider the symmetry group G = SO(3). Let Ku K2,
K3 be the matrices

(2.1)

and let lh (or η) be the generator of right (or left)-translations by exp(ίKI ). The
vector fields lt are left-invariant (since right-translations commute with left-transla-
tions) and form a basis for the Lie algebra of G. It is easy to check that [/x, Z2] = /3,
etc. If we let βι denote the 1-form dual to /i5 then the Maurer-Cartan equations are
dβ1 =-β2Aβ\ etc. The Laplacian on G, A = - £ . r ? = - £ . / ? , is both left- and
right-invariant.

Let / denote the open interval (0, π/3), and let I denote the closed interval
[0, π/3]. Let fe/ = exp(πXί). We also define some subgroups of G, letting Lι =
{exp(tKi);te[0,2π)}, and letting Γ = {1, ku /c2, fc3}.

Let F ~ R 5 be the space of symmetric, traceless, real 3 x 3 matrices Q, with inner
product <Q, β > = 2Tr(<2<2'). It is useful to work with an explicit orthonormal
basis. Let

V

- 1 0

0 - 1

0 0

0 l \

β i = | 0 0 0

1 0 0

(2.2)

A matrix ^in G = SO(3) acts on V isometrically by conjugation, g(Q) —> ^ β ^ J. The
unit sphere *S4c: K inherits this 50(3) action.

Since all matrices in V are diagonalizable, it is not hard to check that
every QeS4 is related by the group action to a unique Qθ = cos(θ)Q0 + Sin(θ)Q3

with θeL For θel, the isotropy group of Qθ is Γ, so the orbit of Qθ is
three dimensional, and in particular is isomorphic to G/Γ. The isotropy group
of go, which we denote J o , is generated by Γ and L 3 , while J π / 3 , the isotropy
group of <2π/3, is generated by Γ a n d L 2 The orbits of Qo and gπ / 3 are isomorphic
toRP2.

Let X c 5 4 be the union of the three-dimensional orbits, and let Y= I x G. Since
each orbit is isomorphic to G/Γ, we have Y/Γ~ X, with the projection map

s:

(2.3)

It is useful to think of functions on X as Γ-invariant functions on Y.
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The standard metric on X as a subset of 5 4 pulls back under s to give a metric
on Y. The vectors fields {d/δθ, hJ2,h} form a basis for 7Ύ, and are orthogonal
but not orthonormal. d/dθ is a unit vector, but lt has norm /f(0), where

/1(θ) = 2sin(π/3 + θ); /2(0) = 2sin(π/3-0); /3(0) = 2sin(0) . (2.4)

Since dθ and / /?1 form an orthonormal basis of 1-forms, it is easy to write down the
volume form on Y,

1Λβ2Λβ3Λdθ, (2.5)

and the action of the Hodge dual on 2-forms1:

*(dθΛβ1)=-G1β
2Λβ3; *(dθΛβ2)=-G2β

3Λβ1; *(dθΛβ3)= -GJ1 Aβ2 ,

(2.6)

where

n J2J
G 2 = — (73= -—-. (2.7)

71 h h

2.2 Bundle Structures. We now construct 50(3) principal bundles over 7, over X,
and over 54. 50(3) is both the symmetry group of the base and of the fiber. We
denote the symmetry group of the base by G = 5O(3), and the gauge group by
H = 50(3). Let Pγ= Yx H be the trivial bundle. H acts on the right,

{Θ9g9h)y-+(θ9g9hh')9 h'eH, (2.8)

while G acts on the left,

(6U,/I)H+(0,0'<7,/Z), g'eG. (2.9)

These two actions obviously commute. We next define an equivalence relation

(θ9g9γh)~{θ,gγ9h), yeΓ , (2.10)

and define Px = PY/~. Px is a principal 50(3) bundle with base space Y/Γ = X.
For considering connections with holonomy, Px is all we need. However,

we also wish to consider the case where the holonomy is trivial and the bundle
and connection can be extended to all of 54. We start with the trivial bundle
Pf = TxGxH, and mod out by an extension of the equivalence relation ~ . The
equivalence relations at 0 = 0, π/3 involve the isotropy subgroups Jo and J π / 3 , so
the base space for our bundle will be Xu{G/J 0}u{G/Jπ / 3}=Xu5 + u5_ = 5 4 .

Let r and t be odd integers. We define the equivalence generated by

{Θ,gy9h)~{θ9g,yh)9

(O,0y,/ϊ)~(O,#,y-'7ι), yeL, ,

^ Λ J - ί π A ^ y - ' Λ ) , yeL2 . (2.11)

Since k3 is in both Γ and L 3 , we need r to be odd for this definition of ~ to be
consistent. Similarly, t must also be odd, as k2 is in both Γ and L 2.

1 In [SS2] the orientation on S4 and the sign of the Chern number were chosen opposite to
standard conventions. As a result, some of the formulas in this paper differ in sign from those of
[SS2].



Symmetric Family of Yang-Mills Fields 263

We let P{Yit) = Pγ/~. To see that this is in fact a bundle over SA, we construct
local sections. Away from the orbits of Qo and β π / 3 we have the canonical section

κ:(θ9g)^{θ9g9l) (2.12)

Next we construct a local section over a neighborhood U of Qo. The local product
structure near g π / 3 is entirely analogous.

We first specify the neighborhood U. Let D be the open disk

y2

2<(π/4)2} , (2.13)

and let S = R (mod 2π) be a circle. The map

φ: DxS-^G

(2.14)

is a diffeomorphism of D x 5 onto its image, which we call N. N is clearly invariant
under right translations by Z 3 . Letting M = [0, π/6) xNaY, we take (7 to be the
image of M e f under the map s (Eq. 2.3).

To construct a section, we first define a map φ: N -* H,

φ(g) EE exp(ry 3K 3)eH , (2.15)

The section

δ: M-+Pr,t

(2.16)

passes to the quotient, giving a local section of Pr t over the neighborhood U of
βo in S4.

2 J Dimensional Reduction. A connection on Px is equivalent to a Γ-invariant
connection on Pγ. It must therefore take the form

A = £αy(0, <?)/?' ® Z,- + £yi(0, ^)rfθ ® /,-, (2.17)
ίj ί

where α o transforms under Γ in the same way as β* ® (,-, and yt transforms like lt.
We call functions that transform like ϊu e.g. α 3 2 ? ot23, and y1? "x-type." Functions
like α 3 1 , α 1 3 , and y2? which transform like l2, are called "y-type.,' and functions like
α 2 i , α 1 2 , and y3, which transform like /3, are called "z-type." Replacing g with #&!
flips the sign of the y-type and z-type functions, replacing g with gk2 flips the sign of
the x-type and z-type functions, and replacing g with gk3 flips the sign of the x-type
and y-type functions. The functions α l l 5 α 2 2 ? and α 3 3 are invariant under Γ.

We next restrict our attention to G-equivariant connections on Px. This means
that the functions α^ and yf depend only on 0, not on g, and so are necessarily
Γ-invariant. As a result, all the x-type, y-type, and z-type functions must be
identically zero. A G-equivariant connection on Px therefore takes the form

A=-a1(θ)β1 ® h-a2(θ)β2 ® I2~a3(θ)β3 ® Z3 . (2.18)

We refer to the triplet of functions a = (a1, a2, α3) as a reduced connection.
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Given an equivariant connection A, the curvature F is easily computed:

F = ((αx + a2a3)β2 A β3-a[ dθ A β1) <g> /^(cyclic), (2.19)

where ' denotes d/dθ, and (cyclic) denotes the other cyclic permutations of the
indices (1,2,3). By Eq. (2.6) the (anti)self-duality equations are then

a3=± , (2.20)

where + denotes self-duality and — denotes anti-self-duality.
From F we compute the Yang-Mills functional, with the result

(fli + α2fl3) (ai + aia?,)

G G G3

For equivariant connections, the Yang-Mills equations d*F = 0 are equivalent to
the Euler-Lagrange equations for the one-dimensional functional S(a) [SS2].

Since G3(θ) is bounded away from zero near 0 = 0, a finite-action reduced
connection must have a'3 integrable near 0 = 0, so the boundary value r = a3(0) is
well-defined. Similarly, t = α2(π/3) is well-defined. Also, since Gx and G2 have
zeroes at θ = 0, finite-action reduced connections must have

0 . (2.22)
0-0 0-0

If r+ ± 1, these conditions imply that both αi(0) and a2(Q) exist and equal zero.
Similarly, if ί φ ± l then a1(π/3) = a3(π/3) = 0. We call a finite-action reduced
connection with a3(0) = r and α2(π/3) = ί a reduced (r, t) connection.

The boundary values r and t are related to the holonomy of the connection
A around S+ and S_, respectively. For fixed θel, we consider the path
(0, exp(τK3)) on 7, where τ runs from 0 to π. This path projects to a closed loop on
X, from (?0 to itself. The tangent vector d/dτ along the path is /3, so parallel
transport is given by intergrating a3 along the path. The point (0,1, 1) in Pγ is
transported to (0, exp(πK3), exp(πα3(0)K3)). Under the identification (2.10), this is
equivalent to (0,1, exp((l H-α3(0))πK3)). Taking the limit as 0 -*0, we see that the
holonomy around S+ is exp((r + l)πK3), which is trivial if and only if r is an odd
integer. Similarly, the holonomy around S- is exp(( ί+l)πK 2 ) , which is trivial if
and only if t is an odd integer.

Finally, we compute C 2 , the integral of the second Chern-Weil form:

(2.23)

Since X is an open manifold, C 2 need not be an integer, depending on the
holonomy around the two-dimensional singular sets [FHP1,FHP2]. From
Eq. (2.19) we immediately get

Tr{F A F) = (a'1(a1+a2a3) +cyclic) dθ A β1 A β2 A β3

A β1 A β2 A β3. (2.24)
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Integrating first over the symmetry group and then over /, we get

C2 = j ^Ld(a2

1 + a2

2 + a2

3 + 2aίa2a3) = CS(0)-CS(πβ), (2.25)
i o

where

CS(0) = (a1(θ)2 + a2(θ)2 + a3(θ)2 + 2a1(θ)a2(θ)a3(θ))β (2.26)

is the reduced Chern-Simons function.
If r φ + l , then fll(0) = α2(0) = 0, and CS(0) = r2/8. If r = ± l , then CS(0) =

r2/8 + limβ^o(«i(θ) + rα2(0))2/8. This second term is zero (Eq. 2.22), so we still have
CS(0) = r2/8. Similarly, CS(π/3) = ί2/8, and so C 2 = ( r 2 - ί 2 ) / 8 .

