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Abstract: Classical gravitation on de Sitter space suffers from a linearization
instability. One consequence is that the causal response to a spatially localized
distribution of positive energy cannot be globally regular. We use this fact to show
that no causal Green's function can give the correct linearized response to certain
bilocalized distributions, even though these distributions obey the constraints of
linearization stability. We avoid the problem by working on the open submanifold
spanned by conformal coordinates. The retarded Green's function is first computed
in a simple gauge, then the rest of the propagator is inferred by analyticity - up to
the usual ambiguity about real, analytic and homogeneous terms. We show that
the latter can be chosen so as to give a propagator which does not grow in any
direction. The ghost propagator is also given and the interaction vertices are
worked out.

1. Introduction

The study of graviton fluctuations on a de Sitter background is fascinating because
infrared effects in quantum gravity may provide a mechanism through which an
initially positive cosmological constant relaxes to zero. It is therefore frustrating
that we lack a perturbative formalism which is even valid at tree order! Of course
the vertices can be worked out with a bit of patience, and various solutions for the
gauge fixed propagator have been reported [1-3]. The imaginary parts of these
propagators ought to give Green's functions which describe how the classical
theory responds to external stress energy. The trouble is that the linearized
response inferred in this way is wrong, even for the trivial case of a freely falling
point mass [3].
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We wish to emphasize that the propagators obtained in refs. [1-3] really do
obey the differential equations they are claimed to satisfy. The problem is rather
that solving the dynamical equations of a gauge fixed theory is not quite the same
thing as enforcing the combination of constraints and dynamical equations which
define the invariant theory. The constrained fields of the invariant theory depend
upon the instantaneous matter sources whereas the fields of the gauge fixed theory
respond to the past history of these sources through causal Green's functions.
Usually this is a distinction without a difference because conserved sources must be
present, in some form, at sufficiently early times to have causally affected the
constrained field anywhere. This is not so in de Sitter space; owing to the exponen-
tial expansion of distances one can find conserved sources which never causally
affect certain points. An unfortunate synergy between this fact and the back-
ground's linearization instability implies that there are sources for which no causal
Green's function can give the correct linearized response over the full manifold.
These facts are proved in Sects. 2 and 3, the discussion of which we shall here
anticipate in order to better motivate our proposed solution.

We show in Sect. 3 that the spatial sections of the D-dimensional de Sitter
manifold can be taken to be (D — l)-spheres. Consider a conserved source of
positive energy density which is localized on these (D — l)-spheres. A consequence
of the linearization instability (discussed in Sect. 2) is that the linearized response
engendered by such a source cannot be regular throughout the (D — l)-sρhere. This
fact does not conflict with our perception that localized sources seem to be
realizable - and that they can induce perfectly regular geometries - because the
constraints of linearization stability can be easily satisfied by adding sources on the
far side of the (D — l)-sphere. Owing to the causal structure of the background these
compensating sources would not be observable in the vicinity of the first source
until very late times.1

Consider now a linearization stable distribution which consists of localized
sources on either side of the (D — l)-sphere. Provided the sources are not too singular
a globally regular, linearized response can be found. Suppose that it is given by
a causal Green's function. Since a null ray requires the lifetime of the universe to
move even halfway around the (D — l)-sphere the linearized response to the full
distribution must consist at early times of a nonzero region around each source,
separated by an extensive region of zero response between the two sources. Since the
field equations are linear, and are solved locally by zero, it follows that the response
to each source must separately give a globally regular solution to the linearized
equations with just one source. But no such solution exists by virtue of the lineariz-
ation instability. We therefore conclude that no causal Green's function can give the
correct response to the full distribution, despite the fact that it is linearization stable.

This is the great obstacle to any formulation of de Sitter perturbation theory
which is simultaneously global, covariant and causal. Before describing our pro-

1 The instability can also be evaded if one excites global, negative energy modes of the gravi-
tational field itself. However, these global modes cannot represent the response from a causal
Green's function since they fail to vanish outside the light cone of the sources. Another possibility
is that the solution to a localized distribution exists but requires more than one coordinate patch
for its expression. In this case the problem in obtaining a globally regular response on a single
patch would come in attempting to extend the solution beyond the causal horizon of the source.
No causal Green's function can reproduce the necessary response - regular within the causal
horizon with a coordinate singularity beyond - because they vanish outside the lightcone of the
source points.
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posed solution it is important to mention that the problem is one of eίiiciency
rather than principle. There is no question that a global formulation of perturba-
tion theory can be worked out canonically by imposing the appropriate linear-
ization constraints. These are superficially acausal but introduce no physical
violation of causality. The only impediment to this approach is the finite duration
of human interest in the result. It requires extraordinary efforts to apply canonical
methods even to simple scalar field theories in flat space; accomplishing anything
this way for quantum gravity on de Sitter space might require a very long time.

Since we are loath to forsake either covariance or manifest causality we shall
instead abandon globalism. The danger in this approach is that information might
tend to flow into or out of whatever subset of the full manifold we take as the
physical arena. That such an embarrassment can be avoided derives from the same
peculiar causal structure which has frustrated previous global formulations: distan-
ces in de Sitter space expand so rapidly that the future lightcone of even a point in
the infinite past encompasses only a fraction of the (D — l)-sphere at any instant.
The future lightcone under discussion has the topology of R0'1. It achieves
openness, despite the compact spatial sections, by escaping into the ever more
inflated (D — l)-sρheres of the future. Of course a lightcone is null, but we can
obtain an open surface which is spacelike by simply evolving each point of the
lightcone for a fixed proper time along parallel timelike geodesies. We call the
subset of de Sitter space which is swept out in this way, "an open submanifold."
Our solution to the previously described problem is to formulate gravitational
perturbation theory on an open submanifold.

It is clearly convenient to consider the constant τ foliations of the initial
lightcone to be surfaces of simultaneity. These spatial sections are also Cauchy
surfaces; once initial value data is given on such a surface it completely determines
the course of future evolution. This is why no information leaks into or out of open
submanifolds at finite times. (We regard the initial lightcone as residing in the
infinite past.) Though open submanifolds fail to cover all of de Sitter space they do
have the property that observers at any finite time are in causal contact with all
sufficiently ancient sources. Open submanifolds also happen to be free of the
linearization instability.

The last two features mean that a causal Green's function can give the correct
linearized response on an open submanifold. It is also possible to impose a coordi-
nate system on this submanifold which is conformal to flat space:

(1.1)
(Hu)

In Sect. 4 we exploit these facts to solve for the retarded Green's function of the
conformally rescaled graviton field, ψμv = (Hu)2hμv, in a natural gauge. Our ana-
lysis is everywhere in D dimensions but it is worth noting here the simplicity of this
Green's function, [pσG?ft](x, x'\ in the physically relevant case of D = 4:

-E θ(u'-u)

+ θ(u'-u-\\x'-x\\)l2δp

("δσ

β)-2ήpσή««Λ . (1.2)



220 N.C. Tsamis, R.P. Woodard

(A bar over a tensor suppresses its zero components while parentheses around
tensor jndices denote symmetrization. In four dimensions the Hubble constant is
H = ̂ /^Λ.) As a check we show in Sect. 5 that the D-dimensional Green's function
gives the correct linearized response to a freely falling point mass. The imaginary
part of the propagator equals half the sum of the advanced and retarded Green's
functions. In Sect. 6 we invoke analyticity to infer the real part up to the usual
ambiguity about terms which are real, analytic and which solve the homogeneous
equation. It is again worth noting the remarkable simplicity of our result for D = 4.
Up to the aforementioned ambiguity the four dimensional propagator
z[Pσ^α/*3(x, x') is equal to:

8π2 l(x-x')2

(1.3)

What real, analytic and homogeneous terms should be added depends upon the
choice of vacuum - a choice for which there is no clear criterion in a time dependent
background such as this. However, we do show that real, analytic and homogene-
ous terms exist which make the resulting propagator remain finite as the separation
between x and xf approaches either spacelike or timelike infinity, and which do not
disrupt the correct flat space limit (H-+0 and w, w'->oo such that Hu, Hu'^-l and
u — u' remains finite) already possessed by expression (1.3). Section 6 concludes with
a computation of the ghost propagator and the interaction vertices.

