Superderivations of C^{*}-Algebras Implemented by Symmetric Operators

Edward Kissin
School of Mathematical Sciences, University of North London, 166-220 Holloway Road, London N7 8DB, United Kingdom

Received: 3 March 1993

Abstract

The paper studies unbounded symmetric and dissipative implementations (S, G) of *-superderivations δ of C^{*}-algebras \mathfrak{U}. It associates with them representations π_{S}^{δ} of the domains $D(\delta)$ of δ on the deficiency spaces $N(S)$ of the symmetric operators S. A link is obtained between the deficiency indices $n_{ \pm}(S)$ of S and the dimensions of irreducible representations of \mathfrak{U}. For the case when $(\stackrel{\rightharpoonup}{S}, G)$ is a maximal implementation and $\max \left(n_{ \pm}(S)\right)<\infty$, some conditions are given for the representation π_{s}^{δ} to be semisimple and to extend to a bounded representation of \mathfrak{U}.

1. Introduction

Let \mathfrak{U} be a C^{*}-algebra and ϱ be a ${ }^{*}$-representation of \mathfrak{U} on a Hilbert space \mathfrak{H}. Let δ be a linear closed mapping from a dense ${ }^{*}$-subalgebra $D(\delta)$ of \mathfrak{U} into the algebra $B(\mathfrak{H})$ of all bounded operators on \mathfrak{H} such that, for $A \in D(\delta)$,
(i) $\delta(A B)=\delta(A) \varrho(B)+\varrho(\varphi(A)) \delta(B)$,
(ii) $\delta\left(\varphi(A)^{*}\right)=\delta(A)^{*}$,
where φ is an automorphism of $D(\delta)$. Then δ a closed ${ }^{*}$-superderivation of \mathfrak{U} relative to the pair (ϱ, φ). A pair (S, G), where S is a densely defined closed operator on \mathfrak{H}, S^{*} is its adjoint and G is a bounded operator on \mathfrak{H} such that $G^{-1} \in B(\mathfrak{H})$, implements δ if, for $A \in D(\delta)$,

$$
\begin{gather*}
\varrho(\varphi(A))=G^{-1} \varrho(A) G \tag{1}\\
G D(S)=D(S) \text { and } \quad G D\left(S^{*}\right)=D\left(S^{*}\right) \tag{2}\\
\varrho(A) D(S) \subseteq D(S) \quad \text { and }\left.\quad \delta(A)\right|_{D(S)}=\left.i\left(S \varrho(A)-G^{-1} \varrho(A) G S\right)\right|_{D(S)} \tag{3}
\end{gather*}
$$

If a pair (T, G) also implements δ and T extends S, then (T, G) is a δ-extension of (S, G). If S is symmetric and G is selfadjoint, (S, G) is a symmetric implementation of δ. If (S, G) has no symmetric δ-extensions, it is a maximal symmetric implementation of δ.

Remark. (i) If $\varphi=\mathrm{id}$ and $G=\mathbf{1}_{\mathfrak{H}}$, then δ is a ${ }^{*}$-derivation of \mathfrak{U} into $B(\mathfrak{H})$ relative to ϱ and S is an implementation of δ.
(ii) Changing condition (ii) in the above definition to the condition:

$$
\delta\left(\varphi(A)^{*}\right)=e^{i \pi \lambda} \delta(A)^{*}, \quad A \in D(\delta), \quad 0 \leq \lambda<2
$$

we obtain λ-symmetric superderivations of \mathfrak{U}. If, however, δ is λ-symmetric, then $\tau(A)=e^{-i \pi \lambda / 2} \delta(A)$ is a * -superderivation of \mathfrak{U}. Moreover, if (S, G) implements δ, then $\left(e^{-\imath \pi \lambda / 2} S, G\right)$ implements τ.

Davies and Lindsay [2] introduced 1 -symmetric superderivations δ, i.e.,

$$
\delta\left(\varphi(A)^{*}\right)=e^{i \pi} \delta(S)^{*}=-\delta(A)^{*}, \quad A \in D(\delta)
$$

for the case when $\varrho=\mathrm{id} ., \varphi^{2}=\mathrm{id}$. and $\delta(\varphi(A))=-\varphi(\delta(A))$. By establishing a Dirichlet property for a class of superderivations they were able to apply the theory of non-commutative symmetric Markov semigroups to the construction of dynamical semigroups on \mathbb{Z}_{2}-graded algebras of quantum observables.

This paper studies unbounded symmetric and dissipative implementations of *-superderivations. For derivations this was done in [3-5]. As in the case of derivations, with every symmetric implementation (S, G) of δ we associate a representation π_{S}^{δ} of $D(\delta)$ on the deficiency space $N(S)$ of the symmetric operator S. Making use of the fact that $D(\delta)$ is a Q-subalgebra of \mathfrak{U} [6], Theorem 3 obtains the link between the deficiency indices of S and the dimensions of irreducible finite-dimensional representations of \mathfrak{U}.