The reduced self-duality equations (2.20), the Yang-Mills functional (2.21), and
the reduced Chern-Simons functional (2.26) are left unchanged if we flip the signs
of two of the three functions (aua2,a3). This is a consequence of gauge invariance,
since global gauge transformations by kl9k2, or k3 flip the signs of a2 and <z3,
ax and a3, or aγ and a2, respectively. Without loss of generality, we can therefore
restrict our attention to non-negative r and t.

2.4 Classifying deformations. Once we have established the existence of equi-
variant Yang-Mills connections, we will wish to consider infinitesimal deforma-
tions of these solutions. These deformations need not be equivariant, and can take
the general form

. (2.27)

Since the metric on X and original solution A are invariant under the action of G,
the solutions of the linearized self-duality equations

*δF=±δF (2.28)

and the eigenspaces of the Yang-Mills Hessian can be decomposed into irreducible
representations of SO (3), and in particular can be chosen to be eigenfunctions of the
Laplacian.

An orthonormal basis for L2 (SO(3)) is given by the functions

¥Ί,mr.«i(0)> * = 0, l ,2, . . . , m Γ = - U - / , . . . , Z , m,= -/, 1 - 1 , . . . , / ,
(2.29)

where Ψιtmr,mι is an eigenfunction of the Laplacian with eigenvalue /(/+1), of —ir3

with eigenvalue mr, and of — il3 with eigenvalue mz. Since right-translations and
left-translations commute, / and mz are preserved by left-translations, while / and
mr are preserved by right-translations.

As a result, we may fix / and mz while looking for eigenvalues of the Hessian and
solutions of the linearized self-duality equations. Moreover, for fixed / either
a solution exists for all mt or for none. We can therefore do our calculations for
a single value of mh and then multiply the multiplicity by 2/+1 to account for the
other values. We choose a useful basis as follows:

Proposition 2.1. There exist real functions Ψιm, m = l , 2 , . . ., / and Ψιto, which,
together with their left translates, span the Ith eigenspace of the Laplacian on
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SO (3), and have the following properties:

l.Ifm is odd, then Ψιm is an x-typefunction and Ψj^m is y-type.
2. If m is even, then Ψim is a z-type function and Ψj~m is invariant under Γ.
3. Ψι o is z-type if I is odd and invariant if I is even.
4.

hΨf;m= ±mΨΪn . (2.30)

Proof We start with the functions ¥%,m Their span, which we call W9 is a 2/-f 1-
dimensional representation of the right-action so SO (3). Together with their left-
translates, the ΨιtOjmS span the /th eigenspace of the Laplacian. Since Ψ^o,m

is an eigenfunction of Z3 with eigenvalue im, we have ΨltOtm(gQxp(πK3)) =
( — \)mΨUOfm(g). Thus for m odd ΨιtOtm must be a linear combination of x-type and
y-type functions, and for m even Ψι,0,m must be a linear combination of z-type
and invariant functions.

Because of its own transformation properties under Γ, Z3 maps x-type and
y-type functions to each other (e.g. if φ is x-type then l3φ is y-type) and maps z-type
and invariant functions to each other. Since Ψιt0,m is a n eigenfunction of Z3, ί3 must
map the x-type (z-type) and y-type (invariant) parts of ΨιtOttn to multiples of each
other. This also shows that none of these parts are zero. The projection P + onto the
x-type and z-type parts of a function can be written in terms of right-translations,

(P+ψ)(g) = (ψ(g)-φ(gk2))/2, (2.31)

so for any ψeW, P + xj/eW.
For m>0, let ψ£m = P+ΨltOtm, rescaled to have unit norm, and let

ΨΓtm = hΨtmlm. Since ί\ commutes with P+9 l\Ψtm= -m2Ψ^m, and Eq. (2.30)
follows. It also follows that Ψ^m has unit norm. To complete our basis we take

Any two of these functions either correspond to different eigenvalues of l\
or to different transformation properties under Γ, and so must be orthogonal.
Our collection, which contains 21 + 1 elements, is therefore an orthonormal basis
for W.

Ψl0 must be either z-type or invariant. It cannot be a combination of both, or
else we could decompose it into P*o and end up with 21 + 2 linearly independent
functions in W. To see which type Ψuo is, we use a simple counting argument.

The dimension of the x-type subspace of W equals the dimension of the y-type
subspace, since Z3 maps x-type and z-type functions to each other. This is also the
dimension of the z-type subspace, as l2 maps x-type and z-type functions to each
other. Of the basis elements Ψf;m9 there are [Z/2] z-type functions (m even) and
[(/+l)/2] x-type functions (m odd), where [x] denotes the integer part of x. To
keep the total number of x-type and z-type basis elements equal, ΨUQ must be
z-type if / is odd, and invariant if / is even. •

2.5 SO (3) vs. SU(2). We have done our construction for symmetry group
G = SO(3) and gauge group H = SO(3). However, the construction was first carried
out for SU{2% and is nearly identical.

In the SU(2) case, we take symmetry and gauge groups G = H = SU(2), and
think of SU(2) as the set of unit quaternions. Since G is the double cover of G, the
action of G on S4 lifts to an action of G. The isotropy group of Qθ is now the
8 element group Γ = { ± 1, ± ί, ±j9 ± k}. To get a principal bundle over X we define
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the bundle Pγ = IxGxH and mod out by the equivalence relation (2.10), where
now we think of g, h, y as arbitrary elements of G, H, and Γ respectively.

The dimensional reduction procedure is identical to that of Sect. 2.3, with
Eqs. (2.17) through (2.25) remaining true. The only difference is in the interpreta-
tions of the two numbers (r, ί). For SU(2\ the holonomy around S+ is
exp(π(r + l)/c/2), rather than exp(π(r+l)K 3 ) , and the holonomy around S- is
exp(π(ί + 1)7/2). Note that the holonomy for r is not conjugate to that for — r, so an
(r, t) SU(2) connection cannot be gauge-equivalent to a ( — r, t) connection, an
(r, — t) connection, or a (— r, — t) connection.

Although the (4-dimensional) connections are not gauge-equivalent, the one-
dimensional equations are still invariant under a pair of sign flips. Iϊa = (a1,a2, a3)
is a reduced connection, then the four reduced connections (aua2,a3),
(α l 5 — α 2, — α3), ( — au α 2, — a3) and ( — α 1 ? — a2, a3) all have the same curvature (up
to sign), have the same Chern number, are all self-dual if any one is, and are all
Yang-Mills if any one is. As SO(3) connections they are all gauge-equivalent, but as
SU(2) connections they are all distinct.

Finally we consider deformations of SU(2) connections. Since — l e Γ acts
trivially on lt and β\ our most general deformation is composed of even functions
on G. However, even functions on G are in 1-1 correspondence with arbitrary
functions on G/Z2 = G, so the classification of deformations of SU(2) connections is
identical to that of SO (3) connections.

3. Existence and Classification of Yang-Mills Solutions

In this section we prove the existence of a family of equivariant Yang-Mills
solutions, parametrized by r and t. Specifically,

Theorem 3.1. For each pair of non-negative real numbers (r, t) there exists a Yang-
Mills (r, t)-connection on Px. Furthermore:

i. Ifr and t are both greater than 1, or both strictly between 0 and 1, then the solution
has non-self-dual curvature.

ii. Ifr ^ 1 ̂  ί, or ift = 0, then the solution has anti-self-dual curvature. Ift^l^r,orif
r = 0, then the solution has self-dual curvature.

This, together with the general properties of (r, ί) connections shown in Sect. 2,
gives Theorem 1.1. Two theorems were proven in [SS2] which, taken together,
establish the case r> 1, t> 1.

Theorem 3.2. [SS2] For each pair of non-negative real numbers (r, t) with r + 1 , t + 1 ,
there exists a Yang-Mills (r, t)-connection on Px.

Theorem 3.3. [SS2] There do not exist any finite-action self-dual (r, t)-connections
with r>\. There do not exist any finite-action anti-self-dual (r, t)-connectίons with

To complete part (i) of Theorem 3.1, we must prove an analog of Theorem 3.3
for 0 < r < 1 and 0 < t < 1. This is done in Sect. 3.1. To prove part (ii) of Theorem 3.1,
we construct solutions to the (anti-) self-duality equations near 0 = 0 and show that,
for appropriate values of r and t, these solutions can be extended to θ = π/3. This is
the content of Sect. 3.2.
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3.1 Non-self-dual Yang-Mills connections: 0<r , ί < l .

Theorem 3.4. There do not exist any finite-action anti-self-dual (r, t)-connections with
r<\ and fφO. There do not exist any finite-action self-dual (r, t)-connections with
t < 1 and r + 0.

Proof We prove the first statement, the second being similar. Let a be a finite-
action anti-self-dual (r, ί) connection with 0 < r < l . Then, by the finite action
boundary conditions, aί(0) = a2(0) = 0. Let ε = (l— r)/2. Since α3 is continuous,
there is a neighborhood AT of θ = 0 where 0 < α 3 < 1 — ε.

The function a(θ) satisfies the anti-self-duality (ASD) equations

, (α3 + αiα2) ,~ n

a3= . (3.1)

It is convenient to rewrite the first two of these equations as

. . .. l + α , / l 1

If we let

-(GΓ^Gί^ίαf-αl). (3.3)

The first two terms on the second line are negative semi-definite on N. Moreover,
since (Gϊ1 + G2"1) has a pole at θ = 0 while (Gϊ1 — G^ 1 ) does not, and since
1 — α3 > ε on N, the third term is dominated by the second on some smaller
neighborhood M of zero. Thus Γis non-increasing on M. However, 7(0) = 0, so
Γmust be exactly zero on M, so ax = a2 = 0 on M.

