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Abstract: This paper is the third in a sequel to develop a super-analogue of
the classical Selberg trace formula, the Selberg supertrace formula. It deals with
bordered super Riemann surfaces. The theory of bordered super Riemann surfaces is
outlined, and the corresponding Selberg supertrace formula is developed. The analytic
properties of the Selberg super zeta-functions on bordered super Riemann surfaces
are discussed, and super-determinants of Dirac-Laplace operators on bordered super
Riemann surfaces are calculated in terms of Selberg super zeta-functions.

I. Introduction

It took a long time before physicists acknowledged the true value of the Selberg
trace formula as introduced by A. Selberg in his famous paper [62]. The original
attempt of Selberg to formulate his trace formula was based on number theoretical
considerations, and in fact there is a close relationship between the areas of analytic
number theory, eigenvalues of Laplacians on Riemann surfaces and the Selberg trace
formula (see e.g. [36, 63]). In particular Selberg was interested to study the analytic
properties of a function closely related to the trace formula, the Selberg zeta-function.

Physicists, however, have other objectives: they want to learn something about the
spectrum of a model, or they want to calculate determinants, say. The latter approach
to the use of the Selberg trace formula appears in quantum field theory on Riemann
surfaces, i.e. in the Polyakov approach [20-23, 55, 56] to (bosonic-, fermionic- and
super-) string theory. In the perturbation expansion of the Polyakov path integral one
is left with a summation over all topologies of world sheets a string can sweep out,
and an integral over the moduli space of Riemann surfaces. This picture is true for
bosonic strings (BS) as well as for fermionic strings (FS). The partition function
turns out to be for open as well as closed bosonic strings corresponding to a topology
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without conformal Killing vectors (Blau and Clements [10], and DΉoker and Phong
[20, 23])

4 B S ) Σ / / 1 7 2 ^ ) - ^ / 2 . (1.1)

Pγ and Δo are the symmetrized traceless covariant derivative and scalar Laplacian
with mixed [2] and Dirichlet boundary-conditions for the fields, respectively, and
<i/iWp denotes the Weil-Petersen measure. D denotes the critical dimension which
equals 26 for the bosonic string. For the fermionic-, respectively the super-string
all quantities have to be replaced by their appropriate super case, and the critical
dimension D = 10.

The calculation of (super-) determinants of Laplacians on closed Riemann surfaces
is due to several authors. Mainly two approaches must be mentioned, firstly the
evaluation of these determinants in terms of Selberg zetafunctions, e.g. Baranov,
Manin et al. [4-7], Bolte and Steiner [14], DΉoker and Phong [21, 23], Efrat [25],
[32], Gilbert [27], Namazie and Rajjev [50], Steiner [65], and Voros [71], and secondly
in terms of the period matrix and theta-functions, the most important are e.g. Alvarez-
Gaume et al. [2] and Manin [44]. Formal as these results may be, the expressions
in terms of Selberg zeta-functions provide tools to investigate the convergence,
respectively divergence properties of the string path integral a la Polyakov, hence
non-perturbative statements are possible. In the bosonic string theory, this approach
enabled Gross and Periwal [35] to show that the perturbation expansion for the closed
bosonic string is not Borel-summable, and hence not finite; this statement can be
easily generalized to open bosonic strings [13]. In the fermionic string theory a better
asymptotic behaviour is expected, however, due to the almost unknown structure of
the corresponding super moduli space, the arguing of Gross and Periwal cannot be
taken over in an obvious way.

In the perturbation expansion of the bosonic string the classical Selberg trace
formula could be applied in a straightforward way; the perturbation theory of the
fermionic string [22, 23] required the devolving of a superanalogue of the classical
Selberg trace formula, i.e. the Selberg supertrace formula. Here Baranov, Manin et al.
[4-7] originally started this business, and it was further developed by Aoki [3] and
in [32, 33].

It was mainly the closed string theory that was dealt with and for which the whole
perturbation theory for scattering amplitudes was developed quite comprehensively.
The case of the open bosonic, respectively open fermionic string, starting with the
pioneering work of Alvarez [1], took somewhat longer and seems until now not such
as well-developed as the former.

Contributions along the lines of the Polyakov path integral approach for open
strings is due to e.g. Blau et al. [10, 11], [13 15], Burgess and Morris [16], Carlip
[17], Dunbar [24], Jaskolski [40], Luckock [43], Martίn-Delgado and Mittelbrunn
[45], Ohndorf [52], Rodrigues et al. [18, 58, 59], and Wu [72].

Of course, while dealing with open strings one has to distinguish Dirichlet and
Neumann boundary-conditions, respectively. Here again we have two possibilities to
express determinants: either by the period-matrix and theta-functions, or by appro-
priately chosen Selberg zeta-functions for the corresponding Dirichlet or Neumann
boundary-condition problems. The former was discussed by Burgess and Morris [16],
Dunbar [24], Losev [42], Luckock [43], Martίn-Delgado and Mittelbrunn [45], Ro-
drigues and Van Tander [59] (in particular to give explicit expression on the one-loop
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level), and Mozorov and Rosly [49] for multiloop expressions. The latter case was
approached by [10-13,15].

In particular all the cited authors could derive relations between the determinants
det ΔΣ ^ and det7 ΛΣ corresponding to Dirichlet and Neumann boundary-conditions
on the bordered Riemann surface Σ on the one hand, and the determinant of the
scalar Laplacian det7 ΔΣ for the doubled closed Riemann surfaces Σ on the other,
i.e. (the prime denotes the omission of possible zero-modes)

det Δ(g} det7 Δ^] - det7 Δ t . (1.2)

The Selberg trace formula for bordered Riemann surfaces does exist and almost the
entire theory is due to Venkov [68-70]. Independently, later on the Selberg trace
formula for bordered Riemann surfaces was discussed by Blau and Clements [10],
and [13, 15].

Let us assume that the generating functional in the theory of the open fermionic
string can also be expressed as [22, 23]

zoFS) = Σ / Φ.wptsdeKP/^W^^sdet7 Π2

0Γ^2, (1.3)
9 J

where Px and D o are the super-analogues of the symmetrized traceless covariant
derivative and scalar Dirac-Laplace operator with mixed and Dirichlet boundary-
conditions for the fields (e.g. [43]), respectively, and dμsWP denotes the super Weil-

Petersen measure. In order to deal with the vector Dirac-Laplace operator P\Pχ the
incorporation of m-weighted super automorphic forms into the formalism is required.

The development of the fermionic string, respectively the super-string model [29-
31,61] was enormously boosted by the discovery of particular anomaly-free properties
of certain gauge groups by Green and Schwarz [30]. In two previous publications,
hereafter denoted as I [32], and II [33], respectively, I have already discussed various
aspects of the Selberg supertrace formula on super Riemann surfaces. In [32] the
Selberg supertrace formula for hyperbolic conjugacy classes was developed in full
detail, including an analysis of the properties of the Selberg super zeta-functions and
super-determinants of Dirac-Laplace operators on super Riemann surfaces in order
to discuss the fermionic string integrand in the Polyakov path integral properly. In
[33], I continued these studies by the incorporation of elliptic and parabolic conjugacy
classes. However, to complete a comprehensive development of the Selberg supertrace
formula, bordered super Riemann surfaces must be included in the discussion.
Bordered super Riemann surfaces, of course, occur for open (fermionic- and super-)
strings (in the case of superstrings, so called type I super strings with the 0(32) gauge
group).

The further contents will be now as follows:
In the second section I give a short introduction into the theory of bordered

Riemann surfaces and indispensible information concerning the spectral theory on
bordered Riemann surfaces. Information concerning the definition of super Riemann
surfaces was already given in [32, 33], but is included here to make the paper self-
contained.

The third section sets up a proposal to define bordered super Riemann surfaces.
Concerning the theory of super Riemann surfaces I refer to the relevant literature, only
the most important relations and indispensible ingredients will be given. I will also
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cite the result for the Selberg supertrace formula on closed super Riemann surfaces
restricted to hyperbolic conjugacy classes.

The fourth section attacks the actual derivation of the Selberg supertrace formula on
bordered super Riemann surfaces. After the incorporation of the hyperbolic conjugacy
classes, the usual elliptic ones cause no difficulty and the result of [33] can be taken
over without delay; the incorporation of the parabolic conjugacy classes (Dirichlet
boundary-conditions) requires some care and a regularization procedure is needed and
the incorporation of Neumann boundary conditions then follows by a combination of
the former results.

In the fifth section, I discuss the analytic properties of the (modified) Selberg
super zeta-functions on bordered super Riemann surfaces by means of the supertrace
formula.

In the sixth section, the results of the former two are applied to the problem of
calculating super-determinants of Dirac-Laplace operators on bordered super Riemann
surfaces. As explicit as possible expressions are evaluated in terms of the Selberg super
zeta-functions on bordered super Riemann surfaces.

All the principal results will be stated as theorems.
The last section is devoted to a summary and a discussion of the results.

