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Abstract: This paper considers the Einstein equations coupled with the nonabelian
gauge and Higgs fields. It is shown that, when cosmic string solutions are sought in
the Einstein-Georgi-Glashow system and the Einstein-Weinberg-Salam system
governing the gravitational-electromagnetic-weak interaction forces, the self dual-
ity conditions lead to positive values of the cosmological constant which can be
expressed by some fundamental parameters in particle physics.

1. Introduction

In quantum field theory, phase transitions are described by a generalized order
parameter, called the Higgs field, which is defined on spacetime and takes values in
a range space. The spacetime symmetry, or the external symmetry, gives rise to
Einstein's theory of general relativity or the theory of gravitation while the range
space symmetry, or the internal symmetry, leads to the Yang-Mills-Higgs gauge
theory or the field theory of electromagnetic and nuclear (strong and weak) forces.
Therefore the coupling of the Einstein and the Yang-Mills-Higgs theories should
naturally lead to a unified theoretical framework to house gravitational, electro-
magnetic, and nuclear forces. In fact, recent developments in cosmology and
particle physics have already witnessed an exciting interaction of these two tradi-
tionally different areas and a lot of progress has been made in understanding some
important issues. For example, it has been recognized that, due to the spontan-
eously broken symmetry, the coupled Einstein-Yang-Mills-Higgs equations may
provide a class of interesting solutions called topological defects. The sym-
metry-breaking scales are realized by the gauge groups corresponding to various
stages of the phase transitions after the Big Bang. These stable defects may be
domain walls, monopoles, or strings but the former two types of solutions are
disastrous for cosmological models and only the string solutions can lead to
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interesting cosmological consequences. See Vilenkin [V] for a detailed review on
this subject. Strings, or cosmic strings, are cylindrically symmetric solutions of the
Einstein-Yang-Mills-Higgs system that are regarded as giving rise to seeds for
accretion of matter to form galaxies. Even in the simplest case where the gauge
group G= £/(l), the system is very difficult to solve and there are only heuristic
arguments or numerical simulations in the general setting of the problem in order
to make any progress. However, the investigations of Linet [LI, L2] and
Comtet-Gibbons [CG] showed that, when the cosmological term is absent, there
exists a critical phase so that the full U(l) system allows a reduction into a self-dual
system called the Einstein-BogomoΓnyi equations. Using this system, we have
constructed a continuous family of finite-energy cosmic string solutions [SY2,
CHMcY]. Actually, the existence of such solutions implies the vanishing of the
cosmological constant A (see Sect. 2) and this simple but important observation
motivates the work of the present paper.

The constant Λ9 introduced by Einstein himself, has a rich history in theoretical
physics. According to modern ideas, A should have a significant value in the early
universe when the phase transitions were taking place in the beginning stages and
maintained at rather high energy levels. At that time, the symmetry-breaking scales
were realized by larger gauge groups. Then the result A = 0 by assuming the
presence of self-dual U{\) strings simply indicates that the strings obtained belong
to a later stage of the universe. Thus an interesting question arises:

For what gauge group G, the Einstein-Yang-Mίlls-Hίggs equations
permit self-dual cosmic string solutions which yield a positive AΊ

This paper is devoted to an answer of this question. We shall show that for the
important Einstein-Georgi-Glashow equations where G = SO(3) or SU(2) and for
the Einstein-Weinberg-Salam equations where G = SU(2) x C/(l), the existence of
self-dual cosmic string solutions lead to positive values of A and these values can be
expressed by some fundamental parameters in the Georgi-Glashow or Weinberg-
Salam models. This work provides another evidence of the close relationship of
cosmology and particle physics. Our approach comes from a combination of the
elegant work on self-dual electroweak vortices by Ambjorn-Olesen [AO1, AO2,
AO3] and the reduction of the Einstein equations for string solutions in the work
of Linet [LI, L2] and Comtet-Gibbons [CG].