If a1=a2 = 0 at any point in (0, π/3), then they are zero on all of (0, π/3), as
Eqs. (3.2) are linear in alt2 So t = \imθ->π/3a2(θ) = 0. Π

There is an anti-self-dual (r, 0) solution for any r. It is

V (3.4)

The integral of 1/G3 diverges at θ = π/3, so α3(π/3) = 0, as it should. There is also
a self-dual (0, ί) solution for any t, namely

dy \

f (3.5)

5.2 Anti-Self-Dual Yang-Mills Connections: r ^ l ^ ί . In this section we prove

Theorem 3.5. For each pair of real numbers (r, t) with r ̂  1 ̂  ί ̂  0, ί/ierβ
a finite-energy solution to the reduced ASD equations with α3(0) = r αra/ α 2(π/^) — f

For eαcfo ί ^ l ^ r ^ O ί/iere exists a finite-energy solution to the reduced SD equa-
tions.

We prove only the first statement. The proof of the second is completely
analogous. We begin with local analysis near θ = 0.
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Lemma 3.6. Suppose r ^ l . Then for any constant c there exists a solution to the
reduced ASD equations on a neighborhood of θ = 0, of the form

. (3.6)

Proof We solve the ASD equations by iteration. Let φ 3(#) = exp( — \Θ

Q land
\ 2>\J ) /

let alf2 = φ\a(θ), a n d ^ι,2 = Φ\,i{θ) be solutions to the linear ODE system

(3.7)

We can choose our normalizations such that

Let af?2 = cφ{a, α(

3

0) = r φ 3 , and let af+1) be solutions, of the form (3.6), to the
differential equations

β<*+ 1>'= _ (

aVaf)/G3. (3.9)

These solutions can be written explicitly, using the method of variation of para-
meters:

(3.10)

where

and ^(^)- l/(φl(} ;)^(y)-^(y)^(} ;))=-θ/2 + O(^2). For sufficiently small θ,
a(k + 1) — a(k) is (pointwise) small compared to a(k) — a{k~ι\ so the iteration converges.
Letting ai = \imk^ooa\k) we get our desired solution, of form (3.6), to the ASD
equations (3.1). •
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Note that, if c is positive, then for 0 sufficiently small a3(θ) and a2(θ) are
positive and a1(θ) is negative. We next prove that these signs persist for all 0.

Lemma 3.7. Suppose a(θ) is a solution of the reduced ASD equations, and that at
some point 0oe(O, π/3), a2 3(θo)>0>aί(θo). Then for all 0e(0o,π/3), a23(θ)>
0>a1(θ).

Proof. Suppose the conclusion is false. Then there is a smallest value of 0, call it 0 t ,
where one (or more) of the αf's is equal to zero. If two or three of the functions are
zero at 0 l 5 then the ASD equations imply that they are zero for all 0, and in
particular at 0O, contradicting the assumption. So all we need rule out is the
possibility that exactly one of the a s is zero at θί.

Suppose a3(θ1) = 0 (the other two cases are similar). Since a3(θ) is positive
for all 0e(0 o,0i) 5 d'3(θι) cannot be positive. However, α'3(0i) =
— a1(θ1)a2(θ1)/G3(θ1) is positive. Contradiction. •

Combining Lemmas 3.6 and 3.7, we see that there is a 1-parameter family of
solutions to the ASD equations, with definite sign properties. However, it is not
immediately clear whether a given solution is defined on all of [0,π/3] or just on
a neighborhood of zero, and whether it has finite or infinite energy. The finite vs.
infinite energy question is resolved by the following lemmas.

Lemma 3.8. Suppose a(θ) is a solution of the reduced ASD equations with r > 0 , and
CS(0) is the reduced Chern-Simons functional. The action S(a\ restricted to any
subinterval (0O, 0i)c=(O, π/3) is 8π 2 (CS(0!)-CS(0 o )) Furthermore, either

1. a is a finite-action reduced connection defined on all o/[0, π/3], CS(0) is positive
for all 0e(O, π/3), and S(a)^π2r2, or

2. There is a point θoe(0, π/3) such that CS(0O) = O, and a has infinite action, (a may
or may not be defined on all of [0, π/3]).

Proof If the curvature FA is anti-self-dual, then the Chern-Weil form equals l/8π2

times the action density. Integrating the Chern-Weil form first over the symmetry
group and then over (0O, 0χ) we get C S ^ ) — CS(0o). Integrating the action density
we get the action.

1) Now suppose a is a finite-action ASD connection. We first show that a is defined
on all of [0, π/3]. We already know that a is defined on some neighborhood [0, <5].
Since G3 is bounded below on [£, π/6], finite action implies that a3 is of finite
variation on [(5, π/6] (see [SS2] for the precise estimates), and in particular is
bounded. Given bounded a3, the equations for α1 > 2 are linear with bounded
coefficients, and so aίi2 cannot blow up on [(5, π/6]. Similarly, G2 is bounded below
on [π/6, π/3], so a2 is bounded, so the equations for ali3 cannot give blowup at any
point prior to π/3. Thus a is defined on all of [0, π/3). The finite-action boundary
conditions then give finite limits at π/3.

The finite-action boundary conditions at π/3 also imply that CS(π/3) = ί 2 ^ 0 .
For any point 0oe(O,π/3), CS(0o) = ί2 + (action on (0, π/3))/8π2>0.

2 2 2 2 2 2

2) If the action is unbounded, there is a point 0O where the action on [0, 0O] equals
π 2 r 2 . Since CS(0) = r2/8, CS(0o) must equal zero. •
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Note that CS(0) is a non-increasing function of θ. If we can show that CS(Θ) is
positive in a neighborhood of π/3, then it must be positive everywhere and a has
finite action.

Lemma 3.9. / / O < α 2 ( 0 ) ^ l , then CS(θ)>0.

Proof.

CS(0) = {a2

2 + a2

1+a2

3 + 2a1a2a3)β

2 2 ϊ l (3.12)

As long as 0 < α2 ίg 1, the first term is positive definite and the remaining terms are
positive semi-definite, so the sum is positive. •

If we can maintain α2 ^ 1 in a neighborhood of π/3, then we can prove that a is
a finite-action solution. The key estimate is the following:

Lemma 3.10.

1. Suppose O ^ 0 1 ^ 0 2 = ^ = 1/10. If the energy between θι and θ2 is bounded by
a constant π 2 M 2 , then |α 3(0i) — a3(θ2)\^2Mδ. If the energy between 0 and θ2 is
bounded by π 2 M 2 , then \r-a3(θ2)\^2MΘ2.

2. Suppose π/3 -1/10 ^ π/3-<5^ 0 ^ 0 ^ π/3. If the energy between θι and θ2 is
bounded by a constant π 2 M 2 , then \ a2 (θ ί) — a2 (θ2) | ̂  2Mb. If the energy between
θλ and π/3 is bounded by π 2 M 2 , then | ί - α 2 ( 0 1 ) | ^ 2 M ( π / 3 - 0 1 ) .

Proof (1) G3 is a decreasing function, and for y< 1/10 we have G 3 (y)> l/(4y). As
a result,

^ 4δ2 J G 3();)(α3(};)) 2^^4M 2(5 2 . (3.13)
θl

The bound on \r — α 3 (0 2 ) | then follows from taking Θ1=O and δ = θ2. The proof of
statement 2 is similar, as G2(3/) = G3(π/3 — j/).

Proposition 3.11. Gii en r > 0 αnrf εe(0, 1), there exists a δ such that

1. Every ASD reduced connection a defined on [0, π/3 —(5] wit/i α3(0) = r and
0 < a2 (π/3 — 5) < 1 — ε can be extended to be a finite-action ASD connection on all
o/[0,π/3] vWί/z |a 2 (π/3)-a 2 (π/3-<5) |<β.

2. No ASD reduced connection defined on [0, π/3 — <5] w/ί/z a3(0) = r and with
a2(πβ — δ)> 1 +ε can be extended to a finite-action ASD solution on [0, π/3].

Proo/ Let δ = min( 1/10, ε/(2r)).

1) Suppose 0<a 2 (π/3 —£)< 1 — ε and a cannot be extended to a finite-action ASD
connection on all of [0, π/3]. Then by Lemma 3.8 there must exist a first point
θ2 where CS(#2) = 0. Let θλ = π/3-δ. By Lemma 3.9 CS(0!)>O, so θ2>θί. Also by
Lemma 3.9, a2(θ2)>l, so |α 2 (# 2 ) — α 2 (0i) |>ε. However, the energy between
θ1 and θ2 cannot be greater than the total energy between 0 and 02, which by
Lemma 3.8 is π 2 r 2 . So by Lemma 3.10, |α 2 ($ 2 ) — a2(θ1)\^ε, which is a contradic-
tion. The bound on α2(π/3) also follows from Lemma 3.10.
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2) Now suppose α2(π/3 — δ) > 1 + ε. If a can be extended to a finite-action solution
on [0, π/3], then the energy between π/3 — δ and π/3 must be less than π2r2 (by
Lemma 3.8). By Lemma 3.10, ί^α 2 (π/3 —<5) —ε> 1. But by Theorem 3.3 there are
no finite-action ASD connections with t> 1. •

Proposition 3.11 gives a fairly coherent description of the family of ASD
solutions given by Lemma 3.6. For c = 0 we get the explicit solution of Eq. (3.4). As
c increases, a2(θ) increases for any fixed θ, and in particular t increases. As long as
t remains less than 1, the solution has finite energy. Eventually c hits a critical
value, which we call cu for which t — 1. For c slightly greater than c^ we get infinite
energy solutions on (0, π/3). The limit ί = α2(π/3) still exists (and is greater than 1),
but a1 and a3 diverge as θ approaches π/3. Eventually c reaches another critical
value, which we call c 2, after which the solution blows up prior to π/3. To complete
the proof of Theorem 3.5 we must show that cx is neither zero nor infinite, and that,
for ce[0, Cx], t varies continuously with c.

The critical value c2 is not needed for the proof of Theorem 3.5. We merely
remark, without proof, that it corresponds to ί = 2.

