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Abstract: The initial and the initial-boundary value problems for the localized in-
duction equation which describes the motion of a vortex filament are considered.
We prove the existence of solutions of both problems globally in time in the sense
of distribution by the method of regularization.

1. Introduction

The localized induction equation which describes the motion of a smooth thin vortex
filament in three-dimensional perfect fluid is derived from some physical approxi-
mations of the Biot-Savart law ([1, 4]). It is formulated as

x, = x 5 x x ^ , (1.1)

where x = x(s, t) denotes the coordinate of a point on the filament in R 3 as a
vector-valued function of arclength s G IR and time t, and the subscripts mean the
partial differentiation with respect to the corresponding variables.

Some exact solutions of (1.1) are known ([7]): the trivial type (xs x xss = 0),
the circular and the helical ones (|x5 x xss\ = const.), the elastic one rotating about
an axis without changing its own form, etc.

Besides, Hasimoto indicated in [5] that (1.1) can be transformed by means of
the Frenet-Serret formulae into the nonlinear Schrόdinger equation,

-iΨt = Ψss + (l/2)\Ψ\2Ψ (1.2)

for Ψ = κ(s, t)exτp{i f*τ(s9t)ds — i f^a(t)/2dt}. Here K and τ are the curvature
and the torsion of the filament respectively, i.e.,

τ = x fx x x V h

and
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s

a(t) = 2fτtds + 2τ2 - κ2 - 2κss/κ ,
o

which is proved to be independent of s. Then he showed that (1.2) has the 1-soliton
solution corresponding to a vortex filament with a local loop on it. This result was
extended to the N-soliton solutions in [2].

The unique solvability of the initial value problem for (1.2) was established
by several authors. For example, Ginibre and Velo [3] proved it in the space
C%(WL;W}(1R)). Hayashi et al. [6] showed a regularizing property of (1.2) that
the solution for a nonsmooth initial condition is smooth for / Φ 0.

However, we must point out that (1.1) and (1.2) are not always equivalent from
a mathematical point of view. Indeed, in transforming (1.1) into (1.2) we assume, for
almost every (s,t), that | x m | and I x ^ l remain bounded and that K cannot be zero.
This is the reason why in this paper we study the initial and the initial-boundary
value problems for (1.1), not for (1.2). Our result is that there exist solutions to
these problems in a weak sense. Unlike the results for (1.2), it seems to be difficult
to say something about their uniqueness and smoothness by our method (see Remark
4.2 below).

Since x and x5 are the position and the unit tangential vectors respectively, they
are not square integrable with respect to s e 1R. Thus, taking account of several
numerical experiments ([1, 4, 11]), we consider the following situations:

(I) the curvature \xss\ —> 0 as s —> ±oo.
(II) x(s,t) approaches an exact solution y(s,t) with yss(±oo,t)Φ0, such as a

helix or an elastica, as s —> ±oo.
(III) xss(±l,t) = 0 is satisfied when the domain of s is restricted to J = (—1,1).
(IV) the filament is closed: x(s - l,t) = x(s + l,t) for s eΊBL.

Then in the cases (I) and (II) the problems become the initial value ones for the
functions X = x — x0 (with x(s,0) = Xo(s)) and Y = x — y respectively. The reason
to distinguish (II) from (I) is that XQ^ can be assumed to belong to L2(1R) but
Yss(;t) cannot. We do not intend to discuss the stability problem at present. The
numerical simulations in [4] for the motion of a vortex filament whose initial form
is plane parabolic, hyperbolic or exponential correspond to (I). On the other hand,
the condition (III) is equivalent to x(±l,t) = x o ( ± l ) . In other words it means that
the filament is fixed at the points s = ±1 such as an initially sinusoidal curve in
the numerical experiment [11]. Therefore the problem under this condition becomes
the initial-boundary value one. The study of (IV) is mathematically similar to and
simpler than that of (III), and we mention it only at the end of this paper. In any
case, there is little essential difference among the final results for (I)-(IV).

