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Abstract: In this paper, two different definitions of the BRST complex are con-
nected. We obtain the BRST complex of topological quantum field theories (lead-
ing to equivariant cohomology) from the standard definition of the classical BRST
complex (leading to Lie algebra cohomology) provided that we include ghosts for
ghosts. Hereby, we use a finite dimensional model with a semi-direct product ac-
tion of H x DiffM on a configuration space M, where H is a compact Lie group
representing the gauge symmetry in this model.

1. Introduction

It is well known that the BRST cohomology of a field theory with gauge group G
equals the Lie algebra cohomology of Lie (G) with values in the functional on the
space of fields. Several years ago it was shown by Henneaux and others ([H, K-S])
that this is also true for the BRST cohomology of finite dimensional Hamiltonian
systems. In the case where the G-action is not free on some open set, the differential
algebra of the BRST complex has to be enlarged with so-called ghosts for ghosts
to obtain cohomology classes with a physical meaning (see e.g, [F-H-S-T]).

On the other hand it is well known that the BRST cohomology of cohomo-
logical field theories ([Wi]) with additional gauge symmetries equals equivariant
cohomology, thus giving the cohomology of all kinds of moduli spaces. However,
as described in [O-S-vB] and [Ka], the differential leading to this cohomology is
not the standard equivariant differential.

This paper grew out from the uneasy feeling that it is not good to have several
disconnected definitions of the BRST complex. In the subsequent sections we will
link the two different definitions mentioned above. Furthermore, we will explain
the non-standard equivariant differential using results of [F-H-S-T]. To obtain this,
we start from a G-action on a manifold M, where G is the semidirect product of
a compact Lie group H and Diff (M) (the group of diffeomorphisms of M). This
theory is topological in the sense that there is only one gauge orbit.
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As in [Ka], we choose a finite dimensional setting, meaning that both M and
H are finite dimensional. This makes it mathematically more tractable and has
furthermore the advantage that we do not need to bother whether to take local
cohomology (as is usual in field theory) or not.

All along this article, we will use the following notations: If M is a manifold,
then TM will be its tangent bundle. If T is a vector bundle over M, then Γ (M, J7)
will denote its global sections. Let A be a commutative, associative R-algebra with
unity. We will write Der(^4) for the derivations of A. If V is a ^-module, then
SA(V) will be the symmetric algebra of V and Sn(V) its nth component.

2. The Classical BRST Charge

The aim of this section is to describe BRST theory associated to a symplectic
manifold TV, called the phase space, and a set of first class constraints. First class
constraints are just functions on N satisfying certain conditions. The zero set of
these functions is called the constraint manifold. In the sequel we will write con-
straints as a short-hand for first class constraints. BRST theory assigns to a given set
of constraints a so-called BRST charge Q. This charge Q is an element of a super
Poisson algebra extension B of C°°(N). Q is a natural and geometric object in the
sense that if the constraint manifold is represented by another set of constraints,
then the two BRST charges are related by a super canonical transformation.

Let (JV, ω) be a symplectic manifold. Then C°°(N) is a Poisson algebra with
Poisson bracket {•, •}. A collection of functions fa is called a set of first class
constraints if

if«Jβ} = <βfy (1)

for certain cΊn e C°°(N). For simplicity we will assume that N is finite dimensional
and that fa is a finite collection of functions. For the moment we will moreover
assume that the constraints are regular, that is to say the constraint manifold Z is
an honest submanifold of N of codimension equal to the number of constraints.
Condition (1) implies that the ideal / C C°°(N) generated by the constraints is a
Poisson subalgebra.

In the case of a Lie group H acting Hamiltonially on N, the components of
the associated momentum map satisfy (1). The cL are constants in this case equal
to the structure constants of the Lie algebra of H.

Symplectic reduction entails the following. The constraints give rise to vector
fields via the Poisson bracket. From the regularity condition it follows that these
vector fields, when restricted to Z, span a subbundle of the tangent bundle TZ
of Z and from condition (1) it follows that this subbundle is involutive. Note that
this is only true on Z. On N the vector fields are not involutive in general, they
need not even span a subbundle. One says that the symmetry algebra closes only
on Z. Using Frobenius' theorem we obtain a foliation of Z. Thus Z is locally a
fiber bundle. If this fibration persists globally then the space of fibers X is called
the symplectic quotient of (Λ/,ω,/^). X is also called reduced phase space and
the fibers are sometimes referred to as gauge orbits by physicists. It is important to
know its structure because often the dynamics of a physical system can be described
on this lower dimensional reduced phase space.

