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Abstract: Can one detect a phase transition from a single, large sample of a Gibbs
measure? What information does one get on the other Gibbs distributions with the
same potential? We approach these questions via Erdόs-Renyi laws. In particular we
prove almost-sure limit theorems for sets of empirical distributions of sub-samples of
the given one: for suitable sub-samples size this set converges to the set of stationary
Gibbs measures. Moreover we formulate Erdόs-Renyi laws for general families of
random variables with suitable large deviation principles.

I. Introduction

On a single realization of a random field on the lattice observed in a large box, one
can see smaller windows where the sample shows a large deviation from its typical
behavior. The smallest the size of the windows, the most unlikely the deviation. This
is the underlying idea of Erdόs-Renyi laws, which are well known from statisticians
for independent identically distributed random variables.

In this paper, we prove Erdόs-Renyi type laws for Gibbs distributions, with a
particular emphasis on (first-order) phase transition. Let us illustrate our results in
the case of a real valued, finite range interaction Gibbs random field P. Consider the

average spin MA(ω) = γ— Σ ω% °f t n e sample ω = (ooi)l on a cubic box A with

cardinality \Λ\. It is well known that for large Λ, P{MΛ > x} behaves approximately
like exp{—|τl|λ(x)}, with λ(x) > 0 if x is larger than some number. Let us observe
the sample on a box A; for cubic windows A' C A the Erdόs-Renyi statistics MA A,
is the largest average spin Mι+Aι among all the translates i + A' of A' which are
included in A. Then, for all such x the Erdόs-Renyi law proved in this paper states that
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if A and A1 increase to the whole lattice in such a way that \Λ'\ ~ Log 1-41.
λ(x)()

The reason is that the large number of windows balances the small probability for
deviation. The limiting case of interest when |Λ'|/Log \A\ —> oo, may be investigated
too: for example, if the interaction has finite range and if \dA'\ ~ cLog|yl| for c
smaller than some c0 > 0, then

where m+ is the largest expected value of spin E®ω0 for Q ranging over the set of
ergodic Gibbs distributions with the same potential as P. Similarly, the smallest such
expectation may be estimated with the smallest moving average M~ A,.

Let us quote some consequences of (1.2). A single sample from P contains
information-like πiΓ and ra+-on other Gibbs measures. If we assume that m~ φ
ra+, then with probability one the phase transition will be detected in the limit of
an infinite sample size. In fact, we will give convergent estimators of the set of
ergodic Gibbs measures itself. Here is another aspect of (1.2). Let us call "—state"
any ergodic Gibbs distribution P such that Epω0 = πι~. Then the statement (1.2)
gives a quantitative description of a "—state" realization as small islands typical from
"Estates" into a sea more typical of the "—state"; this is somewhat reminiscent of the
classical picture of the Ising model in the two-phases region. Note that (1.2) yields a
lower bound for the size of the larger island of "+state."

In this paper, we consider rather general models. For instance, we assume
translation invariance for the interaction potential only, but not for the underlying
measure P. As a counterpart, the results involving deviation estimates like (1.2)
inside the set of Gibbs measures will not provide tight constants (like the largest
possible value of c0 in (1.2) and the exact size of islands). Getting the exact constants
is more stringent. They should be derived both from tight estimates involving the
surface tension like those from Dobrushin, Kotecky and Shlosman (1992) in the two
dimensional Ising model, and from exponential mixing properties for the extremal
states.

Knowing if multiplicity of phase occurs or not is important for statistical purposes,
since it gives different asymptotics for estimators of parameters like temperature,
external field, Our result indicate possible hypothesis testing.

There is a vast literature on Erdόs-Renyi laws for independent variables: we
mention just a few below. Erdδs and Renyi (1970) proved their "new strong law
of large numbets" using the Cramer-Chernov large deviation estimates, in the more
refined version given by Bahadur and Ranga-Rao. Later S. Csorgδ (1979 a) observed
that their result was a consequence of the original Cramer-Chernov estimates, and
he developed applications to statistics via the empirical measure in the same paper
as well as to the theory of efficiency in the sense of Bahadur (S. Csorgό, 1979 b).
Erdόs and Revesz (1975) studied the size of the longest head-run in the Bernoulli
model. The case of Markov chains can be traced in papers of Samarova (1981),
Arratia and Waterman (1989); the latter contains applications to molecular biology.
Related questions are the strong limit theorems for large exceedances of partial sums
of independent or Markov-dependent variables (Dembo and Karlin 1991 a, b). Note
that in the theory of small markovian perturbations of dynamical systems (Freidlin
and Wentzell (1984)), the analysis of the long time behavior is somewhat analogous
to Erdόs-Renyi laws. A complete analysis of the fluctuations of Erdόs-Renyi statistics
was achieved in the independent case by Deheuvels, Devroye and Lynch (1986),
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using refined large deviation estimates; such an estimate is not available in the Gibbs
framework up to now.

