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Abstract: The Jones-Witten functional for knots is generalized for smooth flows on
3-dimensional manifolds. Explicit computations for the abelian case are given.

0. Introduction

Recently Witten has proposed a generalization of the Jones polynomial for links which
has the advantage of being intrinsically defined on any closed orientable 3-manifold
(see [W] and [At]). Witten defines his invariant via holomorphic sections of a vector
bundle on a canonical moduli space related to a Heegard splitting of the 3-manifold.
He develops this theory from the Hamiltonian point of view, and then he gives an
interpretation of the Jones polynomial in terms of a 3-dimensional Yang-Mills theory,
where the Lagrangian S? is the functional which assigns to each connection its Chern-
Simons character, with weight k (an integer or half integer for the SU(N) or the U{\)
theories respectively):

k ί ί 2
&ΛA) = — trl AΛdA+-AΛAΛA

M

where ^& is the space of all connections on the trivial principal bundle P = MxG —»
M, and the structure group is either SU(N) or £7(1). The trace corresponds to the
bilinear Killing form for the compact gauge group under some explicit representation
of the group.

Our purpose in this note is to extend Witten's ideas to construct new topological
invariants of a smooth dynamical system, namely invariants under differentiable
equivalence. A possible physical interpretation of our formula case is as an averaged
Bohm-Aharonov effect for a "continuous" flux of electrons.
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One might think of a non-singular flow together with flow-invariant measures as a
generalization of a link, namely, as a "diffuse" link on the manifold. For instance, if
a given flow contains periodic orbits Γ l 5 Γ 2 , . . . , Γn\ and if we consider the invariant
probability measure μ = μx + μ2 + . + μn\ where the μi is supported on Γi9 and
uniformly distributed with respect to the time parameter on Γi9 then our invariant
essentially coincides with Witten's for the link whose components are the 7^'s. One
might think of these measures as Dirac measures supported along the periodic orbits.
On the other hand, if the flow-invariant measure has as support the whole manifold
M, then one can think of the flow as a "diffuse" link.

In order to define our invariant one must analyze the asymptotic behavior of an
arc of trajectory as it wraps around the manifold and understand the evolution of the
holonomy along this path (we think of the orbits of the flow as the Wilson lines), and
study the average behaviour with respect to given invariant measures.

The central idea of assigning an asymptotic invariant originates with Schwartz-
man's beautiful paper [Sc] on asymptotic cycles in which he defines a real homology
class corresponding to the average homological "placement" of the orbits of the flow.
Later this theory was developed by Sullivan [Su] who interprets a flow and in gen-
eral a foliation as a de Rham current and introduces the idea of foliated cycles. For
instance an irrational flow on the torus can be both interpreted as a uniquely ergodic
flow or as a "diffuse" cycle. In this way, one might think of real homology classes
as geometric objects. Another example is furnished by a foliation with a transverse
measure introduced by J. Plante, which can be thought of as the cohomology class
which assigns to each cycle of the complementary dimension transverse to the folia-
tion the integral of the transverse measure along this cycle. Finally, Arnold [A] uses
similar ideas to define the average asymptotic linking number of a flow that leaves
invariant a measure defined by a volume form on the 3-manifold M, and proves that
when the flow is homologically trivial, this coincides with a natural quadratic form
on the Lie algebra of the group of volume preserving diffeomorphisms of M that are
invariant under the adjoint action of the group on the algebra.

One of our main results in the abelian case is to equate the generalized Jones-
Witten invariant of the flow with certain exponential with weight k of this asymptotic
linking number times a constant depending on the Ray-Singer torsion. In this way
we are able to explicitly compute the invariant in some cases for manifolds which
have as universal cover 51/(2, M). In the non-Abelian case we still have to provide
explicit computations and justify the meaning of the invariant. We leave this for a
future paper.

The paper is organized as follows. In the first section we recall the Dynamical
Systems and Ergodic theory required by introducing the Krylloff and Bogoliuboff
results. In the second section we recall Schwartzman theory of Asymptotic Cycles
and reinterpret it in terms of a £7(1) gauge theory for flat connections. Next we
give Arnold's definition of the asymptotic Hopf invariant (the asymptotic average
linking number of a flow). This provides the tool to show the interconnection as
in Witten's case, of the regularization of the self-linking number of a flow and the
choice of framing for the link on the 3-manifold. In the third section we recall Witten's
definition of the Jones polynomial, partly formalized in the work of Ramadas, Singer,
and Weitsman [RSW]. Then we define the invariant for the pair (X, μ) where μ is an
invariant probability measure for the flow defined by the vector field X, and verify
that this invariant is well defined as a limiting average of Witten's definition. We



Jones-Witten Invariant for Flows on 3-D Manifold 75

show that for the abelian case this is explicitly computable using Arnold's results.
In the fourth section we give the definition of the invariant in the case the structure
group is a simply connected non-abelian Lie group.

