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Abstract. The theory of the focusing NLS equation under periodic boundary con-
ditions, together with the Floquet spectral theory of its associated Zakharov-Shabat
linear operator L, is developed in sufficient detail for later use in studies of pertur-
bations of the NLS equation. "Counting lemmas" for the non-selfadjoint operator L,
are established which control its spectrum and show that all of its eccentricities are
finite in number and must reside within a finite disc D in the complex eigenvalue
plane. The radius of the disc D is controlled by the Hι norm of the potential q. For
this integrable NLS Hamiltonian system, unstable tori are identified, and Backlund
transformations are then used to construct global representations of their stable and
unstable manifolds - "whiskered tori" for the NLS pde.

The Floquet discriminant Δ(λ; q) is used to introduce a natural sequence of NLS
constants of motion, [¥j(q) = Δ(λ = λj(q);q), where λ^ denotes the j t h critical
point of the Floquet discriminant Δ(λ)]. A Taylor series expansion of the constants
FjCg), with explicit representations of the first and second variations, is then used to
study neighborhoods of the whiskered tori. In particular, critical tori with hyperbolic
structure are identified through the first and second variations of F^Cg), which

themselves are expressed in terms of quadratic products of eigenfunctions of L. The
second variation permits identification, within the disc D, of important bifurcations
in the spectral configurations of the operator L. The constant ¥j(q), as the height of
the Floquet discriminant over the critical point λj, admits a natural interpretation
as a Morse function for NLS isospectral level sets. This Morse interpretation is
studied in some detail. It is valid globally for the infinite tail, {¥j(q)}^^>N, which is
associated with critical points outside the disc D. Within this disc, the interpretation
is only valid locally, with the same obstruction to its global validity as to a global
ordering of the spectrum. Nevertheless, this local Morse theory, together with the
Backlund representations of the whiskered tori, produces extremely clear pictures of
the stratification of NLS invariant sets near these whiskered tori - pictures which are
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useful in the study of perturbations of NLS. Finally, a natural connection is noted
between the constants Fj(q) of the integrable theory and Melnikov functions for the
theory of perturbations of the NLS equation. This connection generates a simple, but
general, representations of the Melnikov functions.
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1. Introduction

In our earlier studies [27] of damped and driven nonlinear Schrodinger (NLS)
equations under periodic boundary conditions, we have observed chaotic temporal
behavior which is particularly apparent when the nearby unperturbed integrable NLS
equation has critical tori with hyperbolic (saddle-like) structure. In this paper we
study mathematical properties of the hyperbolic structure for the integrable NLS
equation, in the focusing case under periodic boundary conditions. These properties
are prerequisites for any study of perturbations of the integrable NLS system.

In any integrable Hamiltonian system, hyperbolic structure consists in critical
tori, called "whiskered tori" [1], whose stable and unstable manifolds comprise the
"whiskers." At issue here in the infinite dimensional NLS setting is to identify, to
represent, and to understand these whiskered tori, as well as their neighborhoods in
function space. We accomplish these goals through the inverse spectral representation
for the NLS equation with its associated linear operator L. In the focusing case, this
operator L is not self-adjoint. The nonselfadjointness of this second order differential
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operator L is responsible for the existence of hyperbolic structure in the focusing
NLS system. Certain critical configurations in the complex spectrum of L identify
whiskered tori. (In fact, the presence of hyperbolic structure in the experiments [27] on
perturbed NLS is monitored numerically by following passage through these critical
spectral configurations.)

To understand this nonselfadjoint spectral problem, we begin with three basic
"counting lemmas" which we use to control the spectrum of L. These counting lemmas
identify a finite disc D in the eigenvalue plane, whose radius is controlled in terms
of the unstable H1 norm of the coefficient q, which in turns is controlled by the first
two NLS invariants - the L2 norm and the energy. All eccentricities (such as the
critical spectral configurations) due to nonselfadjointness of L occur within the disc
D. The counting lemmas also enable us to order the spectrum of the linear operator
(locally, near a fixed qeH1) and to use this ordering to label a basis of L2 built from
squared eigenfunction solutions of the linearization of NLS. Backlund, or Darboux,
transformations (also built from quadratic products of eigenfunctions) are then used at
the critical spectral configurations to construct global representations of the whiskered
tori.

Integrable theory focuses attention upon level sets of constants of motion. In this
NLS framework, these level sets are isospectral sets for the operator L, and can be
defined in terms of the Floquet discriminant (which generates all NLS constants of
motion):

{ f e ^ | Δ(\; f) = Δ(X; q)\/λeC}.

A global theory of these NLS level sets is not yet complete in the nonself adjoint case;
nevertheless, it is generally believed that the level set ^M is generically an (infinite)
product of circles.

To understand the critical NLS tori and their neighborhoods in function space,
as well as the associated neighborhoods of the critical spectral configurations, we
interplay the compex λ dependence of the Floquet discriminant Δ(λ q) with its
dependence upon the function q(x). In terms of Z\(λ; q) we introduce a natural
sequence of NLS constants of motion, F^(g) = Δ(\j(q); q), where λ^ denotes the j t h

critical point of the Floquet discriminant Δ(λ). We then use a Taylor series expansion
(in q) of the constants F-(q) to study neighborhoods of the whiskered tori. The first
and second variations of F •(#) admit concrete representations in terms of quadratic

products of eigenfunctions of L. The critical tori are critical functions of l?j(q) at
which, for at least one j , the first variation vanishes. When the first variation vanishes
at a critical torus, the second variation, or Hessian, can be indefinite, which leads
to the identification, within the disc D, of important bifurcations between "cross"
and "gap" spectral configurations for the operator L, as well as to closely related
bifurcations of the NLS invariant sets.

This use of the family of constants {F^ Vj} to identify critical level sets and
their neighborhoods is the first step toward a "Morse theory of NLS level sets." A
successful Morse theory would describe how these tori change with the (values of)
the spectrum, and how they stratify (or fill out) the function space 3Fm Clearly, such
a stratification by tori will be organized by neighborhoods of critical tori for which
one or more of the circles in the infinite product has pinched off. These are exactly
the critical functions of the constants {F (#)}.

The constant F J(^), as the height of the Floquet discriminant over the critical point
\c

3, admits a natural interpretation as a Morse function for NLS level sets. In Sect. 5
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this Morse interpretation is investigated in some detail. It is valid globally for the
infinite tail { F ^ g ) } ^ ^ , which is associated with critical points outside the disc D.
Within this disc, the interpretation is only valid locally, with the same obstruction
to global validity as to a global ordering of the spectrum. Nevertheless, within the
disc D we present explicit examples of this local viewpoint, which together with
the Backhand representations of the whiskered tori, produces extremely clear pictures
of the stratification of NLS invariant sets near these whiskered tori. These examples
are more than adequate for our study of perturbations of NLS. We hope they will
convince others to complete a global Morse theory of NLS level sets.

Finally, in Sect. 6, we show that the constants F^ of the integrable theory also
generate natural Melnikov functions for the theory of perturbations of NLS, precisely
because these constants are critical on the critical tori. In addition, we derive
explicit representations of the Melnikov function in terms of quadratic products of
eigenfunctions.

This work is a continuation of the initial study of [7, 8] for the sine-Gordon
equation, and of the note [9]. However, it differs substantially from those earlier
studies in that the role of finite genus algebraic geometry is downplayed and replaced
by the functional analysis framework of [29]. Specifically, the explicit use of the
counting lemmas to control the nonselfadjoint spectral theory of L is new, as are
the explicit Hessian calculations. The detailed Morse study is new; in particular, the
obstruction to its global validity, the Bott function G, the behavior near an arbitrary
complex double point where several Bott functions must be studied simultaneously,
and the pictures of the level sets in a six dimensional example were not known
previously.

For the spectral theory, we follow closely the work, in references [29, 14],
extending it to the non-self-adjoint case in order to treat hyperbolic structure.

Finally, the table of contents serves as an adequate outline for the paper.

2. The General Setting

2.1 NLS as a Hamiltonian System

We consider the focusing nonlinear Schrodinger equation (NLS)

2 = o> (2.1)

with periodic boundary conditions q(x-\-1) = q(x). Energy arguments, using "higher"
constants of motion, establish existence in Hk, k > 1.

To view NLS as an (infinite dimensional) dynamical system, we first fix the phase
space. We begin with the ambient space of iίper([0,1]; C2) C L2

0C(R, C2) of periodic,
complex valued two vector functions of x, which are square integrable over [0, 1]
with square integrable first derivative. It will be convenient to fix the following real
Hubert spaces:

For focusing NLS, the phase space is then the embedding of C°° in y~,

& = C°° c 9*- .

On this phase space, NLS is a Hamiltonian system,

—iqt = J g r a d i ί .
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Here J denotes the matrix

and the Hamiltonian H\3^ —• R is given by

1

H(q) = J[qxrχ + q2r2]dx.

0

The complete integrability of the NLS Hamiltonian system is established through
the "inverse spectral transform" which we now describe.

2.2. Spectral Background

The NLS equation can be integrated with the Zakharov-Shabat linear system [34]

(2.2)

t (2.3)

where

(

rt.. , . , 0 liλq + #„
= 2%Xiσ3+tqrσi+[ ^ , r \ q*

where σ3 denotes the third Pauli matrix σ3 = diag(l, —1). Compatibility of the over
determined system (2.2, 2.3) insures that the coefficient q satisfies the NLS equation.