2. Linearization Instability

Linearization instability is a potential pathology of both classical and quantum
perturbation theory. It arises when gauge invariance - or current conservation - is
not enough to ensure that solutions to the linearized invariant field equations can
be perturbatively corrected to give asymptotic series solutions to the full equations.
The usual paradigm is electrodynamics with nondynamical geometry:

Λ e 2 Λf2 \ r 2 AΓ)2 —„ J v μ J v v (J i \
uo — — Ui \ * o Waώ_p _ i —— yμv WJ\, UΛ> \JL. l y

on the constant curvature manifold S1*'1 xR.lt is not generally possible to solve
Maxwell's equations:

~ ~ -r (2.2)

on this manifold, even for current densities which obey <3V J
v = 0. One also needs the

total charge to vanish:

Q= j dD'1xJ° = 0. (2.3)
SD-1

(Note that the measure in (2.3) is the naive, constant one because the integrand is
a density.) The mathematical reason for this is that integrating the derivative of
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a nonsingular function over a compact manifold gives zero:

J dD-1xdμ(g'"g0°Fpσy/^~g) = - J d^xd^Fjoy/^Q^O . (2.4)
SD-Ϊ SD-ί

The physical reason is that the flux from any net charge would have nowhere to go
on the (D — l)-sphere.

By the term, "modes," we mean solutions of the linearized field equations.
A theory which is linearization unstable possesses modes which cannot be correc-
ted to give full solutions and do not therefore represent true degrees of freedom. In
the electrodynamical example these bogus modes reside in the charged matter
sector but they would appear as well in the gauge sector of nonabelian gauge
theories on this manifold. Whatever the model, the existence of unphysical modes
means that naive perturbation theory is wrong. The cure is to expunge the
unwanted modes by imposing linearization constraints which restore the integra-
bility of perturbation theory. For our electrodynamical paradigm the necessary
constraint is just that the total charge should vanish. Since Q is constant this need
only be done on the initial value surface; naive perturbation theory can then be
developed on the subset of linearized solutions which obey the constraint.

Linearization in stabilities arise in gravity on any background which possesses
at least one Killing vector and a compact, spacelike Cauchy surface [4, 5]. To
understand why we must first elucidate the nature of gravitational perturbation
theory. Consider the action for Einstein's theory in D spacetime dimensions:

Slg-\=±ϊld
Dx\R-ψ-2)A] J^g . (2.5)

Our conventions are that the metric has spacelike signature, κ2 = 16πG, and
Raβμv = Γa

vβjfl + Γct

μp Γ
p

vβ — (μ<->v). Perturbation theory is based upon the expan-
sion:

gμv=gμv+κhμv > ( 2 6 )

where gμv is an exact solution. Indices on the graviton field, /zμv, are raised and
lowered using gμv. Following Abbott and Deser [6] we segregate the field equa-
tions into a linearized part and a graviton stress tensor density:

- -*pa — M , (2.7a)
onμv

-~g μ v (h p

p

; σ

σ -h p σ i

p σ + Λhp

p)yf^ . (2.7b)
2

Note that the semicolon denotes covariant differentiation with respect to the
background metric.

The perturbative field equations are obtained by substituting the expansion:

hμv= Σ κn~lKl (2.8)
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into (2.7a) and then segregating powers of κ\

^μ

p,σKl = T^\h^\ Ψ\ . . . , Ψ~1^ . (2.9)

Naive perturbation theory operates by systematically correcting any linearized
solution, φμv, to give an asymptotic series solution in the sense of (2.8). Provided
each of the equations (2.9) is integrable the various terms in this expansion are:

(2.10)

The fundamental degrees of freedom in both classical and quantum perturbation
theory are the initial value data which characterize all the linearized solutions for
which this system is integrable.

Of course the kinetic operator is not generally invertible on account of gauge
invariance. As a consequence of the vanishing of the following divergence:

(ωμvpσfo \ ___(yιp\σ _ yip σ \ ΛUμp; \ I ft
\UJ npσ);v — Λ ^ σP p σ * y L n p / V ί/

-L-(hp >μσ —hp ;σ μ — Λhp ;μ

* ~ \ n p σ n p σ y ι n p

+-(hpσ'pσ

μ — hpσ'μpσ + Λhμp>p) +J — g , (2.11)
z

we see that @μv

lpσ Tpσ cannot exist unless:

μ

vp

Tpv = 0 . (2.12)

This and the requirement that the field equations contain no more than second
derivatives is what imposes such strong constraints upon the allowed interactions

[7]
Conservation in the sense of (2.12) does follow, at least on shell, for the graviton

stress tensor. This is enough to ensure the integrability of (2.9) when the Cauchy
surfaces are noncompact or when the background is free of isometries. Suppose,
however, that the background possesses at least one Killing vector:

ξμ;, + ξv;μ = O (2.13)

and that the Cauchy surfaces are compact and spacelike. Consider one such surface
C with timelike normal vector cμ(x). Because C is compact we can partially
integrate derivatives along it without producing surface terms. This and the fact
that ξμ is a Killing vector suffice, after considerable manipulation, to show that for
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all fields hμx which are free of coordinate singularities:

§dD'1xcμξv2
μvpσhpσ = 0 (2.14)

c

whether or not hμv is a linearized solution. An immediate consequence is that the
kinetic operator has another zero eigenvector in addition to those implied by gauge
invariance. If even one of the source terms on the right-hand side of (2.9) should
have support in this direction then the associated linearized solution cannot be
corrected to give a full solution which is free of coordinate singularities.2 Pertur-
bative integrability obviously requires:

c

for every Killing vector ξ μ. It is straightforward to show that these constraints are
time independent [6] so that once imposed on C they continue to be obeyed on
foliations.

We conclude this section with a discussion of the relation between linearization
instability and gauge fixing. When a linearization instability afflicts the invariant
field equations it must occur as well when the gauge is fixed by imposing conditions
on the field. However, if the gauge is fixed by adding terms to the action then one
can obtain a set of field equations which are perturbatively integrable. This
happens for our electrodynamical model in Feynman gauge:

Γ . (2.16)

In addition to the two fictitious photons modes the solution set of the full gauge
fixed theory - including the matter equations - contains a completely gauge
invariant but nonneutral, and hence unphysical, sector. This sector must be
suppressed by fiat before the Feynman gauge solutions can obey the invariant field
equations.

The nonneutral sector of Feynman gauge electrodynamics can be eliminated by
imposing (2.3) on any initial value surface - or upon the asymptotic states in
quantum field theory. This fact ought to seem more surprising than it does because
the two systems - (2.2) and (2.16) - are solved in very different ways. One of the
D Maxwell's equations is a constraint which need only be enforced on the initial
value surface; current conservation and the other (D— 1) equations conspire to
preserve it under time evolution. This constraint equation is solved by adjusting the
spatial variation of the gauge field at a given instant so that the gradient of the
electric field gives the charge density at that instant. There is no causal relation
between the source and the longitudinal electric field that it engenders; the induced
electric field depends upon the charge density throughout the surface of simultane-
ity.