Since the eigenvalues of the matrix A, defined by Axss = xs x xss, are 0, ±/|x5 |,
(1.1) is not of parabolic type. Thus in this paper we first discuss the parabolic
regularizations

xB

t = χε

s x χε

ss + gχε

ss in cases (I) and (III), (1.3)

and
xε, = xε

5 x xε

ss + ε (xε - y)ss in case (II) (1.3)'

for ε > 0. In Sect. 2 we give a priori estimates for them and in Sect. 3 we show
the existence and uniqueness of their solutions. Then we establish the solvability of
(1.1) for all the types (I)-(IV) in the sense of distribution of Sect. 4.
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We introduce the notation as follows: Let Ω be a domain in R, T be any
positive number and ΩT = Ω x (0, T). The norm in L2(Ω) (resp. L2(βτ)) is denoted
by || ||β (resp. | | Ω Γ ) . If Ω = R, we write them simply as || || and | | respectively.
By W% (Ω) (α > 0) we mean the Sobolev-Slobodetskiϊ space ([9]) in which the
norm of an element u is defined by

( H l L α ) ) 2 = Σ ll^«H

where

ρ>««ι& if « = [«],

. Ω Ω \s — .
d s d s l f α

If Ω = IR, we write the norm simply as || | | (α). We define the norm in the aniso-

tropic space W^al\Ωτ) = L2(0,T; W%(Ω)) Γ) L2(Ω; ff2

α/2(0,Γ)) of functions

u(s,ή (s € Ω,t <E (0,7)) by

( l<) 2 = fill «( , 0 Cfdt + f(\\ u(s,
0 ΩΩ

The subscript is also omitted if Ω = IR. Let Cn(Ω) (resp. Cb

n{Ω)) be the set of
all «-times continuously (resp. bounded-continuously) differentiable vector-valued
functions on Ω. Positive constants, denoted by C (independent of ε), Cε (dependent
on ε) in Sect. 2 and c in Sect. 3, change from line to line. Moreover, Cε has the
property: Cε —> 0 as ε —> 0.

2. A Priori Estimates

We first consider the case (I).

Lemma 2.1. Lei xo(s) 6e a function on IR satisfying xOss e W2

2(ΊR)f ε be fixed
as 0 < ε < 1 α«d Γ fee αw arbitrary finite positive number. Assume that xε is a
solution of (13) with the initial condition xε(s,0) = x0 such that xε — x0 belongs
to wϊ+"Λ+oc/2 ( R Γ ) (0 < α ^ l ) . Then for Xε = xε - x0 the estimate

(2.1)

is valid, where the constants C and Cε depend on xo and T.

Proof. Substituting xε with Xε -f Xo in (1.3), we have

Xε, = (Xε -f xo). x Xε

55 + εXε

ss + ( χ δ + *o)5 x xo.. + εxo,5 . (2.2)

By the density theorem it is sufficient to assume that Xε is smooth and has a compact
support. Multiplying (2.2) by Xε

ss and Xε

ssss and integrating by parts, we
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have, respectively,

K

+ C (2.3)

and

(1/2) (HX J I 2 ) , + ε| |X e

m | | 2^suP j |xoS J | ( | |xcU|2 + | |XβJ| 2)

+ supJ|X
£

ί| | |xO m ί | | | |X
ε

S ί | |

|2 + ||XβJ|2) + C. (2.4)

Here we used the fact that xos G C 2 (R) is the unit tangential vector of the initial
vortex filament: | xos | = 1, the multiplicative inequality and Young's. From adding
(2.3) to (2.4) and applying the Gronwall inequality we derive the estimate

(2.5)

It follows from (2.4) and (2.5) that

\X'm\ZCe-1>2. (2.6)

In the same way as above it is not difficult to obtain from (2.5),

(1/2) (|| Xε | | 2 ), + ε ||Xε, | |2 = /{(Xε + xo)5 x (X6 + xo)ss 4-
R

hence
| | X ε | | ^ C . (2.7)

It is obvious that the estimate

|| Xε, II ̂  II (Xε + xo)5 x X β J + || (Xε + xo), x x0,, II

+ ε | | X ε J + ε | | x 0 , J ^ C (2.8)

follows from (2.2).
Therefore (2.5), (2.7) and (2.8) yield

(2.9)