Focusing attention upon the "spatial flow" (2.2), we let F ( 1 ) , y ( 2 ) be the
fundamental solutions of ode (2.2), i.e. solutions with the initial condition:

With these initial conditions, the differential equation may be rewritten as an
integral equation

X

[eί*] | [° ^] (2.4)

(2.5)

which, through WeyΓs iteration procedure, produces formal series representations of
( ) , j _ j 2, together with the estimates

(2.6)

< expίl/mλlx} | ^ ;1,^ v ^ [ \ . (2.7)

Precisely, one has the following
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Theorem 1. The formal power series for Y^ and Y(2) converge uniformly on bounded
subsets tf/[0, l]xC x LQX LQ. Moreover, they satisfy the integral equations (2.4) and
(2.5), and the estimate (2.6) and (2.7). For each x e [0,1], Y{1) and Y(2) are entire
functions on C x LQ X LQ. The solution F ( j ) ( ; λ; q), j = 1,2, is analytic as a map
from C x L2

cx L2

C into Hι.

2.2 1 Floquet Spectral Theory. The integration of the NLS equation is accomplished
through the spectral theory of the differential operator L = L(q),

f . d fO q
3 dx \r 0

for coefficients q = (q,r) which are periodic, H1 functions of x. We view L as an
operator on L2(R), with dense domain Hι. In this L2 setting, the spectrum σ(L) is
defined as the closure of the set of complex λ for which there exists a solution of

Lψ = λψ,

which is bounded for all x £ (—oo, +oo). Since the coefficient <f is a periodic function
of x, Floquet theory can be used to characterize this spectrum.

Floquet theory begins from the fundamental matrix M = M(x; λ; q), which is
defined in terms of F ( 1 ) and F ( 2 ) :

M = columns {Y ( 1 ),y ( 2 )}.

Next, one introduces the transfer matrix T

Then the spectrum σ(L) can be characterized as the set of all λ for which the 2 x 2
matrix T has eigenvalues on the unit circle. Since the detT — 1, this is in turn
determined by a single scalar function called the Floquet discriminant:

A: C x Hι -> C by Δ(\ q) = tr{T(λ; q)} .

In terms of Δ the spectrum is given by

σ(L(q)) = {λ G C I Δ(X) is real and - 2 < Δ < + 2 } .

The integration of NLS is actually accomplished through an inteφlay between
the λ and q dependence of the Floquet discriminant Δ(X q). First one establishes,
as a corollary to Theorem 1, that Δ is entire in both λ and q — (q,r). Moreover, a
calculation [27] shows that its Poisson bracket with the NLS Hamiltonian vanishes:

{Δ(\;q),H(q)} = 0 Vλ,

where the Poisson bracket is defined as

1

{F, G} = /(grad F, J grad G) dx .

o

Thus, Δ(λ; q) generates an infinite family of NLS constants of motion, one for each
λ. Moreover, this family of invariants pairwise commutes,

{Δ(λ;q),Δ(λ';q)} = 0 Vλ, λ'.
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The difficulty with the spectral theory of L is that this operator is not selfadjoint.
Nevertheless, certain properties of its spectrum follow as in the standard Floquet
theory of Hill's operator [22]. The spectrum occurs in bands, not necessarily real,
which terminate at periodic points, λ J ? for which Δ{\ ) = ±2. Furthermore,
asymptotic behavior of Δ(λ) for large |λ| is easy to establish, from which one obtains
the asymptotic behavior of the periodic points:

' jπ as dboo .

The above spectral properties apply for general (q, r) G # i e r ; however, we are
primarily interested in focusing NLS which has the constraint r = —q. In this focusing
case, symmetries of L imply the following facts:

(i) R C σ(L),
(ii) Λ <G σ =>• Λ 6 σ,

(iii) for even q(x), λ e σ => — λ e σ.
Next we define critical points and multiple points: First, critical points are defined by
the condition

dΔ(λ; q)
dλ

= 0;
Xc(q)

while a multiple point, denoted λ ( m ), is a critical point for which

\Δ(λc;q,r)\=2.

The algebraic multiplicity of λ ( m ) is defined as the order of the zero of Z\(λ) ± 2.
Usually it is 2, but it can exceed 2; when it does equal 2, we call the multiple point
a double point, and denote it by λ ^ . The geometric multiplicity of λ ( m ) is defined as
the dimension of the eigenspace of L at λ ( m ), and is either 1 or 2.

Turning to properties of the spectrum of L which are rather directly related to the

nonselfadjointness of L, we consider a critical point λ c at which

|zA(λ c ) |<2.
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Fig. 2.1. Some typical spectral profiles (The spectrum is solid; curves of real Δ are dotted)

Such a critical point is a point of bifurcation of the spectrum. (See Fig. 2.1 for two
typical spectral profiles; more may be found in [27], with detailed descriptions.)
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Furthermore, asymptotic behavior for large real λ shows that there are a countable
number of such critical points on the real axis which approach jπ as j —• oo, and
at which a short "spine" of spectrum bifurcates from the real axis into the complex
λ plane. In addition to these short spines of spectrum which are connected (through
spectrum) to the real axis, examples related to solitons show that there can also exist
curves of spectrum in the complex λ plane which are not connected (through spectrum)
to the real axis. Nevertheless, this nonselfadjoint behavior is not as complicated as
one might initially anticipate. In fact, it can be controlled with the aid of certain
"counting lemmas" which we now describe.

2.3. Counting Lemmas

Following Poschel and Trubowitz [29] for Hill's equation, one [20] can establish
counting lemmas for control of the spectrum. For convenience, we assume that
r = -q.

Lemma 1 (Counting Lemma for Critical Points). For q G Hι, set N = N{\\q\\Hι) G
Z + by

NQ\q\\Hι) = 2[\\q\\2

2 cosh(\\q\\2) + 3 | |g | |^ sinh(||g||2)],

where [z] = first integer greater than x. Consider

dλ

Then
• (i) Δ'{\\ q) has exactly IN + 1 zeros (counted according to multiplicity) in the
interior of the disc D = {λ G C: |λ| < {IN + l)π/2};
• (ii) Vfc G Z, |fc| < TV, Δ'{λ, q) has exactly one zero in each disc {λ G C: |λ —fcτr| <
τr/4}.
• (iii) Δ'{\\ q) has no other zeros
• (iv) For |λ| > {IN + l)π/2, the zeros of Δ!', {λ^, \j\ > N}, are all real, simple,
and satisfy the asymptotics

λ ^ = j π + o(l) as I J I - X X ) .

Similar counting lemmas exist for the periodic points and for the Dirichlet
eigenvalues [27]. The proof [20] of these counting lemmas proceeds as is in [29].
Rather than present it here, we make several remarks:

Remark 1. To understand the content of these lemmas, it is useful to begin with a
consideration of the spectrum for q = 0, followed with the spectrum for q{x) = c,
a constant independent of x. In both of these cases the spectrum can be computed
explicitly. The spectrum for a general potential approaches that for q = 0 as λ —> oo,
as is easy to establish through asymptotic expansions. As a result, the critical points
\c- must approach jπ for large j . The counting lemmas provide somewhat different
information than this asymptotic behavior. Rather than demanding that the critical
point \Cj be extremely close to jπ, one relaxes the tolerance and only demands that
\c

3 be within a disc of radius τr/4 centered at jπ (see Fig. 2.2). With this relaxed
tolerance, the desired behavior sets in at much smaller j , \j\ > N.
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-N-2 N + 2 ^

Fig. 2.2. The disc D and the integer N of the Counting Lemmas

Remark 2. Moreover, the lemmas state that this integer TV is controlled by the H1

norm of q. In the case of Hill's equation, similar control can be obtained by only the
L2 norm. For the Zakharov-Shabat system, such L2 control is not possible, as can
be seen from a counter example which is built from the potential q(k) = q exp(ikx),
k G R. (The spectrum of q^h) is shifted by k/2 from the spectrum of q, yet q and q(k)

have the same L2 norm. Their Hι norms differ, of course.)

Remark 3. From these two counting lemmas, one obtains very good control on the
spectrum outside a disc D of radius (2TV + l)π/2, together with some control of the
integer TV. Within the disc D, little is known about possible spectral configurations;
however, the problem of classifying all spectral configurations has been reduced to
a finite counting problem - possibly a very difficult one. Nevertheless, all eccentric
behavior due to the nonselfadjoint nature of L is restricted to the interior of this finite
disc.

Remark 4. In the counting lemmas, the integer TV is controlled by the Hι norm of
q. While this may be useful for controlling the behavior of perturbations of NLS, it
is not an NLS invariant. Sobolev estimates can be used to replace the Hλ control by
control in terms of the first two invariants.

Remark 5. These counting lemmas amount to an extension of the Gersch-Goren
theorems of matrix linear algebra [33] to the (infinite dimensional) setting of ordinary
differential equations [28]. In the matrix setting, the bounds are optimal in the sense
that matrices can be constructed which realize the bounds. It would be interesting to
construct such realizations in the differential operator case [16].

2.4. Isospectral Sets

Since the Floquet discriminant A is an NLS constant of the motion, any spectral
information obtained from it, such as that discussed above, is necessarily "action"
information. The values of these action variables fix a particular level set,

{fe^\ Δ(λ; q) = Z\(λ; q) Vλ e C} .
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For focusing NLS with nonselfadjoint L, a global description of Λ6(q) is not yet
available. (This is in contrast to the KdV situation [24] with its selfadjoint L.)
Locally, in a sufficiently small neighborhood of an "TV-phase" qN, ^S(q) is an infinite
dimensional torus ( . . . x S x S x S x . . . ) ; i t can be singular, with one or more of
the circles pinched away. (See [23] for the similar local behavior in the sine-Gordon
case.)