A generalization of Erdόs-Renyi laws is given in a paper by Book (1975) for
maxima of moving, suitably normalized sums of independent variables. There, the
moving window is larger than in (1.1)-including that of (1.2) for instance-the
normalization is weaker than the window size, and the convergence results take
into account only the moderately large deviations. Our result (1.2) shows that Gibbs
random fields exhibit a completely different behavior.

The paper is organized as follows. We start with definitions of Gibbs measures and
we recall their large deviation properties. In Sect. Ill we prove, for a general random
field obeying a large deviation principle with uniformity in the lower bound, the Erdόs-
Renyi law at the level of the empirical field; the result also applies to hypermixing
processes. Section IV is devoted to estimating the set of stationary Gibbs measures
itself. In Sect. V, we concentrate on empirical averages of a given local function / of
the sample: we prove a.s. convergence of the functional estimator of the corresponding
large deviation rate function. This section was motivated by simulation experiments,
where the functional estimator appeared to be far more informative that the (slowly
converging) point estimators. Experimental results are reported in Sect. VI.

II. Gibbs Measures

Let ΩQ be a polish space (separable complete metric space) and D some positive

integer. For all i G ΊP, we will denote by θτ the shift operator on Ω = ΩQ given
by iβ^)- = ωi+ if ω = (<^)i€ZD £ Ω and j G lP. A stationary random field on
Ω is a probability measure on the borel σ-field of Ω which is invariant by the shift
operators # , i G Z D . The set P s(ί?) of stationary random fields on Ω endowed with
the weak topology is itself a polish space, with the Prohorov metric d.

A stationary interaction potential on J? is a collection Φ = {Φv; V c Z D , V finite}
such that Φv is a continuous and bounded function on Ω, measurable with respect to
the σ-field generated by the coordinates ω^ i £ V, and such that Φv o θi = Φi+V.

In this paper, we are given such a potential Φ, and we assume in addition

11*11 = Σ Halloo < oo. (2.i)
V OeV

The range rφ G [0, oo] of the potential Φ is the smallest number r in [0, oo] such
that Φv = 0 for all V with diameter larger than r. Important examples of potentials
are finite range ones.

For ω, ω1 G Ω we will denote (u^) i e Λ by ωΛ, ( c ^ ) ^ by Λω, and by ωΛ V ω1 the
element of Ω equal to ω on A and to ω' on Ac. Let a be a given probability measure
on ΩQ. Gibbs measures are defined by the D.L.R. equations:

Definition 2.1. A probability measure P on the borel σ-field of Ω is a Gibbs measure
with potential Φ if, for all finite subset A of Z D ,

P(dωΛ/Λω = Λz) = Z-A)z exp ί ]Γ Φv(ωΛ v z)\ [ J
I V:VΠyl̂ 0 J iβΛ
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for P-a.e. z in Ω, where ZΛ is the normalizing constant

ZΛZ =Λ>Z = Ea^° exp ί 5 ^ Φv(ωΛWz)\

We will denote by G the set of Gibbs measures with potential Φ.

Throughout this paper, we will consider a sequence of increasing finite rectangles
Λn in IP such that Λn — > lP. We will assume that the cardinality \A\ of An is

n—>oo

such that \Λn\ ~ α n D for some α e ]0,00[. For all ω £ i? and all finite rectangle YΊ,
we define α)(α;, -4) £ Ω as the periodic extension of the restriction ωA. Then, given ω,
the empirical field based on the observation of ω on z + Λn is the stationary random
field

Ri,n,ω = "ΠΓ7
1 n l

with \Λ\ the cardinality of τl. When i = 0, we will write Λ for ,R0 since it
coincides with the usual (periodized) empirical field.

A major ingredient needed in this paper is the large deviation principle for
Gibbs measures obtained by Comets (1986), Follmer and Orey (1988), Olla (1988).
A quick inspection of the proof reveals that these estimates are uniform in the
following sense:

Theorem 2.2. There exists an affine function I : P 5 (β) —> [0, +00] (called the rate
function) such that
1) the level set Γt = {R e FS(Ω);I(R) < t} is compact for all t £ [0,+oo[; in
particular, I is lower semi-continuous.
2) for all P £ G, and all borel set A in Fa(Ω),

-M{I(R);R£A} < liminf inf - J - LogP{RUiUJ £ A/Λnω = Λnz}

< limsup sup — LogP{Rn,ω £ A/Aχω = Λnz}

<-M{I(R);R£Λ}

(A, resp. A, is the interior, resp. closure, of A in ΨS(Ω) for the weak topology).