We are very grateful with E. Ghys who showed the first author how one can define
the average genus of a flow in S3, because this inspired the ideas of this paper. We
are also grateful with L. Alvarez-Gaume and J. Labastida for explaining to the second
author the physicist's interpretation of the infinite dimensional gaussian integral in
Witten's paper. We also would like to thank Prof. V. I. Arnold and M. Brunella for
pointing out to us some references.

1. Kryloff-Bogoliuboff Theory

We review in this section some concepts necessary for our work. The main reference
is [Sc] and the references therein.

Assume M is a compact closed manifold, X a smooth vector field on M and ft the
flow generated by it. We will denote by JΘ{X) the set of Borel probability measures
on M, invariant under translations by the flow ίi.t. J g(x)dμ(x) = J g(ft(x))dμ,

\ M M
for any g G Lι{M, μ), μ G JB(X) and t G RY It is known that JB{X) is non-empty,

convex, weak*-compact, where regular Borel signed measures are identified with
C(Mγ (the dual space of continuous functions on M) by the Riesz representation
theorem.

Definition (Krylloff-Bogoliuboff). A point p e M is quasi-regular if the average
value of any function under the flow through p exists. Namely, if the integral:

T

lim i ί g(ft(p))dt
T—ΪOO 1 J

0

exists for any g G C(M). Then there exists a unique ft-invariant probability measure
μp such that this average equals:

f
/ g(x)dμp(x).

j

M

Furthermore, if we denote by @%(X) the set of quasi-regular points of M with
respect to the flow generated by the vector field X, then it is invariant and of measure
one for any measure in J$(X).

A flow ft is ergodic with respect to a ft -invariant measure μ if for any measurable
set fό in M, such that it remains invariant under the action of ft (i.e. if ft(%S) — $0,
then either μ(^Q = 1 or μ(%6) — 0. A flow is called uniquely ergodic if the ft-
invariant measure is unique, i.e. JJθiX) consists of one point.

1.1. Example. Let T2 — R2/Λ be the torus generated by the translations a:(x,y) —»
(x + 1,2/) and β:(x,y) -+ (x,y + 1), and A = (α,/3) be the lattice generated by a
and β. Define the flow ft(x,y) = (x,y) 4- t(p,q). If λ = p/q is a rational number,
then the flow is periodic and its orbit through any point x eT2 will describe a knot
winding around p-times in one direction and g-times in the other with respect to the
canonical generators induced by a and β G HX(T2,1J). In this case there are many
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invariant measures for which the flow is ergodic. For instance measures concentrated
in any periodic orbit through a point.

If λ is irrational, then it is known that the flow is minimal (i.e., every orbit is
dense), and furthermore, that there exists a unique invariant measure (the standard
Lebesgue measure) on T2 for which ft is ergodic.

1.2. Example. If M 3 = SL(2,R)/Γ is a 3-manifold with Γ a discrete uniform
subgroup then it is known that the flows induced by the left-invariant vector fields of

51(2, R): X = ί J, and Y = ί I descend to uniquely ergodic flows in M 3

which are minimal (i.e. all its orbits are dense). If we denote the flows by ft and gt,
they are called the positive and negative horocyclic flows, respectively. The invariant

measure is the volume generated by the duals of X, Y and H = I J. The

flow ht generated by H is called the geodesic flow, it is ergodic (see [CFS]).

2. Schwartzman asymptotic cycles (see [Sc, A, KC])

2.1 We will consider a manifold M together with a flow ft as in Sect. 1, a fixed set
of regular curves {ηp q} of uniformly bounded distance (say, less than 2 times the
diameter of M) joining any two distinct points of M (see Khesin and Chekanov [KC,
Sect. 4]).

Through any point p G M , and for any t positive, we define the integral-singular
1-cycle represented by:

where [p, ft(p)] is the oriented arc of trajectory going from p to ft(p).
1 ~

Consider now the real 1-cycle Γt p = - Γtp. We represent its real homology class

ty [^pi-

Theorem (Schwartzman). The limit lim [Γ t p ] = [Γp] exists in H{(M,R)for every

quasi-regular point p G @98(X) and it is independent of the Riemannian metric of M
and the arbitrary choice of the connection curves ηp q.