The space $N(S)$ has a natural indefinite form which converts it into a Krein space. However, unlike the case of derivations, π_{S}^{δ} is not symmetric with respect to this form. To make up for this shortcoming, three new indefinite forms on $N(S)$ are introduced with respect to which π_{S}^{δ} is symmetric. Although the geometry of $N(S)$ supplied with these forms becomes even more complicated than the geometry of $N(S)$ as a Krein space, they play a crucial role in the proof of the fact that δ always has a maximal symmetric implementation. Theorem 5 also uses them to show that there is a one-to-one correspondence between δ-extensions of (S, G) and invariant subspaces in $N(S)$ neutral with respect to the forms.

It was established in [3] that if δ is a derivation, S is a maximal implementation of δ and $\max \left(n_{ \pm}(S)\right)<\infty$, then the representation π_{S}^{δ} of $D(\delta)$ is semisimple and extends to a bounded representation of \mathfrak{U} on $N(S)$. Under some conditions on the implementations, Theorems 6 and 7 prove this result for the case when δ is a superderivation. Section 4 considers examples of symmetric implementations for which Theorems 6 and 7 hold.

2. Maximal Symmetric Implementations of Superderivations

Let δ be a closed *-superderivation of \mathfrak{U}. The algebra $D(\delta)$ is a Banach *-algebra with respect to the norm $\|A\|_{\delta}=\|A\|+\|\delta(A)\|$. Let (S, G) be a symmetric implementation of δ. Set
$\sigma(A)=G \delta(A), \quad \tau(A)=\delta\left(A^{*}\right)^{*} G \quad$ and $\quad \Delta(A)=\frac{1}{2}(\sigma(A)+\tau(A)), \quad A \in D(\delta)$.
From (1) it follows that σ, τ and Δ are closed derivations of \mathfrak{U}. We also have that

$$
D(\sigma)=D(\tau)=D(\delta), \quad \sigma\left(A^{*}\right)^{*}=\delta\left(A^{*}\right)^{*} G=\tau(A) \quad \text { and } \quad \Delta\left(A^{*}\right)=\Delta(A)^{*}
$$

so that Δ is a ${ }^{*}$-derivation. Set

$$
U=G S, \quad V=S G \quad \text { and } \quad W=\frac{1}{2}(U+V)
$$

Then U and V are closed operators, W is a symmetric but not necessarily a closed operator and

$$
D(U)=D(V)=D(W)=D(S), \quad D\left(U^{*}\right)=D\left(V^{*}\right)=D\left(S^{*}\right) \subseteq D\left(W^{*}\right)
$$

and

$$
U^{*}=S^{*} G, \quad V^{*}=G S^{*},\left.\quad W^{*}\right|_{D\left(S^{*}\right)}=\frac{1}{2}\left(U^{*}+V^{*}\right)
$$

Therefore

$$
\begin{aligned}
\left.\sigma(A)\right|_{D(S)} & =\left.i(V \varrho(A)-\varrho(A) V)\right|_{D(S)} \\
\left.\tau(A)\right|_{D(S)} & =\left.i(U \varrho(A)-\varrho(A) U)\right|_{D(S)} \\
\left.\Delta(A)\right|_{D(S)} & =\left.i(W \varrho(A)-\varrho(A) W)\right|_{D(S)}
\end{aligned}
$$

Since W is symmetric, Δ is closable. From this and from Theorem 5 [6] we obtain the following lemma.
Lemma 1. Let δ be a closed ${ }^{*}$-superderivation of a unital C^{*}-algebra \mathfrak{U}.
(i) The ${ }^{*}$-derivation $\Delta=\sigma+\tau$ is closable and implemented by the symmetric operator W.
(ii) [6] $D(\delta)$ is a Q-subalgebra of \mathfrak{U}, i.e., $\mathbf{1} \in D(\delta)$ and $S p_{\mathfrak{U}}(A)=S p_{D(\delta)}(A)$, $A \in D(\delta)$.

For any operator B on \mathfrak{H} and linear manifold $L \subseteq \mathfrak{H}, B L=\{B x: x \in L\}$.
Lemma 2. Let (S, G) be a symmetric implementation of a closed ${ }^{*}$-superderivation δ of a C^{*}-algebra \mathfrak{U} relative to (ϱ, φ). Then, for $A \in D(\delta)$,

$$
\begin{gathered}
\varrho(A) D\left(S^{*}\right) \subseteq D\left(S^{*}\right),\left.\quad \delta(A)^{*}\right|_{D\left(S^{*}\right)}=\left.i\left(S^{*} G \varrho\left(A^{*}\right) G^{-1}-\varrho\left(A^{*}\right) S^{*}\right)\right|_{D\left(S^{*}\right)}, \\
\left.\delta(A)\right|_{D\left(S^{*}\right)}=\left.i\left(S^{*} \varrho(A)-G^{-1} \varrho(A) G S^{*}\right)\right|_{D\left(S^{*}\right)}
\end{gathered}
$$

Proof Let $x \in D(S)$ and $y \in D\left(S^{*}\right)$. Then, for $A \in D(\delta)$, by (3),

$$
\begin{aligned}
\left(S x, G \varrho\left(A^{*}\right) G^{-1} y\right) & =\left(G^{-1} \varrho(A) G S x, y\right)=((i \delta(A)+S \varrho(A)) x, y) \\
& =\left(x,\left(-i \delta(A)^{*}+\varrho\left(A^{*}\right) S^{*}\right) y\right)
\end{aligned}
$$