In addition, the function / depends only on Φ and α, I(R) is equal to the specific
entropy of R relative to any P £ G; the set Γo coincides with the set G s of stationary
Gibbs measures.

The explicit form of the rate function / is given in the above references; it will not
be needed here. Recently, Georgii (1992) proved the theorem for a stronger topology.
Note that these estimates are uniform with respect to the configuration outside A\
uniformity in these estimates has been already mentioned in Deuschel and Stroock's
book (1989), p. 289.
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III. Erdόs-Renyi Type Laws

For any integer / < n, we define the set of empirical fields based on moving windows

ω;ίeZD,i + AιcΛn}. (3.1)

in Λn which are translates of Λt,

In the next two sections, we are interested in the asymptotics of Δn^n)(ω) for
P-a.e. ω and for some sequences l(n) —> oo. Recall the Hausdorff distance between
closed sets A and Γ in ΨS(Ω):

dist(Z\, Γ) = inf{<5 > 0; Δ c Γδ and Γ c Δδ} (3.2)

with the usual notation Aδ for the open ^-neighborhood of A in the metric d.

Theorem 3.1. Let P e G, t > 0 and l(n) be a non-decreasing sequence of integers
such that |-4j(n)| ~ t~ι Log \Λn\. Then

Jrn^dist (ΔnΛn)(ω)', Γt) = 0, P-a.s.

with Γt = {Re P s ( β ) ; /(Λ) < ί}

Let us point out that the theorem is rather general.

Remark 1. The proof of Theorem 3.1, given below, extends to other distributions P
than Gibbs measures.
a) Uniform large deviations. In what follows it is enough to assume that for some
rate function / with compact level sets, such that for all Q with 0 < I(Q) < +oc and
all neighborhood N of Q there exists R e N such that I(R) < I(Q), and to assume

-mf{l(R);ReA} < liminf inf J _ L o g P { B e A/t+Λnω=t+Λnz}

< limsup sup ---LogP{Rinω e A}
n-+oo ι e z D \Λn\

< -inf{/(β);Re A}

for all borel set A and some regular version of the conditional probabilities. Moreover,
in dimension D = 1, it is clearly sufficient to assume this uniformity property on the
conditional distributions "given the past"; therefore, the theorem applies in particular
to Markov chains with the uniform ergodicity property denoted by (U) given in
chapter IV of Deuschel and Stroock (1989).
b) Hypermixing processes (see Deuschel and Stroock (1989), §5.4). One can replace
the condition of uniformity with respect to z, with the following mixing-type
condition: 31 > 1, a > 1, 7 > 0 such that for all n > 1 and all Borel sets Aι,..., An

in Ω which are /-measurably separated,

< 7

Ί l / α

Minor changes are required in the proof of Lemma 3.3 only, and the details are
left to the reader. In particular, Theorem 3.1 will apply to time-discrete, stationary
hypermixing processes.
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We start with two lemmas:

Lemma 3.2. Let l(ή) be a non-decreasing sequence of integers tending to infinity,
and

tn = \Al(n)\~ιLog\An\, t = lim sup tn .
n—>oo

Then, for all δ > 0,

P \ lim sup iω\ max d(R\ Γf) > δ\] =0.

Define An^δ = {ω; max[d(R; Γ t); R e ΔnAn)(ω)] > δ}

Since / is lower semi-continuous with compact level sets, we have ξ = inf{I(R);
d(R; Γt) > δ} — t > 0. P being a Gibbs measure, it has translation invariant
conditional distributions; the upper bound in Theorem (2.2, 2) implies that there
exists some a, with lim a, = 0 and

? M ω ; Γ t ) > 6} < exp[-|yl ; |(ί + ξ -

Let m(Z) be the largest integer m such that l(m) = I. We have for all I

with some αj tending to zero. Here, we have used the definitions of t m ( Z ) and t.

Therefore, Y,P(Λm^l)δ) < oo and P ( lim sup Am(Z) ό ) = 0 from Borel-Cantelli
I ' l-+oo

lemma. Note that, in addition, the size of the moving window ί(n) is constant and
equal to l(m(l)) for all n e]m(l — l),ra(7)]. Hence A δ C Am ( / ) ( 5 for such n's, the
set lim supτ4n 6 coincides with lim supAm(/) 5 and has probability zero. D

n—•oo ' I—*oo

Lemma 3.3. Lei α ^e α sequence with lim α |yl |~ α = oo for some a > 0, αnd
n—> oo

/eί B be a borel subset ofΨs(Ω) such that

liminfα^Log inf P{Rnω e B/Anω = Anz} > - 1 .