Lemma 3.12. Let r Ξ> 1 be fixed and let ac denote the ASD solution of Lemma 3.6 with
constant c. Let c1=inϊ{c\ac has infinite action). Then

1. If CιE(0,co\ then aCί is a finite action connection with ί = l.
2. The boundary value t is a continuous function of c for ce[0, c±].
3. cx 6(0,0)).

Proof 1) For small #, it is clear from Eq. (3.6) that ac(θ) depends continuously on
c. Since solutions to ODE's depend continuously on their initial conditions, a°(θ)
must depend continuously on c for any 0e(O, π/3) such that ac(θ) is defined.

Let Sδ(a) be the energy of the reduced connection a between θ = δ and
θ = π/3 — δ. For ASD connections, the derivative and non-derivative terms are
equal, so

TY^^^^^±^\ (3.14)

As c -+c1 from below, ac approaches αCl pointwise. Furthermore, all of the αc's with
c < cγ have energies bounded by π2r2 (Lemma 3.8), so we can find a fixed bound for
ac on [5, π/3 — δ ] , independent of c, as in the proof of Lemma 3.8. Since the
integrand for Sό(ac) approaches that of Sδ(aCl) and is bounded, Sδ(ac) approaches
Sδ(ac>). But Sδ(ac)^S(ac)^π2r2, so Sδ{aCί)^π2r2. Finally,

S(aCl) = limSδ(aCl)Sπ2r2<oo . (3.15)

Since aCί has finite action, t = ac

2

1(π/3) must exist. It is non-negative (Lemma 3.7)
and cannot be greater than 1 (Theorem 3.3). We next show that t cannot be less than 1.

Suppose t< 1. Let ε = (l -t)/3, and let <5 = min(l/10, ε/(2r)). Then, by Proposi-
tion 3.11, \t — aγ(πβ — δ)\ <ε, so aΫ {π/3 — δ)<l —2ε. But then for all c sufficiently
close to cι, ac

2(π/3 — δ) < 1 — ε, so by Proposition 3.11 all such αc's have finite action.
This contradicts the definition of c^.

2) By Lemma 3.10, the family a2 is uniformly equicontinuous near θ = π/3 for
c^Ci. This, combined with the continuous dependence of ac

2(θ) on c for fixed
θ<π/3, gives continuous dependence of t = ac

2(π/3) on c.
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3) To show that cx>0 we pick ε = l / 2 and let <5 = min(l/10, ε/(2r)). Since
a2 (π/3 — δ) = 0, for all sufficiently small c we have 0 2 (π/3 — <5) < 1 — ε, so αc has finite
action. Thus c1>0.

To show that c ^ α o , we show that for sufficiently large c, ac has action
greater than π2r2, and so by Lemma 3.8 has infinite action. We do this by choosing
a c so big that either there is energy greater than π2r2 in a small interval (0, <5),
or a2(δ) is so big that it takes energy greater than π2r2 on (<S, π/3) to bring a2

back down.
First we bound the variation of α 3 . By Lemma 3.10, if the action between 0 and

θ is bounded by π 2 r 2 , then

\a3(θ)-r\^2rθ . (3.16)

Next we look at the growth of \a1—a2\. By Eq. (3.2),

| G Γ 1 - G 2

1 | / 2 , (3.17)

where we have used the fact that aγ and a2 have different signs (Lemma 3.7), so
\aγ— a2\>\a1+a2\. Comparing this to the growth of θ(r~1)/2 we see that

-G,11/2 . (3.18)

The integrals on the right-hand side can all be bounded, independent of c, using
(3.16). As a result, for any small <S, by choosing c large enough we can force
\a1(δ) — a2(δ)\ to be as large as we wish. If we can prove the bound \a1{δ) + a2(δ)\
<\a1(δ) — a2(δ)\/2, independently of c, then we will have forced a2(δ) to be
arbitrarily large, and we will be done.

However, by Eqs. (3.2), | α 1 + ^ 2 Γ ^ | ( α 3 - l ) ( G Γ 1 - G 2 " 1 ) ( α 1 - α 2 ) | / 2 . Integrat-
ing this from 0 to 0, using (3.16) and the fact that \a1—a2\is an increasing function,
gives our desired bound on \aι + a2\. G

Proof of Theorem 3.5: For any fixed r ^ 1, consider the family of functions ac with
ce[0, Ci]. These are all finite-energy solutions to the ASD equations. Since t de-
pends continuously one, c = 0 implies ί = 0, and c = Cχ implies ί = l. Therefore as
c increases from 0 to c l 5 ί must take on all values between 0 and 1. •

Theorems 3.2, 3.3, 3.4, and 3.5, together with the explicit solutions of Eqs. (3.4)
and (3.5), cover all the cases of Theorem 3.1.

4. Anti-self-dual Connections

In this section we take r ̂  1 ̂  t and look at deformations of the anti-self-dual YM
solutions of Theorem 3.5. The goal is to prove Theorems 1.2 and 1.3, which give the
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formal dimensions of the moduli spaces of anti-self-dual connections with appro-
priate boundary conditions. These proofs appear at the end of Sect. 4.4.

In Sect. 4.1 we derive the linearized (anti)self-duality equations for deformations
of the connection. These form a countable collection of linear ODE systems, one
for each representation of the symmetry group SO (3). We also write down an
appropriate gauge condition. Finally, we compute the second variation of the
Yang-Mills functional (i.e. the Hessian).

In Sect. 4.2 we derive appropriate boundary conditions for the ODEs of
Sect. 4.1. The boundary conditions differ, depending on whether r is an odd integer
or not. When r is an odd integer the boundary conditions at θ = 0 follow from
smoothness on S4. When r is not an odd integer we have a choice of boundary
conditions, depending on how we define our space of connections and our gauge
group. We consider both the strongest reasonable boundary conditions, which we
term "regularity," and the weakest reasonable conditions, which we term "weak
regularity."

In Sect. 4.3 we find approximate solutions to the linearized ASD equations, and
show that these solutions have the same asymptotic behavior near θ = 0 as the
exact solutions.

Finally, in Sect. 4.4 we compute the dimension of the moduli space. For each
representation of SO (3), we compute the dimension of the stable manifold of the
ASD equations near θ = 0 and θ = π/3. For generic metrics these manifolds intersect
transversally, so we can compute the dimension of the space of admissible solutions
to the ASD equations. Summing over all representations we get the dimension of
the moduli space. We get two sets of answers, one for regular solutions and one for
weakly regular solutions.

4.1 The ASD Equations. Let a = {au a2, a3) be a reduced (r, ί) connection, corres-
ponding to an equivariant Yang-Mills connection A. We wish to consider defor-
mations of A. As discussed in Sect. 2.4, these take the general form

. (4.1)

One easily establishes the following four propositions. Propositions 4.1,4.3, and 4.4
are direct computations, while Proposition 4.2 follows from Proposition 4.1 and
Eqs. (2.6).

Proposition 4.1. The first variation of the curvature is given by

δF = dA(δA)

+ (l2a33-l3a23-(χί3 + a2(x3ί)(233) +cyclic , (4.2)

where (Ojk) and (ijk) are shorthand for dθ A βj <g) lk and βι A βj (x) lk, respectively, and
' denotes d/dθ.
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Proposition 4.2. The linearized anti-self-duality equations *<5F = — δF are

) = {l3ccίl-lίa3ί-GC21+a3oc12) ,

) = (l3a12-l1a32-a22-a1a33-a3a11) ,

G2{oc'23-l2y3-a2y1) = (l3oc13-

(4.3)

Proposition 4.3. The covariant divergence of δΛ is

Γ (/l Λ Λ 71X ] 7\ —J- + -2 + -2 + f f f \h
L J i ί 2 J 3 hhh J

l2a22 I3(x32-a3a31 {fιf2f3y2)'
+ +

(Λ/2/3 X Ί ,
Jr2 + f2 + /2 + / / /

/ 1 7 2 J 3 hhh

Proposition 4.4. The Hessian is given by

δ2S = < δF, δF > + 2< F, £ 2 F > , (4.5)

where the second variation of the curvature is

+ cyclic . (4.6)

4.2 Boundary Values. We wish to study the linearized anti-self-duality equations
(4.3), together with the gauge-fixing condition d\(δA) = Q. We restrict our attention
to a particular representation of 50(3), and decompose the functions 0^(0, g) and
7ί(0, g) along the basis of Proposition 2.1. That is, we write

αi3(0,0)= Σ α73(0)n«(0), (4.7)
m>0, odd

with similar expansions for the other components of α and y. The ASD and
gauge-fixing equations then become a system of ODEs for the functions α j and
yf1 on the interval [0, π/3]. The question is what boundary conditions to impose at
0 and π/3. The answer depends on r and t.
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Proposition 4.5. Let r be a positive odd integer, let A be an equivariant connection
that is smooth on a neighborhood of Qo, and let δA be a deformation of A that is
smooth near Qo. Then, with the exception of the 6 modes listed below, all components
of a and y are zero at 0 = 0, and a™j(0) = 0for all j , m.

^3, then the 6 exceptional modes are as follows:

1. #23(0) — —αi3(0) may o e nonzero.

2. α33(0) = 2^3(0) may be nonzero.

3. -α r

2 2 1 (0) = α r ΰ 1 (0) = α r

1 2 1 ( 0 ) - α 2 I 1 ( 0 ) may be nonzero.

4. αr

2^
 1(0) = αr

1ί ^ 0 ) = - α 2 t 1 ( 0 ) = α r

1ί 1(0) may be nonzero.

5. α 3 I 2 / (0) = αr322/(0) = 2 y Γ 2 ( 0 H ~2yΓ 2 (0) may be nonzero.

6. α 3 t 2 ' (0) = α32
2 /(0) = 27 r

1

+ 2(0)= -2y 2

+ 2 (0) may be nonzero.

lfr—\, then the exceptional modes 1, 2, 4 and 6 are as before. However, in place of
modes 3 and 5 we have

3/ If I is odd then oci2(0) = α 2 1(0) may be nonzero.
If I is even then α?χ (0)= — α§2(0) may be nonzero.

5/ αJi(O)= -α&(0) = 2^(0) = 2yί(0) may be nonzero.

Note that if r > I — 2, then some of the exceptional modes may not exist, as m cannot
be greater than I.