In the case of a Lie group H acting freely and Hamiltonially on N, this sym-
plectic reduction is called Marsden-Weinstein reduction. If μ denotes the momentum



BRST Cohomology 19

map then the symplectic quotient X equals μ~ι(0)/H. BRST theory, however, is
much more general. It can handle constraints not coming from any group action,
or constraints coming from non-free group actions. It is this last case that we shall
deal with in the next sections.

The idea of (classical) BRST theory is to obtain the ring of functions on the
reduced phase space X by extending the Poisson Algebra C°°(N) to a super Poisson
algebra B and then compute the cohomology of an appropriate differential, the BRST
operator D.

Let m be the number of constraints /α. They form a map F: N —> V*, where
F*=R W . By definition Z = {x e N\F(x) = 0}. The condition that the constraints
are regular (or independent) is equivalent with the condition that 0 is a regular value
of the map F. The BRST algebra (see e.g. [H]) in this case equals

B = C°°(N)®ΛV*®ΛV (2)

This algebra has a ZxZ-grading induced by the two Grassmann algebras. The
grading on ΛV* is called the ghost number grading, the grading on ΛV is called
the anti-ghost number grading. Subtracting the two gives the total ghost number
grading. So elements of BP* = C°°(N) <g> APV* <g> ΛqV are elements of total ghost
number p — q. Actually, in the group case, B is a double complex with two differ-
entials δ and d9 both of degree + 1 . We shall define them now in general. Let υa

be a basis of V such that (F9va) =fa. The parentheses denote the natural pairing
between V and its linear dual. As elements of ΛιV, they have degree —1 and gen-
erate ΛV. We introduce also generators ηa of ΛV*, having degree -f-1 and being
dual to the va. Note that B is generated as an algebra by the functions and the 2m
elements va and rf. We define

δ{f) = 0, d(f) = {/;,/} ® i/α ® 1 + "more" ,

δ(η") = 0, d(η") = -\c^Ί <g> ηP Λ ή* (g> 1 + "more"

Φ α ) =foL Θ 1 ® 1, d(υa) = -cγ

aβ ®ηβ Θvy + "more" ,

where/ G C°°(N) and "more" means that there are terms with more ghost-variables
involved, such that d2 — δd + dδ. These higher order terms only vanish in the case
where the structure functions c£« are constants. In general, they involve so-called
higher order structure functions, who are defined inductively. It is obvious that
δ2 = 0. In fact the subcomplex (ΛV <g> C°°(N),δ) is just the Koszul resolution of
C°°(N)/L As was observed by Stasheff ([S]), also in the non-regular case BRST
theory involves a resolution of this quotient ring. The total operator D = δ + d
is called the BRST operator. We will now give a very nice formulation of this
differential in terms of super Poisson algebras and state a beautiful theorem on the
existence of a BRST charge.

Recall that a super Poisson algebra is an algebra with a Z2-grading and a super
Lie algebra structure that is compatible with the ring structure in the sense that a
graded Leibnitz rule holds:

{ara2,ai} = ar{a2,a,} +(-l)άe^a^des^)a2 {a1,a3} . (3)

For odd elements the Poisson bracket is commutative, for any other elements with
a definite grading the Poisson bracket is anti-commutative. Let us introduce a super
Poisson structure on B that extends the one on C°°(N). Besides the bracket between
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two functions the only non-vanishing bracket between generators is {fα, ηP} =

{ηP, ^α} = <5α This determines the Poisson bracket completely using the Leibnitz
rule. Henneaux proved the following theorem ([H]) of Fradkin and Fradkina and
others.

Theorem 1. Suppose 0 € V* is a regular value of F. Then there exists an element
Q eB, the BRST charge, of total degree 1 such that

(0 {ββ} = 0,
(«) β(0)=/«®ι?α®l,

where Q® denotes the component of Q in Bi+lti. This Q is, up to super canonical
transformations, uniquely associated to the constraint manifold Z.

Using this BRST charge we can define a differential D on B,D = {Q, •}. As the
notation already suggests, this differential is the same as the one defined above.
Although the formulation in terms of a Poisson algebra is both natural and trans-
parent it does not help very much for computing the cohomology. It only helps to
see that the cohomology space H£(B) inherits a Poisson structure. Nevertheless,
the cohomology of D is completely known and was first computed in [H-T].