Given an isospectral level set ^M(q), one seeks coordinates ("angles") for it. Such
angle information is provided (modulo the problems of "reality constraints" [12]; [6])
by Dirichlet eigenvalues, which are defined as the zeros of Mlx\

where M is a unitary transformation of the fundamental matrix M,

M = UMIJΪ, U =—=

These Dirichlet eigenvalues μ3- are not NLS invariants; rather, they execute oscillatory
motion under the NLS flow. As indicated by the following "trace formulas," Dirichlet
eigenvalues provide the additional "angle" information, which together with the
periodic eigenvalues, provide a representation of q(x):

q(x) + r(x) = - Σ tλ2/c + λ2k-\
kez

q(x) - r(x) = i ^ [X2k + X2k_γ - 2uk(x)]
kez

Here uJ are the Dirichlet eigenvalues for iq,

and (μj(x), v3(x)) denote eigenvalues for the translated coefficient q^x\x') = q(x'+x).
The counting lemma for the Dirichlet eigenvalues shows that these eigenvalues can

be placed in a natural one-to-one correspondence with the critical points. In particular,
for each j greater than the "TV" of the counting lemmas, there exists exactly one μ3

near the j t h (real) critical point \c-\ with exactly 2N + 1 μ's inside the disc of radius
{2N + l)ττ/2. Moreover, symmetries of M show that at each real double point \d (a
critical point at which Δ2 — 4 vanishes), the associated Dirichlet eigenvalue must be
locked to that double point. On the other hand, at a complex double point [which is
necessarily within the disc of radius (27V+l)ττ/2], the associated Dirichlet eigenvalue
may either be locked or it may be free to move. This property of complex Dirichlet
eigenvalues within the disc D of being either locked or free is central to the structure
of the level sets; and, by the counting lemma, this feature is restricted to within the
disc D.

2 5. An Ordering of the Spectrum

In this subsection we will use counting lemma 1 to introduce a natural ordering for
the critical points {A^}. To understand this ordering, fix q, N and a disc D by the
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counting lemmas. (Refer to Fig. 2.2). Outside of the disc D, the critical points are
real; thus, for \j\ > N,

\c \ \ c \
A-N-l ^ Λ-N-2 > * * '

ΛN+\ ^ ΛN+2 < •

with λ^ = jπ. The remaining (27V + 1) critical points {λ^}, \j\ < TV, lie inside
the disc D. Here a "natural ordering" is not so clear; however, the 27V + 1 critical
points are either real, or they occur in complex conjugate pairs. Thus, there are an
odd number 2M + 1 of real critical points, M < N. With this in mind, we fix q, and
complete the ordering:
real, inside of D

complex, upper half plane, inside of D

λ j , j = M + l , . . . , TV;

complex, lower half plane, inside of D

Let ψ±(x, λ) denote the Bloch eigenfunctions of L at [q, X]. These eigenfunctions
are defined (up to normalization) by the transfer condition across one period:

φ(x+l,X) = ρ(X)φ(x,X). (2.8)

Here ρ(X) denotes the Floquet multiplier, which is related to the Floquet discriminant
by

ρ(X) = \ [Δ(X) + VΔ2(X) - 4]. (2.9)

ρ and ψ are well defined functions on the Riemann surface for (λ, yA2(X) — 4),
and /0±(x,λ) denote the values of φ on the two sheets over λ. At branch points
(simple periodic or antiperiodic points), the two sheets touch and φ± become linearly
independent. (This is compatible with the fact that at a simple eigenvalue, the
eigenspace is one dimensional.) At real multiple points, φ± remain linearly dependent,
while at complex multiple points they may, but need not, become dependent. These
two possibilities at the complex multiple points are the key to this nonselfadjoint
spectral problem, and are intimately related to the fact that the transfer matrix cannot
always be diagonalized at a complex multiple point. (At a complex multiple point,
one can only guarantee that it can be placed in Jordan normal form.)

In any case, for fixed λ, these Bloch eigenfunctions can be represented explicitly
in terms of the columns of the fundamental matrix M(x\ λ) = column{F(1)(x; λ),
y ( 2 )0r; λ)}:

$Hx\ A) = c ± {M 2 1 ( l ; X)Y(ι\x; λ) + [M 2 2(l; λ) - ^ ( λ ) ] y ( 2 ) ( x ; λ)} , (2.10)

where the choice

guarantees the important symmetry

ψ-(x;λ) = ±[Jψ+(x;\)]. (2.11)
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Remark 1. In order to illustrate these eigenfunctions, it is useful to consider two trivial
examples. First, consider the case q = 0. In this case, the multiple points are all real,
λj = jπ, with geometric multiplicity 2; the Bloch eigenfunctions for the Lax system
are given by

= exp -ί(λx + 2X2t)

Next, we consider the case of q(x, t) constant, independent of x:

q(x, t) = cexp[—i(2c2t + 7)].

In this case, the Bloch eigenfunctions are given by

^ \ = exp{±z[^(λ) (x + 2λt)]} ( c e x P t " ^ 2 c 2 ί

In these formulas, κ(λ) and λ̂  are given by

(2.12)

:

Λ

= /

This example, of g(x, ί) constant, independent of x, is very useful for illustrating
several crucial points. First, the spectrum of the linear operator L for coefficients
independent of x is easily computed from the Floquet discriminant

Δ[X\ q( , t; c, 7)] = 2 cos /c(λ)

This spectrum is depicted in Fig. 2.3.

Fig. 2.3. Paths which order the spectrum for the constant potential



Morse and Melnikov Functions for NLS Pde's 187

Remark2. At a solution q(x,t) of NLS, quadratic products of these eigenfunctions
can be used to construct solutions of the linearization of NLS about q(x, t). Moreover,
these solutions form a "biorthogonaΓ basis for 3? [2A, 7, 19, 2]. From this basis of
linearized solutions, one can infer linearized stability and instabilities of g(x, t). For
example, in the case (2.12) when one examines the elements of the basis which are
labeled by double points in the spectrum, those associated with real double points are
temporally oscillatory, with no growth in time. These solutions of the linearization
represent neutrally stable linear modes. On the other hand, those elements associated
with complex (in this case, purely imaginary) double points grow exponentially in
time t at a rate

σj=4\λj\κ(λj).

Such instabilities, associated with complex double points in the spectrum of L, will
play a central role in this paper.

Remark 3. One can ask for a natural ordering of these basis. For self adjoint problems,
eigenfunctions are naturally ordered by their oscillations; however, for nonselfadjoint
problems, such general orderings do not necessarily exist. Here, due to the counting
lemmas, a natural ordering certainly exists for the eigenfunctions associated with
spectrum outside of the disc D, leaving 2(2N + 1) members of the basis to be
ordered. For fixed q £ ^ any prescribed labeling of these 2(2 JV + 1 ) elements is
valid; however, it is intriguing to ask how a prescribed labeling depends upon q. One
possibility, which is really an attempt to extend oscillation theory to this nonselfadjoint
setting, is to use the function κ(\) to construct an ordering [13, 7]. To illustrate this
possibility, fix q^c Ί^ = <f( , •; c, 7) and view κ\\\ q^c ]̂ as an Abelian integral on the

Riemann surface associated with Λ/(Λ2 + C 2). We fix a contour of integration to make
this Abelian integral single valued. For this example, it is sufficient to consider two
contour integrals on the complex λ plane, one for each sheet on the Riemann surface:

Λ

• /

±ic

Δ' dχ

where the integration is taken along the two contours depicted in Fig. 2.3. These
contour integrals fix an ordering at <f(c λ ) which can be uniquely extended to a small
neighborhood of <f(c λ ) . This neighborhood is finite. Its size is fixed by the integer N
of the counting lemmas as follows: One locates the closest potential q* to q^c λ ) (in
Hι) for which there exists a critical point λ | in the disc D such that Δ"(\p = 0.
δ is then defined as the Hλ distance from q* to ςf(c λ^. This distance δ is positive
(not zero) because there are only a finite number (27V + 1 ) critical points to check.
One then chooses the neighborhood to be a ball of radius r < δ. Unfortunately, this
ordering cannot be extended unambiguously to a global one valid throughout the Hι

ball of the counting lemma. It would be very interesting to understand the monodromy
associated with this extension procedure, which because of the counting lemma is a
finite dimensional problem.

2.6 The First Variations of Δ(X; q)

Since the Floquet discriminant is entire in both q and λ, it has derivatives which can
be calculated by "variation of parameters" (see, for example, [27]):
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Lemma 2.

(2.14)

these formulas, the Bloch eigenfunctions φ± are given explicitly by Eq. (2.10).

3. Critical Structure of Fj

We fix qe &', as well as a small neighborhood of q, Nb(q). In terms of the ordering
of Sect. 2.5, we introduce the important sequence of functionals:

Fj'.N^φ^C by Fj^ΔiXffl q). (3.1)

Two points must be emphasized: First, for \j\ > N, F^ is real and F G [—2,+2];
second, for complex critical points \j\ = M + 1, . . . , N, Fj = Ff + zFj is not
necessarily real. Thus, it will sometimes be convenient to use an equivalent sequence
of real valued constants Gj:

GJ=

3.1. First Variational Condition

We fix j , and, for q e Nb throughout which Δ"(λp φ 0, we study critical points
of the functional Fj. Formulas 2.14 and 2.13, together with the fact that Xc(q) is
differentiable because it is a simple zero of Δf, immediately yield the following
representation of gradF^.

Lemma 3.

Remark 1. Formula (3.2) for the gradF^ is actually valid even if Δ"[Xj(q);ql = 0,
as a limiting calculation shows.

Remark!. The functions % G F at which Δf/[X^(qb);qb] — 0 are branch points
for the functionals Fj(q). This branching presents challenging obstacles to a global
theory (see Sect. 5). When working with the functionals Fj(q), it is judicious to avoid
a branch point q — % with the condition Δ"[Xj(q); q\ φ 0.
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For real critical points, the invariant ¥j(q) is a real valued functional on 3F\
however, for complex critical points, this invariant is complex valued and we view
the functional as two real valued ones:

These two invariants are functionally independent, as the following lemma states.

Lemma 4. For a complex critical point X^(q), we assume that gradF^ \q φ 0, and that

q and qx are linearly independent as functions ofx. Then Fj* and Fj" are functionally

independent.