Proof We choose appropriate nonsingular coordinates near Qo and write down an
arbitrary smooth connection form δA in these coordinates, relative to the section
δ of formula (2.16). We then write δAδ a different way, by starting with the
expansion (4.1), applying the transition function (2.15) and doing a change of
coordinates. Comparing the two expressions shows that the only possible nonzero
coefficients at zero are those of modes 1-6.

An arbitrary element Q e S 4 c V can be written in terms of the basis (2.2), as

Q=Σ*iQi- ( 4 8 )
i = 0

We use (x l 5 x2, X3, X4) as coordinates for S4 near Qo. Our connection form near
go, relative to the section δ is then

δAδ=Σ ΣδAidXi®lj. (4.9)

Converting between the {x} and {θ, y) coordinates is easy. We apply the group
element g = exp(yίK1+y2K2)exp(y3K3) to Qθ, and decompose relative to the
basis (4.8). To first order in yu y2, θ we have

(xl9x2, x3, x4) = (y2J3/2,-ylyβ/2, θcos(2y2), 6>sin(2j/3)) . (4.10)
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Our standard vector fields on S 4 are, to lowest order, given by

dθ = cos(2y3)d/dx3-\-sin(2y3)d/dxΛ. ,

= 2θ(-sin{2y3)d/dx3+cos{2y3)d/dx^), (4.11)

and so their duals are

β1 =(ήn(y3)dx1-cos(y3)dx2)/^/r3 ,

β3=(oos(2y3)dx4-sin(2y3)dx3)/(2θ) . (4.12)

We now take the expansion (4.1), which gives δAκ, and apply the transition
function (2.15). This transforms the Lie algebra of H = S0(3) as follows:

/2 = ΐ2 ,

/3H+/3EEf3. (4.13)

As a result,

δAδ = Σau(θ, g)β' ® O + Xy^e, g)dθ®ϊi. (4.14)

Making the substitutions (4.12) for the 1-forms and (4.13) for the Lie algebra, we
have an expansion of δAδ in terms of dxt ® lj. Comparing to (4.9) gives δAj in terms
of α and y. Inverting this relationship we get that

a33/(2θ)=δAlcos(2y3)-δAlsin(2y3) + 0(θ),

y3 = δAlcos(2y3) + δAlsin(2y3) + O(θ),

73 [(^f-^i)cos((r+ l)y3)

l + δA2

2)sm((r+l)y3)-\ + O(θ)

+ (δA2-δAι

2)ύn((r+l)y3
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-(δA2-δA1

3)sin((r-2)y3)+O(θ)

δAi)cos((r-2)y3)

l + δA2

3)sin((r-2)y3)+O(θ),

(4.15)

The first two equations give rise to mode 1, the next two to mode 2, and so on. •

We next wish to study what boundary conditions to apply to deformations
of (r, t) YM connections for which r is not an odd integer. Modes 3-6 are
clearly impossible, so the natural choice of boundary conditions is to require
that, with the exception of the modes 1 and 2, all components of α and y be zero at
0 = 0, and a™j(0) = 0 for all j , m. We call a deformation that meets these conditions
regular at 0. If in addition all components α, y and their linear combinations grow
or decay as a power of 0 near 0 = 0, then we say the deformation is power-law
regular.

Power-law regularity is very similar to a condition that Johan Rade recently
proved ( [ R l ] , Theorem 2). Rade showed that, locally, a finite action YM connec-
tion with a non-removable holonomy singularity is gauge-equivalent to a connec-
tion for which the "direct" components of the connection (in our notation
(r — α 3 )// 3 , α 1 3 , α 2 3 , y3, and α3 3/ ;/3) are at most 0(0°), while the remaining
components are a positive power of 0 smaller. The Rade estimates are slightly
weaker than power-law regularity, since they allow all components of α ί 3 and y3 to
be 0(0° o r 1 ) , not just the particular components of exceptional modes 1 and 2. The
other difference is that Rade's gauge condition is slightly different from dA(δA) = 0.

A weaker, but still reasonable, set of boundary conditions is to allow compo-
nents of y to have integrable singularities at 0 = 0, while requiring all components of
α (excepting mode 1) to go to zero at 0 = 0. We call a deformation that satisfies these
conditions weakly regular, and if it also exhibits power-law growth we call it weakly
power-law regular.

Proposition 4.6. If A is a finite-action (r, t) YM connection and if δA is power-law
regular, then for all real τ, A + τδA has square-ίntegrable curvature near 0 = 0.

Proof. Curvature is quadratic in the connection, so FA + τδA = FA + τδF + τ2δ2F.
Since A has finite action, FA is in L2. So FA+τδA is in L2 for all τ if δF and δ2F are.

If δA is power-law regular, then there exists a constant s > 0 such that all
components of α l j ? α2<7 , yj and <x3j/θ are O(0S), except for those of modes 1 and 2,
which are constant + O(θs). This makes all the (03i), (23i), and (31i) components of
δF be O(θs) (the 0(1) components from modes 1 and 2 cancel). Since 1/G1? 1/G2,
and G3 are 0 ( 0 " *), the expressions

\F23ί\
2/Gu \F31ί\

2/G2, \F03i\
2G3 (4.16)
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are O(0 2 s~ 1), and so are integrable near zero. Similarly, all the (Oli), (02i), and (12i)
components of δF are Otθ 5 " 1 ). When squared and multiplied by an 0(0) metric
factor, this again gives Oiθ23"1), which is integrable. Thus δF is square-integrable
near 0 = 0.

δ2F is even easier. Since both special modes involve /3, each term in δ2F has at
least one factor that is not from a special mode, and so is O(θs). Thus δ2F is square-
integrable. •

Unfortunately, the converse of Proposition 4.6 is false. One can find finite-
energy deformations δA that are arbitrarily singular, simply by applying an
arbitrarily singular infinitesimal gauge transformation to A. This problem did not
arise in the smooth case (Proposition 4.5), as a gauge transformation there would
have to take on a definite (and finite) value at 0 = 0. However, if r is not an odd
integer we work on the open manifold X that does not contain Qo, so we have no
a priori control on gauge transformations near 0 = 0.

Even applying a gauge-fixing condition such as d^(δA) = 0 does not fix the
problem, since the equation d:\dAφ = O, where φ is an infinitesimal gauge trans-
formation on Px, is not elliptic. To control the problem we have to limit the
behavior of φ near 0 = 0 by hand. Since for gauge transformations γ = φr, this
translates into controlling y. Requiring φ to have a definite limit as 0 ->0 corres-
ponds to requiring y to be integrable, which leads to weak regularity. If we further
require γ to be 0(1) we get the stronger notion of regularity.

Proposition 4.7. Suppose r^O is not an odd integer. Let A be a finite-action
equivariant (r, t) connection that is a solution of the Yang -Mills equations, and let δA
be a deformation of A such that d*((5τl) = 0, such that δF is square-integrable on X,
and such that δA has power-law growth near 0 = 0. Then, if the y components ofδA are
integrable near 0 = 0, (5̂ 4 is weakly power-law regular near 0 = 0. If the y components
of δA are 0(1), δA is power-law regular near 0 = 0.

Proof We sequentially prove the following six statements. The first two are mild
regularity results, which we then use to prove four stronger results, which imply the
theorem.

ί. All components of all the αf/s are 0(1).
2. All components of all the α3 ί 's are O(θs) for some positive constant s.
3. All components of a n , a 2 2 , a i 2 a n <3 oc21 are o(l).
4. If y is 0(1) then all components of α 3 1 , α 3 2 , θy1 and θy2 are o(θ).
5. All components of α 3 3 and θy3 are o(θ), with the exception of mode 2, which

may be 0(0).
6. All components of α 1 3 and α 2 3 are o(\)9 with the possible exception of mode 1,

which may be 0(1).

Note that, if y is integrable and exhibits power-law behavior, it must go as 0 s " 1

for some positive s.
Since G 3, 1/Gχ and ί/G2 all have simple poles at 0 = 0, the square-integrability

of δF implies that all the (03ί), (230, a n < i (310 components of δF are o(l), and that
the remaining components are o(θ~1). Furthermore, the three components of
d%δA) are identically zero. We will control the various components of α and y by
the corresponding components of δF and d\(δA).

Since all the (Oij) components of δF are at worst o(θ~ 1% and since y is o(θ~x), all
components of α'ί<7 are at worst o(θ'1\ which implies statement 1.
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Next we look at the components of d^(δA). All the terms involving ocu and
at2i are 0(1), and the terms involving yt are O(θs~2\ so the remaining terms must
also be O(θs~2). This implies that for any odd m, — mα3 1 + rα 3 2

 a n d wα3 2 —rα 3 1

are O(#s), and for any even m, mα^ is O(θs). Since r is not an odd integer, this
proves that all components of α 3 ί are O(θs\ with the possible exception of α 3 3 .

To control α 3 3 we look at the (033) component of δF, namely α 3 3 — /3y3. Since
this is o(l), and since hΨι,o = 0> ^33 must be o(l), so α 3 3 is a constant plus o{θ).
However, by the Sibners' theorem, the holonomy around S+ must be constant, so
α 3 3(0) ϊF ί o cannot depend on y± or y2. If />0, this implies that the constant part of
α 3 3 vanishes. If / = 0, a deformation α 3 3(0)φ0 can have finite energy, but it is
a change in the value of r. For fixed r, this is inadmissible.

We next prove statement 3. We look at the Ψlm components of the (231), (232),
(311) and (312) components of δF. These components are equal to

(4.17)

plus terms that, by statements 1 and 2, are o(l). Since m is even and r is not odd,
these four expressions are linearly independent, so the only way for these four
components of δF to be o(l) is for a?i, 12,21,22 to all be o(l).

Statement 4 is similar. We look at the ^ and l2 components of d\{δA) and the
(031) and (032) components of δF. To order O(θ) we have that

(4.18)

are all zero. Since r is not an odd integer, these four expressions are linearly
independent, and so all components of θyu θyu α 3 1 , and α?2 must be o(θ).

To prove statement 5 we look at the /3 component of d\(δA) and the (033)
component of δF. To order O(θ) we have

a^3-mθy^ = 4θy^-m(x^ = 0. (4.19)

If mφ2 these are linearly independent, implying that α ^ and θy™ are o(θ). lϊm = 2
the two equations are linearly dependent, and we find 2y3(0) = α33(0) may be
nonzero. This is mode 2.