Note that the construction of a regular stationary solution of the Einstein type
equations has always been an interesting question in mathematical physics. There
are the Schwarzschild blackhole solution of the vacuum Einstein equations and the
Reissner-Nordstrόm solution of the Einstein-Maxwell equations which are singu-
lar somewhere. Recently, Smoller-Wasserman-Yau-McLeod showed the exist-
ence of a regular stationary solution of the Einstein-Yang-Mills equations when
G = SU(2). In these studies, the matter Higgs field is absent and solutions are
spherically symmetric. On the other hand, the self-dual SU(2) and SU(2)x U(l)
equations obtained here (as well as the U(l) equations derived in [CG]) provide us
new opportunities to get regular stationary solutions of the full Einstein-Yang-
Mills-Higgs systems with cylindrical symmetry.

The rest of the paper is organized as follows. In Sect. 2 we recall the derivation
of Comtet-Gibbons [CG] and emphasize that in this U(l) case the existence of
self-dual strings will inevitably lead to vanishing cosmological constant A. In Sect.
3 we work in a conformally flat surface and derive the Einstein-BogomoΓnyi
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equations for the Georgi-Glashow theory. It will be seen that A now takes
a positive value if the self-dual strings are present. In Sect. 4 we obtain self duality
for the full Einstein-Weinberg-Salam system and express A in terms of elec-
troweak coupling constants and the Weinberg angle. In Sect. 5 we prove the
existence of self-dual string solutions in the Einstein-Georgi-Glashow system.
Section 6 is a brief summary.

2. Self-Dual £/(l) Strings and Vanishing A

Let gμv be the metric tensor of a four-dimensional pseudo-Riemannian manifold
with signature (— + + +), Rμv the Ricci tensor, and R the scalar curvature. Then
the Einstein tensor takes the form

G R R

With a suitable normalization of the universal gravitational constant, the Einstein
equations in the presence of the cosmological term are written [W]

Gμv-Λgμv=-Tμv, (2.1)

where Tμv is the energy-momentum tensor of the matter-gauge sector to be
introduced in the Einstein-Yang-Mills-Higgs coupling.

In this section, we discuss the standard U(ί) Higgs theory in the BogomoΓnyi
critical phase. The Lagrangian reads

J ? = ^ V v f F , ^ ^ (2.2)

where φ is a complex scalar matter field, Dμφ = dμφ — iAμφ is the gauge-covariant
derivative, Aμ is a real valued gauge vector field, and Fμv = dμAv — dvAμ is the
electromagnetic field. Thus a variation with respect to the Riemannian metric in
the action J 5£ ̂ J—gdx leads to the following expression of the energy-momentum
tensor of the matter-gauge sector

We now assume the string ansatz for the metric tensor so that

ds2 = gμvdxμdxv

= -dt2 + dz2 + gjkdxjdx\ j,k = 1,2, (2.3)

where {gjk} is the metric of a two-dimensional Riemannian manifold M which can
always be assumed to be locally conformally flat (the existence of isothermal
coordinate chart on 2-surfaces), x° = ί, x3 = z, and for the gauge and matter fields
Aμ, φ so that Aμ, φ depend only on the coordinates on M and Aμ = (0,0, Au A2).
Thus Tμv verifies

T
τ CO T* Q? >τ> Ύ1 rp r\
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where

is the energy density of the matter-gauge sector.
On the other hand, due to the string assumption (2.3), the Einstein tensor is

simplified to

— GQO = G33=-R ,

Gμv = 0 for other values of μ, v ,

where, and in the sequel, R is the scalar curvature of (M, {#;&})• Consequently, the
Einstein equations (2.1) become

xeM. (2.4)

Agjk = Tjk9 ; , fc=l,2,

To proceed further, we recall that the equations of motion of the matter-gauge
sector defined by the Lagrangian (2.2),

1 D ^
-9

-g *
are satisfied by the solutions of the self-dual system

Djφ±iskjDkφ = O ,

xeM, (2.5)

where εjk is the skew-symmetric Levi-Civita tensor with ε12 = >/ — g, &) = gklεjU and
a solution ({##}> A/> Φ) of (2.4)-(2.5) is called a self-dual cosmic string solution of
the Einstein-matter-gauge system under consideration.