Let l(n) be a sequence of integers such that al(jι) ~ Log|τln | , and An = {ω; 3i :

i + Al{n) C Λn, Rhl(n)ω e B}. Then,

f lim inf A ) = 1.
π-^oo /
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Pick in lP the coarser lattice such that the translates of the rectangle Al{n) by the
elements of the lattice form a partition of lP. Denote by Ln the set of those elements
i such that the translates i + Λ^ are contained in Λn. Then, \Ln\ ~ \An\/\A^n)\ and
the sets i + Λl(n), i G L n , are not intersecting. Let j E Ln\ we have

K= Π {RiΛn),« ^ } C Π {RiMn^ ί B},

<n\

f| {RMω ^ B}]

using the translation invariance of the conditional distributions under P. By assump-
tion there exists some ξ > 0 and an tending to zero such that

L o g P ( ^ ) < \Ln\ log[l - exp{-α ί ( n )(l - ξ - an)}]

<-\Ln\exV-al(n)(l-ξ-an). (3.4)

The assumption on an implies that l(n) = o(Log1//Q! \Λn\), and the bound in (3.4) is
less than —\Λn\^^2 for large enough n. Therefore ^ P(Λ^) < oo, and the conclusion
follows. D n

Remark 2. Let v be a fixed positive integer, and let

Then, Lemma 3.3 holds with A instead of An (note that An λ is equal to the set
An defined in the lemma).

Indeed, a straightforward computation yields the following bound for P{Ac

n )
corresponding to (3.4):

v—1 /i ,

P(ΛC Ί < V^ I ' n

which is once again the general term of a convergent serie.

We now prove Theorem 3.1: the statement is equivalent to

V<5 > 0, lim sup sup d(R\ Γt) < δ P-a.s., (3.5 a)
n-^oo ReΔnΆn)(ω)

and
V<5 > 0, lim sup sup d(Q; Δn l(n)(ω)) < δ P-a.s.. (3.5 b)

n-^oo QeΓt

The Lemma 3.2 is exactly (3.5 a). Let us prove (3.5 b).
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The level set Γt being compact, we can choose a finite number q of points Pι,...P
in Γt such that the balls with center Pk and radius δ/4, k = 1,... g, cover Γt. Since
/ is a convex function achieving the value 0 and since t is positive, there exists some
Qk in each such ball with IiQk) < t. Then, the balls with center Qk and radius 6/2,
k — 1,... q, cover Γt and (3.5 b) will follow from

Vfc <q,Vδ> 0,limsupd(Qk\ ΔnΛn)(ω)) < 5/2 P-a.s.. (3.6)
n—>oo

But (3.6) is a consequence of Lemma (3.3): taking an = t\Λn\ and B = {R G
P s(i7); d(it!, Qfc) < <5/2}, then An is the set under consideration in (3.6) and we see
from the lower bound in Theorem 2.2, 2), that the lemma applies. D

Remark 3. Let A be a given finite subset of ZD, and

Aι,Z(n),Λ(«>) = {βt,Z(n),ω; * € Z D : i + Λ(n) + ̂  C Λn } .

Then, it is clear from the proofs that the Lemma 3.2 holds with Δn ^ Λ instead of
ΔnΛn), and that Lemma 3.3 holds with A'n = {3i : i+Λl(n)+Λ c i l n , i2 l j ί ( n ) j W G 5 }
instead of An. Therefore, under the assumptions of Theorem 3.1, we have also

J ^ dist(^ n | ί ( n ) ϊ Λ (ω); Γt) = 0, P-a.s..

Now, we formulate the Erdos-Renyi law in the classical fashion of (1.1).
Let A be a finite subset of Z D , and / : ΩQ —> IR be a continuous and bounded

function. Define
If(x) = M{l(Q);EQf = x}, x e R. (3.6b)

Then, according to the contraction principle (Deuschel and Stroock, p. 37), If is the

rate function governing the large deviations of y—— Σ f ° ^i(ω) under P, and If
\Λn\ ieΛn

is convex and lower semi-continuous. The domain of If, Dom/j = {x e R; If(x) <

oc}, is a bounded interval.

Corollary 3.4. Let P e G, t > 0 and l(n) be as in Theorem 3.1. Let m e IJl{0}.