To explain a little bit of this work, write D as the sum of the two derivations
defined earlier. The differential δ has, because of the regularity of the /α, only
non-zero cohomology in BP^', i.e, anti-ghost degree zero. Therefore, the spectral
sequence, associated to this complex (Bp'q9δ,d) is degenerated, and thus

H (B) = Ht(Hδ(B)). (4)

Using the fact that C°°(N)/I ~ C°°(Z) it is easy to compute that H&(B) ~
C°°(Z)(g) ΛV*. This algebra with differential d equals the complex of differen-
tial forms on the vertical tangent bundle of Z (this is the subbundle mentioned
above). Therefore the BRST cohomology for regular first class constraints equals
the vertical cohomology of the constraint manifold.

In the case 0 G V* is not a regular value of F, but only weakly regular, i.e.,
Z is a submanifold but its codimension is smaller than the number of constraints,
there is a similar theorem on the existence of a BRST charge ([B-V, F-H-S-T]).
In this case there are relations among the constraints and the differential δ does
not give a resolution anymore. The constraints are called reducible. One enlarges
the algebra B (introducing "ghosts for ghosts") and modifies δ and d such that δ
becomes a resolution of C°°(N)/I (Koszul-Tate resolution) and d gives the vertical
cohomology again.

In the next sections we shall neglect δ and work directly with the constraint
manifold Z. Only considering positive ghost degree is common. The negative de-
grees are only added to obtain a resolution for C°°(N)/I. δ is always constructed
in such a way that the associated spectral sequence degenerates. In fact in the next
sections we will always assume that the symplectic manifold iV is a cotangent
bundle T*M and that the constraints come from Hamiltonian G-actions that are
induced by arbitrary actions on M. M is called the configuration space. Z is then a
subbundle of the vector bundle N over M and the reduced phase space X = Z/G
equals T*(M/G). In the sequel we shall use M instead of Z, because the action
on Z comes from the one on M. It is in this way that we study the BRST com-
plex associated to an arbitrary Lie group action on an arbitrary manifold. The new
element is that G need not be finite dimensional and that for transitive G actions
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we obtain the model for topological field theories that we were looking for. For
later convenience, we already mention that the positive degree part of (2) can also
be written as Homj&(AKC°°(N)).

As the manipulation of infinite dimensional geometrical objects is tricky, we
will work in an algebraic framework. We will start by a mathematical description
of the situation in which we will work. Then, we will recall the algebraic structure
on which our construction relies, namely the crossed product structure.

3. Algebraic Set-up

3.1 Presentation. Let G be a Lie group (not necessarily finite dimensional) and let
g be its Lie algebra. Let M be a differentiable paracompact manifold of dimension
n. We assume that G acts on M in such a way that we have a C°°-morphism
from G to Diff(M). By differentiating this homomorphism at the unity, we get a
Lie algebra morphism ~ : g —> Γ(M, TM). Let W be the trivial vector bundle
M x g and let TV(M) be the image of the following vector bundle map:

φ: M x g -> TM

All along this paper, we assume that TV(M) is a fiber bundle. The following lemma
provides a criterion for this assumption to be satisfied.

Lemma 3.1.1. TΌ(M) is a fiber bundle if and only if for any m in M, the subspace
{X(m)\X G g} has the same dimension.

Proof of Lemma 3.1.1. Let m be in M. Put gm = {X e g | X(m) = 0}. Let f be
a complement of gw in g. There exists a neighborhood of m such that the map

U x ! -> TM

has a constant rank and is injective. This proves that TV(M) is a vector bundle.
The converse is obvious.

We will also denote by φ the vector bundle map from W to TV(M). Let U
be an open subset of M. We will write Φ(U) for the morphism from Γ(U9 W)
to Γ(U,TV(M)). For simplicity, Φ(M) will be denoted by Φ. Moreover, we put
A - C°°(M).

Lemma 3.1.2. The A-module morphism Φ : Γ(M9 W) -> Γ(M, Tυ(M)) is onto.

Proof of Lemma 3.1.2. Let (Xi)i^i be a basis of g and let m be a point in
M. Then (Xi(m))iej is a generating system of (Tv(M))m. We extract a basis
(X\(m),...,Xp(m)) from it. Let Vm be a neighborhood of m such that for all
y in Vm, {X\(y\ ,Xp(y)) is a basis of (Γ^M))^. Then, let μ in Γ(VW,^(Λf)).
There exists (Ae[i,/>] in C°°(Vm) such that μ = ^ = 1 ^ ^ . This means
μ = Φ ( V m ) ( Σ i i £ ζ ) . S o φ(Vm) is onto.