II. The Selberg Trace Formula on Bordered Riemann Surfaces

1. Bordered Riemann Surfaces and the Construction of the Selberg Operator

We start with usual Riemann surfaces (we rely on Sibner [64] and Venkov [69],
compare also [12, 13, 15]). Let us consider a Riemann Σ surface of genus g and
dj, . . . , dn conformal, non-overlapping discs on Σ. Then Σ = Σ\{dλ, ..., dn} is a
bordered Riemann surface with Dirichlet, respectively Neumann boundary-conditions
of signature (g, n). c{ — ddi are the n components of dΣ. Now take a copy SfΣ of
Σ, a mirror image, and glue both together along dΣ and d^Σ. Explicitly this can
be realized by taking the reflection & to have the form S?z —> z' = — z{z G J^Γ).
The reflection & in dΣ then is a anti-conformal involution (2?1 = 1) on the doubled
surface Σ = Σ U 27 Σ. Σ is a Riemann surface of genus g = 2g + n — 1, and we set
<A — J4{^). The uniformization theorem for Riemann surfaces now yields that Σ
may be represented as Σ = Γ\3@, where Γ is the Fuchsian group of Σ. Of course,
there is a fundamental domain β^ of Σ in J&, tesselating 3@% In order to construct
a convenient fundamental domain and representation of the involution 27, we view
according to Sibner [64] and Venkov [69] Σ as a symmetric Riemann surface with
reflection symmetry &. Then & may be chosen as the interior of a fundamental
polygon with Ag + In — 2 edges which is symmetric with respect to the imagi-
nary axis. Due to the explicit choice of & as 27z = — z, one of the bordering curves,
say c1 ? is mapped onto the imaginary axis and the others among the edges
of the fundamental polygon. With this construction one can work directly on i^,
with & viewed as mapping of complex numbers, being formally identical on Σ
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In the case that elliptic fixed points and cusps are present, the non-euclidean area
of a Riemann surface is given by (e.g. [38], Gauss-Bonnet theorem)

(2.1)

where s denotes the number of inequivalent elliptic fixed points and K the number of
inequivalent cusps (i.e. the number of zero interior angles of the fundamental polygon
JF). ι/j denotes the order of the elliptic generators Rj C Γ(l < j < s), i.e. R^J = 1
for (l<j<s,Kι>3< oo).

In order to set up our notation we start by citing some results of the classical Selberg
trace formula for bordered Riemann surfaces. As usual one starts by formulating the
appropriate automorphic kernel. Consequently this gives for automorphic functions
the property f(ηz) = χ™j(ry,z)f(z)(rf G f ) the inversion f(&z) = ±f(z) which
distinguishes even and odd automorphic functions with respect to x. The χΊ = χ(j)
denote a multiplier system, and j(7, z) the automorphic weight [13, 37, p. 357].

The automorphic kernel is then constructed as follows [13, 15, 70]

KNίD(z, w) = X- Σ [k(z, ηώ) ± k(z, <y&w)], (2.2)

{7}

where the "+"-sign stands for Neumann, and the "—"-sign for Dirichlet boundary-
conditions. Σ denotes the summation over distinct conjugacy classes. Let L be the

{7}

Selberg-operator with eigenvalue Λ(X) on ̂  (where k(z,w) is the corresponding

integral kernel) together with its counterparts L on i^, and we introduce the Maass-
Laplacian Dm = - y2(dl + dl) + imydx on & in ̂ 2 ( i ^ , m, χ) = ̂ 2 ( i ^ ) (the space
of square integrable automorphic forms).

To each cusp there is associated an Eisenstein series

J2 (2.3)

z G 3$, $l(s) > 1, a — 1, . . . , K with Γa the stabilizer of the cusp a. In the
spectral decomposition of Dm on S^2{^") these Eisenstein series span the continuous
spectrum.

Let us start with Dirichlet boundary-conditions. Only the odd automorphic func-
tions with respect to x survive in the spectral expansion of the automorphic kernel.
A glance on the continuous spectrum shows that the Eisenstein series e(z, s) drop
out, cf. according to a theorem by Venkov [69, p. 121]. Let / G S1^) an odd
eigenfunction in x of Drn with eigenvalue λ. Then

(LDf)(z) = l- j kD{z^)f{zϊ)W) = Λ(\)f(z). (2.4)
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2. Conjugacy Classes on Bordered Riemann Surfaces and the Trace Formula

As usual the quantity Nη is called norm of an hyperbolic 7 G Γ and NΊQ will
denote the norm of a primitive hyperbolic 70 G Γ9 and lΊ = In NΊ denotes the length
corresponding to a 7 G Γ. 7 0 G Γ is called a primitive element, if it is not a power
of any other element of Γ. Each element 7 G .Γ/{±11} is thus uniquely described as
7 = k~ιηok for some primitive 70, n G N and fc G Γ/ΓΊQ. Conjugacy classes are

defined by {7} := {ηi ^ Γ\ηi = k~1/yk,k G Γ}. J2 denotes the summation over
{7}

primitive conjugacy classes of a particular conjugacy class {7} within the Fuchsian
group Γ. In the following I will omit the index "0" in 7 0 if it is obvious that indeed
a primitive 70 is meant and no confusion can arise.

On a regular hyperbolic surface the conjugacy classes {7}^ of hyperbolic 7 G Γ
are in one-to-one correspondence with the closed geodesies on Σ and we denote
by I the length of the closed geodesic on Σ related to {Γ}p. The norm NΊ of a
hyperbolic element 7 G Γ and the length lΊ are related by NΊ = t1^. This one-to-one
correspondence is no longer true if elliptic elements are present. However, the norms
NΊ of conjugacy classes in Γ are still properly defined, and we use sometimes the
notion "lengths of closed orbits" and "norms of conjugacy classes" irrespective of a
possible existence of such orbifold points, keeping in mind that "norms of conjugacy
classes" is the more correct one.

Let K be the number of inequivalent cusps on the fundamental domain ^ (the
number of primitive parabolic conjugacy classes in Γ), and by Γρ the restriction

of Γ to this inversion counterpart, where I have abbreviated ρ := 7 ^ . In order
to investigate the various conjugacy classes for the formulation of the Selberg trace-
formula for bordered Riemann surfaces, we have to distinguish the original conjugacy
classes which appear already for closed Riemann surfaces and additional conjugacy
classes due to the η&. The new conjugacy classes can be characterized by their
traces. We consider first compact bordered Riemann surfaces. The case of the closed
Riemann surfaces gives us hyperbolic and elliptic conjugacy classes which correspond
to I tr(7)| > 2, respectively | tr(7)| < 2.

In the theory of symmetric spaces it is convenient to consider the following
isomorphic model of 3@. One defines the positive definite symmetric matrices

f J,), (XeR,y>0). (2.5)
x/y l/yj

If g G SL(2, R), then the group action has the form

gz(x;y) = g[z(x;y)]g\ (2.6)

where gι denotes the transpose of g. In this model it is easy to implement the
involution & in terms of the matrix

ί .?)•
i.e. & is an element in GL(2,M)/{±E}.
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Within this model we find, first, for tτ(ρ) φ 0 that the relative centralizer is of the
form

'b 0 \
0 _ r i ) > (moddzl). (2.8)

[Centralizers ΓΊ are defined by ΓΊ := {7^ G Γ | 7~*77; = 7} ] Therefore 7 ^ c Γ
consists of hyperbolic elements and the identity, and since Γ is discrete of a single
hyperbolic element. The second case gives tx{ρ) = 0. Then the relative centralizer
consists of elements of the form

0 \ / 0 d

ρ2 is an elliptic element of order two. Thus 7 ^ consists of hyperbolic, elliptic and
the identity element. However, due to the construction ρrfρ2 (n G Z) we see that we
can generate infinitely many elliptic conjugacy classes which is impossible, since Γ
is discrete. Therefore the relative centralizer of η& with tr(ρ) = 0 consists either of
hyperbolic elements and the identity or by a single elliptic generator of order two.
The explicit computation reveals that in the compact case only the former case is
possible, the latter leading to a divergency.

The conjugacy classes of ρ G ΓS7 can therefore be distinguished in two ways
[10, 13, 15] according to their squares ρ2 G Γ. Let ρ G Γ be primitive, that is not a
positive power of any other element of Γ&\ Then

i) Q — Qi > Qi £ {C^}/., i = 1, . . . , n. The {C%}p are the conjugacy classes of the

Cτ in Γ which correspond to the closed geodesies c{ on Σ.

ii) ρ = ρp, ρ2

v being a primitive element in Γ and ρ2

p φ {Cτ}p.

In the notation of Venkov [69] the relative hyperbolic conjugacy classes with {ρ}
with tr{£>} = 0 correspond to the case i), and the relative hyperbolic conjugacy classes
{ρ} with tr(£>) φ 0 correspond to the case ii).