Proof. It's sufficient to prove that Fj and Fj are functionally independent. The
complex critical points have been ordered so that λ^ = λ i . This ordering, together
with representation (3.2) for the first variation of F^ , shows that we need only to
prove that (ψ+ψ~)(Xp and (ψ+ψ~)(Xp are linearly independent. The assumption
that they are linearly dependent, together with the squared eigenfunction equation,
implies that either q and qx are linearly dependent or λ^ = X? - thus establishing the
lemma.

Next, for fixed j , we consider critical potentials q^ for which

g r a d F j I ^ O . (3.3)

The following lemma is seen to be valid, mostly by inspection of formula (3.2):

Lemma 5. Except for the trivial case q = 0,

δ¥j

1) Ί T = 0 ^
Sq

2) g r a d F ^ = 0 =» 2\'(λ?(&); &) = 0,

=> λ^(^) is a multiple point.

Remark. The reverse implications for statement 2 of this lemma are not valid. There
exists qe^ with a (complex) double point X^(q) at which F^ = 2 and Λ! = 0, and
yet gradF φ 0. Indeed, such potentials, which can be constructed with Backlund
transformations (see Sect. 4.2), are at the heart of a hyperbolic structure which is
central to our theory.

Remark. In the exceptional q = 0 case, gradzi vanishes identically in λ, as is apparent
from (3.2).

Remark. The facts that

1. l F f = O^AF/=O;
δq J δq J

2. -^ Ff - 0 =* F{ = 0
δq J J

are immediate consequences of Lemma 5. Fact 1 states that Fj* and Fj share the same

critical manifold. Fact 2 states that critical functions of F^ must lie on the level set

Fj = 0. These two facts will be important for a Morse theory for NLS level sets, as

discussed in Sect. 5.
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3.2. Critical Tori

Assume that neighborhood Nb contains an "iV-phase" potential qN and is small
enough that, for typical q G Nb, the isospectral level sets consist of (infinite)
dimensional tori; the critical points q% lie on "singular" tori, with one or more of
the circles pinched off. (One circle is pinched off for each critical Fj associated to a
real critical point, while several circles may be pinched for each critical Fj associated
with a complex critical point.) These singular tori themselves are lower dimensional
tori, with or without "whiskers." The existence of these critical tori is guaranteed
by inverse spectral theory which can be used to construct some of them in terms of
finite genus theta functions. (The remaining critical tori could be obtained through
limits to infinite genus theta functions, and the whiskered tori can be constructed
by Backlund transformations of the singular tori as discussed in Sect. 4.2.) It would
be interesting to construct these critical tori directly from variational problem (3.3),
without invoking inverse spectral theory except in a context which is natural to that
variational problem. However, we have not done so. Rather, to construct critical tori,
we have freely used results from the general theory of the inverse spectral transform.

3.3 The Hessian of F

For fixed j and q e Nb in which Δ"(λp ^ 0, the critical points of Fj consist in a
subset Sj C Nb such that

^ = 0 , q* e Sj .

Fj has critical values of ± 2 on S . Here we fix q* e Sj, and consider the Hessian of

Fj a t &
This Hessian can be expressed in terms of quadratic products of eigenfunctions

(2.10) at the double point λj, with a different normalization which is valid in a

neighborhood of λ<f, provided Δ"Qή) ^ 0:

+ - ι

Here the coefficient b (assumed φ 0) is given by

1

' = J Mnlb — I MλΊM22dx.

o

It will also be useful to define two additional coefficients

1

a = MuM21dx,

o
1

c= [MUM22 + Ml2M2l]dx.
j

o
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The following relationship between these coefficients can be established:

Δ"(\p = Δ(λp[4ab-c2].

In terms of these coefficients, one computes (see [20]) two squared eigenfunctions:

Λ'f(\d\ ϊ

— ^ (F ( 2 )) 2 + 2[α(y ( 2 ))2 - c(F ( 1 ) y ( 2 ) ) + b(Ym)2] I,
bΔ(λp

xy ' =

If one decomposes χ ( ± ) into

x± = xf
then Xj and iχff e &~. Finally, we define the projections

δΞ2 = (Kχj,δq),

δΞ3 = (Kχ+,δq),

δΞ4 = (-iKχ~f,δq).

(3.4)

The symmetries satisfied by the χ's, together with the fact that δq G ̂ , show that
these projections δΞ are real. In order to understand why these projections are natural,
recall that "squared eigenfunctions" generate a biorthogonal basis. When expanding δq
in terms of the linearized basis, the expansion coefficients are computed by projections
onto members of its adjoint basis.

In addition to the reality of the projections, a second important property is the
dimension of the span of { χ t , χ 7 , z χ ^ , i χ ^ } . In general, at a complex double
point of geometric multiplicity 2, these four functions are linearly independent and
the dimension is four. On the other hand, at a real double point, the span is two
dimensional, and one has the following dependencies:

(3.5)

(3.6)

\* real, Mn = -1(=* Δ"Qή) > 0):

real, Mn = 1(=^ Z\"(λ^) < 0):

x+ —

where Γ is defined by

A calculation (see [20]) then yields
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Theorem 2. Let q denote a critical point of Fj. The Hessian of Fj at q is given by

1. λ? real:

8|α|:

**,-

[(δΞι)
2 + (δΞ2)

2], Δ">0;

[(δΞ3)
2 + (δΞ4)

2], Δ"<0.
(3.7)

2. λ^ complex:

62Ff = [(δΞrf + (δΞ2)
2] - [(δΞ3)

2 + (δΞ4)
2]

<52FJ = 2[(δΞ2) (δΞ4) - (&=,) (&S,)].
(3.8)

For applications, even functions of x are particularly important. When both q(x)
and <5<f(x) are even functions of x, the projections δΞ become dependent and the
following corollary results.

Corollary 1. Let q(x) and δq(x) be even functions of x, and consider a purely
imaginary complex double point λ^. One has

6% = δ2Ff

Δ"(λp v ^ 2 " " ^ '
4aaΔ(λp

Δ(Xp
Δ"(λp

c2

Δ"(λp
Δ(λp
Δ"(λp
Δ(λp

Remark. For q independent of x, one has Δ"(\p/Δ(λp > 0 when λ = -λ . We
suspect, but have not been able to establish, this condition for even functions q, with
λ = -λ .

Remark. Examples indicate that the Hessians in (3.7) and (3.8) actually have limits
at the branch points, q —> qb. We will not make use of this regularity, however,

3.4. The Hessian and Passage Through Spectral Singularities

The Hessian of Fj, as summarized in Theorem 2, contains considerable information

about the structure of the spectrum of L even though it involves only local information
in a small neighborhood of q*. In particular, it enables us to describe spectral
configurations near singular ones. The passage through these spectral singularities
occurs in the numerical experiments on perturbed NLS equations and is central to
the chaotic behavior observed in those experiments. We conclude this section with a
brief discussion of the Hessian and these spectral configurations.
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First, consider the information about the spectrum of L which is contained in this
Hessian. At a real critical point λJ

c, Fj has a maximum of + 2 (or a minimum value
of —2) at a critical potential q*. In a neighborhood of q%, the value of F^ can only
decrease (increase). But F^ can be interpreted as the height of the Floquet discriminant
Δ(λ) over the critical point λJ

c. This fact, together with the saddle structure of the
real part of the analytic function Δ(X), shows that, in a neighborhood of the critical
point λJ

c, no gaps on the real axis can appear in the spectrum of L; that at the critical
point λJ

c, a spine of spectrum bifurcates off the real axis into the complex λ plane;
and that the length of the j t h spine vanishes when F is critical as a functional of q.
Typical "spine-like" spectral configurations are depicted in Fig. 3.1.

Fig. 3.1. Typical "spine-like" spectral configuration

Much more interesting behavior is associated to complex critical points. At a
complex critical point λj, Theorem 2 shows that F^ has a saddle structure as a
functional of q. While F^ still has critical value +2 (—2) at a critical potential q*, its
saddle structure in a neighborhood of q has striking consequences which are easiest
to demonstrate in the case of a purely imaginary critical point X3

C under the constraint
of even potentials q(x). Under these constraints, F^ is real valued in a neighborhood
of q*9 and can still be interpreted as the height of the Floquet discriminant over the
critical point λj. Near q%, \F3\ can increase above 2 and a gap can develop in the
purely imaginary band of spectrum; for other <f near q%, \Fj\ can drop below 2 and
a spine in the spectrum can bifurcate at λJ

c into the first and second quadrants of
the complex λ plane. That is, the spectrum configuration can develop a "cross-like"
structure. (See Fig. 5.5.) Furthermore, when the constraints are dropped, still more
complicated spectral configurations emerge as consequences of the saddle structure of
the Hessian [27]. Such behavior of the functionals {F^ } should help in understanding

the "tree structure" in the spectrum of the nonselfadjoint operator L.
In addition to spectral information, one can also extract information about the NLS

level sets in function space & from this Hessian. Consider a q £ .i*" for which the
isospectral set <J&(q) is an (infinite) product of circles. At issue here is how these tori
change with q, that is with the (values of) the spectrum, and how they stratify (or
fill out) the phase space β'. Clearly, such a stratification by tori will be organized
by neighborhoods of those "critical tori" for which one or more of the circles in the
infinite product has "pinched off."
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Our idea is to use the functionals Φj(q) to describe this stratification. The
vanishing of the first variation should determine the critical tori, and the Hessian
should determine the "saddle" or "center" of these critical tori. Before discussing
the possibility of such a Morse theory of NLS level sets in more detail, we first
use Backlund transformations to construct the critical level sets; more precisely, to
construct the stable and unstable manifolds of the critical tori. The indices of the
Hessian can be used to count the dimension of these stable and unstable manifolds.
These unstable manifolds are called "unstable whiskers;" the stable manifolds are
called "stable whiskers;" and the complete structures are called "whiskered tori" [1].
This Backlund construction is the topic of the next Sect. 4.