A lengthy calculation gives us

^gjkTjk = ίεjkFjkH\Φ\2-m^rk'Frk'-{\φ\2-l)-] inM.

Therefore a solution of (2.5) must fulfill the condition gjkTjk = 0 in M. Inserting this
fact into the second equation in (2.4), we obtain Λ = 0 as desired.

Thus the assumption of the presence of self-dual U(l) strings (whose existence is
proved in [SY2, CHMcY]) immediately leads to the vanishing of the cosmological
constant.

In the next two sections, we study the relationship of self duality and the values
of A in the Georgi-Glashow and Weinberg-Salam models. We shall work for
simplicity in a framework in which the 2-surface M where the strings reside is
conformally R2. The main reason for taking this non-intrinsic approach is that we
will follow a standard procedure to obtain the complex scalar JF-boson field from
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appropriate components of the nonabelian gauge vector field. Such a reduction
requires a global coordinate system.

3. The Einstein-Georgi-Glashow Coupling

In this section we consider the Einstein theory coupled with the SO {3) Georgi-
Glashow model ignoring the Higgs field. There is a massive JF-boson. The vortex
condensation of this model (without gravity) was studied by Ambjorn-Olesen [AO1]
and the existence of vortices was proved in Yang [Y]. See also Spruck-Yang [SY2].

Let {ία}α=i,2,3 be a set of generators of SΌ(3) satisfying the commutation
relation

[ίΛ, tb]=iεabctc, a, b, c = 1, 2, 3 .

Then the SO (3) gauge potential Aμ can be expressed in the matrix form

A — Λat

As in [AO1], introduce the complex W-vector boson by setting

Then the Lagrangian of the 50(3) matter-gauge sector in the presence of a gravi-
tational metric ds2 = gμvdxμdxv under consideration is

where
Fμv = dμAv — dy

mw > 0 is the mass of the PF-particle, and — e is the electron charge.
Put Al =fμ and

Jμv~ Vμjv Ovjμ

Thus =Sf is reduced after a calculation to

&=\g'H''gyi''fβJβ>v'+\g'ψ'gin'φμ WV-DV wμ) φμ, WV-DV wj

+ mWv W\ Wv + ieg»κg™'fμv W%. Wv.

- jί{gμμ' w\ W^MV wv wv-{gw w\ wμ.)
2],

where Dμ = dμ—iefμ. Varying the metric {gμv} in $£ leads to the following expres-
sion of the energy-momentum tensor:

^(Dμ Wμ-Dμ, Wμ){Όv Wv-Dv. Wrf}

l. Wv - Wv. W\) + /„.,( W\. Wμ - Wv

+ e2 l(g»w W^μ. Wv,){ψϊμ Wv + Wl Wμ)

l v U - g μ v L . (3.1)
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Besides, the equations of motion of the matter-gauge Lagrangian S£ are

1

~e2lgμv Wl(£μ'v' Wμ, Wv)-{gμ'v> Wμ, W\>)gμv Wμ~\ ,

16 - ' - - " - - (3.2)
-g

We are now at a position to derive the self-dual conditions. Assume that the
string metric is defined on a conformally flat surface. Then (2.3) becomes

ds 2 = - d ^ + d z ^ e ^ d x ^ + ίdx2)2] . (3.3)

A symmetry consideration shows that it may be consistent to assume that

^0=^3=0,/o=/3=0,

Wj, fj 0 = 1, 2) depend only on xk (k= 1,2), and there is a complex scalar field Wso
that (see Ambjorn-Olesen [AO1])

Wγ=W, W2 = '\W.

Thus, in view of the expression (3.1), we have

Tμv = 0, μ φ v .