Therefore $G \varrho\left(A^{*}\right) G^{-1} D\left(S^{*}\right) \subseteq D\left(S^{*}\right)$ and

$$
\left.\delta(A)^{*}\right|_{D\left(S^{*}\right)}=\left.i\left(S^{*} G \varrho\left(A^{*}\right) G^{-1}-\varrho\left(A^{*}\right) S^{*}\right)\right|_{D\left(S^{*}\right)}
$$

From (1) it follows that

$$
\begin{equation*}
G \varrho\left(A^{*}\right) G^{-1}=\varrho\left(\varphi^{-1}\left(A^{*}\right)\right) \tag{4}
\end{equation*}
$$

Hence, since φ is an automorphism of $D(\delta)$ and $D(\delta)$ is a *-algebra, it follows from (4) that, for all $A \in D(\delta)$,

$$
\varrho(A) D\left(S^{*}\right) \subseteq D\left(S^{*}\right) \quad \text { and }\left.\quad \delta(A)^{*}\right|_{D\left(S^{*}\right)}=\left.i\left(S^{*} \varrho\left(\varphi^{-1}\left(A^{*}\right)\right)-\varrho\left(A^{*}\right) S^{*}\right)\right|_{D\left(S^{*}\right)}
$$

Setting $B=\varphi^{-1}\left(A^{*}\right)$ and making use of (1), we obtain that

$$
\left.\delta\left(\varphi(B)^{*}\right)^{*}\right|_{D\left(S^{*}\right)}=\left.i\left(S^{*} \varrho(B)-G^{-1} \varrho(B) G S^{*}\right)\right|_{D\left(S^{*}\right)}
$$

Since δ is a ${ }^{*}$-superderivation, $\delta\left(\varphi(B)^{*}\right)^{*}=\delta(B)$. Hence

$$
\left.\delta(B)\right|_{D\left(S^{*}\right)}=\left.i\left(S^{*} \varrho(B)-G^{-1} \varrho(B) G S^{*}\right)\right|_{D\left(S^{*}\right)} .
$$

Let (S, G) be a symmetric implementation of a ${ }^{*}$-superderivation δ. Since $D(S)$ and $D\left(S^{*}\right)$ are invariant for all operators $\varrho(A), A \in D(\delta)$, and can be considered as Hilbert spaces (see below), we can define a representation π_{S}^{δ} of $D(\delta)$ on the deficiency space $N(S)$ of S by the formula:

$$
\begin{equation*}
\pi_{S}^{\delta}(A) x=Q \varrho(A) x, \quad x \in N(S), \tag{5}
\end{equation*}
$$

where Q is the orthoprojection on $N(S)$.
The following result is similar to the result of Theorem 3.11(i) [3] about the deficiency indices of symmetric implementations of ${ }^{*}$-derivations.

Theorem 3. Let δ be a ${ }^{*}$-superderivation of a unital C^{*}-algebra \mathfrak{U} and (S, G) be a symmetric implementation of δ If $\max n_{ \pm}(S)<\infty$, then there are irreducible representations $\left\{\varrho_{i}\right\}_{i=1}^{m}$ of \mathfrak{U} such that $n_{+}(S)+n_{-}(S)=\sum_{i=1}^{m} \operatorname{dim} \varrho_{i}$. If \mathfrak{U} has no finite-dimensional representations, then either S is selfadjoint or $\max n_{ \pm}(S)=\infty$.

Proof. Since $\max n_{ \pm}(S)<\infty, N(S)$ is finite-dimensional. Using the standard techniques of linear algebra, we obtain that there is a finite nest $\{0\}=L_{0} \subset$ $L_{1} \subset \ldots \subset L_{m}=N(S)$ of subspaces invariant for π_{s}^{δ} such that the representations π_{i} of the algebra $D(\delta)$ in the quotient subspaces L_{\imath} / L_{i-1} are irreducible and $\operatorname{dim} N(S)=n_{+}(S)+n_{-}(S)=\sum_{i=1}^{m} \operatorname{dim} \pi_{\imath}$. From Lemma 1(ii) it follows that $\mathbf{1} \in D(\delta)$ and that $D(\delta)$ is a Q-subalgebra of \mathfrak{U}. Therefore all π_{i} are non-trivial and it follows from Theorem 2.2 [3] (cf. [6]) that every π_{\imath} extends to an irreducible representation ϱ_{\imath} of \mathfrak{U} on L_{i} / L_{i-1}.
Remark In Lemma 2 and Theorem 3 the conditon (2) was not used.
We shall now consider briefly the link between symmetric implementations of ${ }^{*}$-superderivations of C^{*}-algebras and J-symmetric representations of ${ }^{*}$-algebras on Krein spaces. Let H be a Hilbert space with a scalar product (x, y) and $H=H_{-} \oplus H_{+}$ be an orthogonal decomposition of H. The involution $J=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$ defines an indefinite form $[x, y]=(J x, y)$ on H. With this form H is called a Krein space. Let $k_{d}=\operatorname{dim} H_{d}, d= \pm$. If $k=\min \left(k_{-}, k_{+}\right)<\infty, H$ is called a Π_{k}-space.