4. Global Representations of Whiskered Tori

In dynamical systems theory, one is often primarily interested in temporal instabilities
under a particular time flow; here, under the NLS flow generated by the NLS
Hamiltonian. The saddle structure unveiled by the above expansion does not guarantee
this NLS instability; rather, it shows that certain Hamiltonian flows generated by
Fj possess instabilities. Comparison of the Hamiltonian vector fields Jgradίf and
JgradF could assess the temporal instability of NLS; however, we have not done
this comparison. Rather, we address the NLS flow directly.

h qq + λ ) \Ψ =
dt qq \2\q + iqx 0 ) \Ψ

4.1. Linearized Instabilities

Fix a solution q(x, t) of the NLS equation which is periodic in x and quasiperiodic in
t; more precisely, fix a q on one of the invariant tori. Linearizing NLS about <f yields
a linearized equation. As mentioned in Sect. 2.5, quadratic products of solutions of
the Zakharov-Shabat linear system,

(4.1)

generate a basis of solutions of the linearization. With this basis one can assess the
linear stability properties of the solution q. First, (in the absence of higher order
multiple points), the basis splits into two parts, one labeled by simple eigenvalues
and one labeled by double points. There is no exponential growth associated with that
part of the basis associated to the simple eigenvalues, nor to that part associated to
real double points. The only possible exponential instabilities are labeled by complex
multiple points. By the counting lemma, these are at most finite in number and
they reside in the disc D. Typically, for each complex double point there is one
exponentially growing and one exponentially decaying linearized solution. These
instabilities are associated with the saddle structure described above. However, that
saddle structure is associated with the topological properties of the critical level set
while temporal instabilities are associated with one particular flow, the NLS flow. It
can happen that this particular flow does not "pick up" the unstable direction, and thus
is accidentally stable. In the case of the sine-Gordon equation, examples exist [10] of
complex double points which are indeed associated to instabilities and others which
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are associated to stable behavior for one particular flow. At present, each complex
double point must be investigated individually for instability with respect to a given
flow. Those linearized solutions which do behave exponentially generate a basis for
the (finite dimensional) tangent spaces of the stable and unstable manifolds (for the
NLS flow) of the critical torus.

4.2. Backlund Transformations

Using Backlund transformations one can exponentiate these linearized solutions to
obtain global solutions of the NLS equation. Fix a periodic solution q(x,t) of NLS
which is quasiperiodic in t, for which the linear operator L has a complex double
point v of geometric multiplicity 2 which is associated with an NLS instability. We
denote two linearly independent solutions of the Zakharov-Shabat linear system (4.1)
at λ = v by (0 + , φ~). Thus, a general solution of the linear system at (q, v) is given

by
φ(x, t; v\ c+, c_) = c+φ+ + c_φ- . (4.2)

We use φ to define a transformation matrix [30] G by

)N-\ (4.3)
0 λ -

where

N=\Φι ~jf2] . (4.4)
L02 0i J

Then we define Q and Φ by

Q(x, t) = q(x, t) + 2(1/ - v) -ΦιΦ\ - (4.5)
0101 +0202

and
Φ(x, t; λ) = G(λ; v\ φ)ψ(x, t\ λ), (4.6)

where ψ solves the linear system (4.1) at (q,v). Formulas (4.5) and (4.6) are the
Backlund transformations for the potential and eigenfunctions, respectively. We have
the following

Theorem 3. Let q(x, t) denote a periodic solution of NLS, which is linearly unstable
with an exponential instability associated to a complex double point v in σ(L(q)). Let
the complex double point v have geometric multiplicity 2, with eigenbasis (0 + ,0~)
for linear system (4.1), and define Q(x, t) and Ψ(x, t; λ) by (4.5) and (4.6) Then

(i) Q(Xj t) is an solution of NLS, with spatial period 1;

(ii) σ(L(Q)) = σ(L(q));
(iii) Q(x, t) is homoclinic to q(x, t) in the sense that Q(x, t) —> qθ (x, t), exponentially

as exp(—σu\t\) as t —> ±co Here qθ is a "torus translate" of q, σv is the nonvanish-

ing growth rate associated to the complex double point v For finite dimensional tori

explicit formulas exist for this growth rate and for the translation parameters θ±.

(iv) Ψ(x, t\ λ) solves the linear system (4.1) at (ζ), λ).
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This theorem is quite general, constructing homoclinic solutions from a wide class
of starting solutions q(x, t). Its proof is one of direct verification, following the sine-
Gordon model [8] with the formalism of [30]. Periodicity in x is achieved by choosing
the transformation parameter λ = v to be a double point.

In references [26] and [27], several qualitative features of these homoclinic
orbits are emphasized: (i) Q(x, t) is homoclinic to a torus which itself possesses
rather complicated spatial and temporal structure, and is not just a fixed point; (ii)
nevertheless, the homoclinic orbit typically has still more complicated spatial structure
than its "target torus." (iii) When there are several complex double points, each with
nonvanishing growth rate, one can iterate the Backlund transformations to generate
more complicated homoclinic manifolds, (iv) The number of complex double points
with nonvanishing growth rates counts the dimension of the unstable manifold of
the critical torus in that two unstable directions are coordinatized by the complex
ratio c+/c_. Under even symmetry only one real dimension satisfies the constraint of
evenness, as will be clearly illustrated in the following example, (v) These Backlund
formulas provide coordinates for the stable and unstable manifolds of the critical tori;
thus, they provide explicit representations of the critical level sets which consist in
"whiskered tori."

4.3. An Example: The Spatially Uniform Plane Wave

As a concrete example, we return to the spatially uniform plane wave discussed in
Remark 1 of Sect. 2.5. From the eigenfunctions given in that remark, one can construct
the fundamental matrix

M(x; λ; C) =

λ
cos KX + % — sin KX

K

c .% — sin KX
K

C
% —

K

COS KX -

UXVKX

λ .
- % — sin KX

K

(4.7)

from which the Floquet discriminant can be computed:

Δ(λ;C) = 2cosκ. (4.8)

From Δ, spectral quantities can be computed:

Simple Periodic Points: X^1 = ±ic;

Double Points: κ(λp = jπ, j e Z , j ^ 0

Critical Points: X°j = Xh 3 e Z > 3^ ° ;

Xc

0 = 0.

For this spectral data, there are 2N purely imaginary double points,

(λ?)2 = π 2 / - c2 , j = 1,2, . . . , N, (4.9)

where

[π2iV2 - c2] < 0 < [π2(iV -f I) 2 - c 2 ] .

The linearized basis as mentioned in Sect. 2.5 shows that these complex double points
are indeed associated with instabilities, with temporal growth rates given by

σ3 = 4|λ^|«(λ^), j = 1,2, . . . , N. (4.10)
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From this spectral data, the homoclinic orbits can be explicitly computed. A
single Backlund transformation at one purely imaginary double point yields Q =
QH(x,t;c,y,k = π,c+/c_):

_ Γ cos 2p — sin p sech r cos(2kx + φ) — i sin 2p tanh r 1
H [ 1 + sin p sech τ cos(2A:x + φ) J

where c+/c_ = exp(£> + iβ) and p is defined by /c + v = cexp(ip), r = σt — ρ, and
φ = p - OS + τr/2).

Several points about this homoclinic orbit need to be made.
(i) The orbit depends only upon the ratio c+/c_, and not upon c + and c_

individually.
(ii) QH is homoclinic to the plane wave orbit; however, a phase shift of — Ap occurs

when one compares the asymptotic behavior of the orbit as t —» — oo with its behavior
as t -» +oo.
(iii) For small p, the formula for QH becomes more transparent:

ίQH ^ [(cos 2p - i sin 2p tanh r) - 2 sinp sech r cos(2/cx + <̂ )] ce~ i ( 2 c ί + 7 ) .

(iv) The complex transformation parameter c+/c_ — exp(^ + iβ) can be thought of
as 5 x R. In the formula an evenness constraint in x can be enforced by restricting
the phase φ to one of two values -

φ — 0, π . (evenness)

In this manner, evenness reduces the formula for QH from S x R to two copies
of R, and even symmetry disconnects the level set. Each component constitutes
one whisker. While the target q is independent of x, each of these whiskers has x
dependence through the cos(2/cx). One whisker has exactly this dependence and can
be interpreted as a spatial excitation located near x = 0 - while the second whisker
has the dependence cos(2A:(x — ττ/2fe)), which we interpret as spatial structure located
near x = 1/2. In this example, the disconnected nature of the level set is clearly
related to distinct spatial structures on the individual whiskers.

In this example the target is always the plane wave; hence, it is always a circle of
dimension one, and in this example we are really constructing only whiskered circles.
On the other hand, in this example the dimension of the whiskers need not be one,
but is determined by the number of purely imaginary double points which in turn is
controlled by the amplitude c of the plane wave target and by the spatial period. (The
dimension of the whiskers increases linearly with the spatial period.) When there are
several complex double points, Backlund transformations must be iterated to produce
complete representations. While these iterated formulas are quite complicated, their
parameterizations admit rather direct qualitative interpretations [31].

Thus, Backlund transformations give global representations of the critical level
sets. In the next section we discuss neighborhoods of these critical level sets.

5. Toward a Morse Description of the Isospectral Stratification

In this section we introduce a Morse theoretic description of the NLS level sets [9].
A goal of such a Morse theoretic study of the integrable NLS system would be to
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understand how the tori and singular tori, which constitute the invariant isospectral
sets of L, stratify the phase space $F. This phase space is too large. In order to make
use of the control provided by the counting lemmas, we restrict to a smaller invariant
subset of 3^.