Thus it follows that the sum over conjugacy classes for ρ G ΓS? is divided into

first the conjugacy classes of the Ci in Γ, which correspond to the closed geodesies

cτ on Σ, and second into conjugacy classes such that for all ρ G Γtf there is a

unique description 7 = k~ιρ2n~ιk(n G N), for ρ G Γ3? inconjugate and primitive,

and k G Γρ2\Γ.
Let us continue by considering a non-compact polygon. The additional conjugacy

classes are again classified according to their trace. The conjugacy class tr(7) = 2
with corresponding non-compact Fuchsian group Γ gives the already known parabolic
conjugacy classes. Each conjugacy classes with tr(#) = 0 give rise to an elliptic
transformation whose centralizer is generated by a single generator of order two (see
above). In other words, for each 7 G Γ there exist an element g G PSL(2,R) having
the properties

gρg~ι=^, gfng~ι \ t u l , ) ( m o d ± l ) > . (2.10)

where a > 1. These classes play the role of the parabolic classes in the classical
Selberg trace formula. Evaluating all contributions, we can write down
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Theorem 2.1 [13, 15, 69, p. 137], The Selberg trace formula on bordered Riemann
surfaces with reflection symmetry for automorphic forms of weight m obeying Dirichlet
boundary-conditions, m E Z , is given by

π = l Q
 x ' ' {7} k=\

pi(m—l)fcπ/i/

cos[π-2(fcτr/i/)]

g(Q)
2

tr(ρ)=O

— oo
OO

s inh-
o 2

(2.11)

n

the abbreviation L =Σlc%

 and where the λ n = ^ + p2

n on the left runs through

the set of all eigenvalues of the Dirichlet problem, and the summation on the right
is taken over all primitive conjugacy classes R € Γ with tτ(R) < 2, 7 £ Γ with
tr(7) > 2, and ρ G A tr(£>) φ 0. The lengths lc. are twofold degenerate, since Ci and

C~ι both have to be included into the sum. a(ρ) and μ(ρ) are quantities specific to
the conjugacy class of the elliptic 7 G Γ with \x{ρ) = 0 which will be explained later
on [of. Theorem 4.2]. h(p) denotes an even function in p and must have the following
properties:

i) h(p) is holomorphic in the strip |3(p)| < \ + ε, ε > 0.

ii) h(p) has to decrease faster than \p\~2 for p —> ±00.
00

iii) g(u) = π~ι J h(p) cos(τrp) dp. M
0

Note that for Neumann boundary-conditions the inverse-hyperbolic terms change
their signs. In this case, however, the parabolic terms are quite different, due to the
additional presence of the continuous spectrum represented by Eisenstein-series, see
e.g. [38]. Furthermore we abbreviated κ0 := ^ X^
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III. Super Riemann Surfaces, Bordered Super Riemann Surfaces
and the Selberg Supertrace Formula on Closed Super Riemann Surfaces

1. Super Riemann Surfaces and Construction of Bordered Super Riemann Surfaces

We sketch some important facts about super Riemann surfaces. For more details I
refer to Batchelor et al. [8, 9], DeWitt [19], Moore, Nelson and Polchinski [48],
Ninnemann [51], Rabin and Crane [57], and Rogers [60]. Let us start with a
(111) (complex)-dimensional (not necessarily) flat superspace, parameterized by even
coordinates Z e Cc and odd (Grassmann) coordinates θ G Cα, respectively. Let Λ^
be the infinite dimensional vector space generated by elements ζa(a = 1,2, ...)
with basis l,Cα> CαC&> (α < &) a n d t n e anticommuting relation ζaζb = —ζbζa,
Vα b. Every Z G Λ^ can be decomposed as Z = ZB -f Zs with ZB G C c = C,

Zs = Σ Λ i α n ^ ί8 1. w i t h t h e c α l 5 . . . ,α n e Ca t o t a l I y antisymmetric.
n

ZB and Zs, respectively, are called the body (sometimes denoted by ZB = Z r e d) and
soul of the supemumber Z, respectively. The notion of superspace and supermanifolds
as introduced by Batchelor and Bryant [8, 9], DeWitt [19], Rabin and Crane [57], and
Rogers [60] enables one to represent supersymmetry transformations as pure geometric
transformations in the coordinates Z = (z, θ) G C c x Ca. As is well-known, a usual
complex manifold of complex dimension equal to one is already a Riemann surface.
The definition of a super Riemann surface, however, requires the introduction of a
super-conformal structure. Let us consider the operator D — θdz + dQ (note D2 = dz).
Further we consider a general superanalytic coordinate transformation z = z(z,θ)9

θ = θ(z, θ). A superanalytic coordinate transformation is called superconformal, iff
the (01 l)-dimensional subspace of the tangential space generated by the action of D
is invariant under such a coordinate transformation, i.e. D = (DΘ)D. This means that
a coordinate transformation is super-conformal iff Dz' = Θ'DΘ'.

To study supersymmetric field theories one needs even and odd superfields. Here
now the definition of DeWitt [19] of super Riemann manifolds conveniently comes
into play. The infinitely dimensional algebra Λ^ supplies all the required quantities.
Domains in C ( 1 ' ι ) with coordinates (z, θ) are constructed in such a way that the entire
Grassmann algebra are attached to the usual complex coordinates. If one considers the
universal family of DeWitt super Riemann manifolds with genus g, then only 2g — 2
parameters of Λ^ are required, the remaining ones are redundant.

An individual super Riemann surface can always be considered as being split
and compounds to a usual Riemann surface with a spin structure: at each point
of the superspace S, the reduced subgroup Γ red c SL(2, R) consists of hyperbolic

elements, acts discretely upon 5$ = J ^ J » a n c* has a compact quotient space
ΓVQά/3&. Then Γ/3@ x S is a family of (11 1)-dimensional complex compact su-
permanifolds, parameterized by S [5]. This means that for a coordinate transforma-
tion Z-+Z1 (Z, Z' EΛQQ) the coefficient functions do not mix with each other. It
is sufficient for our purposes to consider super Riemann surfaces without odd
parameters.

To generalize the uniformization theorem for Riemann surfaces to super Riemann
surfaces ^S, one shows that unique generalizations C ( 1 | 1 ) , C ( 1 | 1 ) and J ^ ( 1 | 1 ) :=
{(z, θ) G C ( 11 1 } I 3(z) > 0} of simple connected Riemann surfaces exist, and endows
JJ — C^' 1), C(11 ̂  and J^ ( 1 ' 1 ; >, respectively, with a super-conformal structure, such
that the local coordinate transformations are super-conformal mappings.
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In the case of non-euclidean harmonic analysis in the context of super Riemann
surfaces we consider the group OSp(2, C) of super conformal automorphism on super
Riemann surfaces as a natural generalization of Mobius transformations. They have
the form

( l a b χΊψa-aβ)\

OSp(2,1; C 2

c x C β ) : = 7 = c d χΊ(da - cβ) ] a,b,c,de Cc

\ \θί β χ τ(l

a,β e Cα; ad-bc= \ + <xβ\ sdet7 = χ G {±1} } (3.1)

(with the complex conjugate rules / + g = f + g, and f g = f g).
Its generators are the operators Lo, Ll9 L_l9 Gι/2 and G_xj2 of the Neveu-
Schwarz sector of the super Virasoro algebra of the fermionic string. Elements
7 € OSp(2,1; C* x Cα) act on elements x =(zλ, z2, ξ)eC2

cx Cα\{0} by matrix mul-
tiplication, i.e. xf = jx. By means of a local coordinate system (z, θ) = (zλ/z2^ ζ/z2)
and the requirements of superconformal transformation the local coordinate transfor-
mations are fixed and the super Mobius transformations explicitly have the form [5,
32, 51, 57, 67]

z>=az + b 1 θ aZ + β fl'=
α + ^ 1 X ^ (3.2)

cz + d (cz + d)2 ' cz + d cz + d'

The χ 7 with χ 7 = ± 1 lead to the description of spin structures on a super Riemann
surface. The transformation factor of the D operator yields to FΊ := (Dθf)~ι =
χΊ(cz + d + δβ), with 5 = χΊy/l + aβ(ad + /5c). This general super-Mobius
transformation does mix the coefficient functions of superfunctions F G i l ^ . Since
we required that the super Riemann surfaces in question is split, the odd quantities
α, β are not necessary and can be omitted. It is sufficient to consider transformations
7 6 OSp(l, 1) with a = /? = 0 and the characters χ 7 which describe spin structures.
Furthermore 7 and —7 describe the same transformation. We thus have that the
automorphisms on J ^ 1 ' ^ are given by

(3.3)
{±1}

and a super Fuchsian group Γ denotes a discrete subgroup of A u t ^ ( 1 ' 1 } . Therefore
we obtain for the transformations z —> z' and θ —> θ' [5, 51]

(3.4)

[here F 7 = χ 7 (cz + d)]. M^=o corresponds to the usual Riemann surface M r e d with

some spin-structure, since a 7 e A u t ^ ( 1 ' 1 } is fixed by a PSL(2,R) transformation
and a character χ = ± 1. The properties of the odd coordinates is determined by the
properties of M r e d and θ is the cut of a spinor-bundle.
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2. Dirac-Laplace Operators and Conjugacy Classes on Super Riemann Surfaces

We need some further ingredients. Let us introduce the quantities NΊ and lΊ by

2 cosh — = N^2 + AT~1/2 = α + d + χΊaβ. NΊ is called norm of an hyperbolic
7 G Γ in a (general) super Fuchsian group, and iV7o will denote the norm of a
primitive hyperbolic 7 G Γ, and Z7 = lniV7 denotes the length corresponding to a
7 G Γ and all notions from the bosonic case are interpreted in a straightforward way
into their super generalization. Each element 7 G iy{±H} is thus uniquely described
as 7 = k~ι%k for some primitive 70, n G N and fc G Γ/ΓΊQ. For OSp(2,M)/{±H}
in homogeneous coordinates a hyperbolic transformation is always conjugate to the
transformation z' = NΊz,θ'— χΊyίN^Θ. Hyperbolic transformations are also called
dilatations.