Define the random variable

= m a X / "Πj i Σ f^3+A^ i + Al(n) + Λ I
J

Then,

= sup{x;x > m and /^(x) < t}. In particular, If(x+(t)) < t and x+(t)
is the unique root of the equation ±f(x) = t in ]m, +oo[ if (and only if) t is achieved
by If on ]ra, +oo[.

Similarly, the random variable

= m i ί l ί Γλ Σ Hω3+Λ)> i + \n) + Λ C Λn

converges P-a.s. to x~(t) = infjx x < m,If(x) < t}. If(x~(t)) < t, and x~(t) is
the unique solution on ] — oo,ra[ of I fix) = t if there exists such a solution.
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Remark. If(x+(t)) = t will hold if a®A{ωΛ; f(ωΛ) > x+(t)} > 0, as it follows from

elementary computations on the Laplace transform of Σ / ( ^ + Λ )
ιeΛn

Let us make first a general observation. If g is a continuous function from
a metric space (E,d) to another space (E',d')9 and if An c E are such that
lim dist(An, A) = 0 in the Hausdorff distance with some compact A c E, then

n o o

We set </(Λ) = ΈRf, An — Z\n ί ( n ) Λ and A = Γt. Combining this observation
with Remark 3 about Theorem 3.1, we obtain P-a.s.,

^ ^ = 0 (3.7)

with dist' the Hausdorff distance on closed subsets of 1 . On the other hand,

/ fdRiil(n)iUJ - — r Σ f(ωj+Λ) converges to zero with n, uniformly in i e
\Al{n)\ jei+Λ

and ω e Ω; hence, taking suprema of the sets in (3.7), we have lim X^^n) = y+(t)

with y+(t) = mdΐΆ{EQf\Q G Γt}. Checking that y+(t) = x+(t) is standard matter
and left to the reader. The inequality Ij(x+(t)) < t follows from the lower semi-
continuity of If. Since If is non-negative, convex, and If(m) = 0, If(x) = t has at
most one solution x G ]ra, +oo[ for all t > 0.

Hence, one half of the statements of the corollary are proved. The other ones
follow when changing / into —/. D

Remark 2f. For all given integer v, the ιsth maximum of the moving averages of /
converges a.s. to x+(t) too, according to Remark 2.

IV. Tracking the Set of Stationary Gibbs Measures

We will say that a first order phase transition occurs if the set Ge of ergodic Gibbs
measures contains more than one element. We are interest in this case below. Then
the expected value of some statistics for the random field shows a discontinuity under
small perturbations of the interaction potential.

Recall that Γo = Gs. In this section, we will obtain results like Theorem 3.1, but
involving Γo instead of Γt with t > 0. We will consider ratios tn = \A^n)\'1 Log \An\
tending to 0, but slowly enough in view of Lemma 3.3. In order to choose the rate
of convergence of tn, we introduce first the following function:

εΦ(A) = -
\A\
1 '

Φr (4.1)

for finite A C ΊP. Here are some elementary properties:

Lemma 4.1. a) There exists ε : M+ —• M+ with lim ε(u) = 0 such that
u—>oo

£φ(Λ) < εί I, where dA denotes the boundary of A.
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b) If the potential Φ has finite range r φ ,

Proof. For r > 1, let δ(r) = Σ\\Φv\\oo, where the sum ranges over all V containing
0, with diameter larger than r. From (2.1), δ(r) tends to 0 as r tends to infinity.
Splitting the sum in (4.1), into V's with diameter larger than r or not, we obtain for
all r,

Optimizing the bound with respect to r, yields the desired function ε. The statement
for finite range potential follows from the previous inequality with r — rφ D

In order to use Lemma 3.3, we give rough (but general) estimates for large
deviations in the set of Gibbs measures. Recall that G e is the set of ergodic Gibbs
measures.

Lemma 4.2. a) VP G G, VQ G G e, V6 > 0,

; 0 ) < δ / Λ ω = A A - L

b) Assume that εφ(Λ) < a( ή-J- J for some a G ]0,1] and a > 0. Then, VP G G,

V^ > 0, VQ G G s ,

Yim'mϊ-—-——-—λ—Log inf P{d(R t -Q) <δ/Λ ω=Λ z\ > -oo.
n-̂ oo \dΛn\

a\Λn\
ι-a zen ι v n ^ ^ } 'A^ A^ ί

If, in addition, G e is finite, the previous limit is not less than —2α|Ge .