To prove statement 6 we look at the (233) and (313) components of δF to order
0(1). For m φ l the expressions are linearly independent, so all components are

). For m = 1 the two expressions are linearly dependent, and we get mode 1. •

4.3 Solutions to the Anti-Self-Duality Equations. In this section we look for solu-
tions to the linearized (anti)self-duality equations (4.3), restricted to a particular
representation of SO (3), near θ = 0 and θ = πβ. We make repeated use of the
following standard fact about solutions to an ODE system near a regular singular
point.

Proposition 4.8. Let x be a real variable, y(x) an n-vector, and M a fixed nxn
matrix. Then the n-dimensional space of solutions to the O D E

xdy/dx = My (4.20)

on (0, ε) is spanned by functions of the form

y(χ)=ξχ\ (4.21)
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where ξ is an eigenvector of M with eigenvalue λ. If we add a forcing term to the
right-hand side,

xdy/dx = My + ξxs, (4.22)

then a particular solution is y = ξxs/(s — λ) if s + λ or y = ξxs\og(x) if s = λ.

The number of solutions to (4.20) that are regular near x = 0 depends only on
the eigenvalues of M. Each positive eigenvalue gives a solution that vanishes at
x = 0, each zero eigenvalue gives a solution that is nonzero but finite at x = 0, and
each negative eigenvalue gives a solution that diverges at x = 0. If s > 0 in (4.22),
then the particular solution vanishes at x = 0.

We can find the dimension of the space of solutions to the anti-self-duality
equations near θ = 0 by studying the leading-order terms. The leading-order parts
of the ASD equations (4.3) and the gauge-fixing equations are

θa'11 = (-l3a2i-a11-m22)/2 ,

θα 2 2 = ( / 3 α 1 2 - α 2 2 - r α 1 1 ) / 2 ,

θθί'23=(l3(X13-(X23)/2 ,

θaf

31=(l3Γ1+rΓ2)/2,

ΘΓf

1=(-l3a3ί-m32)/2 ,

(4.23)

where ΓfΞ/gyf.
The exact equations differ from (4.23) as follows. There are O(l)α3,, O(ΐ)Γi9

O(θ)(xu and O(θ)a2i corrections to the expressions for θa'u and θa'2i. There are
O(θ2)oί3h O{Θ2)ΓU O(θ2)oίli and O(θ2)a2i corrections to the expressions for θoc'3i

and ΘΓ't. Some of these errors come from our having replaced

(4.24)

with their leading order terms. Others come from our having neglected the a3i and
Γi contributions to the derivatives of α^ or α 2 ί , and vice-versa. We shall see that
these higher-order corrections make no essential difference.
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The ODE system (4.23) decomposes into 4 uncoupled subsystems, one for
α 3 3 and Γ3, one for α 3 1 , α 3 2 , Γx andΓ 2 , one for α 1 3 and α 2 3 , and one for α 1 1 ? α 2 ί ,
α 1 2 and α 2 2 . Moreover, lx and l2 do not appear, so we can solve the equations
separately for each value of m. Using Proposition 4.8 and Eq. (2.30), we get

Proposition 4.9. The solutions to Eqs. (4.23) are spanned by the following:

1. (χ™3 = rtZ = θm/2 , m>0even,

2. α ? 3 = -Γ^ = θ~m/2 , m > 0 ei ew ,

3. α 5 1 = α52 = Γ 7 = - Γ 5 = θ ( w " r ) / 2 , rn>0odd,

4. αJ 1 = α ϊ 2 = - Γ y = Γ2

n = θ ( r - w ) / 2 , rn>0 odd ,

5. α ? 1 = - α ? 2 = Γ7 = Γ5 = θ ( r + w ) / 2 , m>0 odd ,

6. α 3

n

1 = - α 3

n

2 = - Γ ϊ ι = - Γ 2

n = 0- ( ί '+ m ) / 2 , rn>0 odd ,

7. αT3 = α2

n

3 = θ~ ( m + 1 ) / 2 , m>0odd,

8. α T 3 = - α 2

n

3 = θ ( m ~ 1 ) / 2 , m>0odd,

9. α 7i = α 7 2 = - α 2

n

1 = α22 = 0 ( m ~ r ~ 1 ) / 2 , m>0 even ,

10. α T 1 = - α T 2 = α2

n

1 = α2

n

2 = 0 " ( m + r + 1 ) / 2 , rn>0 even ,

11. αTi = αT2 = α 2

n

1 ==-α 2

n

2 = θ ( r - m - 1 ) / 2 , rn>0 even ,

12. - α 7 1 = α72 = α2

ni = α2n2 = θ ( r + m " 1 ) / 2 , rn>0 even .

If I is even there are the solutions

13. α§ 3 = l ,

14. α ? 1 = α§ 2 = 0- (' + 1 ) / 2 ,

15. α?1 = - α § 2 = θ ( r - 1 > / 2 ,

w/ιi/̂  if / is orfd we Ziαt e

13'. Γ§ = 1,

14'. α?2 = α§ 1 = β ( r - 1 ) / 2 ,

15'. α ? 2 = - α S 1 = 0- ( Γ + 1 ) / 2.

We are also interested in solutions to the ASD equations near θ = π/3 for ί^ 1.
These are equivalent to solutions of the self-duality equations near 0 = 0 for r ^ 1.
To leading order, the self-duality and gauge-fixing equations for α 3 l and Γ are the
same as the ASD and gauge-fixing equations. The leading order SD expressions for
α'i/ and α'2, are minus those of (4.23). The solutions to the leading-order SD
equations are therefore similar to those given by Proposition 4.9, the difference
being that the exponents in solutions 7-15 (or 7-15') flip sign.

Proposition 4.10. The regular (or weakly regular) solutions to the linearized anti-
self-duality equations (4.3) with the gauge condition d%δA) = § near θ = 0 are in 1-1
correspondence with regular (or weakly regular) solutions to (4.23).
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Proof. We must show that the higher-order terms neglected in Eq. (4.23) do not
affect regularity. By the general theory of ODEs, the behavior of any linear ODE
system near a regular singular point is controlled by the leading-order terms in the
equation. One solves the leading-order equation, then uses the solution to compute
the correction terms, then solves the equation again using the correction terms as
a source, and continues iterating. The iterative procedure converges, giving a solu-
tion to the full system that has the same growth behavior near the singular point as
the first solution to the leading-order equation.

The only potential trouble in our case comes from the O(l)α 3 3 and O(l)r t

corrections to θaf

u and 0α'2ί and the O(θ2)oίu and O(θ2)oί2i corrections to 0α'33 and
ΘΓ\. It is not immediately obvious that these terms are really lower order.

However, if a solution to (4.23) is regular, then α 3 3 and Γt are at most O(θ).
Treating these as source terms for the equations for a'u and α'2ι , we get (by
Proposition 4.8) that au and α 2 ί change by at most O(βlog(#)), which does not
affect their regularity. Similarly, if a solution to (4.23) is weakly regular, then
α 3 3 and Γ, are at most O(θs) for some s>0, so ocu and α2l- change by at most
O(θs\og(θ)). Also if a solution is regular or weakly regular, then au and a2i are at
most 0(1), so their contribution to α 3 3 and Γt is at most O(θ2\og(θ)\ which again
does not affect regularity or weak regularity. •

4.4 Dimensions of Solution Spaces. For a given representation of SO (3), there are
6/ + 3 linearly independent solutions to the ASD and gauge-fixing equations, since
these constitute a 1st order system of ODEs in the 61 + 3 variables α™ and yf. We
will compute the dimension N+ (ΛΓ + ) of the space of solutions that are regular
(weakly regular) at θ = 0, and the dimension N- (NΊ) of the space of solutions that
satisfy the boundary conditions at θ = π/3. When r is an odd integer we apply the
smooth boundary conditions at 0 = 0, so in those cases N+ = JV+. Generically, the
dimension N(l) of the space of solutions that meet the boundary conditions at both
endpoints will be N+ + N- — 61 — 3 (or 0 dimensional if N+ + N- <6/ + 3). We can
then sum this number over representations of 50(3) to get the dimension of the
space of allowable infinitesimal deformations. Generically, this equals the dimen-
sion of the moduli space.2

We begin by computing N+ and N+ (Proposition 4.11) and then compute
N- and N^ (Proposition 4.12). Let {x} denote the greatest odd integer less than or
equal to x.

Proposition 4.11. Suppose l = 1, and suppose r is not an odd integer. Then the number
of regular solutions is N+=31+1 for r> {1 + 2}, and N+<3l+lfor l<r<{l + 2}.
The number of weakly regular solutions is Λf + = 3/ + 1 for r > {I + 1}, and iV+ = 31 for

If l=l and r is an odd integer, then the number of solutions with the boundary
conditions of Prop. 4.5 is N+=N^=3l+l for r>l, and N+=N*l =31 for r<,l.

Proof. We first consider N+ for l = 2 even, and evaluate solutions according to the
classification of Proposition 4.9. There are of course 1/2 positive even values of m,
the largest being /, and there are 1/2positive odd values of m, the largest being /—I.
So there are 1/2 solutions of each type 1-12, and 1 solution of each type 13-15.

2 We cannot be certain that the round metric on S4 gives generic behavior. We may have to vary
our metric functions/^ f2, and/3 in a generic way away from the endpoints.
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For r > I + 1, all the type 1,4, 5, 8,11, and 12 solutions are regular at θ = 0, as all
have sufficiently large powers of θ for all values of m. None of the type 2, 3, 6, 7, 9,
and 10 solutions are regular, as they all carry negative powers of θ. In addition,
solution 15 is regular, while 13 and 14 are not, giving a total of 3/+1 regular
solutions.

When r = l+l the counting is the same. The m = l— 1 case of type 4 goes
as 01, but this is allowed by exceptional mode 5 of Proposition 4.5. Similarly, the
m = l case of type 11 goes as θ°, but this is exceptional mode 3. However, when
r drops below /-hi, these two modes cease being regular, and N+ drops down
t o 3 / - l .