Let (Uj)jej be a locally finite refinement of (Vm)w€M Then, Φ(%) is also

onto (because any element of Γ(l(j9 TV(M)) can be written ΣP

i=<fiXi).
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Let τ be in Γ(M, TV(M)) and let (α/)/e/ be a partition of unity subordinate
to Uj. Then, there exists σy in Γ(Uj, W) such that τ\uj = Φ(Uj)(σj). We have
Φ(Ί2j=ιajσj) — τ This finishes the proof of Lemma 3.1.2.

If g is not finite dimensional, Γ(M, W) contains strictly i ® g . Throughout this
paper, we will make the following hypothesis on our action. We assume that the
restriction of Φ to A <g> g is also onto. So we have the following exact sequence:

{0} - p _> A <g> g Λ Γ(MJυ(M)) - {0} . (5)

The statement of the previous lemma says that this hypothesis is always satisfied if
g is finite dimensional. The proof of the same lemma shows that it is also always
satisfied if M is compact. If M is not necessarily compact, this assumption is not
always satisfied. The group of diffeomorphisms with compact support provides a
counterexample. Nevertheless, this hypothesis is always satisfied for Diff(M) which
is the example we will be the most interested in. Indeed, one can lift any vector field
to the constant section equal to the considered vector field. The above hypothesis
will allow us to make the BRST cohomology appear as a modification of a Lie
algebra cohomology.

Using this assumption and the fact that Γ(M, TVM) is a projective A -module
([Hu], p. 31, [W], p. 100), we conclude that there exists a ^-module R such
that P 0 ^ = i(g)g. In the case where the group acting is Diff(M), we can take
for R the ^4-module Γ(M9TM) (which has to be seen as constant sections). The
decomposition of an element of σ of A <g> g is in this case σ = (σ — Φ(σ)) + Φ(σ).

3.2 Crossed Product Structure on A®§. Let us first recall what a crossed product
is ([F, M]). In this paragraph A is any R-algebra (commutative associative with
unity) and g is any IR-Lie algebra. Assume that there exists a Lie algebra morphism
σ: g —> Der(^4). Put C — A ® g. Then C is a ^-module. The following bracket

[a <8> X, b 0 Y] = aσ(X)(b)Y - bσ(Y)(a)X + ab® [X, Y] (6)

endows C with a Lie bracket structure. Moreover, we have a compatibility relation
between these two structures. Namely,

[a <g> XJ(b <g> Y)] =f[a®X,b®Y] + aσ(X)(f)b <g> Y.

One says that C is the crossed product of A and g.

Definition . With the same notations as above, we will say that V is a A—g-
module if

~ V is a A-module
~ V is a ^-module
~ These two structures are compatible in the following sense:

Vα <E A, VX e g, Vt? G V, X' (a υ)- a (X v) = σ(X)(a)v . (7)
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Remarks.
1) If V is a ^4—g-module then HomA(V,A) endowed with the two following op-
erations

VX e g, Vα G Λ Vg E H o π U M ) , Vt; G F,

(a g)(v) = ag(υ)

is a A—g-module.
2) If F is a ^4—g-module, SP

A{V) has a natural ^4-g-module structure (g acts on
SP

A{V) by derivation).

We come back to our situation: A = C°°(M), g is the Lie algebra of a Lie
group G acting on M. We endow A®Q with a crossed product structure using the
Lie algebra morphism ~: g —> Der(^4). Remember that Γ(M, TV(M)) has a natural
^4-module structure and also a Lie algebra structure (given by the usual bracket of
vector fields). The morphism Φ: A <g> g -> Γ(M, 7;(M)) given by Φ(f®X)=fX
is a Lie algebra morphism and a ^-module morphism. Hence, the kernel of Φ,P,
inherits a .4—g-module structure. Here, the action of g on P is given by the Lie
bracket (6) in A 0 g:

From the previous remarks, we deduce that (S%(P))* = HomA(S%(P),A) has a
natural A—g-module structure.