A subspace L in H is called neutral if $[x, y]=0, x, y \in L$. The subspace $L^{[\perp]}=\{y \in H:[x, y]=0, x \in L\}$ is called the J-orthogonal complement of L. If L is uniformly definite, i.e., there is $r>0$ such that $|[x, x]| \geq r(x, x)$ for $x \in L$, then H can be decomposed in the direct and J-orthogonal sum

$$
H=L[+] L^{[\perp]} .
$$

A representation π of a ${ }^{*}$-algebra \mathscr{A} on a Krein space H is called

- J-symmetric if $[\pi(A) x, y]=\left[x, \pi\left(A^{*}\right) y\right], x, y \in H, A \in \mathscr{A}$;
- non-degenerate if π has no neutral invariant subspaces.

If a subspace L is invariant for $\pi, L^{[\perp]}$ is also invariant for π.
Let S be a symmetric operator on a Hilbert space \mathfrak{H}. The scalar product

$$
\langle x, y\rangle=(x, y)+\left(S^{*} x, S^{*} y\right), \quad x, y \in D\left(S^{*}\right)
$$

converts $D\left(S^{*}\right)$ into a Hilbert space with the norm

$$
|x|=\left(\|x\|^{2}+\left\|S^{*} x\right\|^{2}\right)^{1 / 2}
$$

and

$$
D\left(S^{*}\right)=D(S)\langle+\rangle N_{+}(S)\langle+\rangle N_{-}(S)
$$

is the orthogonal sum of $D(S)$ and the deficiency spaces

$$
N_{ \pm}(S)=\left\{x \in D\left(S^{*}\right): S^{*} x= \pm i x\right\}
$$

of S. Let $N(S)=N_{+}(S)\langle+\rangle N_{-}(S)$ and let Q be the projection on $N(S)$ and Q_{+}be the projection on $N_{+}(S)$ in $D\left(S^{*}\right)$. Set $J=2 Q_{+}-Q$. Then J is an involution on $N(S)$, i.e., $J^{*}=J$ and $J^{2}=\mathbf{1}_{N(S)}$.

Set

$$
\{x, y\}=i\left(\left(x, S^{*} y\right)-\left(S^{*} x, y\right)\right), \quad x, y \in D\left(S^{*}\right)
$$

Then $\{$,$\} is an indefinite form on D\left(S^{*}\right)$ and

$$
\begin{gather*}
\{x, y\}=\overline{\{y, x\}}, \quad x, y \in D\left(S^{*}\right), \tag{6}\\
\{x, y\}=0 \quad \text { if } x \in D(S) \quad \text { or if } y \in D(S), \tag{7}\\
\{x, y\}=0 \quad \text { if } x \in N_{d}(S) \text { and } y \in N_{-d}(S), \quad d= \pm \tag{8}\\
\{x, y\}=2 d(x, y)=d\langle x, y\rangle \quad \text { if } x, y \in N_{d}(S), \quad d= \pm . \tag{9}
\end{gather*}
$$

We denote the restriction of $\{$,$\} to N(S)$ by [,], i.e.

$$
[x, y]=\{x, y\}, \quad x, y \in N(S)
$$

It follows from (8) and (9) that

$$
\begin{equation*}
[x, y]=\langle J x, y\rangle, \quad x, y \in N(S) \tag{10}
\end{equation*}
$$

so that $N(S)$ is a Krein space and $N(S)=N_{+}(S)+N_{-}(S)$ is the orthogonal and J-orthogonal sum. The numbers $n_{ \pm}(S)=\operatorname{dim} N_{ \pm}(S)$ are the deficiency indices of S. If $k=\min n_{ \pm}(S)<\infty$, then $N(S)$ is a Π_{k}-space.

From (2) we have that $G^{-1} D(S)=D(S)$ and $G^{-1} D\left(S^{*}\right)=D\left(S^{*}\right)$. Set

$$
G_{S}=\left.G\right|_{D\left(S^{*}\right)}
$$

Then $G_{S}^{-1}=\left.G^{-1}\right|_{D\left(S^{*}\right)}$ is the inverse of G_{S}. From (2) it follows that

$$
\begin{equation*}
Q G_{S} Q=Q G_{S} \quad \text { and } \quad Q G_{S}^{-1} Q=Q G_{S}^{-1} \tag{11}
\end{equation*}
$$

We define now new indefinite forms on $D\left(S^{*}\right)$:

$$
\begin{align*}
\{x, y\}_{l} & =\left\{G_{S} x, y\right\}=i\left(\left(G x, S^{*} y\right)-\left(S^{*} G x, y\right)\right) \\
& =i\left(\left(x, V^{*} y\right)-\left(U^{*} x, y\right)\right) \\
\{x, y\}_{r} & =\left\{x, G_{S} y\right\}=i\left(\left(x, S^{*} G y\right)-\left(S^{*} x, G y\right)\right) \\
& =i\left(\left(x, U^{*} y\right)-\left(V^{*} x, y\right)\right) \tag{12}\\
\{x, y\}_{t} & =\frac{1}{2}\left(\{x, y\}_{l}+\{x, y\}_{r}=\frac{1}{2}\left(\left\{G_{S} x, y\right\}+\left\{x, G_{S} y\right\}\right)\right. \\
& =i\left(\left(x, W^{*} y\right)-\left(W^{*} x, y\right)\right)
\end{align*}
$$