LetAn = {ω;d(Rnω;Q)<δ}.

a) Q(AJ = Έ^Q(AJΛnω)

Ω Λ n ω = Λnz) x cxp[2\Λn\εφ(Λn)]. (4.3)

If Q is ergodic, Q(An) goes to one by the ergodic theorem, and the statement is
proved.
b) It is well known (Georgii (1988), Theorem 7.26) that Q is the mixture of
ergodic Gibbs measures. Hence one can find a convex combination of finitely
many ergodic Gibbs measures in any given neighborhood of Q, and therefore it

is enough to prove the statement for Q = J^ \Qk w i m \ > 0> Σ \ = 1'
k=\ fe=l

Qk G G e . Let (^n)/c< ^ e a partition of An into parallel rectangular slices with

K\ - λk\Λn\ and \dΛk

n\ - |S7ln |(D - 1 + λfc)/J3. Then, i?n ? a ; is close to the

convex combination of the empirical fields R^ω based on A^: more precisely, for

large n, d( ± \kR
k

nω;Rn\ < 5/2.
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Let us recall a convexity property of the Prohorov metric d : d(Xμ + (1 - λ)μ';
\v + (1 - λ)ι/) < max[<i(μ, μ'), d(y, z/)] for λ G [0,1] and all measures μ, μ', z/, z/.
Combining this with the previous inequality, we obtain for large n

Π C (4.4)

Repeating the argument used in (3.3), we have

q

f){d(Rk

n,ω;Qk)<δ/2}/Λnω = Λn;

Lfc=i

Π

using (4.3). Together with (4.4) and the ergodic theorem, this inequality implies that

lim inf
π—>-oo

k=\

- 1

Log inf P{d(Rn^Q) < δ/Λnω = Anz} > - 1 .

\ϊεφ(Λ)<a{\dΛ\/\Λ\y, then

which ends the proof. D

In the two next theorems, P e G , and l(ri) is a non-decreasing sequence of integers
with

T ΪΛCT I A I

= 0. (4.5)

Theorem 4.3. /« addition to (4.5), assume that εφ(Λ) < al —p 1 , α > 0,

α G]0,1], and ίΛαί one of the two following conditions is fulfilled:

lim

< oo and lim

Log |
= oo,

& ; n l

 IΊ > 2 α | G J .

Then, lim dist(Z\njZ(n)(α;); G s ) = 0 P-a.s..

Remark 4. For finite range potential and cubic boxes yln = [—n,n]D, the above
asumption i) is equivalent to l(n) = oίLogn) 1/^" 1^, though the next theorem only
requires l(n) - 6(Logn)1/ ( D~1 ), with b < (2DDrφ\\Φ\\)~ι^D-ι\
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Theorem 4.4. Let ξn Z(n)(α;) be the convex hull of Δn ^n)(cϋ) in P s(ί2). Assume (4.5),
and

L°f;l , > 1. (4.6)

lim dist(ξn i ( n )(ω); Gs) = 0 P-a.s..
n—xx> '

Proof of Theorem 4.3. We follow the lines of proof of Theorem 3.1, setting t = 0.
Under the condition (4.5), we may use Lemma 3.2 and we obtain (3.5 a). We now
prove (3.6), which in turn proves (3.5 b). Let us denote again by m(l) the largest
integer m with l(m) = 1, and define aι = Log |τlm (^|. A straightforward computation
using Lemma 4.2 b), shows that an satisfies the assumption in Lemma 3.3 with
B = {R; d(R; Qk) < δ/2}9 in both cases i) and ii). Hence (3.6) holds, and the
theorem follows from the equality Γo = Gs. D

Proof of Theorem 4.4. Together with the convexity property of the Prohorov metric
d and of the set G s , (4.5) implies that

lim max {d(R, Gβ); R e ξnΆn)(ω)} = 0 P-a.s..

It remains to prove the analogue of (3.6), VQ 6 G s , Vί > 0,

lim sup d(Q; ξnΆn)(ω)) < δ P-a.s..
n—> oo

q

It is sufficient to prove the statement for a convex combination Q — ]Γ) XkQk,

Qk e G e . _ *=>
By definition of ξ, and from the convexity property of H, we check that it is still

sufficient to prove

VQ G G e , V<5 > 0, limsupd(Q; ΔnΆn)(ω)) < δ P-a.s..
n-^ oo

But similar to the proof of Theorem 4.3, this follows from Lemmas 3.3 and
4.2 a). D

Corollary 4.5. Let P e G, and f, X^i{jl) be as in Corollary 3.4. Assume (4.5) and
(4.6). Then,

and XnΆn) —> x (0) P-a.s.,

with x+(0) = maxJE^/ ζ) e Ge} = maxIJl{0}, and x~(0) the corresponding
minimum.