4. The BRST Complex

We are now about to define the BRST complex for the situation we are interested
in. Let M be the configuration space of some physical system and let G act on
M as a symmetry group for this system. If G acts freely on M, then P — {0} in
(5) and the BRST algebra is S = H o m ^ A g^4) = H o m ^ Λ ^ 0 g), A). In the
case where the action is not free but TVM is still a vector bundle, we have to add
ghosts for ghosts that are commuting to define the BRST algebra S. For simplicity,
we put F = A (8) g. Then, the BRST algebra is

S = 0Hom^ ίf\F,(Sq

A(P)T J ~ 0Hom^ (/\F,®S<(P),A
p,q \ A / p,q \ A

Moreover, an element of φ ^ H o m ^ C Λ ^ , ^ ^ ) ) * ) has grading p + 2q. Let

us now describe the differential D in S. Let Ω be an element of RomA(/\p

AF,

(Sq

A(P))*). Then, DΩ = DλΩ + D2Ω with DλΩ e RomA(f\p

A

+x F,(Sg

A(P))*)

and D2ΩeHomA(/\p

A-
ιF,(Sq/ι(P)γ). For all (Xι,...,Xp+i) in F and

(Hu...,Hq+ι) i n P , we have
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and

If we identify <S with 0 M HomR(ΛR9,(S2(i'))*), then Dx is nothing but the
differential of the standard complex for the computation of the cohomology of g
with values SA(P)* (see [F] p. 136). Note that here, we define the cohomology of g
as in [H-S], that is to say without taking into account its topology. We will denote
by C(G) - or more simply C if there is no ambiguity - the BRST complex associated
to the action of G. We have C(G) = (S,D). We are now going to exhibit a double
complex structure on C. On the algebra S, we define two degrees whose sum will
give our initial degree. The first degree of an element of RomA(f\^F,(SA(P))*) is
q and its second degree is p + q. The first (respectively second) degree is preserved
by D\ (respectively D2) and is increased by one by D2 (respectively

Proposition 4 0 l. The two gradings defined above and the differentials D\,D2

define a double complex structure on S whose associated total complex is the
BRST complex C(G).

Proof of Proposition 4.0.1. We have to prove the following relations D\ = Q,D\ =
Q,D\D2 = —D2D\. It is a standard computation to establish the first one. Let us
prove the second one. Let Ω be in UomA(/\p

AF,(Sq

A(P))*). For all (Xι,...9Xp-2)
in F and all (H\,...,Hq+2) in P, we have

— 0 ,

using the fact that this expression is symmetric in the Hi. Let us now check
the third relation. We compute separately D\D2 and D2D\. They are both in

(P))*). Keeping the same notations, on one hand we have

ijc

i<j\k
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Uk

, [Xh Xjί X\,...,Xh...,Xj9..., Xp)

x(Hi9...9Hk9...9Hq+i)(-l)i+J.

On the other hand,

Uk

x(Hι9...9Hk9...9Hq+i)(-iy -iy+J

As the second term equals zero, it is clear that D\D2 = —D2D\.

5. Cohomology of the BRST Complex

In this section, we are going to compute the cohomology of the BRST complex by
using its double complex structure. Let Γ(M,/\TV(M)*) be the space of vertical
differential forms. We endow it with the natural grading of differential forms and
with the de Rham differential d.

Theorem 5.0.1. Let E be the map from r(M,/\TO(M)*) to 0 M H o m ^ / ^ F ,

(Sq

A(P))*) defined as follows. For all ω in Γ(M,/\P TΌ{M)*),ε{ω) )s the element

f® ^ ^A

of®q HomXΛ^/%(^(P))*) determined by
i,..., Xp) G F9 E(ω)(ΛΊ,. . . , # , ) = ω(Φ(Λ\),..., Φ(Xp)).

ε is a quasί-isomorphίsm between the complex (Γ(M, f\Tv(M)*),d) and the BRST
complex C.

This theorem has been proved in a more general but finite dimensional case by
[F-H-S-T], although there is a slight difference. In their set-up P is a free module,
whereas here it is only projective.

Proof of Theorem 5.0.1. A small computation shows that ε is a morphism of com-
plexes. Moreover, ε is injective because Φ is onto. It is easy to see that
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l m ε ~ 0Hom^ ( J\(F/P),A ] - Hoπu(/\ Γ(M, TVM\Λ) ~ Γ(M, /\

Let J denote the subcomplex (Im£,£) = D\) of C. It is clear that X is isomorphic
to Γ(M, /\TVM*). Let us show that the natural injection from X to C is a quasi-
isomorphism. For this purpose, we are going to use spectral sequences. We first
compute the cohomology of C with respect to £)2 Let J be the following complex:

It is clear that # ° ( J ) = φ^Hom^Λ^/P), ,*) . Let us show that for q > 0,

= {0}. For this, we will use the decomposition PφR=F. Let q > 0.