Moreover,

Γ' ηr c/?
0 0 — — -L 33 — - ^ j

where if can be written

%=^Q~2ηf\2 + e~2η\D1W+ΊD2W\2

-2ee-2ηfί2\W\2 + 2e2e~2rl\W\*
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Besides, the other two nonvanishing components of Γμv are

The form of if suggests the following curved-space version of the self-dual
BogomoΓnyi equations (see [AO1] in the flat case η = 0)

D1W+iD2W=0,
2

It can be verified directly that (3.5) implies the equation of motion (3.2). Further-
more, since the full Einstein equations (2.1) are again reduced to (2.4), we see that
the consistency in (2.4) requires that the cosmological constant take the unique
value

Λ-m^ (3 6)
2e2

Inserting (3.6) into (2.4) and using (3.5) in (3.4), we see that the Einstein system
(2.3) is simplified into the single equation

2 K — e /i2 (A'j

On the other hand, it is well-known that [A] the scalar curvature R has the
expression

R=-Q-ηAη .

Therefore (3.7) becomes

(3.8)

Thus we have derived the Einstein-BogomoΓnyi system composed of Eqs. (3.5)
and (3.8). Any solution of (3.5) and (3.8) also satisfies the original Einstein-
Georgi-Glashow system (2.1) (or (2.4)) and (3.2). A solution of (3.5) and (3.8) is
called a self-dual cosmic string solution. We have shown that the presence of such
strings requires the fulfillment of (3.6).

Let us finish this section by writing the coupled equations (3.5) and (3.8) as
a second order elliptic partial differential equation.

It is well-known that [JT] the first equation in (3.5) says that the zero set of Wis
discrete and these zeros all have integral multiplicities. Let the zeros of W be
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denoted by pl9. . ., pN (a zero of multiplicity m is counted as m zeros). Then the
substitution w = ln | W\2 reduces (3.5) into the form

N

Δu=-2m2

vQ
η-4e2Qu + 4πY δPn in R 2 . (3.9)

Furthermore, using (3.5) in (3.8), we obtain

9 4
Aη= — ^ e " - 4 m ^ e " . (3.10)

Hence we have seen that the Einstein-BogomoΓnyi system (3.5) and (3.8) is
equivalent to the coupled elliptic equations (3.9)—(3.10). A solution of (3.9)—(3.10)
gives rise to an iV-string solution of the Einstein-Georgi-Glashow system (2.3) and
(3.2) with strings located at pl9. . . , pN.

The special form of (3.10) allows a further simplification of the system. In fact,
inserting (3.10) into (3.9), we get

e2 "
Au=-^rAη + 4π2_j δPn .

Namely,

w = u_^_η_2^lnlχ_pl

is a harmonic function in R 2 . For simplicity we assume w = 0. As a consequence,
the system (3.9)—(3.10) is reduced to the single equation

Λη= 2~e"-4m^ I I \x-pn\*em» . (3.11)
e n=ί

The existence of solutions of this interesting nonlinear equation is not difficult
to establish when pl9. . . ,pn coincide. See Sect. 5.

Remark 3.1. So far, it seems that most known stationary solutions of the Einstein
type equations are radially symmetric. Equation (3.11) gives us a highly tractable
form to obtain non-radially symmetric solutions. We intend to pursue this direc-
tion of study later. Note that the structure of (3.11) belongs to a class of
2-dimensional elliptic partial differential equations which are not yet well understood.

4. The Einstein-Weinberg-Salam System

Let ta (a = 1, 2, 3) be the generators of SU(2) introduced in Sect. 3 (note that SU(2)
and 50(3) have the same Lie algebra) and set

1/1 0N

Then the gauge group SU(2)x U(l) in the Weinberg-Salam electro weak theory
transforms a complex doublet φ according to the rules

φ ι-> exρ(-iωαία)</>, ω α eR, α = l,2,3,

φ ι-> Qxρ(-iζto)φ,
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The SU{2) and C/(l) gauge fields are denoted by Aμ = Aa

μta (or Λμ = (Λa

μ)) and
Bμ respectively, where both Aa

μ and Bμ are real 4-vectors. Besides, the field strength
tensors and the SU(2) x U{\) gauge-covariant derivative are

where g\,g2>0 are coupling constants.
In the presence of the gravitational metric ds2 = gμvdxμdxv, the Lagrangian

density of the bosonic sector of the Weinberg-Salam theory is

where λ > 0 is a constant and φ0 > 0 is the vacuum expectation value of the Higgs
field φ.