Hence, we can think of [Γ ] as the "diffuse" link defined by the orbit of the flow ft

through p. The homological contribution of the connecting curves ηp q goes to zero by
the uniform bound on their lengths and the division by t. Let Γ: @9B(X) —> HX(M, R)
be the function which sends p to [Γp]. The cycle [Γp] is called the asymptotic cycle
through p of the flow and Γ the asymptotic cycle map. It gives an asymptotic behavior
of the orbit of the flow through p in terms of homology.

There is an alternative description of the asymptotic cycles given by Schwartzman
in terms of the Eilenberg-Bruschlmsky homology theory that will enable us to translate
into an abelian [/(l)-gauge theory.

Let us identify U(l) with Sι = {z e C: \z\ = 1}, and let W(M) = W(M,SX)
denote the abelian group of continuous maps from M to 5 1 under pointwise
multiplication, and JB(M) denote the closed subgroup of ff(M) consisting of

&(M) = {/ G WQA) I 3ft:M -> R such that fix) = exp(2πih(x))} .

Theorem (Eilenberg-Bruschlinsky [Sc]). W(M)/M(M) is algebraically isomorphic

to fίj(M, Z) in terms of Cech cohomology. The isomorhism is given explicitly as
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follows. Let g G W(M), and consider for any cycle (for instance Γt p as before)

the restriction of g to the cycle. This is a map from the cycle to Sι, and its degree is

well defined. Then the pairing:

Hγ(M, Z) -> Z,

is a duality pairing. If C = Γtp, then the assignment:

g ^ \ m ^ t J

defines an element of Hx (M, R) by duality.

Finally, as in Atiyah-Bott [AB], if we think of W(M) as the gauge group for the
trivial principal bundle P — M x £7(1), then the connections, because the bundle is
trivial, can be thought of as a 1-forms in Λι(M) 0 u(l). The kernel under exterior
differentiation d = dA is the set of closed 1-forms with values in u(l). Hence
(Flat connections)/(Gauge transformations) is the same as f f 1 (M,R)/iϊ 1 (M,Z), i.e.
the "moduli" of flat connections modulo the gauge group, and corresponds to the
space of irreducible representations of πλ(M) —> U(\). The space W(M)/3%{M), the
Eilenberg-Bruschlinsky group, is the quotient of the Gauge group modulo the gauge
transformations homotopic to the identity.

Asymptotic cycles can also be interpreted as winding cycles as follows. Let
μ G J${X) and w a closed 1-form representing a cohomology class [w], in the
de Rham cohomology. Define the functional

as follows:

Φμ(iw]) = Jw(X)dμ.
M

Then Ψμ is well defined, it does not depend on the representing 1-form w, namely, if

w = w + df; then Ψ {[w\) = J(w(X) + df(X))dμ = Ψμ([w]) + / df(X)dμ. And
M M

the last term is zero because the measure is invariant under translations by the flow.
Then Ψμ is a linear functional in the de Rham cohomology and by duality defines a
cycle, the winding cycle Ψμ in Hλ(M,W) for each μ G 3B(X). Therefore we have an
affine map

whose image is a compact convex subset of a finite dimensional vector space. When
X is uniquely ergodic 3B(X) reduces to one point μ, and Ψ determines a unique
element Ψμ in Hλ(M,R) which we call the winding cycle.

2.2. Arnold [A] defines, using the idea of asymptotic cycle, the concept of asymptotic
average linking number or asymptotic Hopf invariant of the flow.

In Arnold's case, M is a closed orientable 3-manifold with invariant measure the
volume form, v = vol, which we will assume normalized so that M has volume one,
X is a homologically trivial vector field and v is invariant under the action of the
flow ft induced by the vector field X. Invariance means that J£x(υ) = d ix(υ) = 0.
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The homological triviality of X means that there exists a 1-form a such that if θx

denotes the contraction ix(v) then da = θx. Since

/ w(X) -v= / w A (ix(v)) = w Aθx = w Ada = — / d(iu Λ α) = 0

MM M M M

for any closed 1-form u>, one has that the winding cycle Ψv is identically zero for a
homologically trivial vector field with respect to an invariant volume form.

In this situation the linking number L(Γt , Γt ) exists and is well defined (and
may depend on the closing curves 7/t(P))P and Ίft{q) q

 m a t w e m a y choose to be
disjoint for almost any pair of points p and q). However, the asymptotic average
linking number:

is well defined since the contribution of the linking of the joining curves can be kept
bounded (via a good choice of joining curves 7P ς ) and becomes negligible with the
limiting process, and is therefore independent on these curves. (For the details see
Arnold's paper cited above, and also Sect. 4 on Khesin and Chekanov's paper.) So
that we have:

Theorem (Arnold). The average asymptotic linking number or average Hopf invari-
ant of the homologically trivial vector field X on the compact closed 3 -manifold M:

L(Γp1Γq)dv(p)dv(q)

MxM

is well defined. Furthermore,

L(X)= ( a Ada,

M

where a is defined as above, namely, da = ix(v).