^ j p
{} q

The cycles of ©^Hom^(A^(Sj(P))*) are the elements of ®pUomA(/\p

A(F/P),

(S%(P))*). Let us now prove that all the elements of ®pHomA(f\p

A(F/P),

(Sq

A(P)Y) are boundaries. Let ω be in ®pUomA(/\p

A(F/P),(Sq

A(P))*). We can
p q

see ω as a map from (® F) 0 (Θ F) to v4 which is antisymmetric in the first p vari-
ables and symmetric in the q last variables. Using the decomposition P ®R = F9

p+l q-l

we extend ω into a p + ^-multilinear map ώ from ® F (g) (8) P. The map ώ is
symmetric in the last q — 1 variable. By a standard process, we transform ώ into a
p + ^-multilinear map Ω which is also going to be antisymmetric in the p + 1 first
variables. For all (Xι,...9Xp+i) in F and all (Hι,...,7iq-i) in P, we put

Then β belongs to Hoiruί/^+V^Sj^))*) . Moreover D2Ω = ω. So we have
proved that Hq(J) = {0}. Now, using a double complex argument, it is clear that
Hm(X,D = D\) = Hm(C,D). As we have already noticed that the complex X was
isomorphic to Γ(M,/\ TVM*), this finishes the proof of Theorem 5.0.1.

6. BRST Cohomology and Equivariant Cohomology

In this section, we apply the results of the previous one to a very special situation,
so as to obtain the BRST differential algebra for topological theories. We start with
some recollections.

6.1 The Weil Algebra. Let ί) be a finite dimensional real Lie algebra. Let us recall
([C]) that its Weil algebra is WQ)) - A f t * ) ® ^ * ) . The grading on W{\)) is as
follows:

-The elements of A1 (I)*) have degree 1,
-The elements of ^(t)*) have degree 2.

On W(ί))9 one defines a differential dψ by
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• Vy £ /\ι(i)*),dwy — d^y -f Γ, where Γ equals 7 considered as an element of

^(ί)*) and du is the differential of the standard complex for the computation

of the cohomology of ί) with values in R.
• VΩ e Sι(ί)*),dwΩ e Λι(l)*)® SιQ)*) and dwΩ is the map from Λι(ϊ)) to

SιQ)*) defined by

VJGί), (dwΩ)(X)=XΏ,

where denotes the coadjoint action.

6.2 The Carton Model. We assume now that H is a compact connected (finite
dimensional) Lie group acting on M and that i) is its Lie algebra. We define the
following differential algebra (A9d) with A = (Ω(M) 0 S(ϊ)*))H and

• For all η in ΩP(M), dη = dη — d'η were d denotes the de Rham differential
and d'η is the element of Op""1(M)0S r l(ί)*) determined by

VX e ί) (d'ί?)(X) = *>*/,

where z^ denotes the interior derivative with respect to X.
• For all 0 in Sι$*)9dφ = O.

Let us recall that (A, d) provides a model for the computation of the equi variant
cohomology of M with respect to H.

6.3 The BRST Model. The BRST model as described in [O-S-vB] and [Ka] is as
follows. The algebra equals W(h) <g) Ω(M), the differential equals

dw ® 1 + 1 ® d + >C - a ; , (8)

where 3' is defined above and C: ΩP(M)-> Λιφ) ® ΩP(M) is defined by
(X77XX) = Cχη, the Lie derivative of η with respect to X. In [Ka] it is shown
that this BRST differential can be obtained from the standard one, dψ ® 1 + 1 ® d,
by an automorphism on the unrestricted BRST algebra W(fy 0 Ω(M). Under
this automorphism the basic subalgebra is mapped to the restricted BRST alge-
bra (S(ί)*) 0 Ω(M))H and one obtains the Cartan model. In this subsection we will
show how to obtain (8) as the BRST differential of section four by choosing the
right symmetry group.