First, we use the invariants of Ho (the L2 norm) and H2 (the energy) in order to

define a subset jffi-h^ c &'. For fixed positive numbers h0 and h2,

^(V = {qejr \ H0 < ho,\H2\ < h2},

Sobolev arguments show that the set J? ( / ι ) is a closed invariant set which is bounded
in Hι and therefore compact in L2. For q £ J@fih\ the "counting lemmas" identify an
integer N = N^h) and a disc D = D ( / ι ) in the complex plane.

For q e J9^h\ all critical points {^}^|>A^ are real and can be ordered without

ambiguity \/q e JS^h) by the counting lemma. On the other hand, for the 2ΛΓ+1 critical
points inside the disc D, a single valued ordering throughout J^h^ is impossible
because of collisions of critical points which occur when Δ"[\c-{q)\ q\ = 0. At best,
any fixed local ordering, at a fixed q e J^h\ extends throughout ^ h ) to a multiple
valued ordering involving permutations of the colliding critical points. Following [2],
for any fixed j , \j\ < TV, λj(q) is a multiple valued analytic function whose values
lie in the set {\%(q) V&, \k\ < N}. The "branch points" are those functions qb

on a variety in ^ h ) defined by

Δ'[\cj(qby, %] = Δ"[\<£qb)\ qb] = 0 ,

for some \j\ < N.
In terms of this ordering, we consider the sequence of functionals:

, C by F j Ξ ΔiXffl; q), (5.1)
together with the equivalent sequence G^ as defined immediately below Eq. (3.1). The

functionals G J ? \j\ < N, inherit the multivaluedness of the ordering. For q G J^h\

the sequence {j[G3(q) — 2]} £ I2. In fact, the decay in j is even faster.

Note that the definition ^ ? ^ does not explicitly show that it consists only in
functions q(x) £ C°°, for which the terms in the sequence {G^ } decay faster than
any polynomial. We further restrict: Fix a sequence of positive numbers {^ }|j|>iv
which decay faster than any polynomial as \j\ —> oo. Then we use the sequence of
constants of motion, {Gj}iji>N, as ordered by the counting lemma, to define a smaller
invariant set:

J g * M ) = {qe J9{h) I 0 < [\G3(q) - 2|] < δj V|j | < N(h)} .

j^htδ) c jr i s a closed, bounded, invariant set with boundary. Since J3h^ C J?(h\
the counting lemma still applies. Moreover, ^ h ^ is compact in Ck.

Our restricted initial goal is to stratify .^h^ by the level sets of L. Our strategy
will be to use the entire family {G^j = — oo, . . . , -f-oo} of constants of motion,

together with the spectral theory of L, to describe this stratification. Next, we define
a critical function:

Definition 1. A function q* e ,Jff{h^ is critical if
1. & E dMh^δ\ or
2. q^ is a branch point; or
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3. on a fixed sheet, away from branch points, members of the set { g r a d G ^ } ^ . ^
are linearly dependent at q*.

Several remarks are appropriate:

Remarkl. Type 1 critical functions are artificial in that the boundary dJΘ^1^ is
artificial. We will not consider them further.

Remark 2. q* is a type 2 critical function for G^ <£>

Δ'iXjfa); &) = ̂ " (λ^); &) = 0.

Remark 3 q* is a type 3, but not type 2, critical function for G^ <Φ 3 at least one j
such that, at q = q*,

grad G^ = 0 that is F^ = ±2 and μό = X* .

Therefore, for type 3 critical functions, it is sufficient to focus attention upon the
condition grad G^ = 0.

Remark 4. The type 3 critical functions cannot be isolated points in &* unless
gradG^ = OVj. Moreover, by a version of "Borg's Theorem" for the Zakharov-

Shabat operator L, the only function for which all of these gradients vanish is
the point q* = 0. The reason that critical functions cannot be isolated is that the
functionals {G^ Vj} constitute a family of commuting constants of motion for the
NLS Hamiltonian system. Given a critical function q^ for which grad Gι = 0 while
grad Gk φ 0, one can use Gk as a Hamiltonian with which to map the original critical
function q% to q^.{τk). The functions q*(τk) provide a continuous one parameter family
(indexed by the flow parameter τk) of distinct critical functions for which grad Gι = 0.
At τk = 0, q*(τk) = q^\ the original critical function is certainly not isolated!

Thus, critical functions of a commuting family of constants of motion are rarely
isolated. In order to develop a Morse theory for integrable systems, one must study
manifolds of critical functions for an entire family {G^ , Mj} of constants of motion.
One approach to such a study in finite dimensions was introduced Bott [3, 5], and
later adapted to Hamiltonian systems by Fomenko [11]. This theory begins with the
notion of a "Bott function:"

Definition 2. Let F be a real valued, differentiable function on a differentiable Hubert
manifold ^M. A connected submanifold Ψ* of ^M is called a non-degenerate critical
manifold of F, if
1. Every point q e ^ is a critical point of F; that is, gmάF\q = 0.

2. For each point q e 9^, the null space of the Hessian of F is precisely the tangent
space to 9^.

A function F which possesses such a critical manifold is call a Bott Function.

This definition is a natural extension to an infinite dimensional setting of a
definition introduced in [4] for finite dimensions. It immediately applies outside of
the disc D.

5.1. Outside the Disc D: \j\ > N

In this subsection, we consider G^ , \j\ > N. By the counting lemma, the critical

points {λ^ | j | > N} are real and simple; A"(\c) φ 0. Hence, there are not type 2
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Fig. 5.1. The level set of G^ , fixed \j\ > N. (The value of G^ fixes the radii of the circles which
comprise the disc on the right)

iscritical functions associated with these critical points outside the disc D. Each Gj is
maximal, with maximal value of 2, at its critical potentials. A consequence is that,
for each j , |jf | > TV, for each value of Gj, [2 — Gj] = δ*, the level set is topologically
a circle. Moreover, as <5* runs over [0,6 ]> this circle fills out a closed disc, as is
depicted in Fig. 5.1.

To describe this situation, we first set δ* = OV|j| > TV. In this case, inverse

spectral theory guarantees that J£fih'δ>) is a manifold JS^ of dimension [2(N+1)]:

For a fixed δj = δ*{φ 0), \j\ > TV, ^(h^) is topologically a direct product of

with discs D , one for each \j\ > TV.
This fact can be restated in the standard language of Morse theory: We define the

single real valued functional

\J\>N

Theorems (1) gradG|^ =
(2) G is a Bott function;
(3) The gradient flow for G shows that
deformation retract o

is homotopic to i.e., ^ is a

Remark. The functional G controls the smoothness of q because it controls the
tail of {F }. However, it provides no control of {F } for \j\ < TV; thus, mollifiers
must be used to guarantee that the gradient flow for G is well defined on

The proof of this theorem is only a reformulation of the spectral material described
above, once one uses the representation of gradG in terms of "squared eigenfunc-
tions." Part (1) follows from the linear independence of these "squares."

To summarize, that part of the stratification associated with the infinite dimensional
tail | j | > TV consists in nested tori, just as in the KdV case with selfadjoint L.
Thus, it is sufficient to restrict attention to the [2(TV +1)] dimensional invariant set
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Fig. 5.2. First spectral transition on the invariant plane π

52. Inside the Disc D\Έ y | j | < N

The invariant set JB§, as defined by setting G^ = 2, \j\ > N, is a finite dimensional
invariant manifold with boundary, which is closed, bounded, and compact. To describe
its stratification by level sets, one can restrict attention to the constants {GJ}\J\<N

Inside the disc D, critical points λ c can exist for which A"(\c) = 0; that is, type
2 critical functions can exist. On the other hand, away from branch points, one can
estimate the number ND of linearly independent members of the set { g r a d G ^ } ^ ^
as follows:

2(N -Nd)+l<ND<2N+l ND = 2(N- N%),

where Nd = the number of double points in the upper half complex plane, counted
according to multiplicity, and N% = the number of upper half plane double points
with a Dirichlet μ locked to the double point.

In contrast to the simple behavior associated with | j | > N, very complicated
homotopic behavior can be associated to G^ , —N < j < N, which in turn is
associated to passage through critical spectral configurations within the disc D. Of
particular importance will be the colliding of critical points λ^ and transition values
at which Xc- changes from real to complex. Both of these transitions are associated
with type 2 critical functions.

A global Morse theory, even for jffjlf, seems very difficult to us, primarily because
of the difficulty in labeling all possible critical spectral configurations within the disc
D; it is certainly beyond our reach at this time. The following examples illustrate
concretely the difficulties which arise; yet, we believe that they also indicate the
potential power of a method which uses spectral theory to implement a Morse
description of the level sets.

5.2.1. Example 1: Near an Invariant Whisker. Let Π denote the plane of constants,

and, setting N = 1, we define the disc &(h) C Π by

The spectrum of L(q), for q £ ^ h \ consists in the real axis union a single band
on the imaginary axis. We choose the parameter h large enough that two complex
double points (conjugates of each other) can exist on this band of purely imaginary
spectrum, but small enough that no more than two can exist. Figure 5.2 depicts the two
classes of spectral configurations, together with an important critical configuration.
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Fig. 5.3. The open annuli Bo and Bι which do not contain the critical circle

Fig. 5.4. Spectral configuration and level set foliation of real Morse function Gx for real critical
points inside the disc

[The origin is always a critical point. Typically, it is simple (A" φ 0); at the critical
configuration, is is double (A" — 0).]

Potentials in ^ h ) which have this critical spectral configuration consist in a circle
in &h\ \q\ — r c, which divides ^^ into two annuli ^ 0 and y&γ\

A : 0 < \Q\ <rc> ^l :rc < \Q\ < rmax

We also introduce two smaller open annuli J90 and JBγ which do not contain the
critical circle. (See Fig. 5.3).

Since TV = 1, the manifold J8\^ is six dimensional. We introduce two six

dimensional neighborhoods (open cylinders) in Jξ?/\ Uo and Uι, containing the annuli

^So and ^ , respectively. The spectrum of L(q) for even qe Uo, is shown in Fig. 5.4,

and for even q G Uγ, in Fig. 5.5. Notice that there are two distinct types of spectrum

for q^Uι. These two types are important in the following.