In contradistinction to (2.2) all D of the equations in Feynman gauge elec-
trodynamics are dynamical. The general solution is given in terms of a retarded

2 What saves flat space for Λ = 0 is the noncompactness of the usual Cauchy surface. If we
effectively compactify the Cauchy surface by requiring that solutions fall off too rapidly - say
hii^rι~D and h^^r'10 - then a similar linearization instability results. The same effective
compactification is what causes the linearization instability of pure higher derivative gravity [8].
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Green's function:

Dx'lμG
v

reΛ(x,x')Jv(x'), (2.17)

where φμ is a homogeneous solution and the Green's function obeys:

x') = δμ

vδD(x-x') . (2.18)

Of course the homogeneous term represents free electromagnetic radiation - and to
get a solution of the invariant theory we want φμi

μ = 0 - but the feature which ought
to shock is how the field depends upon the current density. In (2.17) we see that the
field responds causally to the source; the effect at any point in space and time is
built up by propagating forward the response to the source at each instant inside
the past lightcone of that point.

There is no contradiction between the two approaches because current conser-
vation relates the instantaneous charge density - which produces the longitudinal
electric field in the invariant formalism - to the past current density - which gives
the same field in the Feynman gauge formalism. Suppose, for example, that the
source consists of stationary opposite point charges on either side of the (D — 1)-
sphere. We would certainly obtain different results from the two methods if these
charges appeared out of nowhere at a given instant and then disappeared some
time later. Maxwell's equations imply that the longitudinal electric field must be
everywhere nonzero within this interval whereas the Feynman gauge system would
give zero field of any sort outside of the future lightcones of the creation events. The
disagreement is forbidden because the spontaneous appearance of two separated
charges would violate current conservation. If the two charges are around at some
instant then they must have been around as well in the past for at least as long as it
would require both to have emerged from the same point. Truly stationary charges
must have been around forever and it is the accumulated, perfectly causal response
to this past current density which gives rise to the instantaneous longitudinal
electric field.

Consistency between the two formalisms is so well known as to constitute
almost a physical cliche. Little remarked is the fact that this consistency depends
crucially upon a property of the nondynamical geometry of the model, namely that
any two points on a surface of simultaneity lie within the future lightcone of some
point far enough back in the past. De Sitter space shares the S0'1 xR topology of
our electrodynamical model, but its geometry is far different. In particular, we are
about to see that distances expand so rapidly in de Sitter space that opposite and
simultaneous points on the (D — l)-sρhere never come into causal contact, while
distant simultaneous points only reach causal contact at very late times.

3. Geometry and Coordinates in de Sitter Space

De Sitter space is the unique maximally symmetric solution to the vacuum Einstein
equation with a positive cosmological constant. These facts mean that the curva-
ture bears the following simple relation to the metric:

Ra

βyδ = H2(δ%gβδ-δ<δgβy)9 (3.1)
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where the D-dimensional Hubble constant is H2 =——- A. (Note that although the

de Sitter metric is to be the background for the perturbative discussions of
succeeding sections we shall spare ourselves the notational bother of placing
a "hat" over the symbol gμv throughout this section.) Substitution of (3.1) in the
equation of geodesic deviation:

τ)χσ(τ) (3.2a)
Dτ

= - H2Δμgpσrr + H2 χμgpσrΔσ (3.2b)

reveals that the deviation Δμ(τ) between two nfcarby geodesies χμ(τ) expands
exponentially provided the geodesies are initially parallel and timelike.

The most convenient way to describe D-dimensional de Sitter space is as the
surface of constant length H~ί from the origin of (D + l)-dimensional Minkowski
space. Note that both our de Sitter metric and the Minkowski metric are assumed
to have spacelike signature. De Sitter coordinates are represented by lower case
letters; the Minkowski coordinates are denoted by upper case letters. General de
Sitter indices are Greek and general Minkowski indices are capital English letters
from the first of the alphabet. Lower case English indices from the middle of the
alphabet (ij, etc.) run from 1 to D — 1; capital English indices from the middle of the
alphabet (/, J, etc.) run from 1 to D. The embedding is:

HXΛ = EΛ(x), (3.3a)

where the mappings are assumed to obey ηABE
A(x)EB(x) = E(x) E(x) = l. The

inverse can be defined for XA on the embedded surface; for general XA it is defined
by considering the mapping to be homogeneous of degree zero:

Hxμ = eμ(X) = eμ(λX) . (3.3b)

A consequence is that the associated Jacobians invert one another in the following
sense:

<V , (3.4a)

-EAE
B. (3.4b)

Note as well that — EA = Q=-^-j EA.
ox vJί.

All geometrically meaningful quantities in a de Sitter coordinate system can be
expressed in terms of the functions EA(x) and eμ{X). For example, the de Sitter
metric is:

_J_dEAdEΛ μv_^_de^_df_
9μ*~H2 3xμ dx* ' Q H2 dXΛ 3XA ' l j

The i D(D+1) isometries of de Sitter space are obtained by subjecting the embed-
ding coordinates to 0(1, D) transformations and then inverting:

x^'=~eμ(ΩA

BX
B). (3.6a)

ti
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This gives an immediate and explicit expression for the Killing vectors:

when a geodesic connects two points xμ and yμ it is found by inverting the trivial
geodesic between XΛ and YA:

r ( τ ) * * [ ( 1 _ τ ) X + τ 7 ] . (3.7)
n

(Another way is by inverting the "great circle" traced out by the SO(1, D) rotation
which carries XΛ onto YA.) The distance l(x, y) along such a geodesic obeys:

sin -Hί(x,y) =-—-E(x)Έ(y) = l— z(x,y) . (3.8)
|_2 J 2 2

De Sitter space has the curious property that certain points cannot be connected by
a geodesic. The "length" between such points is still defined by (3.8); for these cases
the function z(x, y) lies between zero and negative infinity.

De Sitter vector and tensor fields can be mapped onto the tangent space of the
Minkowski embedding thusly:

ί d E ^ — (3.9a)

Vector and tensor fields from the Minkowski embedding are mapped into the de
Sitter tangent space using the inverse Jacobian:

^ Γ ( * ) (3.9b)

Parallel transport from XA to YA on the Minkowski embedding is accomplished by
the SO(1, D) transformation which carries XA onto YA along the "great circle"
connecting them:

VA{Y)=VA(X) + 2HX-V{X)HYA

By inversion we infer the following simple form for the de Sitter parallel transport
matrix:

1 dEA(x)
( ) E ( χ )

dχ dY i + E(χ).E(y) dx« h Λ y ) h W dYB '
(3.11)

Since all Minkowski indices are contracted this object is invariant under the
isometries of de Sitter space, as is the metric and the geodesic length.

Expression (3.11) is known as a bitensor. Indices on the left belong to the
tangent space of the first argument, indices on the right belong to the tangent space
of the second argument. Other commonly used bitensors are the geodesic normals
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at xμ and yμ\

y)] ^ ) (—Jj c s c ^ ) > (

^ ( χ ) ^ ^ , (3.12b)

These bitensors are also de Sitter invariants. A theorem of Allen and Jacobson [9]
asserts that any de Sitter invariant bitensor can be expressed using the length, the
metric, the parallel transport matrix and the geodesic normals.