Generalizing from this result, Tabachnikov (in [T]) and Khesin and Chekanov
(in [KC]) define the asymptotic linking number for two homologically trivial vector
fields with the same invariant volume form. There is also a more general formulation
developed by Novikov (see [No]).

Notice that the singularity of L(Γp, Γq) as p tends to q is of order dist~2(p, q) and
the diagonal Δ C M x M is of codimension 3; it will contribute with measure zero
to the integral. Nevertheless the hypothesis that the vector field X is homologically
trivial is necessary.

2.2.1. Example. As in Example 1.2, let M 3 = SL(2,R)/Γ; with the vector fields X,
Y, and H that generate ft,gt the corresponding expanding and contracting horocyclic
flows and ht the geodesic flow. The invariant volume form is v = c θx A θγ Λ ΘH,
where θx, θγ and ΘH denote the dual 1-forms to the corresponding vector fields, and
c is a normalizing constant such that J v = 1. Then, from the relations [H, X] = 2X9

M

[H, Y] = -2Y and [X, Y] = H we obtain the dual relations: dθx = θx A ΘH =

— iγ(v), dθγ ~ —θγ A ΘH = — iχ(v), dθH = — θ x A θγ = fc#(w).
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Consequently v is ft, gt and ht invariant as we claimed above. These three vector
fields are homologically trivial in the sense of Arnold. Furthermore, we compute their
asymptotic Hopf invariants:

L(X)

L(Y)

= / C*(

J
M-μ
M

9Y ΛQ

1χΛa

lθγ

= o,

and

L(H) = ί(2cfθH Λ dθH = -2c

M

(where c" 1 is the volume of M with respect to θx Aθγ AθH).

3. The Jones-Witten Invariant for Flows

3.1. In [W] Witten gives a generalization of the Jones Polynomial for links in S3

which is valid for a link L in any closed compact 3-manifold M. His definition is as
follows. Assume M 3 is a 3-dimensional closed compact manifold and L c M is a
link (a disjoint union of finitely many non-intersecting circles Sι smoothly embedded
in M). Let P = M x G be a G-principal fibre bundle over M, where the structure
group G might be U{\) or SU(N). Let us denote by ^ the space of all connections
in P which, since P is topologically trivial, can be identified with the vector space
Aι(M, Q) of 1-forms in M with values in the Lie algebra g of G; and W = ^°°(M, G)
be the gauge group of P, that is the group of fibre preserving automorphisms of P.

n

Assume L — (J Ci is the disjoint union of smoothly embedded circles G .̂ Then

Witten defines:

~ DA

and he verifies that when M is 5 3 , and G = SU(2), this corresponds to values
(depending on &) of the Jones polynomial for the link L.

The formlism to justify the meaning of this integral is still not completely done.
Ramadas, Singer and Weitsman [RSW] have given a beautiful description based on
the arguments of Witten. In it, they use a Heegard splitting of the 3-manifold M as
M = Mx UN M2, where Mi are 3-manifolds with boundary dMi = N2, and N2 is a
compact connected 2-manifold. The glueing is performed by identifying the boundary
by an orientation reversing homeomorphism. The contribution to the integral comes
from each block of the 3-manifold as a path-integral that corresponds to a holomorphic
section of a holomorphic line bundle (the Quillen line bundle) on the space of flat
connections over the principal bundle P\N —> TV2. The whole integral will correspond
to the duality pairing between these sections, that is induced by the glueing of Mι

and M2 along iV (the orientation reversing map from N to itself is what induces this
"dulaity" pairing between the sections).
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If the group G is U{\) or any other abelian group, the understanding of the integral
is "easier" as discussed by Witten. When G is U{\) one has:

WL(k)= f Jexpf^

To evaluate WL(k), one has to think of / Ad A as a quadratic form Q(A) on ^β,
M

J A as a current TC.(A) evaluated on the 1-forms A\ and then one has to "complete"
Ci

the quadratic form, to have a quadratic Gaussian integral over ^?. The quotient by SP
regularizes the term induced by the "determinant" of the quadratic form Q, which is