5 22. Even Functions. First, we dispence with Uo, which is trivial and analogous to
the behavior associated to \j\ > TV. Rather than treat the general case, we focus upon
the submanifold of functions which are even about x = 0, i.e. q(—x) — q(x). This
submanifold S^1 c J$ι is four dimensional and plays an important role throughout
our studies. The condition of evenness leads us to consider the constraints

G o = % Ϊ 9o e ( ~ 2 > 2 ) Ϊ fixed >
G_i = Gi , Gi free.
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Fig. 5.5 The Trouser for even potentials and its spectral identification

In this case, the critical value of G{ is —2, which the Hessian shows is a minimum.
The critical level set is a circle containing only functions on the plane of constants
77. As G{ increases from its critical value —2, the neighboring level sets in gf/1 are
two tori. The spectral configurations, together with a schematic of the level sets, are
depicted in Fig. 5.4. Thus, this trivial case of Uo is essentially the same as that for
real critical points outside the disc D.

Turning to the more interesting case of Uι, we continue with even functions,
&Ί1 Π E/j, for which the complex double point λf lies in the band of spectrum on
the imaginary axis, and G_λ vanishes identically. We are left with two independent
constants of motions, Go and G^ We define a submanifold by setting Go = gQ,
g0 e (-2.2), g0 fixed. This submanifold is three dimensional, lying within ^ Π Ux.
For our choice of g0, Go has no type 2 or type 3 critical points on this submanifold.
We intend to view G 1 ? restricted to this submanifold, as a Bott function.

In this even case, the critical value of Gλ is —2, and the critical set is once again a
circle containing only functions on the plane of constants 77. The Hessian is a 3 x 3
matrix with one positive, one negative, and one zero eigenvalue. Its null vector is
tangent to the critical circle; the saddle structure which exists since the Hessian has
index 1 shows that this circle is a "whiskered circle."

Next, we use Backlund transformations to construct an explicit representation of
this whiskered circle; that is, to construct the critical level set. In the even case, the
Backlund formula 4.11

QH =
Γcos 2p — sinp sech τ cos(2/cx + φ) — i sin 2p tanh τ

1 + sinp sech r cos(2A;x + <

x ce as =Foo (5.2)

must be specialized in order to ensure evenness by one of two choices of φ: φ — 0,
7Γ. There are two disjoint whiskers, one for each choice of φ\ each whisker is two
dimensional, parameterized by ρ and 7. For fixed 7, a "figure eight" structure appears.
Orbits on the critical level set are homoclinic to the critical circle, which is also
parameterized by 7. Note the phase shift of 4p experienced by these homoclinic
orbits.
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Fig. 5.6. Homotopy transition for even potentials

A neighborhood of the critical level set in this even setting is depicted as a
"trouser" in Fig. 5.5. The Backlund formula explicitly shows that one leg of the
trouser is associated with a spatial excitation located near x = 0, while the other leg
is associated with an excitation located near x = 1/2. This fact plays a central role
in the interpretation of chaotic behavior which arises when the integrable system is
perturbed [27].

In this even setting, the "trouser" can be described in the language of Morse (Bott)
theory. In order to discuss the homotopy transitions, we define

then
M~2~£ =2DxSι;

M~2+ε = Dx Sι.

Here ε is sufficiently small, D denotes a two-disc, and 2Ό denotes two disjoint two
discs. D denotes a two-disc with two points on its boundary identified. The homotopy
transition formula is then given by

D x S1 « D x Sι = [2D x Sι U e 1].

Here U represents cell attachment and e1 represents a 1-cell (see Fig. 5.6). A 1-cell
is attached because the Morse index of Gx is 1.

5.2.3 No Spatial Symmetry. Next, we remove the constraint of evenness. In this case,
there are three independent constants of motion, { G . ^ G Q ^ } . We are tempted to
freeze G_x = g_x and G o = #0, and to use Gx as a Bott function; however, unless
the value g_x = 0 , Gx has no critical functions. Moreover, at the level g_x = 0 , G_x

necessarily has a critical function whenever Gx does. (See Lemma 7 of Sect. 3.) The
upshot is that one must consider the pair G_ : and Gx simultaneously. (This situation
necessarily extends the Fomenko strategy [11].)

We begin by considering

The critical value of Gx is —2, and the critical set is once again a circle containing
only functions on the plane of constants Π. The Hessian has 2 positive and 2 negative
eigenvalues, showing the existence of a saddle structure.

At a critical function, the value of Gλ is —2, and the value of G_λ is necessarily
0. Freezing G o at value #0, we use Backlund transformations to construct explicitly
the critical level set

Go = 2o> g0e(-2,2), fixed
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2π

Fig. 5.7a. The construction of the whisker by identifying φ with φ + π

Fig. 5.7b. Half of the whole whisker (note the twist)

For convenience, we again repeat the Backlund formula:

QH =
Γcos 2p — sinp sech r cos(2fcx + φ) — i sin 2p tanh τ

ΐ
x ce

1 + sinp sech τ cos(2&a; + φ)

• e τ 2 i p c e " i ( 2 c t + 7 ) as ρ- =foo.

The situation is depicted in Fig. 5.7.
The critical level set is constructed from a family of "figure eights," one for

each value of the angle φ. The Backlund formula shows that the critical level set
is parameterized by ρ e (0, +oo), φ e [0,2π), and 7 e [0,2π); together with the
boundaries ρ = 0, ρ = +00, each of which consists in a circle parameterized by
φ e [0,2π). Realizing that all points on the horizontal (</>) axis of Fig. 5.7a are
actually identified, one is lead to Fig. 5.7b, which depicts the level set as S x 5 2 ,
where S2 denotes a two-sphere with two points identified, together with a twist as
is seen to be required by examining Fig. 5.7b. The critical level set is connected; we
have already seen that constraints such as evenness can disconnect it.

In order to describe a neighborhood of the critical level set, we next consider the
set

G o = #0 > (~ 2> 2) > fixed >

(-2 - ε, - 2 + ε),

(5.3)

free.

This set is not a manifold, but consists in manifolds of dimension 4, together with
boundary components. Selecting g0 so that G o has no critical points on the 4-
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2π

Fig. 5.8a. The level set for gι < -2 (note the twist, half of the whole figure)

Fig. 5.8b. The level set for g > -2 (note the twist, half of the whole figure)

manifolds, one can view the 4-manifolds as three manifolds xS. This situation is
depicted in Figs. 5.8a and 5.8b.

To understand these figures, first fix gx < —2. The spectrum of L has a gap on
the imaginary axis, and the level set is a three torus T 3 as depicted. Note the twist.
As gx < —2 varies, one generates a nested family of three tori.

On the other hand, fix gx > —2. The spectrum of L now has a cross on the
imaginary axis. The level set remains a three torus T 3 , but one looking very different
as depicted. Again, note the twist.

In summary, as G{ varies near its critical value of —2, the neighboring level sets
are three tori, T 3 . Moreover, each level set is connected. The three tori T 3 differ
depending upon whether G{ is less than, or greater than, —2. In particular, the three
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A1 B1

Fig. 5.8c. The exotic trouser and its spectral identification

tori have a twist. The consequences are that the level sets near the critical one appear
as an "exotic trouser,"as depicted in Fig. 5.8c.

In an attempt to set up a Morse theory for these level sets, we begin with the set

Go = 9o e (-2,2), fixed,

Gi=9i> 9\ G ( - 2 - ε , - 2 + ε), gx free.

Fomenko's strategy of using Gγ as a Bott function will not work because
• this set is not a manifold;
• G_j has critical functions in the set;
• the pair G_λ and G{ must be considered simultaneously.

Nevertheless, one can anticipate the homotopy transitions: Define

then

M~2~ε = (Sι x D2) x Sι

M~2 = B3 x Sι;

M~2+ε = B3 x Sι.

Here ε is sufficiently small, (Sι x D2) is a solid torus, B3 is a 3-ball with two points
on its surface identified, and B3 is a 3-ball. The homotopy transition formula is then
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3-ball

U

Fig. 5.9. Homotopy transitions without even constraints

given by

B3 x Sι &B3 xS1 = (Sι x D2) xSιUe2.

Here U represents cell attachment and e2 represents the 2-cell (see Fig. 5.9).

5.2.4. Higher Order Critical Points. This example, near the plane of constants, also
contains type 2 critical behavior which occurs when zA"(λ(c); 0) = 0 and involves
the collision of two or more critical points. Type 2 behavior can occur under even
symmetry, and it has occurred (with both simple and rather complicated spectral
configurations) in the numerical experiments of [27] which show temporally chaotic
behavior of solutions of NLS under perturbations. Several explicit examples of type
2 spectral and level set behavior may be found in [20]. Limitations of space prevent
us from presenting those examples here.

5.3. Discussion

As one begins to develop a Morse theory for the stratification of isospectral invariant
sets for the NLS system, the first obstacle that one faces is the infinite dimensionality
of the system. With the "counting lemmas" this difficulty is readily overcome.
The infinite dimensional "tail" of the sequence of constants, {FJ}\J\>N> which is
constructed from (necessarily real) critical points in the exterior of the disc D, is quite
tame. Nothing emerges but nested tori, just as in the KdV case with its selfadjoint
spectral problem.