Assume that M = B/C, where B and C are Lie groups (not necessarily finite
dimensional). This is always possible by putting B = Diff M and C = DiffwM
(where DiffwM is the group of diffeomorphisms leaving the point m invariant).
Then B acts on M by left multiplication. Let b be the Lie algebra of B. As before,
we denote by ~ : b —> Γ(M, TM) the Lie algebra morphism this action induces.
During all this section, we also assume that the map

A 0 b -> Γ(M, TM)

> aX

is onto. Let H be a finite dimensional connected compact Lie group. We assume
moreover that we have a C°° Lie groups morphisms U from H to B. Let ί) be the
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Lie algebra of H and u : ί) —> b the differential of U at the unity. So // acts on
M via ί/. Put G =HxB.In G, multiplication is defined as follows:

V(*A') G H\\/(b,b') e B\ (h,b)(ti,bf) = (A*', U(hf-l)bU(ti)bf) .

This multiplication is such that the following map defines a group action of G
on M:

GxM-*M, (h,b)-my-+h-(b-m). (9)

Let g be the Lie algebra of G. We have cj = ί) x b . In cj, the Lie bracket is given
u

by
\l(H,H'),\ί(D,D') &B,[H + D,H' + D'] = [H,H'] + [A«(#')]

Put F — A (8) 9 and is = .4 ® b . As the action of G and 5 are transitive, we have
the following exact sequences:

{0} -> P -> F Λ Γ(M, ΓM) -> {0}

{0} -^ β -*E^Γ(M, TM) -> {0} ,

where Φ and Ψ are given by

V/ G A, \/H e I), VD G b *(/•(# -h D)) =f(u(H) + D)

We have F = (^ (g) ί)) Θ JSΓ and

p = {f(H + D) G A®F\fWH) + D) = 0}

= {/"(-# -f n(ίΓ))|// G f)} Θ {/D^O - 0}

^ (^ 0 f)) Θ β .

Then,

From this, we obtain

where PΓ(t ) is the Weil algebra of f).
Recall that (C{G\D) (respectively (C(B)9δ)) denotes the BRST complex associ-

ated to the action of G (respectively E). We are going to give the explicit expression
for D. For this, we identify C(G) with ΘP}qRomA(Λp

AE, W0)) 0 (β%(Q)*i Then,
the expression below come from straightforward computations if one remembers
the following asymmetry in our identification: an element H in Sι(fy represents the
pair (H,—u(H)) but an element H of Aι0)) represents the pair (i/,0). Let ω be
in mmA(Λp

AEMr(V)®(Sn(^)®(Sq

AQf). Clearly, Dω decomposes into five
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parts Dω — ω^ + cop) + cop) + ω^) + ω φ . While reading the following definitions
one should keep in mind the following anology with (8); cθ(i) -f ω^) gives 1 0 d as
in section five, cθ(5) equals d^ (8) l,cθ(2) leads to £ and ω φ gives —df (see also the
remark at the end of this section).

(Sq

AQT) and

ω(2) G Hom^f/l^is, (/Γ+1(ϊ)*) 0 £w(ί)*)) 0 OS^β)*) and

= u(Hi) [ω(Xι,...,Xp) (Hx,...,Hh--.,Hr+χ)] (-\

Σ Σ
j=ί i=l

Note that «(//,-) acts trivially on 5(1)*).

ω ( 3 ) eHom i ( (^" 1 £,(^ r (I)*)(8)S B + 1 (A*))®(S30* and

.., Â ,) e £,V(#i,... .Λ^+i) e I),

= - f ) ω ( « ( « i ) , # i > , XP-1 X^i» , Hu..., Hn+X)

ω ( 4 ) eRomA(Ap

A-
lE,(Ar(i)*)®S"(l)*))®(Sq

A

+lQ)*) and

ί+l

Σ

ω ( 5 ) G H o m ^ ί ^ , Wr+n+i (ί)) ® (S«β) ) and

V(ΛΊ,...,ΛJ,) G £, ω(5)(A , , . . . , X p ) = (dw® id)(ω(ΛΊ, . . . ,X p )) .
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As in [Ka] and [O-S-vB], we restrict the BRST algebra to obtain a model for
equivariant cohomology. We define

One can see easily that C(G )rest is invariant under D. Moreover, on C(G)ΐQSu the
expression of D is slightly simpler. Let ω be in \HomA(A%E,Sn(fy*)® {Sq

AQ)*)]H.
With the previousnotations, we have

Dω = ω(i) + ω(3) + ω ( 4 ) .

On C(G) r e st, we are going to put a double complex structure slightly different than
the one we had before. The first degree of ω is p + q -f 2n and its second degree
is q. We put

D'(ω) = cι)(i) + <Ό(3) and D"{ώ) =

D' (respectively D") increases the first (respectively the second) degree by one and

leaves the second (respectively the first) degree invariant.