The proof of the corollary is the same as for Corollary 3.4; indeed, taking the
expectation of / and taking the convex hull are commuting operations on FS(Ω), and
the convex hull of Ge is G s .

Let us end this section with a remark. As mentioned in the introduction, (4.6) is a
sufficient condition for the corollary, it yields only the right order of magnitude for
Z(n), but not the right constants. Even if we would know, for ergodic P, the limit of

for ze[aΓ(0) ,z + (0)] ,
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we should need some extra property of exponential mixing for P in order to check
that this limit yields the necessary and sufficient condition on l{ri) for the corollary
to hold.

V. Estimating the Rate Function If

The convergence of the pointwise estimator X^iin) t 0 x ± ( 0 ) *s v e r v sl°w> as it can
be observed on simulations. Analytical computations indicates that the difference
is O(l(n)1/2) in general situations. Let us recall that we should take l(n) =
O(Logn)ι^D~ι) for finite range interaction and cubic boxes (cf. Remark 4, §4)
in order to investigate all Gibbs measures. Therefore we will make better use of
a functional point of view, and estimate the rate function If itself to use more
information from the data. If is equal to zero on the interval [x~(0),x+(0)],
and convex on R. We will check on the simulation experiments of the next
section, that the functional estimator is much more informative than the pointwise
estimators.

In this section, we are given some function / as in Corollary (3.4), and we propose
an estimator for If.

Let us extend X^ιl and X~t into functions on R + :

Xϊ, if LofJΛ

x+ if t

(5.1)

X~ is defined by the above expressions, changing -h's into —'s.

Lemma 5.1. For all δ e]0,1], X+(t) and X~(t) converge uniformly on [<5, l/δ] to
x+{t) and x~(t) respectively, P-a.s.

Let D be a dense, countable subset of [<5, l/δ]. Corollary 3.4 implies that X£
converges pointwise on D to x+, P-a.s.. We will make use of the following sufficient
Ascoli-type condition for relative compactness: if φn : [<5, l/δ] —> R is a sequence of
uniformly bounded, right-continuous and left limited functions and if

Vε > 0, 3η > 0 and n 0 : sup sup \φn(t) - φn(s)\ < ε, (5.2)
n>n0 |ί—s|<77

then the sequence is relatively compact in the uniform convergence topology and all
limit points are continuous functions.

We check (5.2) below for X+\ then pointwise convergence on D, continuity of
the limit and density of D imply that x+ is the unique possible limit point, and so
X+ converges uniformly to x+, P-a.s.

Let us check (5.2). Let r n fc = \Λk\~ι Log |ΛJ, and k(t) be such that r n fc(t) <
ί<rn,fc(t)-l w e h a v e

Xn (t) ~ Xn (s) = (r n j f e ( t ) - rnMs)) — — (5.3)
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and sup (τn fc(t) — τn fc(s)) —> 77, so it is enough to show that the ratio in (5.3)
|t-s|<τj ' ' n^°°

7 , 1 J\. 7

is bounded; this ratio being a convex combination of ratios - with
Tnyl+l ~ Tnd

rr /T-

coefficients —— ——, we just need to prove that this last ratio is bounded.
Tn,k(t) ~~ Tn,k(s)

Using the definition of X+ z as a maximum, one obtains

1

Λ
1 111

IΛ+i J '

Z + 1 j<Ei+Λι+ι

ι\\\f Woo+ Wι+ι

J \ A \ ' -^ J
1

1 Λ h II f II
M^Mi/i ll/lloo

l y i z + i

<

= 2| |/ | loo(rn > ί-rn ) ί + 1)/τn i /

which implies boundedness of the ratios. Therefore (5.2) is proved, as well as the
statement for X+. Changing / into —/, one gets the one for X~. Π

Next, we consider some continuous non-decreasing piecewise linear upper-enve-
lope of X+: let X+ : R + —• R be the polygonal line with vertices at points

t = —. . n , x = m a x J ^ ; (k = 1,...,n), starting from (0,X*^) and constant for

large t. We have X+(ί) > X+(t),_and we denote by T+ its inverse T^(x) = inf{t >
0;X+(t) > x}. Similarly, define X~, the continuous non-increasing piecewise linear
lower-envelope of X~9 and_T~(x) — suρ{ί < 0;X~(x) < —t}. Finally, remark that
X+(0) = X + n = X ~ n = Xn(0), and define the functional estimator

Tn(x) =U, if x =

Theorem 5.2. For all a,b in the interior of the domain of If, a < b, Tn converges
uniformly on [α, b] to If, P-a.s. :