Since $G D(S)=D(S)$, it follows from (7) that

$$
\begin{equation*}
\{x, y\}_{l}=\{x, y\}_{r}=\{x, y\}_{t}=0 \quad \text { if } \quad x \in D(S) \quad \text { or if } \quad y \in D(S) \tag{13}
\end{equation*}
$$

From (6) and (12) it follows that

$$
\begin{equation*}
\{y, x\}_{l}=\left\{G_{S} y, x\right\}=\overline{\left\{x, G_{S} y\right\}}=\overline{\{x, y\}_{r}} \quad \text { and } \quad\{y, x\}_{t}=\overline{\{x, y\}_{t}} . \tag{14}
\end{equation*}
$$

Set

$$
F=Q G_{S} Q \quad \text { and } \quad[x, y]_{d}=\{x, y\}_{d}, \quad x, y \in N(S) \quad \text { and } \quad d=l, r, t
$$

Then F is an operator on $N(S)$ and, by (11), $F^{-1}=Q G_{S}^{-1} Q$ is the inverse of F.
For every operator B on $N(S)$ we denote by B^{+}its adjoint with respect to \langle, and B^{J} its J-adjoint:

$$
\begin{equation*}
[B x, y]=\left[x, B^{J} y\right], \quad x, y \in N(S), \quad \text { i.e., } \quad B^{J}=(J B J)^{+}=J B^{+} J \tag{15}
\end{equation*}
$$

since $J^{+}=J$. We have that $\left(B^{J}\right)^{J}=B$.
Lemma 4. (i) The operators G_{S} and G_{S}^{-1} on $D\left(S^{*}\right)$ are bounded with respect to the norm $\mid \boldsymbol{\|}$, so that the operators F and F^{-1} are bounded, and $\left\{G_{s} x, y\right\}_{r}=\left\{x, G_{S} y\right\}_{l}$.
(ii) Set $R=\frac{1}{2}\left(F+F^{J}\right)$. For $x, y \in N(S)$,

$$
\begin{gather*}
{[x, y]_{l}=[F x, y]=\langle J F x, y\rangle, \quad[x, y]_{r}=[x, F y]=\left\langle F^{+} J x, y\right\rangle} \tag{16}\\
{[x, y]_{t}=\frac{1}{2}([F x, y]+[x, F y])=[R x, y]} \tag{17}\\
{[F x, y]_{r}=[x, F y]_{l}, \quad\left[F^{J} x, y\right]_{r}=[x, F y]_{r} ;} \tag{18}\\
{[F x, y]_{l}=\left[x, F^{J} y\right]_{l}, \quad\left[F^{J} x, y\right]_{l}=\left[x, F^{J} y\right]_{r} ;} \tag{19}\\
{[R x, y]_{t}=[x, R y]_{t}, \quad[F x, y]_{t}=[x, R y]_{l}, \quad\left[F^{J} x, y\right]_{t}=[x, R y]_{r} .} \tag{20}
\end{gather*}
$$

The forms $[,]_{l}$ and $[,]_{r}$ are not degenerate on $N(S)$.
(iii) If W is closed and $D\left(W^{*}\right)=D\left(S^{*}\right)$, then the form $[,]_{t}$ is not degenerate on $N(S)$ If, in addition, $\max \left(n_{ \pm}(S)\right)<\infty$, then R has the inverse.
(iv) $\{\varrho(A) x, y\}_{d}=\left\{x, \varrho\left(A^{*}\right) y\right\}_{d}, A \in D(\delta)$ and $x, y \in D\left(S^{*}\right)$, where $d=l, r, t$.
(v) The representation π_{S}^{δ} of $D(\delta)$ on $N(S)$ is symmetric with respect to the forms $[,]_{d}, d=l, r, t$, i.e.,

$$
\left[\pi_{S}^{\delta}(A) x, y\right]_{d}=\left[x, \pi_{S}^{\delta}\left(A^{*}\right) y\right]_{d}, \quad A \in D(\delta), \quad x, y \in N(S)
$$

and bounded: $\left|\pi_{S}^{\delta}(A) x\right|^{2} \leq 2\|G\|\left\|G^{-1}\right\|\|A\|_{\delta}^{2}|x|^{2}$, where $\|A\|_{\delta}=\|A\|+\|\delta(A)\|$. (vi) A subspace in $N(S)$ is neutral with respect to $[,]_{l}$ if and only if it is neutral with respect to $[,]_{r}$. A subspace in $N(S)$ invariant for F and F^{-1}, is neutral with respect to $[$,$] if and only if it is neutral with respect to [,]_{l},\left([,]_{r}\right)$.
Proof. Let $\left|x_{n}\right| \rightarrow 0$ and $\left|y-G_{S} x_{n}\right| \rightarrow 0$. Then $\left\|x_{n}\right\| \rightarrow 0$ and $\left\|y-G x_{n}\right\| \rightarrow 0$. Since G is bounded on $\mathfrak{H}, y=0$. Thus G_{S} is closed with respect to the norm \| |. Since it is defined everywhere on $D\left(S^{*}\right)$, it is bounded. Similarly, G_{S}^{-1} is bounded. By (12), $\left\{G_{S} x, y\right\}_{r}=\left\{G_{S} x, G_{S} y\right\}=\left\{x, G_{S} y\right\}_{l}$. Part (i) is proved.

