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Abstract: We present a simple method to estimate the Lyapunov exponent γ(E) for
the system

where {vj(ω)}ωeΩ is an ergodic family of potentials defined for jeZ. We assume that
there is a constant ζ > 2 and large positive integers Z, L such that for almost every
ω and every E there is an infinite sequence of disjoint intervals JnaΈ with the
following properties:

1) The length of each interval is larger than 21.
2) The distance between any two adjacent intervals is less than L.
3) \vj(ω)-E\^ζ ϊorje[JnJn.

Under these conditions we prove that

where β and B are positive constants and "meas" refers to Lebesgue measure.

I. Introduction

In this paper we obtain the following result:

Theorem. Consider the finite difference Schr'όdinger equation

--Eψj. (1)

where {vj(ω)}ωeΩ is an ergodic family of potentials defined for jeZ. Let y(E) be the
Lyapunov exponent for (1) and let Λ = {EeΊS^:y(E) = 0}. Suppose that there is
a constant ζ>2 and large positive integers I, L such that for almost every ω and every
E there is an infinite sequence of disjoint intervals
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(neΈ) with the following properties:

(i) an<an+1,

(ϋ) In^h
(iii) an + ί-an^L,
(iv) \Vj(ω)-E\^ζ forje[JnJn.

Then

w/zere β and B are positive constants.

Remarks.

1. The constant β depends on ζ while B depends on ζ and on the ratio l/L.
2. The set A in the above inequality can be replaced by

where b depends on ζ and on the ratio l/L.

3. If the hypothesis of the theorem is true only for those values of E which
belong to some measurable subset S c ]R, then it follows that

4. The size of /, L needed to make the conclusion interesting depends on the size
ofl/(C-2).

Our result yields the following corollaries:

Corollary 1. Letf(S) be continuous and periodic of period one. Suppose that there
exists a constant ζ>2 such that for each value of E there exists a point &*, where

\f(9*)-E\>ζ.

Consider system (1) with the potential

where α is a small irrational number. Then the Lyapunov exponent is positive except
for those values of E which belong to a set of measure ^^~Const/«

There is a special case of our theorem which applies to the perturbed almost
Mathieu operator:

Corollary 2. Consider system (1) with the potential

Ό.(S) = 2cos 2π(oίj +d)+εf(ocj+ 3) . (2)

We assume that

(i')
(iϊ) fis a bounded measurable function of period 1,

(in') e | | / | | β ) <μ-2)/2,
(iv') α is a small irrational number.

Under conditions (i')-(iv') it follows that the Lyapunov exponent for the system
associated with (2) is positive except for those values of E which belong to a set of
measure ^e~Const/a.
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Remark. Corollaries 1 and 2 may be adapted to the case where α is a small
non-zero rational number.

Recently there have been several results along these lines. Systems such as (1),
(2) come up in the study of quantum mechanics, solid state physics and dynamical
systems. We now briefly mention some of the latest results in this area.

Consider the system

where vj(S) is an ergodic potential defined for jeZ. Then for large λ and suitable
conditions on Vj (see [1]), it is known that the measure of the set of energy E where
the Lyapunov exponent is zero is exponentially small in λ. Our theorem improves
upon the result in [1] because we don't need to assume that λ is very large.

There is another recent result by Herman [2] which applies to the system

where α is irrational. Herman obtains the lower bound on the Lyapunov exponent
y(£)^log(2/2). Therefore if λ>2, then the Lyapunov exponent is positive. One
drawback with the method used by Herman is that the proof breaks down under
perturbations of the cosine potential. Our result is valid for potentials (2) which are
"close" to the cosine potential.

Sorets and Spencer [3] discovered an extension of Herman's result. They get
estimates on the Lyapunov exponent for the system

where /is a real analytic function of period one and α is irrational. In particular
they show that for large λ and small ε the Lyapunov exponent is positive for every
energy E in the spectrum and for almost every d. Their result successfully deals with
perturbations of the cosine potential, but in their proof they must assume that the
perturbation function/is analytic. Our result improves upon [3] because we only
need to assume that/is bounded and not necessarily analytic. In addition our proof
does not require λ to be very large.

The results that we mentioned above as well as the result in this paper are
obtained using "soft" analysis techniques as opposed to the difficult multi-scale
perturbation analysis which is usually used in problems of this type [4, 5, 8].

Before we give the proof of our result we shall give a brief outline of the main
ideas.