Finally, differentiating (2.2) with respect to s leads to

|X εJ ^ |(Xε + xo), x Kss\ + I(X£ + xo),

S(δ1/2\Xε

sf
2) + Cδ-3/2\x;\ + 1) Cε~1'2 + C
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with δ being an arbitrary positive constant. If we take δ so small that Cε~1//2 <51//2 < 1
holds, then we obtain

\XεJSCε-
1. (2.10)

Hence from (2.6), (2.9) and (2.10), the inequality

P 1 (2.11)

follows. It is clear to get
\Xε

t\
{ι)SCε-

1 (2.12)

by using (2.2) and (2.11).
The relations (2.9), (2.11) and (2.12) yield (2.1) with α = 1, which immediately

gives (2.1) with α e (0, 1). D
Similarly, we get a priori estimates for the cases (II) and (III).

Lemma 2.2. Let ε and T be as in Lemma 2.1, y be an exact solution for (1.1)
with the property γss e C°(0,T;Cb

2(W)) and xo(s) satisfy x0 - y( , 0) e W2

2(R).
Suppose that xε is a solution 0/(1.3)' with the initial condition xe(s, 0) = Xo such
that xε - y G PF2

2+α'1+α/2(lRΓ) (0 < α ^ l ) . Then the estimate

(2.13)

is valid for Yε = xε — y, where C and Cε depend on y, Xo and T.

Proof We can rewrite (1.3)' in the form

Yε, = (Yε + y)5 x Ψss + εΨss + Yε, x yss . (2.14)

In just the same way as in the proof of Lemma 2.1 we derive the inequality (2.13)
from the fact | γs \— 1 yielded by

(i/2)(|y,|2)ί = ys-yst = y, (y5 x ysss) = 0

and I y,( , 0) | = 1. •

Estimating xε in (1.3) directly without using (2.2), then we have

Lemma 2.3. Let ε and T be as in Lemma 2.1 and xo(s) be a function on J
satisfying xOss eL2(J). Suppose that xε e W%+*>l+<x/2(JT) (0 < α g 1) is a solution
0/(1.3) with the initial-boundary conditions xε(s, 0) = XQ, xε

ss(±l9t) = 0. Then the
estimate

g g ^ (2.15)
is valid with some constants C, Cε depending on XQ and T

3. Existence and Uniqueness of Solution for (1.3)

In order to establish the existence and uniqueness of solution for (1.3) with ε > 0
fixed it is convenient to introduce the weighted anisotropic Sobolev-Slobodetskiϊ
space, the norm ||| ||| /α ) and the lemma relevant to them ([10]).
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Definition 3.1. Hγ'^2(Ωτ) (γ^O, α > 0) denotes the space of three-dimensional
vector functions on ΩT with the finite norm defined by

f Jo e-2V{(((u))%)2 +y*\\u||2Ω + /0°° \\Dt

ίa/2]u0(; t - τ)

-A [ α / 2 ]«o( , 0 \\2

Ωτ-ι-χ+2^dτ}dt if α/2 * [α/2],

I Jo r e- 2 v ' { («"»L a ) ) 2 + / I I « I I Ω + I|β?/ 2«II2

Ω}Λ if «/2 = [α/2],

wλere M0 = w (resp. w0 = 0) wAew t > 0 fresp. ί < 0), and in the second case we

assume that DJ

tu{s, 0) = 0 (J = 0,..., α/2 — 1) are satisfied.

Definition 3.2. For u e //"'^(IRoo) we rfe/z«e ZΪΛ1 Fourier-Laplace transformation

by

u(ξ, σ) = Je~σl (j u(s,t)e-isi ds) dt,
0 \1R /

IRK.

σ = y + iζ. For M € Hγ'a/2(D\ where D = R + x R + , w έfe/me its Laplace
transformation by

oo

ύ(s,σ) = fe~σtu(s,ήdt,
o

and the norm ||| | | | ^ by

where σ = y + /(•

Lemma 3.1. ([10, Lemmas 2.1, 2.3]) For ei erj y^0 the norm | | . |β α ) (resp. ||

g ) » ê uίvαfeiir to H ί l ^

From now on, in this section we denote the constants which may depend on ε
by c.