Lemma 6.3.1. D'2 - D"2 = 0 and D'D" = -D"D'.

The proof of Lemma 6.3.1 consists in computations similar to those appearing

in Proposition 4.0.1. We don't reproduce them here.

So we have defined a double complex structure on C(G) r e s t . We are now going

to prove the theorem linking BRST cohomology and equivariant cohomology.

Theorem 6.3.2. Assume that there exists a A-module R which is also H-invarίant

such that Q®R = E. Then, the map T from [(Ω(M) <g>S(\)*))H,d] to

^ f t * ) ® {Sq

AQY))H,D} defined by

Vσ G (ΩP(M)®S(b*)f9V(Xu...9Xp) G E9

T(σχXl9...,XP) = σ(Ψ(Xx)9..., Ψ(XP))

is a quasi-isomorphism.

Remarks. The hypothesis of the theorem is satisfied in the following two cases:

- If B is finite dimensional. Then the kernel V of the vector bundle map φ : W —

M x b —> Γ(M) is a vector bundle. If we put an //-invariant inner product (,}

on the fibres g of W, the orthogonal complement of V with respect to (j),^-1,

is a vector bundle such that V Θ V1- = W. Then, we can take R ~ Γ(M, V-1).

- If B = Diff(M), then the decomposition given at the end of 3.1 is //-invariant.

Proof of Theorem 6.3.2. A small computation shows that T is a morphism of

complexes. Moreover, T is injective and its image is

Im^ = φ(Λ(£/0*®S(t)*)) •
p \A )
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For convenience, we put X — ( Im^Z)). Then X is isomorphic to [(Ω(M) 0
5(1)*))^, d]. Let us prove that Hm(T) = Hm(C(G)ΐQSUD). We proceed as for Theo-
rem 5.0.1: we use the double complex structure of C(G) res t. We first compute the
cohomology of C(G)τest with respect of D". We clearly have H°(C(G)τQsUD") =

®p(k(E/QY ® SQ)*)Y*- Let us now prove that H^C(G)τcsUDf/) = {0} if q > 0.
A

For this, we use the //-invariant decomposition E = QΘR. Let q > 0. Then Ker

D"n(@pmmA{Ap

AE,S{\f)®{S\QY))H. is isomorphic to {®pYLomA{Ap

A{E/Q\

5(1)*) ® (Sjg)*))*7. Let us prove that any element of (φpRomA(Λp

A(E/Q), SQ)*) <g>

(Sjβ)*))77 i s a coboundary. Let ω be such an element. We construct an ele-

ment Ω in ((&pllomA(Λp

A

+ιE,S(\)*)®(Sq

A~
ιQ)*)) such that D"Ω = ω exactly

as we did in the proof of Theorem 5.0.1. But as the decomposition we use is

//-invariant, it is easy to see that our Ω is also //-invariant. So we have proved

Hq(C(G)rQsUD") = {0}. From this we deduce the following isomorphisms:

This finishes the proof of Theorem 6.3.2.

As we know that the (restricted) BRST complex for topological theories equals
the Cartan model for equivariant cohomology, we now come to the corollary we
are aiming at:

Corollary 6.3.3. Let H be a compact Lie group acting on a manifold M. Let i)
be the Lie algebra of H. The restricted BRST complex C(HxDiffM)τest is quasi-
ίsomorphic to the Cartan model [(Ω(M) (8) S(l)*))H, d].

The corollary is an immediate consequence of Theorem 6.3.2 if we write M =
Diff(M)/Diffm(M).

Remark. By the same techniques, one can show that the complex C(Hx
Diff(M)) is isomorphic to the unrestricted BRST complex for topological theories
with algebra Ω(M) <8> WQ)) and differential (8).

7. Conclusions

We have established a link between two different definitions of the BRST complex.
The first one is the BRST complex for constrained Hamiltonian systems ([F-H-
S-T], [K-S], [S]). The second one concerns the BRST construction associated to
cohomological field theories ([O-S-vB], [Ka]). Actually, we linked the ghost parts
(which are the most important parts) of both complexes.

Extending the first BRST theory to constraints coming from infinite dimensional
groups and applying this to a semi-direct product of the type //xDiff(M), we
get the unrestricted BRST algebra for cohomological field theories. Restricting the
former BRST algebra gives the (restricted) complex for cohomological field theories
leading to equivariant cohomology.
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