άtid*AdA ,

where d is acting on Ker(cΓ^) (the normal direction of the flat connections {A:FΛ =
0}, where FA is the curvature form of the connection A) obtaining the Ray-Singer
torsion factor below. Notice that a choice of metric on the manifold was necessary to
define the adjoint operators. Then as shown by Witten (following Polyakov, see [P]),
after evaluation, one obtains, modulo a phase factor related to the choice of framing:

WL(k) = c(M)exp ίψ

where G is the Green function of the laplacian Δ = d*d acting on the orthogonal
complement of the kernel of dA — d in Aι{M, 9); and c(M) is a constant depending on
the Ray-Singer torsion and the choice of framing on the manifold (i.e., a trivialization
of its tangent bundle). In the above formula one has to regularize the "self linking
number," L(C{1 Q ) . For this reason Witten defines his invriant for framed and oriented
links.

To understand this formula, it is better to explain heuristically how this computation
is carried out. If one is computing the quadratic Gaussian integral:

on a finite dimensional space, it is necessary to do a change of variables to complete
the quadratic form so that one has an integral of the exponential of a quadratic form.
One obtains:

rkM-ιv Λ

= eι

In the infinite dimensional case, one considers the completion of the space
J& = Λι(M, Q) in the L2 norm (, ) to make it a Hubert space. For this one needs to
choose a Riemannian metric on M, and the Killing form of the group G, but the end
result is independent of the choice, modulo a phase factor. Below we also identify
<τ3 with its dual by the Riesz representation theorem.
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With this interpretation, we need to observe that the quadratic form / A A dA
M

needs to be symmetrized. For this we use the Hodge decomposition of the space of
1-forms:

Λ\M, g) = β%Θ d(Λ°) Θ d*(yl2),

into mutually orthogonal direct summands. Here 3$ is the subspace of harmonic
forms, A1 the vector space of i-forms on M with values in the Lie algebra; and
dA = d is acting on the orthogonal complement of its kernel, that is, on d*(Λ2).
To make it act from the Hubert space into itself, we compose d with its adjoint d*,
obtaining the Laplacian, which is symmetric. On the other hand, the action on ^ by
the gauge group & is being taken care by dividing by the "volume" of 2^, since the
infinitesimal action of W on TA(y$), the tangent space at A of ,/& is by the operator
dA\ then

Integration of the connection form A with respect to the knot C% is thought of as
an element on the dual of the Hubert space, or as a current acting on the space of
1-forms, and it is denoted by Tc . We have then,

DA

where the constant c(M) is the Ray-Singer torsion times the phase factor depending
on the framing of the manifold, as treated in Atiyah [At] Sect. 7.2.

3.2. The Definition for Flows (AbeHan Case). In the case of a measure preserving
flow determined by a vector field X (where μ denotes the measure in J$(X)) we
propose the following extension of the Jones-Witten functional.

We will start studying the holonomy and the asymptotic holonomy around the
orbits of the flow.

Notice that we can then consider for any Lie group G:

¥ίo\ptp(A) = Ptxp / A,

the path ordered exponential integral of the connection form (see Nelson [N,
pp. 15-16]). Hence by the homological properties of the asymptotic cycles (they are
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1-cycles in homology), in the abelian case we define the asymptotic holonomy as:

H o l Γ (A) = lim exp / ( - A ) = exp / A,

P t—oo J \t J J

where the last integral is defined by the limiting procedure and p is a quasi-regular
point in M as defined in Sect. 1. Hence it is natural to consider the average holonomy
for the vector field. The Ergodic Theorem implies that the limit is well defined for
a quasi-regular point. In the abelian case we do not need to take the path ordered
exponential but just the standard exponential. The nonabelian case is more complicated
and will be treated in Sect. 4 below.

Definition. We will assume that the structure group is U(l). If X is a vector field,
μ is a measure in J$(X) invariant under translations by the flow generated by the
vector field, and we have the indued asymptotic cycles as before, we define the average
holonomy of a U(l)-connection A over all the asymptotic cycles as:

HolXμ(A) = exp ί A(X) dμ.

M

One might interpret asymptotic holonomy as the asymptotic value of the Berry
phase or Bohm-Aharonov effect.