A. The Initial Value Problem

In this subsection we consider the initial value problem for (1.3) related to the
case (I)

Xε

t = (Xε + xo), x Xε

ss + εXε

ss + (Xε + xo)5 x xOss + βxα* (s e 1R, t > 0),

χε(s,0) = 0 ( ί € R ) . (3.1)

As preliminaries we consider the linearized problems; first

ut = ax uss + ε uss +f(s91) (s G R, t > 0),
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u(s, 0) = 0 (s £ R ) , (3.2)
3, and second

ut = a(s, t) x uss + εuss +/(s, t),

with a constant vector a in R3, and second

κ(j,0) = 0, (33)

with a vector-valued function a(s,t) in R3. Then we go to (3.1).

Proposition 3.1. If oc> 0, ε > 0, γ > 0 andf e #"'α/2(Roo), ίΛew /λere exista Λ
unique solution u of (3.2) such that u G //^'^^(IRoo). Moreover the following
inequality is valid:

l;vl(2+α) < r I f l(α)

Proof Let us write the right-hand side of the first equation of (3.2) as Aouss + / .
By the Fourier-Laplace transformation we have formally

fi = ( σ + ^ 0 ξ 2 Γ 1 / . (3.5)

Obviously (3.2) is satisfied with the function u obtained by the inverse transformation
of ύ.

On the other hand, since the eigenvalues of the matrix σ-\-Aoξ2 are σ + εξ2,
σ + (ε ± i\a\)ξ2, the norm of (σ +Aoξ2)~ι is equal to

Max(|σ + εξ2 \~\ | σ + (e ± i\a\)ξ2 \~ι).

By virtue of the inequality

|6|)2Max(l, ε-2)|(σ + ibξ2) + εξ212 ,

where b = 0, ± |α | , (3.5) can be evaluated as follows:

(III « llf+ α )) 2^Σ/ dξJ\f(ζ,σ)\2W + (ε + ib)ξ2Γ2(\σ\ + ξ2)2+« dζ

This leads to (3.4) according to Lemma 3.1. •

Proposition 3.2. Assume that 0 < α < 1, ε > 0, / G JF2

α'α/2(Rτ0 α/zd φ , ί) £s
Holder continuous. Then for any finite positive T there exists a unique solution u
of (3.3) such that u e W2^x^l2(WiT). Moreover the inequality

\u\^^c(T)\f\¥ (3.6)

is valid, where c(T) denotes a function monotonically increasing with respect to T
and

2 + τ-y\2,

)2 + (l«Jίa ))2 + \us\
2 +l«l2
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Proof Using Proposition 3.1 and the regularizer method ([10, §4]), we can prove

that, for/ G Hγ 2(Roo) with a large γ > 1, there exists a unique solution of (3.3)

which belongs to i/2 + α '1 + α / / 2(Roo) and satisfies the same inequality with (3.4).

Since every element of Hχ (Rr) (λ^.0) can be extended with preservation of
the class into R ^ ([10]), the estimate (3.6) is derived as

l|2^-βέ/Λ\u\ + M ( α ) + K l ( α ) + 1 7 ( | | ut ||
2 + \\uss\\2)

where | |yα) = MAR (^ = 0,y), and the second and the last inequalities are obtained
from Lemma 6.3 and its Corollary in [10], respectively. Now the proof is completed.
D

Proposition 3.3. Let 1/2 < α < 1, ε > 0, xOss e W%(WL) and T be as in Proposi-
tion 3.2. Then for some To e (0, T] there exists a unique solution Xε 6>/(3.1) which
belongs to W2

+CL' (^r o ) Moreover the following inequality is valid:

ω. (3.7)

Proof Let w(0) = 0 and w(n) (n = 1,2,...) be a solution in Proposition 3.2 with a =

(w^-1) + xo),, / = (w(M-1} + xo), x xoss + β xoM, where w^"1) E ^ 2 + α ' 1 + α / 2 ( R Γ ) .

Then w(w) is well-defined for each n. Indeed, the imbedding theorem yields that

a is Holder continuous on R Γ a n d / € ^f'°^2(Rj). Thus from (3.6) we confirm

c(T)||xo«||(α),

where (5 is any positive constant and c$ denotes a function with negative power of δ.
Since we can choose sufficiently small δ = δ\9 T = T\ such that c{T\)(δ\ + c^T\)
< 1, we have

^ ί ^ ^ . (3.8)

The norm in the left-hand side of this inequality is the same as that of (3.6) but the
time T is replaced by T\.
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Next, subtracting the equation for w ( n - 1 ) from that for u^ and setting t/n) =
u(n) _M(«-i)? w e have

v{n\s,0)= 0 .