For $x, y \in N(S),\left(\mathbf{1}_{D\left(S^{*}\right)}-Q\right) G_{S} x \in D(S)$, so that, by (7) and (10), $[x, y]_{l}=\left\{G_{S} x, y\right\}=\left\{Q G_{S} x, y\right\}+\left\{\left(\mathbf{1}_{D\left(S^{*}\right)}-Q\right) G_{S} x, y\right\}=[F x, y]=\langle J F x, y\rangle$.
By (6) and (14),

$$
[x, y]_{r}=\overline{[y, x]_{l}}=\overline{[F y, x]}=[x, F y]=\left\langle F^{+} J x, y\right\rangle .
$$

Therefore (16) and (17) hold and

$$
[F x, y]_{r}=[F x, F y]=[x, F y]_{l}
$$

and

$$
\left[F^{J} x, y\right]_{r}=\left[F^{J} x, F y\right]=\left[x, F^{2} y\right]=[x, F y]_{r},
$$

so that (18) holds. Similarly, one can prove (19). Then (20) follows immediately from (18) and (19).

If $x \in N(S)$ is such that $[x, y]_{l}=0$, for all $y \in N(S)$, then, by (13), $\{x, z\}_{l}=0$ for all $z \in D\left(S^{*}\right)$. Therefore, by (12),

$$
\left(G x, S^{*} z\right)=\left(S^{*} G x, z\right)
$$

so that $G x \in D\left(S^{* *}\right)=D(S)$, since S is closed. Thus $x \in D(S)$. Similarly, if $[y, x]_{l}=0$, for $y \in N(S)$, then, by (13), $\{z, x\}_{l}=0$ for all $z \in D\left(S^{*}\right)$. Hence

$$
\left(G z, S^{*} x\right)=\left(S^{*} G z, x\right)
$$

Since $G D\left(S^{*}\right)=D\left(S^{*}\right), x \in D(S)$. This contradiction shows that $[,]_{l}$ is not degenerate. From this and from (14) it follows that $[,]_{r}$ also is not degenerate. Part (ii) is proved.

If $[,]_{t}$ is degenerate, there is $x \in N(S)$ such that $[x, y]_{t}=[R x, y]=0$, for all $y \in N(S)$. By (12) and (13),

$$
i\left(\left(x, W^{*} z\right)-\left(W^{*} x, z\right)\right)=\{x, z\}_{t}=0 \quad \text { for all } z \in D\left(S^{*}\right)
$$

Thus $\left(x, W^{*} z\right)=\left(W^{*} x, z\right), z \in D\left(S^{*}\right)$. Since $D\left(S^{*}\right)=D\left(W^{*}\right), x \in D\left(W^{* *}\right)$. Since W is closed, $W^{* *}=W$, so that $x \in D(W)=D(S)$ which contradicts the assumption that $x \in N(S)$. Thus [, $]_{t}$ is non-degenerate. If $\operatorname{dim}\left(n_{ \pm}(S)\right)<\infty, N(S)$ is finite-dimensional. If R does not have the inverse, there is $x \in N(S)$ such that $R x=0$, so that $[x, y]_{t}=[R x, y]=0, y \in N(S)$. Since $[,]_{t}$ is non-degenerate, R has the inverse. Part (iii) is proved.

Since $G D\left(S^{*}\right)=D\left(S^{*}\right)$, it follows from Lemma 2 that

$$
\left.S^{*} G \varrho(A)\right|_{D\left(S^{*}\right)}=\left.\left(-i \delta\left(A^{*}\right)^{*} G+\varrho(A) S^{*} G\right)\right|_{D\left(S^{*}\right)}
$$

From this, from (12) and from Lemma 2 we obtain that

$$
\begin{aligned}
\{\varrho(A) x, y\}_{l}= & i\left(\left(G \varrho(A) x, S^{*} y\right)-\left(S^{*} G \varrho(A) x, y\right)\right) \\
= & i\left(\left(G \varrho(A) x, S^{*} y\right)+i\left(\delta\left(A^{*}\right)^{*} G x, y\right)-\left(\varrho(A) S^{*} G x, y\right)\right) \\
= & i\left(\left(G \varrho(A) x, S^{*} y\right)-\left(\varrho(A) S^{*} G x, y\right)+i\left(G x, \delta\left(A^{*}\right) y\right)\right) \\
= & i\left(\left(G \varrho(A) x, S^{*} y\right)-\left(\varrho(A) S^{*} G x, y\right)+\left(G x, S^{*} \varrho\left(A^{*}\right) y\right)\right. \\
& \left.-\left(G x, G^{-1} \varrho\left(A^{*}\right) G S^{*} y\right)\right) \\
= & i\left(\left(G x, S^{*} \varrho\left(A^{*}\right) y\right)-\left(S^{*} G x, \varrho\left(A^{*}\right) y\right)\right)=\left\{x, \varrho\left(A^{*}\right) y\right\}_{l} .
\end{aligned}
$$