Decreasing r further, N + remains 3/— 1 until r hits /— 1. At that point the m = l
case of type 9 becomes regular (exceptional mode 4), and N+ =3/. However, once
r drops below / — 1 the m = / — 3 case of type 4 and the m = I — 2 case of type 11 cease
being regular, and N + drops to 3/ —2.

As r decreases further, the pattern repeats itself. Whenever r hits an odd
integer^/ —3, two modes become regular. One is of type 3 and corresponds to
exceptional mode 6, while the other is of type 9 and corresponds to exceptional
mode 4. N+ thus increases to 3/. However, once r drops below the odd integer two
other modes, one of type 4 and one of type 11, cease being regular, reducing
N+ back down to 3/ —2. In any case, N+ is only bigger than 3/ when

{
We next consider JV+ for /^3 odd. There are (ί+l)/2 positive odd values of

m and (/—1)/2 positive even values of m.
For r ̂  / -h 2, all the type 1,4, 5, 8,11, and 12 solutions are regular at θ = 0, while

none of the type 2, 3, 6,7,9, and 10 solutions are regular. In addition, solution 14' is
regular while 13' and 15' are not. This makes for a total of N+ =3/+ 1.

When r drops below / -f 2, the m = / case of type 4 ceases to be regular, reducing
N+ to 3/, where it remains through r = l. When r drops below /, the m — \ — 2 case of
type 4 and the m = l— 1 case of type 11 cease being regular, reducing N+ to 3/ — 2.
When r hits 1 — 2, and at every odd integer thereafter, a type 3 solution and a type
9 solution become regular, increasing N+ to 3/. However, once r drops below the
odd integer, a type 4 solution and a type 11 solution cease being regular, reducing
N+ to 31 — 2 again. Again, N+ is only bigger than 31 when r^/ + 2 = {/-f 2}.

We next consider N+ for /= 1. For /= 1, solutions of type 1, 2, or 9-12 do not
exist. The type 5, 8, and 14' solutions are always regular, the type 4 solution is
regular for r ^ 3 , and the type 3, 6, 7, 13', and 15' solutions are never regular. So
jV+=4 = 3 / + l f o r r ^ 3 and N+ = 3 < 3 / + l for r < 3 .

For JV+ the counting is the same, with the following exceptions. For / even,
when I — 1 <r < I +1 the m = l—\ type 4 solution is weakly regular but not regular,
which increases AΓ+ from 3/—1 to 31. When r<l— 1 there are 2 solutions, one of
type 3 and one of type 4, that are weakly regular but not regular. This increases
JVT from 3/ - 2 to 3/. Thus, for even /, Nw

+ = 31 + 1 when r > I + 1 and ΛίΎ - 31 when

When I is odd and / < r < I + 2, the m = / type 4 solution is weakly regular but not
regular, so iV+ = 3/+1 rather than 3/. When r < I there are two weakly regular but
not regular solutions, one of type 3 and one of type 4, so Λf + = 3/ rather than
31-2. •

Proposition 4.12. //1<\ and / ^ l , ί/zen N-<N™=3l + 3. If t=l and 1^2, then
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Proof. We proceed as in the comment after Proposition 4.9. Anti-self-dual solu-
tions near θ = π/3 are equivalent to self-dual solutions near θ = 0, with the roles of
r and t interchanged. These are given by Proposition 4.9, only with the exponents
on modes 7-15 reversed.

If t = 1 and /> 1, then the regular solutions are all the type 1 solutions, all but
m = 1 of the type 3 solutions, all the type 5 solutions, all the type 7 solutions, the
m=l type 8 solution, then m = 2 type 9 solution, all the type 10 and type 11
solutions, and the type 14 and 15 (or 14' and 15') solutions. This adds up to 3/+ 3
regular solutions.

If t < 1 and I > 1, then the m = 2 type 9 solution and the m = 1 type 5 solution are
no longer regular, and N- drops to 3/+ 1. The type 3 and type 5 solutions with
m = 1 are weakly regular but not regular, so A/T = JV_+2 = 3Z + 3.

If 1=1 and ί = l then the type 5, 7, 8, 14' and 15' solutions are regular, so
N- = NZ =5. If /= 1 and ί < 1 then the type 5 solution is no longer regular and
N-=4. Once again, the type 3 and type 5 solutions with m— 1 are weakly regular
but not regular, so JV _ = N _ + 2 = 6. •

Theorem 4.13. For generic metrics and regular boundary conditions, N(l) = l if I ̂  2,
r = {l + 2}, and ί = l, and N(l) = 0 otherwise.

Proof If/;>2, r ̂  {/ + 2}, and t= 1, then N+ =31+1 and N- = 3/ + 3, so for generic
metrics N(Z) = N + + JV_-(6ί +3) =1. Ifr<{/ + 2} thenN + <3J+l, soN(/)<l.If
1=1 or ί < l then N_<3/4-3, so again JV(Z)<1. Finally, if / = 0, JV+ = 1 (type 15)
and N- is at most 2 (types 14 and 15), so JV(O) = O. Π

A similar addition gives

Theorem 4.14. For generic metrics and weakly regular boundary conditions, and for
r not an odd integer, Nw(l) = l ifl>l and r>{Z + l}, and Nw(l) = 0 otherwise. For
l=l,Nw(l)=l ift<l andNw(l) = 0ift=l.

Proof of Theorem 1.2. By Theorem 4.13, N(l)=l for all / between 2 and {r}-l,
and equals 0 for all other values of Z. By the discussion before Proposition 2.1,
the spin-/ representation appears 2/+1 times in the decomposition of L2 (50(3)),
and the anti-self-duality equations are the same for each appearance. Thus
the total number of regular solutions to the linearized anti-self-duality
equations is

Σ(2Z+l)iV(Z)= V ( 2 / + l H { r } 2 - 4 . (4.25)
ί = 0 1 = 2

For a generic metric this equals the dimension of the moduli space. •

Proof of Theorem 1.3. If t = 1, the total number of weakly regular solutions to the
linearized anti-self-duality equations is

£ (2Z+1)ΛT(Z)= Σ (2/+l) = ({r} + l ) 2 -4 . (4.26)
/=0 1=2

If t < 1 we must add on the contribution of the / = 1 representation to get
({r} + l ) 2 - l . •
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5. Non-self-dual Connections

In this section we consider equivariant non-self-dual connections without holo-
nomy. That is, we consider the case where r and t are odd integers ^ 3 . These are
non-minimal critical points of the Yang-Mills functional, and we investigate the
index and the nullity of the Hessian at these points. The nullity gives information
about the moduli space of non-self-dual YM solutions, while the index gives
topological information about the space of all connections, modulo gauge trans-
formations.

Our investigation is numerical. We treat the Hessian one representation of 50(3)
at a time, and numerically diagonalize the Hessian in that representation, using
a finite mode approximation to the space of deformations. We have results for r and
t up to 13, and / up to 5. We also apply the method to (anti)self-dual connections (r, 1)
and (l,ί)? where the results are already known [BoSe], as a test of our method.

The numerical method is detailed in Sect. 5.1. The results are presented in
Sect. 5.2. In Sect. 5.3 we discuss their significance.

5.7 The Numerical Method. Bor and Montgomery [BoMo] showed that, for
a general smooth equivariant connection, the reduced connection {al9a2,a3),
which is naturally defined only on [0, π/3], can be extended to be a function on the
entire circle. These functions have the following properties:

a3(θ) = a3(-θ), a2(θ)=±a3(θ + 2πβ), fll(0)= ±α3(0-2π/3) . (5.1)

The signs in the second and third equations depend on whether r and t are
congruent to 1 (mod 4) or 3 (mod 4).

The relations (5.1) essentially follow from the fact that, on S4, the points Qθ,
Q-θ and Qθ±2π/2> he on the same orbit of the symmetry group G = SO(3). The
connection form at Q-θ (or QΘ±2π/3) can either be written in terms of a^ — θ\ or as
rotated versions of the connection form at Qθ.

So instead of working with three functions on the interval [0, π/3], we can work
with the single function a3 on the entire circle. Since this function is smooth, its
Fourier coefficients decrease rapidly, and the function can be well-approximated
with a finite Fourier series. This fact was used in [SS3] to get numerical approx-
imations to the YM solutions for various values of r and t. We minimized the YM
functional in the space of functions whose Fourier expansions vanished after a fixed
number of terms. Taking 10 terms gave remarkably good results in most cases, and
taking 20 or 30 terms always gave the minimizing action to within one part in 101 0.

The same trick of combining several functions on [0, π/3] into one function
on the circle works with deformations. Since the coordinates (θ9g) and ( —0,
gexp(πK3/2)) describe the same point on the sphere, we can decompose the connec-
tion at this point either in terms of α™(0) and yj(θ) or in terms of α™( — θ) and
yj( — θ). This, and similar equivalences between θ and θ ± 2π/3, gives relations similar
to (5.1).

For example, for / = 1 a deformation can be written in terms of the 9 functions
#32> ^315 %23, α ί 3 , α? 2 , #2i, 7u yi> a n d 73 o n [OJTC/3]. Alternatively, it can be
written in terms of two functions, α and y on the circle. If r = t = 3 (mod 4), then

= α(0-2π/3)),

=-OL(-Θ), a1

23(θ)=-κ(-θ-2πβ), a°ί2(θ)= - α ( - 0 + 2π/3) ,

= y(θ-2πβ) . (5.2)
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If r Ξ 1 (mod 4) or t = 1 (mod 4) then similar relations, with some signs changed,
apply.

These functions of the circle can be Fourier decomposed. Since γ is an odd
function, it can be decomposed into sine functions, while α decomposes into both
cosines and sines. For each frequency, we thus have 3 modes, two sines and
a cosine, to consider. For larger values of / we need more than 2 functions on the
circle to describe δA, and in general we have 2/+1 modes associated to each
frequency.

These Fourier modes form a natural basis for the space of deformations for
each representation of SO (3). We cut off this basis at a maximum frequency N to
get a finite-dimensional space. We compute the matrix elements of the Hessian (4.5)
and of J [d*((5^4)]2 with respect to this basis, and then numerically diagonalize the
matrix of δ2S + \ {d^(SA))2.