We now go to the standard unitary gauge. We introduce the new vector fields
Pμ and Zμ as a rotation of the pair A?μ and Bμ:

Thus Dμ becomes
μ

+ iZμ(g1cosθt3-g2smθt0) .

As usual, if the coupling constants gι,g2>0 are so chosen that the electron
charge satisfies

e = -
/gϊ+gi

then there is an angle ft 0 < θ < π/2 (the Weinberg angle) so that

e = gγ sin θ = g2 cos θ .

In this situation, the operator Dμ has the expression

Here eQ = e(t2, + t0) and Q' = cotθt3 — tanθί0 are charge and neutral charge oper-
ators, respectively.

Assume now

where φ is a real scalar field. Then
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As in Sect. 3 (see Ambjorn-Olesen [AO3]), define the complex vector field

and set3> = δμ-ig1Aμ

%. With the notation Pμv = dμPv-dvPμ and Zμv= dμZv-dvZμ,
the Lagrangian density takes the form

2>=\gμμ'gvv'PμvPμ v+\gμμ'gvv'zμvzμ,v.

+\gμμ'gvv\% wv-

+\glί(gμv K m)2-(gμμ' wμ wμ.)(gvv' wv wv.n

+igigμμ'g™'(Zμ.v,cosθ+Pμ.v,smθ)WlWv+λ(φ2-φl)2. (4.1)

Moreover, the equations of motion of the Lagrangian (4.1) are

1
-%ίgμμ'gn'J-g

+gϊί(gμ'v' K' w*)gμv Wμ-(g^' wμ Wv

-g
-®,. Wμ T Wμ

= 10! cos θgμ gμv \βμ> Wv — Q)v Wμ> ] τ PΓμ

-g
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vV v v v' rvμ )Λ

v - 0
2

H—E^^v Wμ^vlφ-\-2λ(φ —Ψo)ψ ' (4 2)

We shall show that, when A satisfies a specific condition, (4.2) allows a reduc-
tion into a first order system which may be called the BogomoΓnyi or the
Ambjorn-Olesen equations [AO3] in curved spaces.

Varying the metric {gμv}, we obtain from (4.1) the energy-momentum tensor of
the electroweak matter-gauge sector:

-2g\ Re {fo"v Wμ Wv.) W^μ W\)

+ igt cos θg»'*'[Zμ.μ{W\. Wv- W\ Wv) + Zμ,v{W\. Wμ- Wv

+ ig, sin θg^'lPμ.μ(W\, Wv- W\ Wv.) + Pμ.y(Wl Wμ- Wv ψj,)] -g μ v &.

In the sequel, we impose again the string metric (3.3) and assume that

Po = P3=Zo = Z3=0,

IV0=W3=0, Wi = W, W2=ϊW,

and that P,, Z} (j = 1,2), W, and φ depend only on xk (k = 1,2). Then (3.4) still holds
with

-2g1cosθe-2ηZ12\W\2-2gίsmθe-2ηP12\W\2
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The form of (4.3) suggests that we may impose the critical condition

and the BogomoΓnyi-Ambjorn-Olesen equations

W\2 ,

(4.5)

In fact, we can examine directly that any solution of (4.5) also satisfies the full
equations of motion (4.2) when (4.4) is fulfilled.

We now simplify the gravity sector or the Einstein equations (2.1). In view of
(4.4) and (4.5), S£ may be written in the form

(4.6)

Furthermore, it is straightforward to check using the last equation in (4.5) that

The other off-diagonal components Tμv=0 (μφv) are direct consequences of the
string ansatz. Besides, we have
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Thus in view of (4.5) again, we find TliL = glφoeηβsm2θ. Similarly we can show
that T22 takes the same value as TX1.