Since de Sitter space has the topology of SD~1 x R it is natural to use a coordi-
nate system in which the spatial sections are S0'1. These "closed coordinates"
consist of a time t u —oo<t1<co, and (D — 1) angles obeying O ^ α ^ π for
i = 1, . . . , D — 2 and 0 ^ a D - ί <2π. The embedding is:

£° = sinh(Hί 1 ), (3.13a)

£ I = cosh(/ίί1)sin(α1) . . . sin(α I )-/)cos(α2)+i-/), (3.13b)

where we define otD = 0. The unique inverse which is homogeneous of degree zero is:

e° = atanh . , (3.14a)

el = atan

A trivial application of (3.5) gives the line element:

, . 1

il

Although the factor of cosh2(Ht^ seems to indicate that de Sitter space contracts
for t1 < 0 this is a fiction of the coordinate system. We saw from expression (3.2)
that the deviation between initially parallel, timelike and freely falling observers
expands exponentially at all points in de Sitter space. The curves of constant αf are
indeed timelike geodesies but it can be shown using (3.11) that they are only
parallel to one another at tι=0. Before this time they draw together for no other
reason than that they were initially converging at a tremendous rate. The uniform
de Sitter expansion gradually slows their approach, and actually reverses it at
t1 = 0. Thereafter the exponential expansion of distances is manifest.

Another misleading feature of these coordinates is the fact that the spatial
sections are closed. No local observer who is constrained by causality can verify
this closure. Consider, for example, a null geodesic which passes through the origin.
By setting ί = 0 in Eq. (3.8) we see that any such curve must obey:

0=-—-E D (x)=-—-cosh(Hί 1 )cos(α 1 ) . (3.16)

Hence even the lifetime of the universe from tγ =—oo to t1=+oo suffices to carry
a light ray only halfway around the spatial section.

Since the locus of points with tγ— constant is a compact, spacelike Cauchy
surface (the normal vector is just cμ — δo

μ) we see that de Sitter space suffers from
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a linearization instability. However, the fact that no more than half the points on
this Cauchy surface will ever come into causal contact with one another means that
the constraints (2.15) have a peculiarly artificial form. This is most simply illus-
trated by introducing matter into the theory. Consider the action of a point particle
of bare mass M whose worldline is qμ(τ):

Smatter[<7, Ql=-M$ dτ J-gΆβ{q)c?qβ . (3.17)

If the particle is stationary at the spatial origin (α1 = 0) then its worldline obeys
qμ(τ) = τ δo

μ and the associated stress tensor is:

l-κMδD-\x)

T™«*r() δμ°δv° . (3.18)κT(tux)
yjl-κhθo(tl9x)

By virtue of the K in the numerator this contributes to lowest order in the equation
for hffl but the total stress tensor must still obey (2.15) if the metric is free of
coordinate singularities. The ξμ

u Killing vectors possess no zero component and so
vanish when contracted into (3.18). The remaining D vectors give:

J

(3.19)

The nonvanishing contribution from ξβμ

)D does not integrate to zero. It could be
cancelled by the global negative energy modes of the graviton stress tensor but in
this case the response would be nonzero beyond the lightcone of the source. It
follows that a single point mass cannot give a causal response which is free of
coordinate singularities on the full manifold! This fact has been noted previously in
three dimensions by Deser and Jackiw [10].

The phenomenon we have just described bears a superficial analogy to the
electrodynamical model presented in Sect. 2 as the paradigm for a linearization
instability. If the spatial sections are (D — l)-sρheres of constant curvature then the
net charge has to vanish. This must be so in order to prevent the contradiction
which would occur when the flux from a net charge meets itself on the other side of
the (D — l)-sphere. The zero charge condition is of course accomplished by having
as many negative charges as there are positive ones. However, we have seen that de
Sitter space is expanding so rapidly that the flux from a point mass can never
encounter itself on the other side of the spatial section. Nor is the "zero energy"
condition enforced by having negative mass sources. Owing to the oddness of
cos(αχ) under OL1-^OL1 +π we conclude from (3.19) that while a single mass is not
allowed without a coordinate singularity there is no problem for a pair of identical
masses on opposite sides of the (D — l)-sphere. This is very strange because we have
seen that no observer can feel the effect of both masses before t± =0, and the two
masses never feel one another.

The rest of the argument was given in Sect. 1. If the response to such a dual
source is regular beyond the source points at cn1 =0 and a1=π then it cannot come
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from a causal Green's function. Since we believe that it makes sense to consider the
theory's response to an arbitrary (conserved) disturbance, and since we feel that this
response must be causal we are powerfully motivated to consider restricting
physics to a portion of the full manifold.

The minimal coordinate patch we might consider is the one which describes the
submanifold within the causal horizon of an observer at the spatial origin. A con-
venient coordinatization is the static system given by a time ί, —oo<ί<oo, and
a (D — 1)-vector r of radius r = \\ r\\ ^ l/H. The embedding is:

° = sinh(Ht)s/l-H2r2 , (3.20a)

E^Hr1, (3.20b)

ED = cosh{Ht)^/l-H2r2 . (3.20c)

The homogeneous inverse is easily seen to be:

V (3.21a)

(3.21b)

A now familiar application of (3.5) yields the following line element:

ds2=-(l-H2r2)dt2 + (l-H2r2y1dr2 + r2dΩ2

D-2. (3.22)

That the apparent problem at Hr = 1 is only a coordinate singularity can be seen
from the fact that all curvature invariants are finite at this point.

That the horizon is no barrier to outward propagation is shown by considera-
tion of a null ray which intersects the origin. By setting (-= 0 in (3.8) we see that any
such curve must obey:

i ϊr = tanh(Hί). (3.23)

Though it would seem that the null ray cannot pass the horizon this is a figment of
the coordinate system. In fact this geodesic agrees along its full extent with the

geodesic defined in closed coordinates by (3.16); (3.23) only stops at r=— because
H

the static coordinate system runs out there. The time t is that of an observer in free
fall at the spatial origin. Though it requires an infinite proper time for him to feel
influences from beyond the horizon freely falling observers at all other points reach
the horizon in a finite proper time. Since quantum field theory is dominated by the
many rather than the few we must reject the static coordinate patch as too small
a physical arena.

A much larger venue is provided by the "open" coordinate system. This consists
of a time ί0, —oo< t0 <co, and a (D — l)-vector x whose norm, || x ||, is unrestricted
along the nonnegative real line. The embedding is:

^H2\\x\\2 exp(Ht0), (3.24a)

, (3.24b)

ED = cosh(Ht0 ) - - H2 || x | | 2 exp(#ί 0 ) . (3.24c)
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The homogeneous inverse is:

(3.25a)

(3.25b)

Another application of (3.5) gives the line element:

ds2=-dt2

0 + exp(2Ht0)\\dx\\2 . (3.26)

Although the lines of constant 3c are timelike geodesies it can be shown using (3.11)
that they are not parallel to one another on any surface of constant t0. However,
since they are at all times drawing apart from one another the fact that their
divergence increases exponentially with t0 makes the uniform exponential expan-
sion of distances manifest in these coordinates.

It is easy to see that in these coordinates the distance function obeys:

1 — z(x, x') = — sinh2 - .
j <+

(3.27)

Setting 3c' = 0 and ί(x, x') = 0 gives the equation for a null ray which passes through
the spatial origin at ί'o:

tf ||3c||Hexp(-tfίo)-exp(-f/ίo)l . (3.28)

By varying t0 and t'o we see that such a light ray can just cross the open coordinate
patch in the lifetime of the universe.

Since £°-|-£D = exp(/ίίo)>0 these coordinates do not cover de Sitter space.
They do, however, have the property that the locus of points with t0 = const, is
a Cauchy surface, so it is valid to restrict physics to this submanifold. It is the t0 > 0
segment of this space which would be joined to an open Friedmann-Robertson-
Walker universe to describe the transition to an inflationary phase.