The generators of a particular super Fuchsian group of a super Riemann surface
with genus g obey the constraint

(707Γ1 "Ί2g-2Ί2g-ι)(%lΊι -ΊΪg-ίΊig-i) = h\\ - O-5)

In order to construct explicitly a metric on 3@^1' ̂  one starts with the super Vierbeins
in flat superspace and performs a super Weyl transformation [39] to obtain the metric
ds2 = dqa

agbdqb in ^ ( 1 1 υ [67]. The scalar product has the form

dV(Z)Φ1(Z)Φ2(Z)y (3.6)

for super functions Φl9 Φ2 G L2(Ml 11}) and y = y + ΊΘΘ/2 = y + θιθ2(θ = θι +i(92).
We have one even and one odd point-pair invariant given by [5, 67]

(3.7)

y v 4YV

(Z, W G ̂ ( 1 ! 1 } , W = (w, v) = (u + iυ, vx + ii/2), V = 1; + iϊ/P/2) as derived from
classical mechanics on the Poincare super upper half-plane [3, 47, 67]. We introduce
the Dirac-Laplace operators D m and D m , respectively [3, 5]

• m = 2yL>£) + im(0 - 6>)5, Π m = 2 F D D + y (β - Θ)(D + 5 ) , (3.9)

and D m and D m are related by a linear isomorphism D m = F ~ m / 2 ( D m +
im/2)y m / 2 . With the notation -Δm = -4y2dzd2+imydx =-y2(d2

x+d2

z)+imydx

we obtain for a super function

, Z) = A(z, z)+ — B(z, z) + -1
2/ /
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the following equivalence [5, 51]

B{z,z)=S-A{z,z),

4

Due to the particular form of the differential equations for Ψ(Z, Z) we see that the
solutions can be characterised by their parity with respect to the coordinate x, i.e.
they can have even and odd parity with respect to x.

I have proposed in II similarly as for the hyperbolic T e Γ, elliptic and parabolic
T e Γ, and appropriate super fundamental domains J ^ 1 ' 1 ) , a decomposition of an
appropriate T G Γ as follows [33]

(T e Γ conjugate to)

7X RxS =

(3.12)

with n G N and 0 < φ < π, and 7, R and S, respectively, denote hyperbolic, elliptic
and parabolic transformations, acting by matrix multiplication [cf. p. 16]. The body
$f of a fundamental domain i ^ ( 1 1 1 } has according to [38] Ag + 2s + 2« sides, the
boundaries being geodesies, of course. We also maintain the notion of χτ irrespective,
whether T G Γ is hyperbolic, elliptic or parabolic, respectively, and we choose χτ

according to the spin structure of the super Riemann surface in question. For a super
Riemann surface of genus g there are obviously 2 ( # g e n e r a t o r s ) = 2 ( 2 # + s + / ί ) possible spin
structures.

The constraint (3.5) is altered due to the presence of elliptic fixed points and cusps
according to [38, 69]

(ToTΓ1 72,-272V-i)(7o"17i 72~-272,-i)^i RaSχ Sκ = H2| 1 . (3.13)

3. Construction of Bordered Super Riemann Surfaces

Because it is sufficient to consider super Riemann surfaces without odd parameters
we can propose a construction of a bordered super Riemann surface. To construct a
bordered super Riemann surface we take the construction of a usual bordered Riemann
surface and endow it with the Grassmann algebra Λ^. Because we know how to
define a closed super Riemann surface, we take Σ and enlarge it to £ ( 1 ' 1 } together
with its corresponding super Fuchsian group Γ ( 1 ' l ) constructed from Γ and the super
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fundamental domain ^ ι \ ι \ A convenient way to introduce the super-analogue of
the involution & turns out to be the super involution

= &(z, θ) = (-z, -i0), 2?Z = &(z, 0) = (-z, -i0) (3.14)

respectively ^(z,θl}θ2) = (—z, —i01?i02). It has the properties

= \D , ^ S = ϊD . (3.15)

Note ^Z — Z and ^ 4 £> = D. Furthermore for the Dirac-Laplace operator D m we
have

^ D m = D _ m = D m . (3.16)

Similarly as for the usual bordered Riemann surface where Σ — Σ\S?, we then define

the bordered super Riemann surface I7 ( 1 ' 1 } as Σ" ( 1 ' 1 } = Σ"(1' l)\^. The corresponding

discs dj , . . . , dn l) then are super-conformal non-overlapping superdiscs seen as
the usual conformal non-overlapping discs endowed with the Grassmann algebra
ΛQQ. The particular form of the involution (3.14) enables us to work directly on the

fundamental domain j ^ 1 ' ι\ The super Fuchsian group Γ is consequently a symmetric
super Fuchsian group.

4. The Selberg Supertrace Formula for Hyperbolic Conjugacy Classes

Turning to the Selberg supertrace formula, let us introduce the Selberg super-operator
L by [4-7, 32]

(Lφ)(Z)= j dV{W)krn{Z,W)φ{W))

j%σ i υ

m(Z, W) = Jm(Z, W){Φ[R(Z, W)] + r(Z, W)Ψ[R(Z, W)]} ,

_ /i -\ \ τn/2

w " i / ) )
z — w — θu J

km(Z, W) is the integral kernel of an operator valued function of the Dirac-
Laplace operator D m (respectively Π m ) , and Φ and Ψ are sufficiently decreasing
functions at infinity. Note Jm(jZ^W) = j(j, Z)Jm(Z, W)j~\η, W) with j{η, Z)
given by j ( 7 , Z) = ( F 7 / | F 7 | ) m , where FΊ = Dθ' [32, 51]. We find j(-yσ,Z) =

j(7, σZ)j(σ, Z) (V7, σ G Γ and Z € ^ ( 1 ' υ ) . A superautomorphic form f(Z) is then
defined by [4, 32] f(ηZ) = j(η, Z)f(Z) (V7 G Γ). The super-automorphic kernel is
defined as

K{Z,W)=\ J2km(Z^W)J(Ί,W), (3.18)

{7}

(" 2 " because both 7 and —7 have to be included in the sum) i.e. (Lφ)(z) =
[/ι(Dm)] (z). L is acting on super-automorphic function f(Z).

For the point pair invariants we find for the action of &

, W), r(Z, ^W) = r(^Z, W), (3.19)

furthermore J(Z, ^W) = J{S7Z, W), and due to the construction of km we get
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j r d I D ( 7 )

Σ km(Z,ΊZ)dV(Z) = —,
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Let / be a super-automorphic function with fiηZ) = j(7, Z)f(Z) and g = Lf.

Let ,^ ( 111 }(7) a fundamental domain of 7 G Γ whose body equals ^\'1} = ̂  (and

is constructed in the same sense as the generalization ^ ( 1 ' X ) of 3$). The expansion

into hyperbolic conjugacy classes yields

:ra

—

Here I have assumed without loss of generality a + d > 0 for a 7 E Z1,
since A u t ^ ( 1 | 1 ) = OSp(2 11,M)/{±H}. The first term corresponds to the identity
transformation (zero-length term) and the second ^(7) is given by

Ail) = χ-m J km(Z, ΊZ)j{Ί, W)dV(Z). (3.21)

In [5, 32] these two terms corresponding to the identity transformation and hyperbolic
conjugacy classes, respectively, were calculated, i.e. I have discussed in detail

Theorem 3.1. [4-7, 32]. The Selberg supertrace formula for m-weighted Dirac-
Laplace operators on closed super Riemann surfaces with hyperbolic conjugacy
classes is given by:

n=0

J
x [g(klΊ) + g(-klΊ) - χk

Ί(g(klΊ)e-kl^2 + g{-klΊ)tkl^2)} . (3.22)

The test function h is required to have the following properties:

ii) h{p) vanishes faster than \/\p\for p —> ±00.

iii) h ί hip j is holomorphic in the strip 3ip) < l-\ \-ε, ε > 0, to guarantee

absolute convergence in the summation over {7}. •

The above Selberg supertrace formula (3.22) is valid for discrete hyperbolic con-
jugacy classes and in this case the noneuclidean area of the ("bosonic") fundamental
domain is ̂ β0^) = 4πig — 1).