The idea to define the average holonomy is inspired by the interpretation of the
asymptotic cycles by means of winding cycles, namely, we would like to be able to
write a multiplicative average of all the holonomies HolΓ (A), with respect to p £ M
and to the X-invariant measure μ. In the abelian case (gauge group E/(l)) this can be
done because

is equal, in term of winding cycles, to

exp / A — exp / A(X) dμ,

Γ M

where Γ corresponds to the "averaged" Γp on H^M^W) with respect to the measure

μ, i.e. in terms of winding cycles we have / A — Ψμ(A). This argument also implies
r

that the trace of the average holonomy is gauge invariant in the abelian case, since
parallel translation changes by conjugation at every finite time, it can also be seen as
follows. If A changes by a gauge transformation into A + da then the integral:

ί(A(X) + da(X)) dμ = ί A(X) dμ ,

M M

because

/ da(X)dμ = 0,

M

since the measure is ft -invariant.
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Definition. Let M be a closed 3 -manifold, X a vector field, μ an invariant probability
measure and π :P —>• Ma topologically trivial principal fibre bundle over M with
structure group G = U(l). Let ^S be the space of all G-connections and & the gauge
group. Then we define the Jones-Witten functional for the flow generated by X with
respect to the measure μ as follows:

WxJk) = J ίQχpί^-J tr(AdA)\ (HolXμ(A))X DA,
I V M J J

where the asymptotic holonomy is defined as above.

Remark. In the abelian case if the X-invariant probability measure μ is defined by the
sum of a finite number of invariant measures μ , j = 1,.. ., n; each invariant by the
action of the flow generated by the vector field X, and each one uniformly distributed
on a periodic orbit of the flow; then our definition agrees with the definition of Witten
for a link (thinking of the measures as Dirac measure concentrated on the connected
components of the link). This is so because in this case the averaging procedure for
the holonomy is a finite multiplicative average with respect to the periodic orbits of
the flow on which the measure is supported.

It now becomes easy (after the computations described in Sect. 3.1, and from
the results of Arnold described in Sect. 2.2), to do explicit computations when the
structure group is U(l).

We think of
Γ A:= Urn / (-AJim / (I

t->oo J \t

as a current
A ~ TΓp(A)

evaluated on the elements of ,Λ = Λ1(M1u(l)), the connection forms. The average
can be thought of also as a current:

Tμ(A)= ί A(X)dμ,

M

and we have that the average of the currents TΓ for p e M with respect to μ is
precisely Tμ by the interpretation above of the average by means of winding cycles.
One obtains therefore the following:

Lemma.

— J L(Γp,Γq)dμ(p)dμ(q)L

MxM J

where L(Γp, Γq) is the asymptotic linking number defined by Arnold (the asymptotic
Hopf invariant).

Proof. In the description of the formula for the case of a link in Sect. 3.1, we were
considering the current Σ Tc . In our case we have J TΓ dυ(p), so that in the formula

i M
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for completing the quadratic form, one obtains:

(2τr? ί λ

c(M)expJ— j (TΓp,G.TΓq)dv(p)dv(q)l
I MxM J

which is exactly the exponential of Arnold's generalized Hopf invariant. D

Remark. It is interesting to notice that in the case when the measure is smooth, we do
not have to choose a framing to regularize the self-linking numbers of the asymptotic
cycles, as we pointed out above, because the singularity at the diagonal of M x M is
of order O(r~2) while the codimension of the diagonal is 3. Furthermore, requiring
the vector field to be homologically trivial corresponds to choosing a "good normal
framing" for the asymptotic cycle. Also by taking the average one takes care of the
phase scaling. However, for general measures, one might have singularities leading
to the necessity of the choice of framing as is the case for links.

This implies our main result for the abelian case, namely that the generalized
Jones-Witten formula is computable for flows associated to vector fields:

Theorem. Let M be a closed 3-manifold, π:P —• Ma topologically trivial U{\)-
principal bundle, X a vector field on M and υ a normalized volume form. Assume
that the measure defined by υ is invariant under the action of the flow generated by
the vector field X. Assume furthermore that X is homologically trivial with respect to
υ. That is, there exists a I-form a such that da — ix(v). Then

- ^ a Ada),
k J I

M /

Where c(M) is the Ray-Singer torsion times a phase factor, as described above.

3.3 Example. Let M = SL(2,M)/Γ9 where Γ is a discrete subgroup as in Exam-
ples 1.2 and 2.2.1. Let X, Y be the vector fields generating the expanding and contract-
ing horocyclic flows respectively; and H be the vector field generating the geodesic
flow. We then have the relations [H, X] = 2X9 [H, Y] = -2Y and [X, Y] = H.

Their dual 1-forms: θx, θγ and ΘH satisfy the relations: dθx = θx A ΘH =

— iv(v), dθv = —θv A ΘM = — iγ(v), dθzT = — ΘY A θv = ifj(v)'
i ^ ' i i π n β β r> ^ ^

Recall that the constant c is defined such that the normalized form v — cθx Λ ^ Λ
ΘH is the probability measure for M, i.e. / v = 1.