It is a trivial consequence of (3.1) that the de Sitter Weyl tensor vanishes. Any
metric with this property is locally conformal to the Lorentz metric. In fact the
entire open coordinate patch is conformal to flat space. The conformal time is just:

u=— exρ(-fft0) (3 2 9 )
H

Note the curious inversion; the infinite past corresponds to u-+ + oo while the
infinite future is at w = 0. The conformal embedding is:

f-"2), (3.30a)
ΔHU

£ ' = - , (3.30b)
u

? - ' . (3.30c,
2Hu
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Its unique homogeneous inverse is:

n JX-X

Applying (3.5) results in the claimed conformal line element:

(3.32a)

Ω=— = E° + ED. (3.32b)
Hu

From (3.8) we infer a relation which will be of importance in the next section:

sin2 iffφ;,x') \=^Ω{x)Ω(x')H2{x-x')2 = l-z(x, xf) , (3.33)

where by x2 we mean the Lorentz inner product, x2 = — u2 -f |' ~ " 2

4. The Retarded Green's Function

The great advantage of conformal coordinates is that the background metric, gμv, is
so simply related to the Lorentz metric. To better exploit this simplicity we
conformally rescale the full metric (background plus perturbation) as follows:

Qμv = Qμv + κhμv = Ω2 gμv, (4.1 a)

and introduce the "pseudo-graviton field:"

Indices on ψμv are raised and lowered with the Lorentz metric.
The conformal rescaling allows us to reexpress the invariant Lagrangian:

ΩD^ , (4.2)

where R is the Ricci scalar formed from gμv and Ω μ

μ = gμv(Ωiμv — Γp

μvΩ>p) is the
covariant derivative with respect to the rescaled metric. After many tedious
rearrangements we extract a presumably irrelevant surface term:

(4.3a)

_ / / ~\ - μ v Q D - 2 , / I ~~ pjμv QD~2\

K |_
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and the following volume term:

cp _ ς^v (Γ)_r)\ I — n πpσ nμv Ϊ// Ϊ// α O OD~3

^ i n v ^ ,v— 9^ Z ; V y y y ψpσ,μψv " . a iβ

Γl 1

U ap'μ Vσ'β 2

The quadratic part is:

where φ = \n(Ω).
It is convenient to scale away multiplicative conformal factors by making the

substitution:

ψμv = Ω1^χμv (4.5)

in expression (4.4):

inv
v , v , μ v pσ,μ
,μΛ,v^^^.Λ Λ,μ j Λ λpσ,

D-2\2 fl 1

+^X 2 r^-^Z' ) σ Xp>' < ^} (4-6)

The simplest gauge fixing functional seems to be — ̂  FμFvη
μv, where:

With this and some partial integrations the gauge fixed, quadratic Lagrangian
reduces to the following simple form:

(4.8)
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The gauge fixed kinetic operator is therefore:

(4.9)

where parenthesized indices are symmetrized.
There are three sorts of homogeneous solutions:

D~2-δ(μ°ev)O = 0. (4.10)2 ~ °(β fcv)0 "

If the polarization is purely spatial then it is annihilated by the operator:

If the polarization is mixed time and space - that is, only the εOi components are
nonzero - then it is annihilated by the operator:

)}
And there is a single homogeneous solution of the form εμv = δμ° δv° + — — - ημv

ε, where ε is annihilated by the operator: L ~" J

XV)}
Note that the distinction between ΘB and Q)c disappears for D = 4.

It might be expected that each of these operators plays a role in the graviton
Green's function and this is the case. The retarded Green's function is defined by
the equation:

V lP*9&l(x, x') = V* δvβ) δD(x-x') (4.12)

and the boundary condition that it should vanish for vl < u. From general tensor
analysis we can assume a solution of the form:

, x') 4δiβ° V α δo

β) + c(x9 xf)ηpσ η«β

+ e(x,x')δp°δσ° δo«δo

β . (4.13)

One now acts Q)μ

p

y

σ on this ansatz and segregates the terms proportional to each
distinct tensor factor. The result is six scalar differential equations:

δμ

iaδv

β): 9Aa(x, x') = δD(x-x') , (4.14a)
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4V δv;° δon: -0^)^2a(x,x')+^Bb(x,x') = 0 , (4.14b)

O, (4.14c)

(4.14d)

(4.14e)
J

δ°δ°<) «δ P 2"~Ah(x x') i U~Δd(x xΊ

(x,x') = O. (4.14f)

To solve (4.14b) we make the substitution:

b(x, x') = -a(x, x') + b(x, xf) , (4.15a)

ιand use (4.14a) to conclude:

@Bb(x9x') = δD(x-x'). (4.15b)

Note that (4.14c) and the retarded boundary condition imply:

d(x,x') = 2a(x,x') + (D-2)c(x,x') . (4.16)

Now make the substitution:

Φ, ^ ~ Φ, x ' )+ ( ΰ 3 )

2

( D 2 ) c(x, x') (4.Πa)

in (4.14d). Using (4.14a) and (4.16) we conclude:

®cc(x,x') = δD(x-x!). (4.17b)

It follows from (4.16) and (4.17) that:

Relation (4.14e) and the retarded boundary condition give:

-2)d(x, x') (4.19a)

Upon substitution of (4.15a), (4.18) and (4.19b) it can be seen that (4.14f) is obeyed
as well. Note that the apparent singularity of (4.17a) and (4.18) in three dimensions
is avoided because a(x, xr) = c(x, x') for D = 3.

The simplest way to solve (4.14a), (4.15b) and (4.17b) is to first obtain ordinary
differential equations in the temporal variable u by Fourier transforming on x. The
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three homogeneous equations are then reducible to BesseΓs equation of order
D~\ D-3 D-5 . Λ . . .

v=—-—, —-— and —-— respectively. The jump condition at u = u gives solutions

proportional to —Nv(ku')Jv(ku) + Jv(kuf)Nv(ku\ where fc=||fc|| and k is the
Fourier conjugate to x. The angular parts of the inverse Fourier transform give
another Bessel function and so we obtain the position space solution:

θ(Au)Juu

x {-Nv(kuf)Jv(ku) + Jv(ku')Nv(ku)} , (4.20)

w h e r e A u = u' — u a n d A x = \\xf — x \ \ .
It is not simple to evaluate the integral when D is odd and v is integral but the

result for even D and half integral v is a series in derivatives of the lightcone theta
function, θ(Au-Ax). If D = 2d and v = d —\ — n, then for O^n^d— 1 we obtain:

y (2d-n-k-2)\
2[4πuu/y~1

 k%(d-k-l)l(k-n)l

uu' d V
-2 — - — θκ(Au-Ax) . (4.21a)

AxdAxJ

Except for the initial factor of (uu')1 ~d these functions are de Sitter invariant. To see
this first note from (3.33) that θ(Au) θ(Au-Ax) = θ(Au) θ(z(x, x')-l). Now use
(3.33) again to convert the Ax derivatives in (4.21a) to z derivatives. The result is:

,...,.Λ.n.. θ(Δu) y (2d-n-k-2)\

where we define δi~1)(z—l) = θ(z— 1). The function α(x, x') corresponds to the case
of ft = 0. For d ^ 3 the functions b(x, x') and c(x, x') are associated with n— 1 and
ft = 2 respectively; for d = 2 they are both given by w=l. Note that only α(x, x')
contains a theta function.