Without loss of generality, we assume a < 0 < b. Let ε > 0. The function x+ is
the inverse of If on [x+(ε), 6], so x+ is a concave non-decreasing function with slopes
bounded away from 0. Hence, choosing η > 0 small enough, the ^-neighborhood in
the uniform norm of x+ on the interval [ε, (x+)~1(6)] has its symmetric (with respect
to the bissector) contained in the ε-neighborhood of If on the interval [x+(ε), b].
In other respects, Lemma 5.1 shows that X+ converges uniformly on [6,1/6] to
x+, a.s.. Indeed, sup (X+ — x+) < ε implies that sup (X+ — x+) < ε since

[δ,l/δ] [δ,l/δ]

x+ is concave, and we may take the absolute values inside the supremum since
Xn ^ Xn- So we have P-a.s., sup \T^(x) — If(x)\ < ε for large n, and

xe[x+{ε),b]

similarly sup \T~(x) — If(x)\ < ε for large n.
xS[a,x~(ε)]
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Since Tn is non-decreasing (resp. non-increasing) on [X+(0), x+(ε)] (resp. [x (ε),
and since / f(.) < ε on [x"(ε),x+(ε)], we have P-a.s.,

sup
[a,b]

— If I < ε for large n, which is the claim. D

VI. Numerical Results

We report here simulation experiments on the 2-dimensional nearest-neighbor Ising
model on An = [—n,n]2, whose hamiltonian is —H(ω) = β Σ ωiωj + ^ Σ ω v
with periodic boundary conditions. IK-JΊII^1

Simulations were performed for different values of β, h and n (up to n = 800),
on Sun Sparc stations via the heat-bath algorithm with pre-computed transition
probabilities. The function of interest was the magnetization, f(ω) = ωQ. The
finite-size effects and periodic boundary condition made the "experimental critical
temperature inverse" lower than the real value βc = 0,4406868 —

Trying an estimate x±(0) using the point estimators X^t appeared to be unrealistic,
due to slow convergence, to the existence of two different asymptotics according to
Sect. Ill and IV, and to the choice of the scaling parameter in l(n). On the other hand,
the functional estimator gives encouraging descriptive results.

The empirical curves given in Fig. 1, 2 and 3 below were obtained by averaging
the estimators Tn from ten samples in the same simulation but far apart in time one
from another. Recall that they are estimates of the rate If of decay for large deviation
probabilities.

Fig. 1. h = 0, line curve: β = 0, exact function If (Cramer Transform); dashed curve: β = 0.35.
dotted curve: β = 0.40; dashed-dotted curve: β = 0.43

For h = 0, the bottom of the graph of Tn becomes flatter as β increases up to βc;
see Fig. 1. For larger β, spontaneous magnetization reflects in the total magnetization
Xn(0), but Tn is composed of a "flat segment" from Xn(0) to some value presumably
close to the other spontaneous magnetization, and at each end of a much steeper,
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Fig. 2. h = 0, line: β = 0.441 and n = 200. dashed: β = 0.442 and n = 200; dotted: β = 0.442
as before but n = 800; dashed-dotted: β = 0.45, n = 200

Fig. 3. line: β = 0, h = 0.4, exact function If\ dashed-dotted: β = 0,35, h = 0.03; dashed:
β = 0.45, h = 0; dotted: /? = 0.44, h = 0.01

strictly convex part; a drastic change in the curvature separates these three pieces, see
Fig. 2.

Repeated experiments indicate that Tn is not much subject to fluctuations, for
β smaller of slightly larger than the "experimental critical value"; for larger β,
fluctuations from sample to sample become more important, but the shape itself
is rather clearly the one described in the previous paragraph, independently of
fluctuations. The estimator Tn improves slowly with n as predicted by the logarithmic
rate of convergence (see Fig. 2).

The qualitative exchange of shape for Tn could be used for hypothesis testing,
of hypothesis "x~(0) = x+(0)", comparing the minimal curvature of Tn close to
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Xn(0), to — 5 — w * m °Ί s o m e empirical estimator of σ\ = Vc
2σk(n)

computed on the sample. Indeed, if σ2 = lim σ\ is finite and x~(0) = x+(0).

If(x) = —(x - £+(0))2 + o{\x - x+(0)|2), while if a r (0) φ x+(0), If(x) = 0 on

[x~(0), x+(0)]. To determine the proper acceptance region for the test seems to be a

difficult question. Note also that it is not clear how to discriminate from the last two

experimental curves in Fig. 3 between the case of "large β, h = 0" and the case of

"smaller β,hφ 0."
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