The real obstacles to a global theory originate from the complicated spectral
configurations for this nonselfadjoint spectral problem which can occur inside the
disc D. Although these configurations are finite in number, they seem difficult to
classify. Any classification or ordering will certainly depend upon the configurations
of critical points of high order [λ^ such that Λ"{\^) — 0, etc.] Because of the
presence of these higher order critical points, any Morse or Bott theory based upon
the constants {F^} seems necessarily local in function space. Our examples have
displayed submanifolds, defined by freezing all constants but one, which possess
critical functions for that one remaining constant for which the index is not invariant
over the entire submanifold. Other examples show that type 2 critical functions,
which are branch points for the functionals F J ? necessarily exist. These examples
make it clear that to study such type 2 critical functions, several constants, {F^},
for several values of j , must be studied simultaneously. In addition, in a general
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situation without additional constraints such as evenness, complex double points also
require the simultaneous study of two constants, the real and imaginary parts of F.
Such vector valued Bott functions take one beyond classical Bott theory and pose
challenging mathematical problems.

6. A Melnikov Vector

When studying perturbations of integrable systems, one frequently begins with
whiskered tori for the integrable system and asks about their persistence under
perturbations. If the lower dimensional tori persist, hyperbolic structure such as the
stable and unstable manifolds of the tori persists as well. In the integrable case the
stable and unstable manifolds coincide, guaranteeing the existence of orbits in the
integrable system which are homoclinic to the low dimensional critical tori. Under
perturbations, these stable and unstable manifolds split apart; typically homoclinic
orbits do not persist. If, however, the perturbed stable manifold intersects transversety
the perturbed unstable manifold, orbits homoclinic to the persistant tori will exist.
One method which is commonly used to measure the splitting of stable and unstable
manifolds is that of Melnikov [32], which uses "Melnikov functions" to provide
estimates of the distance between these manifolds. These Melnikov methods are
particularly natural tools with which to prove existence of homoclinic orbits in
perturbations of integrable systems.

The detailed geometry of these transverse intersections differs from system to
system, and from case to case; it is certainly beyond the scope of this article to describe
this geometry in any detail. Examples in the framework of soliton systems may be
found in [18, 27, 31, 25, 21]. Here we simply note that in all cases, the Melnikov
function is based upon the projection of the perturbed vector field (which defines the
perturbed dynamical system) onto the gradient of an unperturbed constant of motion.
Our point here is that the constants {F^ }, together with Backlund transformations,
provide natural representations of Melnikov vectors for perturbed soliton pde's.

We begin with a whiskered torus as represented by the Backlund formulas of
Theorem 4. First, we consider the case of one instability associated with a complex
double point z/, for which the homoclinic orbit on the whisker is given by Backlund
formula (4.5),

0101 +0202

where q lies on the critical lower dimensional torus and φ denotes a general

eigenfunction of L at (q, v), which, when expressed in terms of the Floquet basis

{'0(+),'0(~)}, takes the form

Next, we consider a perturbation of the NLS equation generated by a perturbed
vector field εf(q). In this setting the Melnikov function can be defined using the
constant {F^ }, where Xc- = v\

Mj = J [(grad Fj, /) \q=Q] dt, (6.1)

— OO

where the integrand is evaluated along the unperturbed homoclinic orbit q = QH.
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This integrand can be expressed rather explicitly using Backlund transformations.
We begin with Eq. (3.2) for the gradF^ ,

where ^ are a Floquet basis at (QH,v). This Floquet basis can be obtained from
Backlund formula (4.6):

, t\ λ) = G(λ; v\ φ)ψ{±)(x, t\ λ),

with the transformation matrix G given in terms of the general eigenfunction φ at

(<L *0 by
- I / 0

These Backlund formulas are rather easy to manipulate to obtain explicit informa-
tion. For example, the transformation matrix G(λ, v) has a simple limit as Λ —> v\

(6.3)

where |0 | 2 is defined by

With formula (6.3) one quickly calculates

lim <?(±) = lim Gψ(±)

λ—ns λ—>v

\Φ\2 \-

from which one sees that Ψw and ^ ( - ) are dependent at (QH, λ = z/),

^

Remark. The dependence of !Z^+) and ^ ( - ) is required because, for QH on a whisker,
the geometric multiplicity of v is only one, even though its algebraic multiplicity
is two or higher. Also, it is interesting to note that by manipulating the Backlund
formula for ^ ( ± ) before taking the limit as λ —> 1/, one can obtain explicitly a second
linearly independent solution of LΨ = vΨ, but this second solution is not periodic
in x.

Next, the Backlund formula gives a nice representation of the Wronskian

μ ^ ( + ) 5 ^ ( - ) ] = (λ - */)(λ - P)

from which the following limit is easy to compute:

lim v - ' = VΔ{y)Δ(y)
\ wr[ακ+)αrt-)] ( Ϊ /P)WΊW> ( + ) ^ ( ~ ) ] '
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With formulas (6.2-6.4), one obtains the explicit representation of the

ΓΦ\

where the constant Cv is given by

δq ~v U\4 \φ2

Remark. Since φ = c+ψw + c_ψ(~\ one sees explicitly from formula (6.5) that
δ¥- -,

—4 —> 0 as c+/c_ —> 0, oo. Also, since the eigenfunctions ψM and '0(~) at the

complex double point z/ grow or decay exponentially,

φ(±) « exp(±σ,Q , ί -> ex),

and the formula also shows explicitly that gradF^|(g ι/) —> 0 as ί —> oo. The vector
field gradFj must vanish because, in these limits, the point QH on the whisker tends
to a critical function of F^.

Remark. This exponential decay in t leads to convergence of the Melnikov integral
When one uses other constants of motion to define the Melnikov integral, they need
not be critical on the critical circle, the integrals need not converge, and a rather
strange notion of conditional convergence must be developed [15]. It seems more
natural to us to use constants which are critical on the "target" to define the Melnikov
integrals in the first place.

With these ingredients, one obtains the following beautiful representation:

Theorem 5. The Melnikov function associated to the general complex double point v
admits the representation:

+oo 1 _

M = Cι/c+c_ / / W[ψκ ',ψ ']\—-— = — - — \dxdt. (6.6)

-Li L ^|4 J

In the case of several complex double points, each associated with an instability,
one can iterate the Backlund transformations and use those functionals F^ which are
associated with each complex double point to obtain a representation of a Melnikov
Vector.

A geometric interpretation of Melnikov function in the setting of damped driven
perturbations of NLS will be given elsewhere [21, 20]. Here we only emphasize that
the constant F^ is natural for both Melnikov and Morse studies.

7. Conclusion

In this paper we have studied the focusing NLS equation (2.1) under periodic boundary
conditions as a Hamiltonian system for functions q e ^ . This NLS equation is
completely integrable through the spectral transform for the Zakharov-Shabat linear
operator L. We have developed the nonselfadjoint Floquet spectral theory for the
operator L in sufficient generality for later use in studies of perturbations of the NLS
equation.
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Specifically, through Hι counting lemmas we have shown that all eccentricities
due to the nonselfadjointness of L are restricted to lie within a disc D in the complex
eigenvalue plane whose radius is controlled by the H1 norm of q. We then used these
counting lemmas to introduce a natural local ordering of the spectrum and of a basis
of L2 which is constructed from "squared eigenfunctions," each member of which
satisfies the linearized NLS equation. Obstructions to a global ordering for this basis
were discussed which lead to an intriguing monodromy problem. This basis was then
used to associate instabilities with complex multiple points in the spectrum of L.

In this manner, critical spectral configurations were identified. Backhand trans-
formations at these critical spectral configurations were then used to produce global
representations of whiskered tori, together with proofs that the whiskeres are finite
dimensional with estimates for their maximal dimension.

The operator L is not selfadjoint, making its Floquet spectral theory interesting.
That spectral theory is studied through the λ dependence of the Floquet discriminant

Zi CxF^C,

which is an NLS constant of motion for every value of λ. Through Δ we have
introduced a natural sequence of constants of motion,

where Xj denotes the j t h critical point of Δ, as ordered by the counting lemma. This

sequence of constants {F^ } is useful for understanding both the spectrum of L and
its isospectral level sets.

First, we computed the first and second variational derivatives of {F^ } in terms of
squared eigenf unctions. The first variation vanishes at certain critical functions, which
in turn are related to the critical spectral configurations. The Hessian at these critical
functions provides information about the spectrum of L. Specifically, it identifies
allowed bifurcations in the spectrum at critical spectral configurations; thus, these
local calculations identify interesting nonselfadjoint behavior such as crosses and
gaps in the spectrum within the disc D, while confirming that only trivial behavior
occurs outside that disc.

The Hessian also contains topological information about the isospectral level sets
in the function space ^ . The constant F^ , as the height of Δ over the j t h critical
point, admits a natural interpretation as a Morse (or Bott) function. In Sect. 5 we
have investigated this interpretation, showing that it is valid outside the disc D, and
that it works well locally within the disc D. However, there are obstacles to a global
Morse theory within the disc D. These obstacles occur because of the existence of
higher order critical points λj for which Δf/(Xp = 0; they are closely related to
the monodromy problem for the global ordering mentioned above. Examples show
that the resolution of these difficulties will require consideration of several of the
constants simultaneously. Nevertheless, such Morse-like considerations do produce
rather beautiful geometric examples of the behavior of the foliation near critical tori,
as illustrated in the sketches in Sect. 5.

We emphasize, however, that the local bifurcation behavior of both the spectrum
and the level sets, as successfully identified by the sequence of constants {F^ }, is
both adequate and sufficient for use in the analysis of the damped driven perturbation
experiments surveyed in [27]. For example, the "trouser" diagram under even
symmetry as discussed in Sect. 5.2.2 is central to one chaotic response of NLS to
perturbations. Currently a study [17] including movie displays this perturbed chaotic
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behavior on an unperturbed background of "nested trousers." We hope that these

examples will convince others to develop a global Morse description of NLS level

sets.

Finally, we have remarked that the constants F^ are closely related to natural Mel-

nikov functions which can be used for the analysis of perturbations of NLS. Backlund

transformations provide general and explicit representations of these Melnikov func-

tions, representations which converge precisely because the gradients of F^ vanish

at the critical tori. Geometric interpretations of these Melnikov functions for specific

examples in the NLS framework will be presented elsewhere.
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