Let us introduce the notation that a bar above a Lorentz metric or a Kronecker
delta symbol means that the zero (i.e., u) component is projected out:

y\μv = v\μv-{-oμ ov . (4.22)

The tensor structure of our Green's function is most revealingly expressed by
segregating it into terms proportional to the three scalar functions:

[ P Λ ] ( x , x') = a(x, x') ίpoTΪΛ + b(x9 x') [ p σ r Λ + c(x9 x') \_βσT^ , (4.23a)

- - 2
[ p σ Γ 7 ] = [2δp

(<x δσβ)~^—ji Vpσ Ψβlί , (4.23b)

pσ-«B J=4c>(p c>σ) do , (4.23c)

(4.23d)
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Now recall from (4.1) and (4.5) that the pseudo-graviton field and the graviton field
relate to χμv thusly:

hμv(x) = Ω2{x)ψμv(x) = Ω*-τ(χ) Xμv(x), (4.24a)

hμv(x) = Ω~2(x)ιl/μv(x) = Ω-1~i(x)χμv{x) . (4.24b)

It follows that the retarded Green's function for the pseudo-graviton field is:

CT (x, x') = Ω1 -Ί(χ) Ω1 -Ί(x') [„<?&](x, x')

+ GB(z-l)lpσT*f]

+ G c ( z - l ) [ p σ Γ α / ] } ,

(4.25a)

(4.25b)

where z = z(x, x') is the length function defined in relation (3.8). Note that the
functions GA, GB and Gc are de Sitter invariants. For example, when the dimension
is even (D = Id) we have:

( 4 2 6 )

The functions G 5 and G c follow similarly from (4.21b).
From (4.24) we see that the retarded Green's function for the graviton field is:

G?fi](x, x') (4.27a)

The bitensor functions

invariants. Of course Ω

(x, x/) = Ω2(x)Ω"2(x /) [ p

= ^ p σ M and Ω " 2 ( x ' ) ^

}. (4.27b)

, etc., are not de Sitter

(x'), the problem com-
es with Ω(x)Ω~1(x/)δp

α. Using expressions (3.11) and (3.12) one can show that:

(4.28a)

O(x')

where:

ωμ(x) = Ω(x)δμ° ( 4 2 8 b )

Note that ωμ(x) is not a vector in the same sense that [nμ](x, y) is. The latter is
defined invariantly by (3.12b) in any coordinate system whereas ωμ(x) is defined by
(4.28b) in conformal coordinates, and in other systems by transforming it like
a vector. Recall that anything is covariant if it is defined in a particular coordinate
system.

This breaking of de Sitter invariance derives from the gauge fixing functional
(4.7). Had we used a de Sitter invariant gauge we would have obtained an invariant
graviton retarded Green's function. An example of such a gauge fixing functional is
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- h\Γ-~QQμv Fμ Fv where:

Fμ = h%,p-
l-h%,μ. (4.29)

We will not trouble to work out the associated Green's function.
Although a de Sitter invariant Green's function could be obtained we do not

choose to do so for three reasons. First, full de Sitter invariance is not observable
on the open submanifold because some de Sitter transformations carry points on
this coordinate patch off of it. Second, we will see in Sect. 6 that the propagator
cannot be de Sitter invariant. Although unexpected there is precedent for this result
in the previous work of Allen and Folacci [11] for the massless minimally coupled
scalar field on a de Sitter background. A similar result for gravity becomes well
nigh inevitable when one notes that the scalar kinetic operator of Allen and Folacci
is the same as the kinetic operator for purely spatial polarizations of the pseudo-
graviton field in our gauge.

The final reason we prefer a noninvariant gauge is that it permits a simple
expression for the Green's function. Since the coordinate patch and the propagator
must in any case break de Sitter invariance it seems worthwhile to introduce a bit
more noninvariance in order to simplify the tensor algebra. Of course to those not
familiar with quantum gravity our relation (4.27), with its ancillary definitions in
previous expressions, probably seems formidably complex. However, it is actually
quite simple for a graviton Green's function, and less complex than the invariant
expressions which have been obtained previously. The reason for this seems to be
that the conformal flatness of de Sitter space is a more powerful organizing
principle than de Sitter invariance.

This point is forcefully illustrated by consideration of the Maxwell Green's
function on four dimensional de Sitter space. Since free electromagnetism is
conformally invariant for D = 4 we can find the Green's function very simply by
first conformally rescaling the metric and then adding the Feynman gauge fixing
functional:

The result is:

4π

)^v(5[z(x,x')-l] . (4.31b)
loπ

Because this is the flat space Green's function it is as simple to study D = 4
electrodynamics on de Sitter space as it is in flat space. But from (4.28) we see that
Ω(x) Ω(x') ημv is not de Sitter invariant. To obtain an invariant Green's function we
would need an invariant gauge fixing functional such as:

, , ) ] 2 , (432)
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where φ = ln(Ω). The resulting Green's function (for which take the imaginary part
of the 1-form result recently obtained by Folacci [12]) is invariant but it is not
simple. It contains a term proportional to [μ#μ] and another proportional to \_μn]
[n v]. The invariant scalar proportionality functions are in each case more complic-
ated than δ(z— 1); what is worse, they are different. From (4.28) we see that it
cannot be otherwise. It would be silly to use the second gauge for most calculations.
The more efficient course is to use the first gauge condition and cheerfully accept
the implied commitment to conformal coordinates.

Gravitation is not as straightforward as electrodynamics because Einstein's
theory is not conformally invariant in four dimensions, yet the simplification
effected in conformal coordinates with (4.7) is even greater. The invariant treatment
requires five fundamental tensors - as opposed to our three - and the scalar
proportionality functions are so complicated that their specification in a general
gauge requires several pages of definitions [2]. By far the most condensed invariant
expression is the one obtained by Antoniadis and Mottola [3] in four dimensions
with a choice of gauge where only the spin two and spin zero parts of the graviton
are nonzero. The divergent response that they report for a freely falling point mass
is due to the infinite integration over uf of the theta function term in their spin zero
Green's function. Our function GA possesses a theta function but the reader can see
from the tensor structure of expression (4.23b) that this term fails to couple with the
stress tensor (3.18) of a freely failing point mass. Of course just achieving finiteness
does not guarantee that this response is correct. We turn now to proving that it is.

5. Response to a Freely Falling Point Mass

From (3.17) and (4.1) we see that the action for a static point particle can be written
as:

q' = δo'τ

It follows that the linearized pseudo-graviton stress tensor is:

<5Smatter 1

(5.1a)

(5.1b)

(5.2)

From our solution (4.25) we see that the induced pseudo-graviton field must be:

κψpσ(x)=$ dD x'[p,G&](x, x') | - i κ2Mδ°δβ°Ω{x')δD-\x') \ , (5.3a)

2 „ Ί Φ - 2 ) GDM

^J—- , (5.3b)
where we define the D-dimensional Newton constant:

.r{B=l\ r'"-'
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to make the force law simple in the Newtonian limit. Note that of the three basis
tensors in [pσG?ft](;c, xr) only [ p σ Γ ^ ] couples to the stress energy of this source.
Had the tensor [ p σ Γ ^ ] not decoupled there would have been a logarithmic
divergence from the infinite integration of the theta function over u'. This is
essentially what happens with the spin zero part of the Green's function reported
by Antoniadis and Mottola [3].