By (14),

$$
\{\varrho(A) x, y\}_{r}=\overline{\{y, \varrho(A) x\}_{l}}=\overline{\left\{\varrho\left(A^{*}\right) y, x\right\}_{l}}=\left\{x, \varrho\left(A^{*}\right) y\right\}_{r} .
$$

Thus also $\{\varrho(A) x, y\}_{t}=\left\{x, \varrho\left(A^{*}\right) y\right\}_{t}$. Part (iv) is proved.
By (5), for $x, y \in N(S)$,

$$
\left[\pi_{S}^{\delta}(A) x, y\right]_{l}=\{\varrho(A) x, y\}_{l}-\left\{\left(\mathbf{1}_{D\left(S^{*}\right)}-Q\right) \varrho(A) x, y\right\}_{l} .
$$

Since $\left(\mathbf{1}_{D\left(S^{*}\right)}-Q\right) \varrho(A) x \in D(S)$, it follows from (13) and (iv) that

$$
\begin{aligned}
{\left[\pi_{S}^{\delta}(A) x, y\right]_{l} } & =\{\varrho(A) x, y\}_{l}=\left\{x, \varrho\left(A^{*}\right) y\right\}_{l} \\
& =\left\{x, Q \varrho\left(A^{*}\right) y\right\}_{l}+\left\{x,\left(\mathbf{1}_{D\left(S^{*}\right)}-Q\right) \varrho\left(A^{*}\right) y\right\}_{l}=\left[x, \pi_{S}^{\delta}\left(A^{*}\right) y\right]_{l}
\end{aligned}
$$

Thus π_{S}^{δ} is symmetric with respect to $[,]_{l}$. From (14) it follows that π_{S}^{δ} is also symmetric with respect to $[,]_{r}$ and $[,]_{t}$.

From (10) and Lemma 2(ii) we obtain that

$$
\begin{aligned}
\left|\pi_{S}^{\delta}(A) x\right|^{2} & =|Q \varrho(A) x|^{2} \leq|\varrho(A) x|^{2}=\|\varrho(A) x\|^{2}+\left\|S^{*} \varrho(A) x\right\|^{2} \\
& =\|\varrho(A) x\|^{2}+\left\|\left(-i \delta(A)+G^{-1} \varrho(A) G S^{*}\right) x\right\|^{2} \\
& \leq\|\varrho(A) x\|^{2}+2\|\delta(A) x\|^{2}+2\left\|G^{-1} \varrho(A) G S^{*} x\right\|^{2} \\
& \leq 2\|G\|\left\|G^{-1}\right\|\left(\|\varrho(A)\|^{2}+\|\delta(A)\|^{2}\right)|x|^{2} .
\end{aligned}
$$

Since ϱ is a *-representation, $\|\varrho(A)\| \leq\|A\|$. Part (v) is proved.
From (14) it follows that $[x, y]_{l}=0$ for all $x, y \in L \subset N(S)$ if and only if $[x, y]_{r}=0$ for $x, y \in L$. Let L be a subspace in $N(S)$ neutral with respect to [,] and invariant for F and F^{-1}. By (16), for $x, y \in L,[x, y]_{l}=[F x, y]=0$, since $F x \in L$. Conversely, if L is neutral with respect to $[,]_{l}$, then, for $x, y \in L$, $[x, y]=\left[F^{-1} x, y\right]_{l}=0$, since $F^{-1} x \in L$.

The following theorem extends some results about ${ }^{*}$-derivations of C^{*}-algebras (see Theorems 3.6 and 3.7 [3]), to the case of ${ }^{*}$-superderivations. It establishes a link between symmetric δ-extensions of a symmetric implementation (S, G) of a *-superderivation δ and neutral invariant subspaces in $N(S)$ and proves the existence of a maximal symmetric implementation of δ.
Theorem 5. Let (S, G) be a symmetric implementation of a closed ${ }^{*}$-superderivation δ relative to (ϱ, φ).
(i) There is a one-to-one correspondence between closed symmetric δ-extensions of (S, G) and subspaces L in $N(S)$ neutral with respect to $[,]_{l}\left([,]_{r}\right)$, invariant for π_{S}^{δ} and such that $F L=L$ and $F^{J} L=L$.
(ii) There is a maximal symmetric implementation (T, G) of δ such that T extends S.
(iii) If (S, G) is a maximal symmetric implementation of $\delta, N(S)$ has no subspaces L neutral with respect to $[,]_{l}\left([,]_{r}\right)$, invariant for π_{S}^{δ} and such that $F L=L$ and $F^{J} L=L$.

Proof. There is a one-to-one correspondence (see [1]) between closed symmetric extensions T of the operator S and subspaces $M, D(S) \subset M \subset D\left(S^{*}\right)$, neutral with respect to $\{\}:, M(T)=D(T)$ and $T(M)=\left.S^{*}\right|_{M}$. Since $D\left(S^{*}\right)$ is a Hilbert space, $D(T)=D(S)\langle+\rangle L(T)$, where $L(T) \subseteq N(S)$ and $L(T)$ is neutral with respect to [,]. From Lemma 15 [1] it follows that

$$
D\left(T^{*}\right)=D(S)\langle+\rangle L(T)^{[\perp]}
$$

where $L(T)^{[\perp]}$ is the J-orthogonal complement of $L(T)$ in $N(S)$ with respect to [,].
If (T, G) implements δ, it follows from (2) that $G D(T)=D(T)$ and $G D\left(T^{*}\right)=$ $D\left(T^{*}\right)$. By (11),

$$
F L(T)=Q G_{S} Q D(T)=Q G D(T)=Q D(T)=L(T)
$$

Hence $F^{-1} L(T)=L(T)$. By Lemma $4(\mathrm{vi}), L(T)$ is neutral with respect to $[,]_{l}$.