The Fourier transformation g of h is given by

00

9(u)=~ ί h(^j^+ip)e-iupdp. (3.23)
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Specific trace formulae, in particular for the heat kernel were considered by Aoki [3],
and Uehara and Yasui [67], as well as an explicit evaluation for energy dependent
resolvent kernel for the operator D 2 [3, 53]. From (3.23) an explicit formula for Φ(x)
can be derived [32] which has the form

—' 7
πy/x + 4 J

* < 3 . 2 4 ,

with Qλ(w) — 2co\h-[g(u) - g(—u)], w = 4 s inh 2 - . We define Q3(w) =-

1111

2\g(u)zΓul1 — g(—ΐx)en/2]/sinh - and obtain an inversion formula for Ψ{x)

imΨ{x) = 4imΦ'(x)

OO

- f Q'3(
TI J

try

at. (3.25)

For m = 0we obtain simple inversion formulae for Φ(t) and Φ(t), respectively

(w ~ t

with Q2(w) = 2[g(u)e~u/2 + g(—u)eu/2]/cosh-. The incorporation of the elliptic

and parabolic conjugacy classes was discussed in [33] and is not repeated here.

IV. The Selberg Supertrace Formula for Bordered Super Riemann Surfaces

I first proceed by considering the Selberg supertrace formula where the body of the
underlying fundamental domain is compact, and second where it is non-compact.
Let us consider the super-automorphic Selberg operator with Dirichlet boundary-
conditions

dV(W)[km(Z,W)-km(Z^W)]f(W)

> FW)] f(W)

(4.1)

where

dV(W) K(Z, W) f(W),

K(Z, W)=l- , ΊW) - , Ί!7W)}
{ 7 }

(4.2)
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is the super-automorphic kernel on bordered super Riemann surfaces. Now we have
for a superfunction φ which is odd with respect to x,

- / dV(W)K(Z,^W)φ(W)

)

Σ / dV(W) -̂(Z' Ί^W) φ(W)

(Z,ΊW)φ{W)

= \ Σ

= ~\ Σ

= \ f dV(W)k(^Z, W)φ{W) = l- (LφK&Z), (4.3)

due to the properties of the super Selberg operator. Let now Φ be an eigenfunction

of Π m which is odd with respect to x, i.e. Π m Φ = sΦ. Then sφ = sΦ = D _ m Φ and

Φ is an odd eigenfunction of 3 _ m with eigenvalue s. Denote by L the Selberg

super operator on the super Riemann surface Σ\ let (Lφ)(Z) = Λ(s)φ(Z) and

on Σ1 and 2?Σ, respectively. Then

(Lφ)(Z) = \
2 Δ

= - Λ(s)φ(Z) - - X^φi^Z) = - [Λ(s) + A'(s)]φ(Z). (4.4)

The equivalence relation (3.11) shows that the eigenvalue problem for the operator
D m is closely related to the eigenvalue problem of the operator —Δm, both for
eigenfunctions which are even or odd with respect to x. Now, an odd eigenfunction
of — Δm is also an odd eigenfunctions of — Z\_m, and the solution of the correspond-
ing differential equations depend only on m2 but not on m [37, pp. 266-268;
26, pp. 203-205], hence, the spectrum depends only on \m\ (compare also [13]).
Therefore we conclude that a with-respect-to-x odd eigenfunction of D m is also
a with-respect-to-x odd eigenfunction of ^ D m with the eigenvalue s, further-
more A = A' [13], and we can infer (together with the usual identification

(Lφ)(Z) = h(p)φ(z). (4.5)
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Let ZΓ(η) be the centralizer of a 7 G Γ. For str(L) we obtain on the one hand

(4.6)

where s^'F>> = ^ + Φ^f'^ a r e m e bosonic and fermionic eigenvalues, respectively,

of D m . [According to (3.11) we should consequently write s = — i ( | + ip), which

looks, however, somewhat artificial and is therefore not adopted.] On the other we

have

str(L) = - / dV(W)K(Z, Z)

y)

r
[km(Z, ηZ) - km(Z, η&Z)} dV(Z), (4.7)

where ^ x ' ^(7) denotes the fundamental region for the super Fuchsian group ZΓ(j),
the centralizer of 7 G Γ.

1) Jζ^ 1 ' ] ) is compact. For convenience we set ρ = ηί? and use the classification of

the inverse-hyperbolic transformations according to ρ G Γ&, respectively, ρ2 G Γ.
We generalize the result of the conjugacy classes for the usual case of bordered
Riemann surfaces and consider two cases i) and ii) for the conjugacy classes in ρ (cf.
p. 597). The expansion into the conjugacy classes yields for the Selberg super-operator
for Dirichlet boundary-conditions [cf. the discussion following (2.9)]

str(L) =\ j Σ [k™(Z> ΊZ) ~ km(Z, ρZ)] dV(Z)

f

Let us consider the involution term. We obtain

= Σ dV(Z)km(Z,ρZ)=:

n 00

τ=l Q% k=0
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Now observe

Q2k+ι, Q2k+ι

ΊZ) = km(Z,Ί-
ι

ρ

2M

ΊZ)j(ΊZ)j-\%Ί-
ιρ2k+ι

ΊZ), (4.10)

and

j(ρ2k+l

Ί,Z)=j(Ί,Z)j(ρ2k+\ΊZ)

= j(Ίn~lQ2k+lΊZ)j(Ί-
ιρ2k+ι

Ί,Z). (4.11)

We then get

Q k=0 {ρ} σe{ρ} k=0

c

- ^ ^ Σ

CO p

Σ Σ / dV(Z)km(Z,a^Z)

Σ
ex)

Σ Σ Σ

Σ Σ

k=oΊerρ2\r

dV(Z)j(ρ2k+\Z)km(Z, ρ2k+ιZ). (4.12)

By an overall conjugation in 0Sp(2 11, R) we can arrange for 7 to be a dilatation, i.e.

ρz = - VNz and vx = ρθx = - χDNιl%, v2 = ρθ2 = - χoN
ι^θ2. Similarly as in

( k+lΛ
the usual hyperbolic case [32] we find for the two-point invariants \M = N 2 J

r(Z, ρZ) =^[2 + χ(M 1 / 2 + M~ 1 / 2)]. (4.14)
y

Furthermore j(ρ2k+\ Z) = χ(2k+ι)rn and

Jm(Z,, (4.15)
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where ζ = 2xcosh %/y and u = (2k + l)ln VU = (k+\)lQi. The evaluation of

the conjugacy classes {ρ} is straightforward and similar to the usual hyperbolic case.
Evaluating the relevant terms we obtain

Theorem 4.1. The Selberg supertrace formula for m-weighted Dirac-Laplace oper-
ators D m on compact bordered super Riemann surfaces obeying Dirichlet boundary-
conditions is given by:

π = l

oo

•^ f g(u) - g(~u) u (um\
= -τ* J sinh(U/2) caάί\τ)

du

kl
{7} fc=i sinh—^

oo { I)™ Q1

- Σ Σ β

2 έr έί c

x l9(klc) + g(-klCt) -

+ g(-klCt)ekl^2)], (4.16)

where λ '̂̂ -* = - + ip^'F^ on the left runs through the set of all eigenvalues of this
Dirichlet problem, and the summation on the right is taken over all primitive conjugacy
classes {η}p, str(7) + χ 7 > 2, and {g}p, ρ hyperbolic. The test function h is required
to have the following properties:

ip) = hip) e C°°(M).

ii) h(p) vanishes faster than l/\p\for p

iii) h(p) is holomorphic in the strip 3(p) < 1/2 + ε, ε > 0, to guarantee absolute
convergence in the summation over {7} and {ρ}.

Note that there is no k — 0 contribution from the last summand. g(u) is given by
(3.23). •

Note that in the case of Neumann boundary-conditions the last two terms just
change their signs.
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2) ^ζ,d ' is non-compact. I only consider the case m = 0. We include all relevant
conjugacy classes and get

str(L) = 1 / Σ
2 -

^£(0)+^ Σ / &(^7^W(Z)

1 ^—> /

- lim / dV(Z)
2 ym-^oo J

χ ( Σ Σ
] {S} -γ'e?s\r

Σ

with some properly defined compact domain βyM depending on a large parameter
yM, and where the sum is taken over all hyperbolic conjugacy classes {7}, elliptic
conjugacy classes {R} and parabolic conjugacy classes {S} in Γ with representatives
7, R and 5, respectively, over all relative non-degenerate classes {ρ}, ρ hyperbolic,
and over all relative conjugacy classes {ρ} with str(^) + χρ = 0, ρ elliptic.