Expression (5.3) is certainly the linearized solution to the gauge fixed equations
of motion; we shall now prove that it also satisfies the invariant field equations,
Rμv = (D — l)H2gμv, to linearized order. It is simplest to do this by first computing
the conformally rescaled curvature tensors and then inverting the Weyl trans-
formation. Since the conformal metric is gμv = ημv + κφμv we see that the conformal-
ly rescaled Riemann tensor can be expanded as follows:

( Ψ ψ Ψ ψ ) ° ( 2 ) ( 5 5 )

However, it is well to note that in this problem we are really doing perturbation
theory in the small parameter:

, -, GDM

^Λ'-(Ω\m\f-3

Substituting (5.3) into (5.5) gives:

U I
(5.7b)

) Ĉ ίfc xj xf ~&a *h Xj + δjt Xi *k — <>kj X{ xϊ\

+ n h ί δ i k δ"~δu δikl | Y F + 0 ( ε 2 ) (5'7c)

Simple contraction produces the conformally rescaled Ricci tensor:

^ 2 i { ) , (5.8b)
u ii x ii

δij + O(ε2), (5.8c)

and the conformally rescaled Ricci scalar:
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If gμv = Ω2 gμv then the Ricci tensor formed from gμv is:

5 ] ^ σ , (5.10)

where we remind the reader that φ = \n(Ω) and that a colon denotes covariant
differentiation with respect to the conformally rescaled metric gμv. Expression
(5.10) is valid for any conformal factor; exploiting a special property of ours -
namely, φ,μ φ,v = φ,μv - allows us to write:

Rμv = Rμv + (D-2)Γ%vφ,p + gμvί-(D-l)φ,pσ + Γλ

pσφ,λ-]g<>σ . (5.11)

At this stage the expression is still correct to all orders in ε. Recognizing now that

φ,p = — δp° and substituting our linearized solution (5.3) we find:

(5.12a)

(5.12b)

Combining this with (5.8) gives the necessary result:

^ ^ 2) . (5.13)

Substitution into (5.11), a couple of simple traces, and the recognition that Ω = —
Hu

implies:

( 5 1 4 a )

(5.14b)

=(D-l)H2gμv + O(ε2). (5.14c)

It follows that the linearized response indeed obeys the invariant field equations as
well as the gauge fixed ones.

Contact with an exact solution can be made by evaluating the Weyl tensor:

h ( 5 1 5 a )

(5.15b)
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'D-Γ
ik Xj Xe ~ δ€i *k Xj + δjt Xi *k ~ δkj" " ^ Ϊ Ϊ I i F

(5.15c)

This is most usefully expressed by raising the first index - whereupon the conformal
rescaling ceases to matter - and representing the spatial indices in a spherical
coordinate basis:

(5.16a)

S«,=^ (5Ί6b)

Note that these basis vectors obey the following orthogonality relations:

(5.17a)

(5.17b)

3k, . (5.17c)

Remembering to include a minus sign in raising u indices we see that to lowest
order:

^ ) , (5.18a)

\m]=-Si Si, C0k0, + O(ε2)=-εΩij+O(ε2) , (5.18b)

U , = S* Si S? S"aj Ck(mn + O ( ε 2 ) = - ε Ω o + O ( ε 2 ) , (5.18c)

i — Oim <?" <?P c « <?r c

j ^ ) . (5.18d)

The full metric of which we have computed the linearized deviation from pure
de Sitter is known as the de Sitter-Schwarzchild solution. In static, spherically
symmetric coordinates its line element is:

Ω2

D-2 , (5.19a)

Were it not for this metric's coordinate singularities it would be entirely sufficient
to conclude this discussion by noting that our linearized solution is related to (5.19)
by the transformation:

2 ' 8

(5.20a)
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(5 2Ob)

where the function A is defined to obey the differential equation:

v ' D-3 (H2-w2)2

It is tedious but straightforward to solve this for arbitrary dimension. For D = 4 the
solution is:

u2-

Because of the coordinate singularities it is better to compare curvatures. Since
both metrics obey the same equation we need only check the Weyl tensors. Of
course the de Sitter-Schwarzchild Weyl tensor can be computed to all orders:

JD-2)GDM

Ϊ J ^ T Ώij = Cr

aιrQCj , (5.22b)

(5.22c)

Note that all of these except C\tr are free of horizon singularities. Also note that all
except Crtr agree with flat space results obtained by taking the limit H2-+0l That
the singularity in Crtr is purely a coordinate effect can be seen by computing the
scalar quantity:

r α ΓP πpβ n°v — _ L

^ /?pσ ^ αμv U U —

The fact that this is also completely independent of H to all orders is an indication
that long range fields behave in classical de Sitter space the same way as they do in
flat space.

To make the comparison we must transform (5.22) to conformal coordinates.
The angles suffer no transformation and one has only to convert from (£, r) to
(w, ||x||) using the zeroth order transformation read off from (5.20). The special
form of (5.22) also helps, as witness the following exact result:

σ jΛ^c t Λ---C (5 24a)
1 3 dt du αι J dr du * J '

(5.24b)

= - ε Ω y . (5.24c)
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The same result applies for Cr

ΛιY0Lp and of course C\j(Xh0Lί suffers no change. The only
component which depends upon the detailed form of the transformation is:

\\χ\\:

drdvj\dudv dudυ/

= 0(ε2). (5.25b)

In all cases there is agreement with (5.18) at order ε so we conclude that our metric
is indeed a linearized version of the de Sitter-Schwarzchild solution.

6. Perturbative Quantum Gravity in De Sitter Conformal Coordinates

The purpose of this section is to specify, as completely as it can currently be done,
the Feynman rules for quantum gravity in de Sitter conformal coordinates using
the gauge (4.7). We first infer the propagators and then discuss the interaction
vertices. The notation is in all cases that of Sect. 4. To make the final answer
accessible we shall repeat the necessary definitions as they occur.

It turns out that the propagators and vertices assume their simplest forms if we
use the pseudo-graviton field, φμv(x) = Ω~2(x) hμv(x). (We remind the reader that
Ω = (Huy1 and that indices on φμv are raised and lowered with the Lorentz metric.)
The φ propagator is defined as the expectation value in the free theory of the
time-ordered product of two fields:

i [ p σ ^](x,x ' ) = < m | Γ [ ^ ( x ) ^ V ) ] | o u t > 0 . (6.1)

It must give iδD(x — x')δμ

iaδv

β) when acted upon by the pseudo-graviton kinetic
operator:

Dμ

pσ = Ω%~1 9μ

pσ Ω2 " 1 (6.2a)

δμ° <5V° V V Dc
(

δv

σ)-1- ημv ηp*-^λ-^ δμ° δv° δo<> v l DΛ . (6.2b)

Here <3)μ

p

y

σ is the operator defined in (4.10). The scalar kinetic operators in this
expression are:

= Ω 2 ~ 1 0 i 4 β ί ~ 1 , (6.3b)

etc. for B and C, where 2A-C are defined in (4.1 la-c). Finally, we remind the reader
that a bar over a known tensor such as δμ

p or ηpσ indicates the suppression of its
zero components.

Under the assumption that the "in" and "out" vacua are identical it follows
from the canonical quantization of (4.8) that the imaginary part of expression (6.1)



244 N.C. Tsamis, R.P. Woodard

must be half the sum of the advanced and retarded Green's functions. We have
already given in (4.25) a relation for the retarded Green's function [p^G^ft]^, x'); to
obtain the advanced Green's function one merely interchanges x and x'. From (3.8)
we see that the de Sitter length function is symmetric, z(x\ x) = z(x9 x

f\ so the sum
serves only to absorb the factor of 2θ(Au) in (4.25b):

)[pσΓc

α/?]} . (6.4)

The three constant matrices are:

«l , (6.5a)ήpσ ήl ,

o

β\ (6.5b)

(6.5c)

The three scalar functions which multiply them are defined by the integral:

ι μ + 1 oo

32π V 2πΔx ) ^ dkk Jμ(kAx) {-Nv(ku')Jv(ku) + Jv(ku')Nv(ku)} ,

(6.6)

where the index μ = and v takes the values , and for GA, GB

and Gc respectively.
We cannot determine the real part of the pseudo-graviton propagator without

knowing the "in" and "out" vacua. There seems to be no obvious prescription for
these owing to the virulent time dependence of the background, which dependence
extends even to asymptotically early and late times. At any given instant there is
a state of lowest energy but it does not remain the lowest energy state; in fact its
energy fails even to stay near the instantaneous minimum. The usual approach to
this problem is to assume that the vacuum is de Sitter invariant and that the high
momentum modes tend to behave like those of flat space. If the gauge is de Sitter
invariant as well then so too will be the graviton propagator.