Again by Proposition 3.2 and by (3.8) the function v^ is estimated for any
ίE(0,Γ ! ] as

• («),(2+α)< r Λ , («-l) , (n-1) (n-l) ,(α)

If we choose δ = δ0, t = T0ST\ so small that the coefficient of \vin~l)\{^ in the

right-hand side is less than 1, then it follows that {w(n)} converges with respect to

the norm | | ί 2 ί α ) and (3.7) is satisfied with Xε = lim w(w) which is a solution of
' To n—»oo

(3.1).
On the other hand, the uniqueness of the solution Xε can be easily proved. •
Now, combining this proposition with Lemma 2.1, we establish

Theorem 3.1. If 0 < ε < 1 and x θ 5 S G W%(WL\ then for any T e (0,oo) there

exists a unique solution Xε of(3Λ) such that Xε G ίΓ2

2+α'1+α/2(IRr) (1/2 < α < 1).

Proof We can easily confirm that if Xε( , 0) = Xo G PF2

1+α(IR) is nonzero in (3.1),
then Proposition 3.3 is also valid with c || Xo | | ( 1 + α ) added to the right-hand side of
(3.7). Hence from (2.1) we complete the proof. Π

Besides, in the same way we obtain the following theorem related to (II).

Theorem 3.2. If 0 < ε < 1, yss e C°(0, T; Cb

2(lR)) for any T e (0, oo), and

xo — y("jθ) G W2

2 (IR), then there exists a unique solution Yε of the initial value

problem for (2.14) such that Yε G PF 2

2 + α ' 1 + α / 2(R r) (1/2 < α < 1).

B. The Initial-Boundary Value Problem

Similarly to Part A, we first consider the system

ut = axuss + εuss + / ( j > 0, t > 0),

iι(5,0) = 0, tt(0,0 = 0(0, 0(0) = 0, (3.9)

where α is a constant vector.
Let // α (R + ) be the space whose norm is defined for an element g by

0

oo

/
^ 0

-DWgo(t)\2τ

e-2yt(y2«\g\2

0

- l - 2 α + 2 [α]

+ D«g\2)o

dτ)dt

it if

if

[«]

[α]φα,

= α,
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where go = g (resp. 0) when t > 0 (resp. t < 0).

Proposition 3.4. 7 j f 0 < α < l , ε > 0 , y > 0 , / € H^'2{D) and g e HJ/A+a/2(JR.+),
then there exists a unique solution u of {3.9) such that u e i/ 2 + α ' 1 + α / 2(Z)). Moreover
the following inequality is valid:

^ / / (3.10)

Proof Since we can extend / as / G //"'"^(Roo), we get, for u' defined by the
inverse transformation of the right-hand side of (3.5),

Then we have only to consider the problem for u" = u — u\

u"{s, 0) = 0, i<"(0, t) = g{t).

By the Laplace transformation like that in Definition 3.2 it becomes

ΰ'ss(s9σ) = σA-ιu", δ"(0, σ) = g{σ), u" -* 0 (s -+ oo).

Noticing that the eigenvalues of σ^Q"1 are σε" 1 and σ(ε±/ |α | )~ 1 yields

(PS77)* = Gk{σ)exV{-λks), (3.12)

where

i |α|Γ 1} 1/ 2, λ3 = {σ{ε-i\a\yψ2 ,

both Arg σ1/2 and Arg(ε ± / | a | ) 1 / 2 belong to (-π/4, π/4), P is an orthogonal
matrix, and Gk = {Pg)k (resp. {Pu'%) denotes the kth component of Pg (resp. Pu").