II. Definitions, Notation and an Outline of the Proof

Definitions and Notation. We wish to study system (1) with conditions (i-iv). We
shall frequently write this system as the matrix equation

Eψ9 (3)

where A is the finite difference laplacian on Z whose matrix elements satisfy

1 for \i-j\ = l
Δu =

0 otherwise.
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The potential V= V(ω) has matrix elements

Vij(ω) = δijVj(ω),

where Vj is the potential given in (1). Finally if we define

we may re-write Eq. (3) as

We will often need to restrict H to intervals JaZ. We do this by defining the
matrix elements of the restricted operator HJ to be

H(j = Hij for iJeJ .

We note that the superscript J refers to the interval on which the full Hamiltonian
H is restricted and that the subscripts ίJeΈ refer to the individual matrix elements
of HJ. We will also need to decompose HJ into Hamiltonians on sub-intervals of J.
The reason for doing this is to allow us to use information on sub-intervals to gain
information on much larger intervals and ultimately on Έ itself. To make these
ideas concrete suppose that we have the operator H{aM and ce(a,b). We wish to
decompose HίaM and compare it to the operators H[a>c] and H[c+Ub\ To do this
we define Γ to be the (boundary) operator which makes the following equation
hold true:

We immediately note that the matrix elements of Γ are

Γc,c+i — Γc+i,c— 1 9

Γij = 0 otherwise .

Now we define the corresponding Greens functions

Gίa bliΞΞ(H[a b'1-'£)~1 ,

GΓ = Gla c}(BGic+ltb}.

With these definitions a simple rearrangement of Eq. (4) yields the resolvent identity

G[aM = GΓ + GΓΓG{aM . (5)

We note that if i<c<j, then it follows (from the definition of GΓ) that G(J = 0.
Therefore in this case Eq. (5) becomes

r[a,b]_rΓ Γ r[a,b) _ r[a,c] r[a,b] ( f \

for ί<c<j. This form of the resolvent identity will be the main tool used in the
proof of our result.

Outline of the Proof. Since the system (1) is ergodic, the Lyapunov exponent γ(E) is
independent of ω for almost every ω. Therefore everything we prove is valid for
almost every ω.
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To estimate the Lyapunov exponent for (1) we will need to move E slightly off
the real axis, estimate the Lyapunov exponent for the complexified system and then
finally relate it to the Lyapunov exponent for the original system (1). The reason for
making E complex is to eliminate the possibility of extremely small divisors in the
Greens function (H — E)'1.

With this in mind we modify Eq. (1) and study the system

- ( ^ + i + ̂ - i ) + ( ^ - ί ) ^ = 0, (7)

where δ = E + iδ. Our aim in the proof which we give in Sect. Ill is to show that for
$~e-iβ/6 the Lyapunov exponent y(E + iδ) of system (7) is positive and that the
Lyapunov exponent y(E) of system (1) is "close" to y(E + iδ\ except for those values
of E which lie in a set A of Lebesgue measure ̂  δ. Therefore y (E) will be positive on
the complement of A. These ideas are made more precise in the two lemmas which
follow.

Lemma 1. Suppose that y{E + iδ) and y(E) are the Lyapunov exponents of systems (7)
and (1) respectively. Then

( £ - x ) 2 ] dp{x) , (8)

where dp is the density of states measure.

Proof. From the Thouless formula [9] we have

iδ-x\dp(x)-llog\E-x\dp(x)

-x + iδ)/(E-x)\dp(x)

iδ/(E-x)\dp(x)

Lemma 2. Suppose that v is a positive constant. Let

Then meas(Λ);g(π/v)(5, where meas = Lebesgue measure.

Proof. By Lemma 1 it is easy to see that

v meas(yl)^ J \_y{E + iδ)-y{E)~]dE

+ δ2/(E-x)2ldp(x)dE

= \ \ (1/2) log [1 +<5 2 /(£-*) 2 ] dE dp(x).
A

Now we fix x and estimate the inside integral,

A IR

Therefore since J dp{x) = 1 we see that meas(/l)^(π/v)^. •

We now briefly discuss why the Lyapunov exponent of the modified system (7)
is positive. The technical proof will be given in Sect. III.
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Suppose that ω and E are fixed. Without loss of generality we may assume that
the following picture holds true with J1 being the first interval in { Jn}™= - «> whose
center aγ is a non-negative integer.