M

Since the vector fields X, Y and H are homologically trivial, they satisfy Arnold's
conditions as computed in Sect. 2.2.1. We verified that L(X) = 0, L(Y) = 0 and
L(H) = —2c are their asymptotic Hopf invariants respectively. It then follows that
their corresponding generalized Jones-Witten functionals can be effectively computed.

This proves:

Theorem. For M = SL(2,R)/Γ, with vector fields X, Y, and H as before; and v
the normalized volume form with normalizing constant c, we have that the values of
the corresponding Jones-Witten functional are:

WXv{k) = WYv(k) = c(M)

and
I 4τrzc \

WHtV(k) = c(M)exp( --Γ-).
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Notice that if N2 is an orientable compact surface of genus g > 2, then the unit
tangent bundle TXN is of the form SL(2,R)/Γ with Γ is a central extension of
π^N), the fundamental group of N, hence there are many examples of 3-manifolds

with invariants as above and the normalizing constant is c = —« .
4π2(g - 1)

Another set of examples of the same kind can be obtained by considering the
Brieskorn manifold M(p, q, r) defined as the intersection of the complex singular
hypersurface given by H = < (zx ,z2, z3) £ C31 z\ + z2 + z\ = 0,p, q, and r coprime,

and - H h - < 1 > with the unit sphere s5 = {\z]

 2 + \z7\
2 + \zΔ2 = 1}.

p q r J u i i z i jι J

Milnor [M] and Dolgachev [D] have shown that M(p, q1 r) is diffeomoφhic to
a quotient 5L(2, M)/Γ, where Γ is the commutator of a central extension of the
Schwartz triangle group I7(p, g, r). For all these manifolds our invariant is computable
and has the values as stated in the last theorem. Under the above hypothesis Brieskorn
has shown that M(p, g, r) are homology 3-spheres and therefore every flow is
automatically homologous to zero by Poincare duality.

4. The Non-Abelian Case

If the gauge group G is a connected simply connected non abelian Lie group, for
instance SU(N), the definition of the average holonomy has to be dealt more carefully.
The purpose of this section is to give a rigorous meaning and proof of the existence
of the average asymptotic Wilson line.

As before, let X be the vector field with associated flow ft and invariant measure
μ on M. Let A be a connection form on the trivial principal G-bundle over M. In
order to define the asymptotic Wilson line through an orbit we need the following
concepts. As in Sect. 1, we will denote the oriented segment of the orbit of the flow
ft from the point p to the point ft(p) by [p, ft(p)]9 and the cycle formed after joining
its end points by Γt p = [p,ft(p)] U 7/t(p)jP As in Arnold [A], the closed curves
{yPίQ} can be chosen to depend piecewise smoothly on p and q for almost all p and
q in M. We will denote the holonomy determined by the connection A on the closed
curve Γ^p by HA(t,p) and by PA(t,p) the parallel transport along the orbit [p, ft(p)]
of the flow and think of them as maps:

We observe that HA is a measurable function and PA is a continuous cocycle with
values in G i.e.:

PA(tι+t2,P) = PA(t2Jtι(p))oPA{tι,p).

Furthermore, if we change the connection A to a connection A9 by the gauge
transformation g then PA is cohomologous to PAg. This means that there exists a
measurable function C:M -> G such that FA9(t,p) = {C(ft(p))}~ιF(t,p)C(p) (see
[CFS]). Instead of dividing the connection by t, as in the abelian case, in order to
take the average limiting behaviour of both holonomy or parallel transport we have
to take now the "t-root" of both elements of the Lie group. We do this as follows: We
fix once and for all a representation of the Lie group in C n and think of its elements
a s n x n complex matrices via this representation. The function that assigns to each
matrix its set of eigenvalues is a continuous function from G into Symn(C*), the



86 A. Verjovsky, R. F. Vila Freyer

n-fold symmetric product of the multiplicative group of nonzero complex numbers.
Since PA is continuous and homotopic to a constant it follows that we can take a
continuous branch of the logarithms of its eigenvalues. Thus we obtain the map:

described by

p, A),..., 1 logλn(t,p, A) j G Symn(C),

where Xz(t,py A) denote the eigenvalues of PA(t,p). Since the curves {7^ q} depend
measurably on p and q and their length is uniformly bounded one can choose branches
of the logarithms of the eigenvalues of HA(t,p) to obtain a function:

ί,p, A), . . . , I logμn(t,p, A)\ G Symn(C),

such that

where b is a bounded measurable function, μ^t^p^A) denote the eigenvalues of
HA(t,p) and d denotes a complete distance in Symn(C).