Inserting the energy-momentum tensor Tμv just obtained into the Einstein
equations (2.1) (or (2.4)), we see that there holds the condition

Thus, now, in view of (4.6), (2.1) or (2.4) is equivalent to the single equation

= 0 • ( 4 8 )

Therefore we have seen that, under the critical coupling condition (4.4),
the Einstein-Weinberg-Salam system (2.1) and (4.2) is reduced to the simpler
Einstein-BogomoΓnyi-Ambjorn-Olesen equations (4.5) and (4.8). The presence of
such solutions requires that the cosmological constant A verify the unique condi-
tion (4.7).

We conclude this section by writing (4.5) and (4.8) as a system of second order
nonlinear elliptic equations. Assume that the strings are at pί9. . . ,pN. Let w, v be
such that

| W | 2 = e", ψ = e .

Then it is straightforward to show that (4.5) and (4.8) become

J δ(x-pn),

xeIR2 . (4.9)
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The solutions of (4.9) give rise to iV-string solutions of the original
Einstein-Weinberg-Salam theory.

5. The Existence of Cosmic String Solutions

In this section, we prove the existence of cosmic string solutions of the self-dual
system (3.5) and (3.8) derived from the Einstein-Georgi-Glashow model. The
existence problem for solutions of the more complicated Einstein-Weinberg-
Salam system will be studied elsewhere.

We shall look for an iV-string solution so that px = =pN = the origin of IR2.
Thus, when setting α = 2m^/e2, b = 4mj^, and c = e2/m2

v, Eq. (3.11) becomes

Δη=-aeη-b\x\2NQc\ xeWL2 . (5.1)

It will be sufficient to find radially symmetric solutions of (5.1).
Let r = I x | be the radial variable. Consider the initial value problem

ηrr+-ηr= —aeη — br2Necη, r > 0 ,

where ηoeWL is arbitrary. It is well known (see [BLP]) that (5.2) has a unique local
solution for any η0 and that such a solution can be extended smoothly to obtain
a solution of (5.1) in a neighborhood of the origin.

Lemma 5.1. The solution of (5.2) is globally defined in (0, oo).

Proof Integrating (5.2) in the interval of existence of the solution, we have
r Γ Ί

rηr(r)=-\ \ apeηip) + bp2N+1ecηip) dp, r>0 . (5.3)

o L J
Thus η is decreasing and | ηr | cannot blow up in finite r > 0. As a consequence, the
lemma follows. •
Lemma 5.2. Let η be the unique global solution of (5.2). There exists a constant β:

(5.4)

so that η is asymptotically —βlnr which is characterized by

lim γ^- = lim rηr(r) = - β . (5.5)
r—• oo I n r r-*<x>

Proof From (5.3) it is seen that η(r)-~* — oo or a finite number as r-• oo. Suppose the
latter is true. Then (5.3) says rηr(r)-+ — oo as r-* oo. Therefore there is an r0 > 0 such
that

rηr(r)<-l, r^r0 .
Hence

r
η(r)< - I n — + η(r0), r>r0 ,

ro

and η(r)^> — oo as r -• oo, which violates the assumption made earlier.
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It is easy to agree that, as r-> oo, rηr(r)-+a finite number or — oo. Let us exclude
the latter possibility.

Suppose otherwise that rηr(r)-+ — oo (as r->oo). Then, for

ί 2 i V + 3 *X = max< , 3
I c

there is an r 0 so that

This inequality implies

η(r)<. -K\n —

which gives us the immediate consequences

J re* ( r )dr<oo, J r2N+1ecη{r)dr<oo . (5.6)
o o

Thus rηr(r)-^& finite number as r->oo and we arrive at a contradiction.
Consequently, (5.5) holds for some constant β>0. Obviously, rηr(r)> -β,r>0

(see (5.3)). Therefore

ι/(r)>-j81nr + fj(l), r>\ . (5.7)

Inserting (5.7) into (5.6), we see that (5.4) follows. •

The estimate (5.4) for the decay exponent β can further be improved.