The hyperbolic contributions have just been calculated [cf. (4.16)]. Because there
are no additional elliptic terms, we can just take the result of [33] [cf. the discussion
following (2.9)] and obtain

1

4

coshii — cos(2kπ/v)
0

00

/ 2

Turning to the "parabolic terms" we consider the transformation Z -^ W' = 9rSnZ.
In [33] I obtained by considering yM finite with the corresponding fundamental
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domain i f ^ l)(S)

\

1 VM

0 0

= ft (Iny M + C - In2)0(0) +

oo

1 f
2 / ^ ~ 1

oo

- i ί

- [g(u)- g(-u)]du-

o

{5}

( 4 1 9 )

As we know from the discussion in Sect. Ill from the usual Selberg case, the
conjugacy class with tr(^) = 0, ρ elliptic, contains an element of order two. In the
super-case this is generalized to

0 a 0

Ίa= -a~ι 0 0 , (mod±l),

o o xj
(4.20)

with some a > 1. Because ηa is an elliptic element of order two we have to consider

k(Z,ρZ) (4.21)

U .V
l

U n'er.7\r
I

and |Γ(^)| = order [Γ(ρ)] — 2 which yields an additional factor | in the second term

in the parabolic contribution of (4.17).

For a proper asymptotic expansion [69, p. 134] of the corresponding integral we

remove from ^ ( 1 1 1 } two regions, denoted by B[1 ' 1 } = {Z e . ^ ( 1 ' 1 } | x > yM} and

^ = 7 α 5 } , respectively, i.e. we consider

First let us insert a n = 0 "parabolic term" into the super-automorphic kernel; this
gives the integral

J k(Z,ρZ)= j
U ΛΊ} son)

(4.23)
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(ym —> oo), whose asymptotic behaviour must be studied. By the definition of £? ( 1 ' ! )

the above integral separates into two contributions

ϊ7* 7
0

az/yM

r r AQ.AQ-

(4.24)
-\ ί dy ί dx [

2 J J J

In order to evaluate the first integral we set y0 = a2/yM,

oo yM

λdθ,1 ί , ί , ί dθμ

2]dxldyl wt
0 l/o

oo 2/M

0 J/o

= (lnί/M - lnα)(l - χ s)(?(0), (4.25)

where we have explicitly inserted y0, and the terms with Φ vanish by a partial
integration. Note that this term must be sufficient for the regularization and indeed is.
In the second part of the integral of the next term we integrate out the dxe2 quantities,
perform partial integration, and get the result (set r = a2/yyM)

τ / ^ t ϊ ^ + ̂ ω +
4(7—1)

oo oo

= l- Jd{\nτ) j -^ [\φ(t) + tΦ\t) + (1 - χs)Φ(t)]

oo

\ I %
0

x [i Φ(ί) + ίΦ'(ί) + (1 - χ 5)l?(ί)] , (4.26)

and this contribution is independent of a and yM, respectively. Let us consider the
various terms. Firstly we have

4(τ-l)
oo

\ I % + 4)

4 J t + 4 4π J d
w + 4

0 0 0
oo

/ tanh I tanh | [5(M) - 5 (-u)] dw. (4.27)
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Next we get

613

= - ^ /dwQ

w

g(0)\n2

0 0

oo

tiw — t)

~Γ 32 y ~j\
Q2(w)dw

o
oo

+ w/4(l + Λ/1 + w/4)

1 f ^u

- / tanh -
4 J 4

x { [g(u) + g(-u)] - tanh - [g(u) - g(-u) } du. (4.28)

Collecting terms we obtain

oo oo

τ / ^[
1 4(τ-l)

t a n h ^ (_ u)] du

H r^- I tanh - tanh
/•

- Xs
• OO OO <v

\ f l9(u) + g(-u)] du-- ί h(p) [0(1 + 2φ) + 0(1 - 2ip)] φ I

i + ip) - ^(i - φ)] φ (4.29)

Here β(x) is the /^-function defined by β(x) = - \ψ ( j - ? ? ( - ) , with

Ψ(z) = Γf(z)/Γ{z) the logarithmic derivative of the Γ-function. To finish the
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discussion we have to consider

k(Z, ρZ), g e OSp(2 | 1, R). (4.30)

U ,{7}

According to Venkov [69, p. 136], this has the consequence that the asymptotic
behaviour in the limit ym —> 00 is changed by a scaling such that the integral is
calculated with respect to the variable vyM instead of yM. The fixed number v is
denoted by v(ρ). Similarly, a is denoted by a(ρ). Hence we obtain

Σ

stτ(ρ)+χρ=0

tanh ϊ
0

σo

tanh - tanh - [g{u) — g(—u)] du + o(l). (4.31)
4 2

Here #(J^) denotes the number of classes {ρ} having the property str(^) + χρ = 0
and ρ elliptic. Because we know that all terms in the supertrace formula must be finite
we deduce q{^) — 4κ. Let us denote

- Σ l n S (4 32)

Therefore we obtain

Theorem 4.2. The Selberg supertrace formula for the Dirac-Laplace operator D o on
bordered super Riemann surfaces with hyperbolic, elliptic and parabolic conjugacy
classes obeying Dirichlet boundary-conditions is given by:

n=l

1.
— i — / h(p) tanh πpdp + j

-io {7} k=ι ™"vυυ7
4 ^ e sinh(̂ /2)

x lg(klΊ) + g(-klΊ) - >



Selberg Supertrace Formula for Bordered Super Riemann Surfaces 615

^)e^2 r
——— du + /

k7r/iy) J

g(u) - g(-u) . • u ,
Z s i n h - du

2
du + / 7 sinh

coshu - cos(2k7r/iy) J coshw - cos(2kπ/u) 2
0 0

oo

— / g(-gu)du

o

0
OO

+ ^ / to(w) - ^(-w)] du~ -^ I t a n h I fe(^) + ̂ (-w)] du
0 0

oo

- ^ y tanh ^ tanh | [̂ (w) - g(-u)] du, (4.33)

where λ^'F^ = - + i p ^ ' ^ o« ί/?e Ze/ί rwλz.y through the set of all eigenvalues of this
Dirichlet problem, and the summation on the right is taken over all primitive conjugacy
classes {η}p, str(7) + χ 7 > 2, {R}f, str(Λ) + χR < 2, {ρ}/., ρ hyperbolic, {S}p,
str(S') + χ s = 2, β/ϊJ {Q}Γ > s t r (^) + Xρ — 0, >̂ elliptic. The test function h is required
to have the following properties:

i) h(p) e C°°(R).

ii) h(p) vanishes faster than l/\p\ for p —> ±oo.

iii) /ι(p) /51 holomorphic in the strip ^s(p) < ^ -\- ε, ε > 0, to guarantee absolute

convergence in the summation over {7} and {ρ}. •

In the case of Neumann boundary-conditions the regularization procedure is similar
to the treatment in [33] which is due to the fact that in this case the continuous
spectrum does not drop out and must be taken into account. This will not discussed
here again. The full picture emerges then by a proper combination of [33] and
Theorem 4.2. In particular, the sum of the Selberg supertrace formula for Dirichlet
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and Neumann boundary-conditions, respectively, must yield the result of [33], and the
Selberg supertrace formula for Neumann boundary-conditions follows straightforward
by a subtraction.

V. Analytic Properties of Selberg Super Zeta-Functions

The Selberg zeta-function was originally introduced by Selberg [62] in order to study
spectra of Laplacians on compact Riemann surfaces of genus g. The Selberg zeta-
function is defined by

Z(s) := H Yl [1 - e - ( β + f c ) ^ ] , (»(*) > 1). (5.1)
{ 7 } fc=0

It is of further interest, because determinants of Laplacians can be expressed by
combinations of the zeta-function and its derivatives [13-15, 21, 23, 65, 71]. Let us
consider the two Selberg super zeta-functions Zo and Zx, respectively, defined by
[5, 32]

{7} k=0

for 3ΐ(s) > 1, (q = 0,1); and furthermore the functions

2lτϊr
Q {7}

for 3t(s) > 1, (q — 0,1); the analytic properties of the Zo ι -functions can be derived
from the Roι -functions. The analytic properties for these functions for closed super
Riemann surfaces were discussed in I and II. However, in the case of bordered
super Riemann surfaces we will consider the modified Selberg super zeta-functions
on bordered super Riemann surfaces

- γq

 e - (

1 _

{7} k=0 {Q} k=0 V

t ( ) + ^ 0

2(-l) f c
n 00 ,

x Π Π ( t y 9 e -«c t (^)J (5 4)

for 5R(s) > 1, (ρ = 0,1). For convenience we will consider the functions

1 1 1 1 \ 1 -χ

q

ρe~(s+k)h

n oo / 1 v 2ak(-l)k

xTTTTf l ) (5.5)
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(q = 0,1), ak = l(ra = 0), ak = 2(fc G N), and 3?(s) > 1. As we shall see,
only functional relations for the Ro λ -functions can be derived, but not for the Z01-
functions.