Lemma 1. The limit lim £PA(t,p) exists for μ-almost every point of M and therefore
t—>oo

by (*) also lim 3@Λt,p) exists and both limits are equal. Furthermore, this limit is

independent of gauge transformations and the original choice of the branch of the
logarithm.

Proof. As we remarked, PA is a cocycle with values in G. Now we proceed as
in Oseledec's proof of the Multiplicative Ergodic Theorem (see [O, pp. 228-230]).
Our next aim is to prove that there exists an extension of the flow such that in
this extension the cocycle PA is Lyapunov homologous to a cocycle with values
in a compact abelian group which in our case is a maximal torus, % of G. One
can assume that under the given representation of G the subgroup T correspond to
diagonal matrices. Let N = G/% be the quotient of G by Ί . For g G G let [g] G N
denote the left coset g% corresponding to g. Define the flow φt:M x N —> M x N
by: φt(p, [g]) = (ft(p), [F(t,p)g]). The fact that F(t,p) is a cocycle implies that φt is
indeed a flow i.e.: φt+s — φt o φs. The flow φt preserves the measure μ which is the
direct product of the measure μ in M and the measure induced by Haar measure in
N. Then the flow φt is an extension of the flow ft. Let T:N —> G be a measurable
section of the bundle π : G —> G/T (of course a continuous section might not exist
but it is always possible to find a measurable section). With this section one can find
a measurable trivialization of the bundle.

Therefore one can think of the function p l x M - ) Symn(C) given by

*,p)} G Symn(C)

as a "cocycle" with values in the quotient of C n by the action of the symmetric group
and defined in an extension of our original flow. Therefore, by the Ergodic Theorem
for abelian cocycles, i.e. the Multiplicative Ergodic Theorem, which in the case of
abelian cocycles reduces to Birkhoff's Ergodic Theorem (see [O, p. 217]) we have
that:

lim -p(t,p)= lim F(t,p)
t—+oo t t—>oo
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exists for almost every point and hence, both limits in the lemma exist for almost every
point as in the case of Oseledec's Theorem. Since when limt_^oo β^A(typ) exists is
independent of gauge transformations, because it is the holonomy of the connection
along closed curves, we have that the limits are invariant under the gauge group.
This also follows from the fact that PA is cohomologous to PA9. Also the limits are
independent of the original choice of the continuous branch of the logarithms because
any other choice differs by a constant function equal to an integer multiple of 2πi.
D

Now define the function

w:M x Λ> —> C

by,
n j

wA(p) := w(p, A) = Y] e*-̂ ° * * 'p .

Definition. The number wA(p) is the asymptotic Wilson line of the orbit through p,
when defined. It exists for almost all p G M with respect to the measure μ.

We notice that:
1. wA(p) is a real number when G = SU(2).
2. The definition of asymptotic Wilson line is the same as the usual trace of the
holonomy in case the orbit is periodic, and it is invariant by the gauge group for
any orbit where it exists. It agrees with the abelian case, since in this case taking the
t-root of the element of the group obtained by parallel transport along a curve gives
the same result as the one obtained by integration of the connection form divided by
t along the curve.
3. By the Ergodic Theorem and the cocycle condition, the function wA(p) is constant
along the orbit of p by the flow.
4. The Ergodic Theorem implies then that when the flow is ergodic the function
wA(p) is μ-almost everywhere constant. Hence if the flow is uniquely ergodic wA(p)
depends only on the flow and the connection form.

From the above we have the following:

Theorem. The average asymptotic Wilson line of the connection with respect to the
measure μ defined by:

_ JO, if μ(wA\0))>0
w

μ\A) = < e X p j \ogwA(p)dμ(p), otherwise
I M

is well defined and is gauge invariant. In this formula one chooses any measurable
branch of the logarithm.

In this case we are taking the multiplicative average of the Wilson lines with
respect to the measure. Then if the measure is uniformly distributed along a finite
number of closed orbits it corresponds exactly to the product of the non-vanishing
Wilson lines. In the abelian case this corresponds exactly to the average asymptotic
holonomy. We observe that in this definition it is necessary to integrate the flow,
unlike the abelian case where the definition depends only on the vector field and the
connection.

Thus one is able to generalize Witten's invariant for flows.
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Theorem. The following formula generalizes the Jones-Witten invariant for a vector

field with an invariant measure:

Wχ,μ(*0= I exp (^ jtr (AdA+^A3^j\wμ(A)DA.

In the abelian case this corresponds to the definitions of Sect. 3 above. And in

the case of mesures supported on a finite number of closed orbits and uniformly

distributed along them, it is essentially Witten's formula for links on the 3-manifold.
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