The approach to flat space on small scales is a consequence of the equivalence
principle. The supposition that the vacuum state shares the symmetry of the
background would seem similarly impervious but for the counterexample provided
by the massless minimally coupled scalar. Allen and Folacci have shown that there
is no normalizable state in this model which is de Sitter invariant and also has the
correct short distance limit [11]. This fact has great importance for gravity because
partially integrating the scalar Lagrangian:

J^~ (6.7a)

-2) (6.7b)
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reveals the same kinetic operator as for the spatial polarizations of the pseudo-
graviton field. It follows that the gravitational vacuum must break de Sitter
invariance in precisely the same way that the massless minimally coupled scalar
does.

Since it is not possible to assume a de Sitter invariant propagator we shall
instead attempt to pass from the imaginary part (6.4) to the full propagator by
analytic continuation. This process is necessarily ambiguous up to terms which are
real, analytic and which are annihilated by the kinetic operator (6.2). The ambiguity
reflects our lack of knowledge about the vacuum. Of course the thing being
continued is the functional dependence upon x and x'. The constant matrices play
a passive role:

iLpσΔ J(^5 ^ ) ~ IΆA\X9 X ) \_pσT^ J + lΔβ\X^ X ) \_pσTβ J

+ ίAc(x9x')lpσT?l9 (6.8)

but they do diagonalize Dμζ
σ. That is, we must have D/i/l^x, x') = iδD(x9 x') for

I = A,B,C.
The integrals (6.6) are very difficult to evaluate for D odd but for even D = 2d

and n = d—\ — v^d they have the following simple and suggestive form:

4π|_4πJ ς^n(d — k—\)\(k — ri)\\t
(6.9)

where we remind the reader of expression (3.33), 1— z(x, x ' ) = i H2Ω(x)Ω(xf)
(x — x')2. For fc>0 we can use the Dirac identity to write:

Hence we expect:

(6.11a)

and, for D ̂  6:

• v,v~ *.j _ — - ) n _ , _ _-ιfe ί (O.lUj

kf2 (d-k-l)\ [l

(6.11b)

where (R.A.H.)7 stands for terms which are real, analytic and annihilated by the
operator D 7. It is straightforward to check that acting DB on (6.11a) and Dc on
(6.11b) indeed gives iδD(x — xf). For D = 4we have iΔB = iΔc:

} (6 12)

up to possibly different R.A.H. terms, which for D = 4 are equal to Ω~ ί(x) Ω~ 1(x')
times harmonic functions.
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One might think that GA could be continued as well by using the identity:

1

π

This is not so. Although (6.13) is true the operator DA does not give iδD(x — x') when
acted upon the implied continuation of GA. The physical reason is the previously
mentioned breaking of de Sitter invariance. The mathematical reason is that
1 — z(x, x') = i H2 Ω(x)Ω(x/)(x — x')2 and the always-positive conformal factors do
not belong in the continuation. The correct analytic continuation necessarily
breaks de Sitter invariance:

\nlH(xx) + iε]+\
ιε 2

(6.14a)

(6.14b)

It is again straightforward to check that DA acts upon this function to give
iδD{x-x').

As stated, the R.A.H. terms are fixed by the as yet unknown vacuum. Perhaps
the nicest choice for D = 4 is given by (R.A.H.)β = (R.A.H.)c = 0 and the one para-
meter family:

+ 8α2 a c o s ( [ l + £ 2 Γ - ) - :

(6.15)

where E = E°(x)=\ Ω(x) [1 + H2 (|| x \\ 2 — u2)~\ is the conformal embedding function
(3.30a) and α is a positive real number. These are the 0(4) vacua discovered for the
massless minimally coupled scalar by Allen and Folacci [11]. With this choice the
pseudo-graviton propagator does not grow for either large timelike or spacelike
separations. One of the most peculiar properties of previous solutions for the
graviton propagator is the growth these solutions show at large temporal and even
large spatial separations [1-3]. It is very hard to accept states which manifest
powerful long range correlations between spacelike separated points. While this
growth is certainly the correct result for causal, covariantly gauge fixed theories on
the global manifold, we have already seen that these theories must fail to agree on
even the classical level with the invariant field equations. It is comforting that the
same reformulation which restores the classical connection with the invariant field
equations also permits the choice of a vacuum for which large correlations between
spacelike separated points are absent.
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The ghost Lagrangian is obtained by varying the gauge functional Fμ:

1 ίD-2\ . /D-2 N

P (k

where we remind the reader that χμv = Q2 x ψμv and φ = In(ί2). Let us consider an
infinitesimal coordinate change:

yfμ = yμ + κε"(y). (6.17)

Since the full metric transforms to:

dvp dvσ

g'μΛχ)=φ(χ)φ-Λχ)gPAyf~1(χ)), (6.18a)

it follows that the variation of the graviton field is:

δhμx = -Ω2ί2ε^v) + 2ημvε
pφφ-]-κΐϊεp\μ /zv)p + / w > ' ] . (6.18b)

It is convenient to decompose the variation of χμv into a term of order κ° and one of
order K:

° (6.19a)

μ \ μ ) p μ p μ

f)φ^ . (6.19b)

Note that it is the pseudo-graviton field which appears on the right of (6.19b), even
though this is the variation of the rescaled field χμv.

We now let εμ become an anticommuting ghost field and take the ghost
Lagrangian to be:

JS?gh = - Ω 2 - y δ F μ , (6.20)

where γμ is the antighost field. The curious factor of Ω 2 is inserted for conveni-
ence; it could always be absorbed into the antighost by a multiplicative field
redefinition. The quadratic part of the ghost action is:

^2

gh = -Ω^~yδ0Fμ (6.21a)

= flδμ

pDA + δμ

oδo>DB ]εp. (6.21b)

It follows that the ghost propagator is:

i[pzlα](x, x') = iΔΛ{x, x')δp« + iAB(x, x')δp° δ0* . (6.22)

Note that the same choices must be made for the R.A.H. terms in the functions
iΛA(x, x') and iΔB(x, x') as for the pseudo-graviton.

Up to a surface term the ghost interaction Lagrangian is:

(6.23)
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Self interactions of the pseudo-graviton field are obtained by expanding expression
(4.3b):

-ggallgpσgμv
Γl 1

l_2 ""'" vσ'β 2 ̂ lp

Ί
ίσ.vj

(6-24)

where we remind the reader that gμv = ημv + κψμv. Note that almost all of the
interaction vertices are just those of flat space times a factor of ΩD~2.

It ought to be possible to at least estimate infrared graviton effects by using the
resulting perturbative apparatus. Of course the mathematical aesthete will insist
upon a formulation which extends to the full manifold. We welcome such critics to
indulge their prejudice in the resulting canonical quagmire. In the meantime we
shall go on to learn what the open formulation can tell us. If the resulting infrared
effects are sufficiently interesting then more resources will no doubt be directed
towards developing an efficient global formalism. Finally, it should be noted that
there are interesting and relevant situations for which restricting quantization to an
open submanifold is the rigorously correct thing to do. An example would be the
case of an open Friedmann universe which enters an inflationary phase. We are
therefore cognizant of the partial nature of our solution but thoroughly impenitent.
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