1. The Selberg Super Zeta-Funcΐίon Rλ

We first discuss the function R^s). In order to do this we choose the test function

hfasiά) = lip ( l - \ ) , (5.6)
\ s2 + p2 a2 Λ-p2 )

with the Fourier transformed function gγ{u) given by

gι(u, s, a) = sign(^) (e- s 'wl - e- α ' n l ) . (5.7)

The regularization term is needed to match the requirements of a valid test function
in the trace formula. The relevant integrals have been already calulated in [32, 33],
such that we just take the results. The exceptions are the new terms in the supertrace
formula corresponding to the involuted orbits and the last summand in (4.33). For the
latter we obtain

oo

/

U U

tanh - tanh - [gλ(u, s, a) - gλ(—u, s, ά)]du

Let us consider the term corresponding to the {^}-conjugacy classes in (4.33). We
get by inserting g1 (u) on the one hand

7

{ρ2} 2} fc=0

On the other we have by means of

^ 2k + II - x ^ 2k + I
k=0
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for the logarithmic derivative of the inverse hyperbolic terms of the Rx -function

d

ds -π π (~
{ρ} m=0

{ρ} k=0

y ii
/ j Q

xe ( 2L 0-slρ(2k+i) \ y ^ , ]
2k + I \ds J ^

k=0

OO

m = 1

(5.11)

And similarly for the third term. Therefore we obtain the Selberg supertrace formula
for the test function /^(p, s, a) as follows:

R[ (s) R[ (a)

i(5) Rλ(a)

= 4
π = l

oΔ ί) !

+ I)2

I/—1 l. OO

~~ \Λn ~~ 2/ ~ V n ~~ 2/

^ + τ (5-12)

Thus we read off

Theorem 5.1. The Selberg super zeta-function Rλ(s) is a meromorphic function on
Λ^ and has furthermore the following properties:

A) The Selberg super zeta-function Rλ(s) has "trivial" zeros at the following points
and nowhere else:

i) s = — \ — I, (I = 0,1,2, ...) and that the multiplicity of these zeros is given by

V—\ 7

(5.13)

ί/#iVz < 0, w^ /iβv^ poto instead of zeros.
ii) s = 0 with the multiplicity given by #N0 = K.
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iii) s = - j - 21, (I = 0,1,2, . . . ) , with the multiplicity given by #Nt = 2κ+.

B) The Selberg super zeta-function Rγ(s) has "trivial" poles at the following points
and nowhere else:

i) s = — 2 — 2/, (I = 0, — 1, —2, . . . ) , vwY/z ί/ze multiplicity given by #Pι = 2κ+.

C) The Selberg super zeta-function Rλ (s) has "non-trivial" zeros and poles at the
following points and nowhere else [32]:

i) s — ip^>F^: there are zeros (poles) with twice the multiplicity as the corresponding
eigenvalue of\30.

ii) s = — φ ^ ' F ) : reversed situation for poles and zeros.

iii) s = λ ^ ' F ) — 2 there are zeros (poles), and

iv) s — (Ajp ' — j) there are poles with twice the multiplicity as the corresponding

eigenvalue ofΏ0, respectively. The last two cases describe so-called small eigenvalues

of the operator Do. All these "nontrivial" eigenvalues are supernumbers s G Λ^.

Of course, (5.12) can be extended meromorphically to all s G Λ^. I

By means of the relation (5.5) the analytic properties of the Selberg super zeta-
functions Zλ can be derived, compare also [32].

The test functions hx(jρ,s,a) is symmetric by the interchange s —> — s. Therefore
subtracting the trace formula for ^ ( p , s,α) and /ij(p, — s,α) yields the functional
equation for R{ in differential form

ds

Ύ * H -3 5

4 ~ 2
1 s

4 + 2
1 £
4 " 2

i^-l

{i?} fc=l

(5.14)

The integrated functional equation therefore has the form

RΛs)RΛ-s) = , (5.15)

with the function $ given by

" - 1 ,fe

i — ln | s 2

J
. (5.16)

We can check the consistence of the functional equation with respect to the analytical
properties of the Selberg super-zeta function Rx. In the case that there are no elliptical
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and parabolic terms the functional equation simplifies into

-s) = A1(cosπs)J/2π , (5.17)

where Ax is a constant given e.g. by Ax — R2(s0) R^—s0)(cosτrs0)~ χ^/2ητ with some
s0 e C, which is however, independent of s0.

2. The Selberg Super Zeta-Function RQ

Let us turn to the discussion of the Selberg super zeta-function Ro. We consider the
test-function (5ft(s,α) > 1)

(5.18)

with the Fourier transform go(u,s,a) given by

go(u, s, α) = sign(w)eu / 2(e~ s | u | - e~ α | n l) . (5.19)

Again the regularization term is needed to match the requirements of a valid test
function for the trace formula. Similarly as in the previous case we obtain the Selberg
super trace formula for the test function /ιo(p, s, a) as follows:

R'0(s) R'0(a)

R0(s) RQ(a)

\(B) X(B) λ(F)

+ α2 - (λ<fV

1 ,p . (2lkπ\
^ ι/sin(2feπ/i/) f^$m \~VJ

1 1 1

_ Z-1

7 t ^ s ) + ψ(s + X) - ^ α ) ~ ^ α + X)l
4π

! ! ! ! 4 4^l (520)
( 5 2 0 )

Note that no terms proportional to χ are present. Therefore we have shown

Theorem 5.2. The Selberg super zeta-function RQ(s) is a meromorphic function on
Λ^ and has furthermore the following properties:

A) The Selberg super zeta-function R0(s) has "trivial" zeros at the following points
and nowhere else:

i) s = 0 with multiplicity

#N0 = ^ - 2κ - V — , (5.21)
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s = — 1 with multiplicity

V \ V
{R} k=\

s = — n (n = 2,3, ...) with multiplicity

Note that if#Nn < 0, we have poles instead of zeros.

ii) s = — 2 vw'ί/i multiplicity #N_{,2

 = ^/2

iii) 5 = 2 wiί/i multiplicity #Nι/2 — ̂ /2

B) Γ/ze Selberg super zeta-function R0(s) has unon-triviaΓ zeros and poles at the
following points and nowhere else [32];

i) s = i p ^ ; i ^ + 2 : ί^ere are zeros (poles) with twice the multiplicity as the

corresponding eigenvalue of\D0.

ii) s = — ip^f'F) — 2 : reversed situation for poles and zeros.

iii) s = λ^f ' F ) ί/iere are zeros (poles), and

iv) 5 = — λ^ 3 '^ ί/zere are /?o/es wzY/z ίw/ce ί/ze multiplicity as the corresponding
eigenvalue o/D0, respectively. The last two cases describe so-called small eigenvalues
of the operator Do. All these ί(nontriviaΓ eigenvalues are supernumbers s G Λ^.

Of course, (5.20) can be extended meromorphically to all s G Λ^. •

By means of the relation (5.5) the analytic properties of the Selberg super zeta-
functions Zo can be derived, compare also [32].

The test function ho(p, s,α) is symmetric with respect to 5 —> —s. Therefore
subtracting the trace formula for ho(p^s,a) and ho(p, — 5, a) from each other yields
the functional equation for RQ-function in differential form,

^ d w
= 2^ ^ l n ( s l n π s )

- L L - - > sm

V

1 1 1
. (5.24)

In integrated form, this gives the functional equation

/ s^ — - \ κ

R0(s) R0(-s) = const(sin πs)^sv I - ^ - j Φ0(s), (5.25)
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with the function Φ0(s) given by

Φ0(s) =υ

k=\
:π/i/)

(s2 -(I- I ) 2 )
In

(s2 - (/ + I)2)
(5.26)

We can check the consistence of the functional equation with respect to the analytical
properties of the Selberg super-zeta function Ro. In the case that there are no elliptical
and parabolic terms the functional equation simplifies into

Z0(s)Z0(-s) _ ,

Z0(l + s)Z0(l-s)
(5.27)

where the constant Ao is e.g. given by Ao = β 0(s 0)βo(—s o)(sinπs o) •4?/2π with
some s 0 € C, where Bo is independent of s0.

3. The Selberg Super Zeta-Function Zs

Following [32, 33, 47] we can also introduce the Selberg super zeta-function Zs(s)
defined by

».ΛΛ-*o<«>*o<« + 1 > . (5.28)

The appropriate test function is (SR(s) > 1)

M)

The corresponding Fourier transform gs is given by

gs(u,s)= — e n / 2 ~ s | n |

(5.29)

(5.30)

The evaluation of the various terms in the Selberg supertrace formula is straightfor-
ward similarly to the previous two cases. Therefore we get

2s Zs(s) 2sdsn[ Z 2 ( 5 + i ) J

1 τ—v v ^ ^ ^ sin(2Zfcπ/i/)

s + l- 1
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CK -K.-K K {A 1 1

+ = - + -Γ- - +4s \s s _ |

(5.31)

This gives

Theorem 5.3. The Selberg super zeta-function Zs is a meromorphic function on A^
and has furthermore the following properties:

A) The Selberg super zeta-function Zs(s) has "trivial" zeros at the following points
and nowhere else:

i) s = 0 with multiplicity

Σ
{R}

s = — 1 with multiplicity

{R} fe=l

s = —n (n = —2,3,4, ...) with multiplicity

x l - 2 χ Λ c o s ί — j + c o s ί — j - 4 κ , (5.33)

( 5 3 4 )

iί) 5 = I vvzY/z multiplicity #Nx/2 — κ/2.

iii) s = - 1 - 2/, / = 0,1,2, ..., w/ίΛ multiplicity #7VZ = 2Λ:+.