Lemma 5.3. Let β be the number stated in Lemma 5.2. If(N + l)/c = 1, we have β = 4.
If(N+ l)/c + 1 , then β lies in the open range

{^^j (5.8){,
{ c

Proof. From (5.2), we have

^ ( r V ) = 2 a r ^ ) r ^ ) .
dr άr c άr

Integrating the above equation by parts and using (5.4) to drop the boundary
terms, we obtain

\ ( ^ ^ ) \ . (5.9)j f \ + ( )
o I \ c )

Thus we are led from Eq. (5.9) to the relation

N+l
4 1-- a]re"dr + 41-—- )β = β2

o \ c )

( ^ - '



496 Y. Yang

Thus β = 4 if and only if (N+ l)/c= 1. When (N + l)/c< 1, we see from (5.10)
that 4(N + l)/c<β<4. While, for (JV + l ) / o l , we have 4<β<4(iV + l)/c. Hence
the estimate (5.8) follows. •

Using (5.4) and (5.8), we arrive at the inequality

^ j (5.11)

In the case that (JV + l)/c = 1, the lower and upper bounds in (5.11) coincide and we
obtain the exact result β = 4. Thus, when (JV + l)/c is not too far away from 1, there
holds β&4. However, when (JV+ l)/c is far away from 1, the range of β stated in
(5.11) may be a large open interval and in such a situation we are unable to decide
the exact values within the interval that β can assume. In particular, it seems to be
an interesting question whether each number in the interval (5.11) can be realized
as a decay exponent β with a suitable choice of the initial data in (5.2).

Let η be the radially symmetric solution of (5.1) obtained above and

τmw

Since η is asymptotically — /Πn|x| as | x | ->oo, where β is a constant satisfying

{ } | j j (5.12)

with

I e ) I
(see (5.11)), the function u is asymptotically — αln |x | with

2e2

(5.13)

To obtain a solution of the original system (3.5) and (3.8) from the pair (w, η)
constructed above, we put z = x1 +ix 2 , d* = d1 +id2, and

= exp --u(z) + iiVargz ,

' e

A — t a | ;

Then (W, f, η) is a solution of (3.5) and (3.8) and

| ^ | 2 = O(r- α ),

e" = O ( r - ' ) .

/i2 = O(r-J'), y = min{α,/ϊ}>

n%rΛ 4

R — ^ = O(r- ( a -«) , (5.14)
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as r = \x I -»oo, where α, β satisfy (5.12)—(5.13) and R is the scalar curvature of the
surface (R2, δjke

η). The decay estimates (5.14) say that the cosmic string we have
constructed is of finite energy.

Remark 5.1. In fact the property that η is asymptotically — β In \x |, where β lies in
the range (5.11) is a consequence of the regularity of any symmetric solution of (5.1)
because for such a solution the smoothness at the origin requires

#•-•0

This feature ensures already the validity of Lemmas 5.2 and 5.3.

Remark 5.2. In the U(l) case, a necessary and sufficient condition for the existence
of an iV-string solution has been obtained in [CHMcY] which says for example
that if N exceeds an explicit upper bound, there will be an energy-blowup. The
result of this section tells us on the other hand that when the gauge group is
non-abelian (G = SU(2)\ in addition to the presence of a positive cosmological
constant A, finite-energy iV-string solutions exist for any number JV.

Remark 5.3. A well-known result of Kazdan-Warner [KW] on the prescribed
curvature problem for open 2-surfaces says that a function #eC°°(IR2) is the scalar
curvature of a complete Riemannian metric on R 2 if and only if

lim inf R(x)^0 . (5.15)

Thus, in view of R= —e~ηAη and (3.10) and (4.9), we see that the obtained
gravitational metric cannot be complete because the curvature R is bounded away
from zero below by a positive constant, which violates the condition (5.15).

6. Conclusion

We have shown that, when the Einstein theory is coupled with the Georgi-
Glashow and the Weinberg-Salam models, the presence of self-dual cosmic strings
implies that the cosmological constant A must in that situation assume corres-
ponding positive values. In other words, if we accept these two-dimensional
self-dual solutions as physical states in suitable phase transition stages of the early
universe realized respectively by the coupling models discussed, then, at that time,
A was positive and might be uniquely and explicitly expressed in terms of some
fundamental parameters in particle physics such as the electron charge, the W-
particle mass, the Weinberg angle, and the coupling constants.
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