In order to estimate ||| u" | | ^ α ) we need

Lemma 3.2. ([10, Lemma 3.1]) Let e^ = exρ(—λks), σ — y + ίζ9 y > 0, / ^ 0 ,
β € (0, 1). 77ze« the following inequalities are satisfied:

oo

J\Djek\
2dS S

0

D

From this lemma and (3.12) it follows that

(I u" Wf^f ύίlilW \2+*-j\Gk{σ) \2dζ]\Djek \
2ds

k=\lj=0WL 0

+ f\Gk\
2dζff\Da

2ek(s+z)
R D

-Ds

2ek{s)\2z~ι-2αdsdz\

(3.13)
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On the other hand, from the relation between g(t) and §(σ),

iπe'Vg = Jeiζίg(y + iζ)dζ ,

and the Plancherel theorem we have

(II9 | | / 3 / 4 + α / 2 ) ) 2 = ( 2 π ) - 2 / ( | σ ?'2+« + y3'2+«)\ ~g \2dζ .
1R

Hence this equality together with (3.11), (3.13) and Lemma 3.1 yields the assertion
of the proposition. D

On the basis of this proposition we obtain, similarly to Part A,

Proposition 3.5. Assume 1/2 < α < 1, ε > 0, x0 G W2

ι+cc(J), T is as in Propo-

sition 3.2 and g± € W2
3/4+*/2(0, T). Then for a certain To £ (0,Γ] there exists, in

^2 2 + α ' 1 + α / 2 (J Γ o ), a unique solution of (13) with the conditions

Moreover the following inequality is valid:

Since the condition xe

ss(±l,t) = 0 of (III) is equivalent to x f i(±l,f) = xo(±l)
by (1.3), we obtain the theorem related to (III) from Lemma 2.3 and Proposition
3.5:

Theorem 3.3. IfO < ε < 1 andxOss e L2(J), then for any T e (0,oo) there exists,

in JF2

2 + α '1 + α / 2(/Γ) (1/2 < α < 1), a unique solution of (1.3) with the conditions

) () β( ()

4. Final Results

On the basis of the results in Sects. 2 and 3 we obtain

Theorem 4.1. Ifxoss belongs to W^^R), then for any T e (0, oo) there exists, in

the sense of distribution, a solution X(s,t) e W%'ι(ΊBLτ) of(3Λ) with ε = 0.

Proof From Lemma 2.1, Theorem 3.1 and Rellich's theorem ([8]), it follows that

there exist a subsequence Xε^ and its limit function X such that XJ

SS —• X.?.?,

Xεj

t -+ Xt weakly in L2(WLT) and Xe^ -^ Xs strongly in L2(KT) when ε, -> 0,

where KT = K x (0, T) and K is an arbitrary compact subset in IR.
Then the function X satisfies (3.1) with ε = 0 in the sense of distribution. In

fact,

JJ(XS x Xss) Φdsdt
R0
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is well-defined for every three-dimensional vector-valued function Φ which belongs
to COO(1R7') and whose support is compact, and

Xεj

ss -Xsx Xss) Φ dsdt
IRO

/ /
supρ[Φ]

(X\s - Xss)} -Φdsdt

ί I Φ I | X ε ^

Jf(ΦxXs).(Xbj

ss-Xss)dsdt
RO

-> 0 if 8j -> 0. •

Similarly to Theorem 4.1 we establish the following theorems.

Theorem 4.2. // yss E C°(0, T; C\(R)) /or any Γ G (0, oo), and x0 - y( , 0) E
^ ( R ) ? ^ w ί/j£re exists, in the sense of distribution, a solution Y E W%'ι(ΊS.τ) of
the initial value problem for (2.14) with ε = 0.

Theorem 4.3. Ifxoss £ L2(J), then for any T E (0, oo) there exists, in the sense
of distribution, a solution x G W\^(Jτ ) of (1.1) with the conditions x(s, 0) = xoC?),
xss(±l, t) = 0.

Remark 4.1. For a closed vortex filament (IV) we obtain the same a priori estimates
with (2.15) and the propositions similar to those in Sect. 3-B neglecting g and g±.
Therefore the assertion in Theorem 4.3 is also valid with x(s — 1, t) = x(s + 1, t)
instead of xss(±l, t) = 0.

Remark 4.2. If a priori estimates are independent of ε in the class W^2, we shall
be able to prove that the solution is unique and classical in any case of (I)-(IV).
However, it seems to be difficult to find such estimates.
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