7V<9ί̂  ίΛαί if#Nι < 0, w^ /zαv^ po/es instead of zeros.

B) Γ/ze Selberg super zeta-function Zs(s) has "trivial" poles at the following points
and nowhere else:

i) s = — 2 w//7z multiplicity #P_1/2 = κ/2.

C) 77z£ Selberg super zeta-function Zs(s) has "non-trivial" zeros and poles at the
following points and nowhere else [32, 47]:

i) s — ±(2 + Φ ^ ) ίΛere are zeros, anJ

ii) 5 = ±(2 + Φ ^ ) ί/iβre are poles, with twice the multiplicity as the corresponding

eigenvalue of Do, respectively.

Of course, (5.31) can be extended meromorphically to all s G Λ^. •
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The test function hs(p, s) is symmetric with respect to s —• —s and therefore we
can deduce the functional relation

= const. e

4 β<σ«--«s-«->
2κ_

(5.35)

with the function Φs(s) given by

φs(s) = exp \ -2

(5.36)

We can check the consistence of the functional equation with respect to the analytical
properties of the Selberg super-zeta function Zs. In the case, where only hyperbolic
conjugacy classes are present in the super Fuchsian group, (5.35) reduces to the simple
functional equation [32]

Zs(s) = Zs(-s). (5.37)

Let us note that the relation

d \Z0(s)Z0(s+l)] _d \Z0(s+l)Z0(s-
as L ZΛ(S+ -z) J as

R'0(s)
- 2 - (5.38)

provides a consistency check for the zeta functions i20, R{ and Zs, respectively.
Let us note that in the case of Neumann boundary-conditions the Selberg super

zeta-functions must be differently defined due to the changed signs of the ρ-terms,
i.e. the power of the corresponding terms in the zeta-functions is reversed.

VI. Super-Determinants of Dirac-Laplace Operators

Since D ^ is not a positive definite operator I calculate the super-determinant of
(c2 - D2^) for 3ί(c) > 0 and analytically continue in c. Similar considerations have
been done by Aoki [3] and [32] by means of the supertrace of the heat kernel of D ^
for the case of closed super Riemann surfaces.
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The super-determinant is defined using the C-function regulanzation in the follow-
ing way:

sdet(c2 - D^) = exp
OS s=0.

oo

= j ^ J dtts~ι str{exp[-ί(c2 - a2

m)]} . (6.1)

o

The function h corresponding to the heat-kernel of (c2 - Π^) reads hhk{s) =

et[(*+m/2)2-c2l. This gives

G{u, x) = j= J c o s h ( m + 1) I - xcosh (6.2)

Splitting now the calculation of £(s; c) into two terms corresponding to the identity
transformation and the length term, respectively, gives:

We have [3, 32]

«=o

(6.3)

(6.4)

By means of the representation (5R(s) < 1):

ts~ι =
oo

/

λ + c
-s) J [λ(λ •

0

(6.5)

we get for the ζΓ(c; s)-contribution in (6.1), [3, 32] (m even)

oo

dλ d
CΓ(c; s) =

/
smπs

8π J [λ(λ + 2c)Y dλ
o

x In (6.6)

where the logarithmic derivative of the super zeta-functions has been used. Let be
f(s) = sin(πs) [λ(λ + 2c)]- s . Then / ' (5) | β = 0 = π and we get for C'(0; c) (5R(s) > 0):

m

1 — m
c +

m+ 1
(6.7)
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Performing the limit c —• ε for |ε| <C 1, I get for m — 0 and m = — 1, respectively

(6.8)sdet(-Do) =

sdet(-Di 1 ) = -

In the general case we obtain

^i(l) \zx{\)
(6.9)

sdet(-Dim) =

7 ί'ΊL

sdet(-Dim) =

7 / " ι

Λ ( m - 2 ) ! V * / 4 π Z l l ~

TO = 2,4, . . . , (6.10)

TO = 2,4, . . . , (6.11)

TO= 1,3, . . . , (6.12)

TO-1,3, . . . , (6.13)

[note for instance the relation sdet(—Π2,) sdet(—•?.]) = 1]. Here, of course, use
has been made of the functional relations for the Selberg super zeta-functions. In
particular we get [cf. (1.3)]

[sdet(-D§)Γ5/2[sdet(-Π2)]1 / 2

-5/2

These determinants are the ones for Dirac-Laplace operators for Dirichlet boundary-
conditions on a bordered super Riemann surface. In order to distinguish from

the ones with Neumann boundary-conditions, s d e t ^ (—DQ), we denote therefore
sdet(—D2) = sdet^(—D 2 ). Now we know that the Selberg super zeta-functions have
concerning the ρ-length product the reverse power behaviour, denoted by an index
"(JV)", i.e. Z ( i V )(s). Furthermore we have to take into account that instead of bosonic
and fermionic eigenfunctions which are odd with respect to x of D o, we have that
bosonic and fermionic eigenfunctions which are even with respect to x appear, ie. we
have for instance

(6.15)
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Here by Z[N\^) the order of Z[N) at s = | is denoted, depending on whether

ΔΠ(Q} < 0 or An{Q] > 0, respectively. Δn^ = nξ - nξ denotes the difference
between the number of even bosonic- and fermionic zero-modes of the Dirac-
Laplace operator D o . According to [51] Λn^ = 1 — 2q with q = dimkerSj and

d^ = —y2dz + \py* From the corresponding expressions for sdet^ί—D^) and

sdet(^Γ) (—D^), respectively, now follows

^ ^ V ^ ) = sdet'^(-D^), (6.16)

where Σ denotes the closed double of the (bordered) super Riemann surface. The
corresponding Selberg super zeta-functions on Σ are then defined by [32]

oo

z^s) = Π Π <* - χq^
k=0

(q — 0,1). Equation (6.16) shows in a nice way the super-analogue of (1.2) and
concludes the discussion.

VII. Discussion and Summary

In this paper I have discussed a super extension of the Selberg trace formula
for bordered Riemann surfaces, the Selberg supertrace formula for bordered super
Riemann surfaces, including hyperbolic, elliptic and parabolic condjugacy classes.
In the case of the incorporation of parabolic conjugacy classes an appropriate
regularization scheme had to be applied. In the case of Dirichlet boundary-conditions,
Eisenstein series representing the continuous spectrum of the Dirac-Laplace operator
D o were not needed because they have even parity with respect to x and they dropped
out.

Furthermore, I could discuss Selberg super zeta-functions. Similarly as in the usual
case, there appeared additional "trivial zeros" and "trivial poles" in comparison to the
"trivial zeros" of the super zeta-function due to the additional elliptic and parabolic
conjugacy classes. In particular, the elliptic and parabolic conjugacy classes altered
the multiplicity of the trivial poles already due to the hyperbolic conjugacy classes,
the parabolic terms introduced new structure.

I also could calculate super-determinants of the Dirac-Laplace oeprators on
bordered super Riemann surfaces for Dirichlet and Neumann boundary-conditions,
respectively. These determinants were expressed in terms of the Selberg super-zeta
functions which gave a closed expression for the integrand in the Polyakov path
integral for open fermionic strings. Within this formalism it could also be shown
that the product of these determinants gave the determinants of the Dirac-Laplace
operators on the doubled surface.

However, there are still open problems and questions. For instance, to apply our
results to superstring theory would actually require a chirally split version and a GSO
[28] projections. This, however, goes beyond the scope of this paper.

Furthermore, it is not difficult to derive the corresponding so-called WeyΓs and
Huber's laws for the increase in the number of the energy levels and the norms of the
hyperbolic conjugacy classes [34, 46], respectively. Whereas in the former case one
gets #iV[λ(

rf
} - λ (/ }] oc ^#/4π(λ —> oo), which gives a Witten-index, in the latter
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one finds #N(L) oc tΛ^L/L{L -> oc) from which follows Δf > 0. Here Δnf

denotes the multiplicity of the eigenvalues s = —i in (3.11) which corresponds via

the equivalence relation (3.11) to a zero-mode of —A.

The case of super automorphic ra-forms (m φ 0) is only available for hyperbolic

conjugacy classes, which are the most important ones due to their appearance in the

evaluation of determinants. In order to set up the corresonding supertrace formula

which include elliptic and parabolic conjugacy classes as well, the inversion formulae

for the kernel functions must be exploited which are very involved and give rise to

considerably complicated expressions.

Finally, we must note that it is not clear for general non-cocompact (super)

Fuchsian groups whether the Maass-Laplacian Δm and its super counterpart D m have

infinitely many eigenvalues. In fact, for non-arithmetic groups a conjecture by Phillips

and Sarnak [54] says that this will not be the case. In the case of arithmetic groups it is

then possible to evaluate all contributions needed for the calculation of determinants

in the trace formula [41]. However, it is nevertheless possible to define (super-)

determinants by means of Selberg (super) zeta-functions which are constructed in the

usual way, see Takhtajan and Zograf [66] for a discussion. However, a treatment of

this matter for the case of (bordered) super Riemann surfaces is beyond the scope of

this paper and is devoted to future investigations.
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