J l J 2 J 3

•£ 3-
0 a ^ a t a i +>e i a ^ a 2 a ^ a 3 ^ 3 a 3 a 3 +« 3

Fig. 1

We will prove that in every interval JΠ = [̂ M —/„,«„ + /«) the Greens function
GJn = (HJπ — $')~1 decays exponentially fast. In particular we will show that

|G£, β . + I J£Cβ- ' I «£Ce- '» , (9)

where C and β are positive constants. (See Sect. Ill, Lemma 3). We note that in the
remaining intervals / c Z w e always have the crude bound

fi-iί)-11| ^ 1/5 . (10)

If we define δ^e~βl/6 we see that

|| G 1 1 | ^ Const V / 6 . (11)

Finally we will use estimates (9), (11) and the resolvent identity (5) to prove that the
full Greens function G = (H — $)~1=(H—E — iδ)'1 decays exponentially fast.
More specifically (see Sect. Ill, Lemma 4) we will prove that

_ -(βl/4L)(nL)

where β is the constant defined in Eq. (9). By assumption (iii) and Fig. 1 it follows
that an^nL, therefore

\Go,an\ύe-(βl/4L)a» . (12)

Since the Lyapunov exponent is related to the rate of decay of the Greens
function it follows from (12) that

y(E + ίδ)^βl/4L. (13)

Finally by Lemma 2 with v = βlβL we see that

(14)

except for those values of E which belong to a set A which has Lebesgue measure
£ δ = Const e~βl/6. By combining estimates (13) and (14) we find that y(E) ̂  βl/SL
on the complement of A.

With the notation and sketch of the proof behind us we will now state and
prove our main result.
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III. Proof of the Main Theorem

The proof of our theorem rests upon the following two lemmas.

Lemma 3. Let GJn = (HJn-i)~1, where £ = E + iδ. Then

IGfrlgCe-'I'-'l, (15)

where C=l/{ζ-2) and β = log(ζ/2).

Proof. By condition (iv) we have

for jeJn. We expand GJ» = (HJ»-g>yί={-AJ»+VJ»-g>y1 in powers of ζ'1ΔJ" to
get

where C = l/(ζ - 2) and )8 = log(£/2). •

Lemma 4. Lei G = (H-£')-1=(H-E-iδyί and let δ = (2C)113

 e-
βl/6, where

β and C are the constants defined in Lemma 3. Suppose that the intervals Jn are as in
Fig. 1. Then

Proof. We apply (6) twice to G = Gi~co'oo) to get

Γ _ / ^ ( ~ o o , α 1 + / 1 ] r , ( - o o , α 2 - l ] ^

lJai,aH— ^ f l i .α^Zt ^ α 1 + I 1 + l , α 2 - l ^ .

which upon iteration yields

( «-l \ / n-l

11 G ^ « f c + /fc ) 1 1 Gak + l k + l , a k + ι - l )Gan,an. (17)
fc=l / \fc=l /

Another application of (6) to G = Gi'oooo) gives us

We will use (17) and (18) to get the desired bound on G0,α n. To estimate the first
product in (17) we will use Lemma 3 to show that

\G(

ai::X
h\ύ2Ce-0ιlδ . (19)

Every other term in Eqs. (17) and (18) is trivially bounded by (l/ί>). For the moment
we assume that (19) is true and combine it with (17), (18) and the definition of δ to
get

= e-βl(n-l)/2

<e-(βl/4rL)nL
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By assumption (iii) and Fig. 1 we see that an ^ nL which implies that

| G 0 , J ^ - ( / " / 4 L ) α " . (20)

It now remains to prove (19). We use (6) again to write

where

QΓ =Q(-ao,ak-lk-l] φ Q[ak~lk,ak + lk]

= G (-co,α k -J k -l]0 G J k ^ (22)

Now by (21) and (22) we get

We finally use Lemma 3, assumption (ii) and Eq. (10) to obtain (19),

Remark. In the preceding proof we needed to use the fact that δ< 1. This is an
explicit requirement on the largeness of /. In particular we see that if

/>21og[2/(C-2)]/log(ζ/2),

then it follows from the definition of C that <5< 1.
We can now prove our main result:

Theorem. For system (1) with conditions (i-iv) there exists positive constants β and
B such that

meas{£:

The constant β depends on ζ alone and B depends on ζ and on the ratio l/L.

Remark. The proof we give actually yields the more general result

meas{£:

Proof. From Lemma 4 we see that y(E-\-iδ)^βl/4L, provided that we choose
(5 = (2C)1 / 3 e~βl16. Now Lemma 2 implies that

meas{£:

Therefore

meas{£:
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