There are three potential sources of error in this procedure, none of
which actually cause problems. Round-off error in the computer gives errors
of order of magnitude 10" 1 4 . The second source of error is our finite-mode
approximation in calculating the reduced YM connection (a1,a2,a3). By
taking enough Fourier components we limit this error to less than 1 part in 106.
This means that a zero eigenvalue may appear slightly negative (or positive),
but will still be a factor of 106 smaller than the other eigenvalues. Finally, there
is our finite-mode approximation for the deformations. By restricting ourselves
to a subspace of the space of deformations, we raise all the eigenvalues. In
principle, this could mean that negative or zero modes could actually appear
positive. In practice, however, this does not seem to occur. The positive
and negative eigenvalues change only slightly when the highest allowed
frequency, which we denote N, is increased, say from 20 to 30. The eigenvalues
close to zero shrink quickly as N is increased, as is to be expected to true zero
modes.

Table 1 shows the ten smallest eigenvalues, for 1 = 2 and N = 20, for two
different critical points. One critical point has self-dual curvature, with (r, t) = (1, 5),
while the second is non-self-dual, with (r, ί) = (5, 3). The results are completely
unambiguous. (1, 5) has one zero mode and no negative modes. (5, 3) has one zero
mode and one negative mode.

5.2 Results. Let /ι_(/, r, ί) be the dimension of the negative eigenspace of the
Hessian for the (r, ί) YM connection, restricted to the spin-/ representation of

Table 1. Lowest Eigenvalues for / = 2, JV = 20

206.274560510209 171.127481544641
162.883311525700 135.206418912372
125.836315992737 122.690117492145
120.723046719095 91.3946372008735
115.713667988154 88.8817452481566

84.6803226260188 80.0597577062249
75.2720093738385 44.6778661554892
47.6005044927976 38.3540729641350
35.6509304053161 2.64380290969914 x 1 0 "

2.06865281842209 x 10~ 1 2 -457.162248939746
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S0(3). Let ho(l r, t) be the dimension of the zero eigenspace. Of course, for
(anti)self-dual connections h-(l, r, ί) = 0 for all /.

The results for /ι_, for 3^r, t g l 3 are as follows:

()
2: Λ_(2,r,ί)=l.
3: /z_(3, r, ί) = 2 when r and ί are both greater than 3. A_(3, r,t)=l when r>t = 3

or ί > r = 3. Λ_(3,3,3) = O.
4: M 4 , r , ί ) = M3,r,f) .
5: h-(5,r, ί) = 3 when r and ί are both greater than 5. A-(5, r, t) = 2 when r > ί = 5

or ί>r = 5. h-(5, r, ί ) = l when r>5 and ί = 3 or when ί>5 and r = 3 or when

r = ί = 5. Λ_(5, 5, 3) = Λ_(5, 3, 5) = ft-(5, 3, 3) = 0.

These results suggest the following conjecture:

Conjecture 1. For any positive odd integers r and t and any positive integer ft,

where P(x) = x when x>0 and 0 otherwise.

In other words, h- = k if both r and t are greater or equal to 2fc -f 1, is reduced by
one if r = 2ft— 1, is reduced by two if r = 2ft — 3, and so on, with similar reductions
for the value of t. Note that, in addition to matching our numerical results for
non-self-dual connections, formula (5.3) gives the correct dimension for the
(anti) self-dual cases, namely zero for all /.

From conjecture 1 we derive the total index of the Hessian.
00

Index of Hessian of (r, t) connection = £ (21+ ί)h-(/, r, t)
ι = o

= f 8fcP(2fc-P[2ft+l-r]
fc=l

-P[2ft+l-ί])/2

ί-2)/2. (5.4)

This index is always a multiple of 8, and grows very quickly with increasing r and t.
The six smallest indices are 8,24, 24,48,48 and 64, corresponding to the (3,3), (5,3),
(3,5), (7,3), (3,7), and (5,5) connections, respectively.

Taubes has shown [Tl] that a NSD YM connection of second Chern number
C2 over iS4 must have Morse index at least 2|C 2 | + 2. Conjecture 1 implies that
equivariant NSD YM connections far exceed that lower bound. If ί = 3, formula
(5.4) gives an index of r2 — 1, four times the Taubes bound. Larger values of t given
an even greater discrepancy, since increasing t increases the index but decreases the
Chern number. In general, if r ̂  t, the index is at least 2(ί — 1) times larger than the
Taubes bound.

We next turn to the nullity, where our results are extremely simple. For all
the non-self-dual cases, ho{29r9t) = ho(39r9t)=l and ho(l, r, t) = ho(49 r, t) =
Ao(5, r, ί) = 0. Since the 1 = 2 and 1 = 3 zero modes (and no others) are required by
conformal symmetry, this suggests the following:
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Conjecture 2. For any positive odd integers r ^ 3 and t = 3, and for any /, ho(l, r, t)
equals 1 if1 = 2 or 3 and is zero otherwise.

5.3 Discussion and Open Problems. Let Jίk be the moduli space of all YM connec-
tions on an SO (3) bundles over S 4 with second Chern number — fc, modulo gauge
transformations, and let Jik^Jίk be the moduli space of (anti)self-dual connec-
tions. Conjecture 2 implies that the component of Jίk containing a non-self-dual
G-equivariant YM connections consists only of conformal copies of that connec-
tion. Topologically, this component is the quotient of the conformal group SO(4,1)
by the subgroup G = SO(3) that fixes the equivariant connection, and does not in
any way depend on the values of r and t.

There is a natural extension of conjecture 2 to non-equivariant connections,
namely

Conjecture 3. Let A1 and A2 be non-self-dual YM connections over S 4 with second
Chern number — k. Then either Ax and A2 lie in different components of Jfk, or A1 is
gauge-equivalent to a conformal copy of A2.

At first glance, conjecture 3 is a disappointment. The non-self-dual components
of the moduli space lack the rich structure of the (anti) self-dual component.
However, conjecture 3 also says that non-self-dual YM connections are the closest
thing possible to nondegenerate critical points of the YM functional. This makes it
much easier to identify their topological role.

If we allow ourselves to vary the metric functions fi(Θ\ we can even find true
non-degenerate critical points. The proof of Theorem 3.1 uses only the asymptotic
properties of the/^'s, so the construction of NSD YM connections proceeds just as
well with altered metric. The only difference is that, for a generic set of functions fh

the conformal group is reduced from SΌ(4,1) to G = SO(3). By definition, each
equivariant connection is left unchanged by G, so there are no conformal copies of
a given equivariant NSD YM connection. We would then expect these NSD YM
connections to be non-degenerate critical points of the YM functional.

We can get the same effect without changing the metric if we take r or t to be
other than an odd integer. We then would be working on S 4 — S ± rather than on S4.
Since the only conformal transformations of S 4 that leave S+ (or S _) fixed are in G,
the conformal group of S 4 — S± is just G.

In either case, we would have a non-degenerate critical point. Such points are
stable under small perturbations of the functional, and hence under small changes
in the metric. These changes need not be equivariant. The (r, t) NSD YM connec-
tions persist even when all symmetry has been broken. They have topological
significance, and are not mere flukes of symmetry.

Some caution is in order, however. Hong-Yu Wang [W] has developed a tech-
nique for grafting a set of instanton-anti-instanton pairs onto some symmetric
NSD YM connections on S2 x S2 and S3 x S1, thereby generating a non-conformal
family of higher energy NSD YM connections. If this technique could be applied to
the (r, ί) connections on S4, it would provide a counter-example to conjecture 3.

We now return to smooth bundles over S4 with the round metric. Let s$k be the
space of smooth SO (3) connections with second Chern number — fc, and let ^ be
group of gauge transformations. The Yang-Mills functional is gauge-invariant,
and so is a functional on Bk = ̂ k/^. We are interested in describing the topology of
Bk, via Morse theory, by the critical points of the YM functional, i.e.. by Jίk.
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Of course, Morse theory need not be exact, since the Yang-Mills functional in
4 dimensions does not satisfy the Palais-Smale condition. In the case of J30, critical
points of index 1 do not exist, as l<2|fc| + 2 = 2, yet Taubes explicitly found
a non-contractible loop. This loop corresponds to what Taubes calls a critical end
oϊBk [T2], not to a critical point. In general, the topology of Bk is described partly
by the minima of the YM functional {Jik\ partly by the higher critical points (the
rest of Jίk\ and partly by critical ends. The obvious question is how much of the
topology comes from each of these three contributions.

Atiyah and Jones [AJ] conjectured that Jik is homotopy equivalent to Bk up
through a range. The Atiyah-Jones conjecture was recently proven by Boyer et al.
[BHMM1, BHMM2], who showed that Bk and Jtk are homotopy equivalent at
least through dimension [fc/2] — 2. Boyer et al. also found that, above the range of
equivalence, H^(Jίk) has rational elements, while H%(Bk) is pure torsion. The
higher critical points and the critical ends must not only provide the topology of
Bk that is not in Jίk, but must also cancel those elements oϊH*(Jίk) that are not in
H*(Bk).

The space Bk does not depend in any way on the metric, and the topology of
Jik is also metric-invariant. However, the higher critical points and the critical
ends very much depend on the metric. A change in metric can, by breaking
conformal symmetry, convert a critical surface into a discrete set of critical points.
A change in metric can also change a critical end into a critical point.

Parker [Pa] showed how, by changing the metric on S4 an arbitrarily
small amount, one can form a NSD YM connections with Chern number zero and
with energy arbitrarily close to two instanton units. Parker's solution consists of
a very small instanton and a very small anti-instanton, centered at antipodal
points. If the metric were round, both the instanton and anti-instanton would
bubble off under gradient flow. However, with the slightly altered metric, bubbling
off is energetically unfavorable and the instanton and anti-instanton balance.
Parker in effect raised the energy of Taubes' critical end and turned it into a critical
point.

Presumably, the process can be repeated for other critical ends. It is unclear,
however, whether there exist critical ends that cannot be so removed. We close with
some open questions:

Questions. Given integers i, q and k, do there exist metrics on S4, arbitrarily close to
the round metric in the Cq norm, such that Bk contains no critical ends with index less
than i? If so, how large is the space of such metrics? Do there exist metrics that
eliminate all critical ends?
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