Similarly, we obtain from (11) that

$$
F\left(L(T)^{[\perp]}\right)=L(T)^{[\perp]} \quad \text { and } \quad F^{-1}\left(L(T)^{[\perp]}\right)=L(T)^{[\perp]}
$$

Let $x \in L(T)$ and $y \in L(T)^{[\perp]}$. Then $F y \in L(T)^{[\perp]}$ and, by (15), $0=[x, F y]=$ [$\left.F^{J} x, y\right]$. Therefore, $F^{J} x \in\left(L(T)^{[\perp]}\right)^{[\perp]}=L(T)$ (see [7, Lemma 2.1]). Hence $F^{J} L(T) \subseteq L(T)$. Similarly, $\left(F^{-1}\right)^{J} L(T) \subseteq L(T)$. Since $\left(F^{J}\right)^{-1}=\left(F^{-1}\right)^{J}$, we obtain that $F^{J} L(T)=L(T)$. We also have that $\varrho(A) D(T) \subseteq D(T), A \in D(\delta)$. Hence from (3) and (5) it follows that $L(T)$ is invariant for π_{S}^{δ}.

Conversely, let L be a subspace in $N(S)$ neutral with respect to $[,]_{l}$, invariant for π_{S}^{δ} and such that $F L=L=F^{J} L$. Then $F^{-1} L=L$. By Lemma 4(vi), L is neutral with respect to [,]. Set $M=D(S)+L$. By (7), M is a subspace in $D\left(S^{*}\right)$ neutral with respect to $\{$,$\} . Hence T=\left.S^{*}\right|_{M}$ is symmetric,
$\varrho(A) D(T) \subseteq D(T), A \in D(\delta), \quad$ and $G D(T)=G M=D(S)+F L=M=D(T)$.
Since $F^{J} L=L,\left(F^{J}\right)^{-1} L=L$ and, for $x \in L, y \in L^{[\perp]}$, it follows from (15) that

$$
0=\left[F^{J} x, y\right]=[x, F y]
$$

Hence $F y \in L^{[\perp]}$, so that $F L^{[\perp]} \subseteq L^{[\perp]}$. Similarly, $F^{-1} L^{[\perp]} \subseteq L^{[\perp]}$. Therefore $F L^{[\perp]}=L^{[\perp]}$. Thus $G D\left(T^{*}\right)=D\left(T^{*}\right)$.

From Lemma 2 it follows that

$$
\left.\delta(A)\right|_{D(T)}=\left.i\left(S^{*} \varrho(A)-G^{-1} \varrho(A) G S^{*}\right)\right|_{D(T)}=\left.i\left(T \varrho(A)-G^{-1} \varrho(A) G T\right)\right|_{D(T)}
$$

so that the pair (T, G) implements δ. Part (ii) is proved.
Let $\left\{L_{\alpha}\right\}$ be a set of subspaces in $N(S)$ neutral with respect to [,] $]_{l}$, invariant for π_{S}^{δ}, ordered by inclusion and such that $F L_{\alpha}=L_{\alpha}=F^{J} L_{\alpha}$. Let $L=\overline{\bigcup L_{\alpha}}$. By Lemma 4, the operators F, F^{-1}, and $\pi_{S}^{\delta}(A), A \in D(\delta)$, are bounded on $N(S)$ with respect to \| \| Hence L is invariant for π_{S}^{δ} and $F L=L=F^{J} L$. From Lemma 4 it also follows that $\left|[x, y]_{l}\right| \leq\left|G_{S}\right||x||y|, x, y \in N(S)$. Therefore L is neutral with respect to $[,]_{l}$. Hence by Zorn's theorem, there exists a maximal subspace L_{0} in $N(S)$ neutral with respect to $[,]_{l}$, invariant for π_{S}^{δ} and such that $F L=L=F^{J} L$. Thus, by (i), the corresponding pair (T, G) is a maximal symmetric implementation of δ such that T extends S. Part (ii) is proved. Part (iii) follows immediately from (i).

3. Extensions of π_{S}^{δ} to Representations of the C^{*}-Algebra \mathfrak{U}

If δ is a *-derivation of \mathfrak{U}, S is a maximal implementation of δ and $\max \left(n_{ \pm}(S)\right)<\infty$, then π_{S}^{δ} is a non-degenerate representation of $D(\delta)$ on a finite-dimensional space $N(S)$. It was proved in [3] that π_{S}^{δ} is semisimple and extends to a bounded representation of \mathfrak{U}. Theorems 6 and 7 prove this result for some maximal symmetric implementations of ${ }^{*}$-superderivations.

Theorem 6. Let \mathfrak{U} be a unital C^{*}-algebra and the operator $R=\frac{1}{2}\left(F+F^{J}\right)$ have a bounded inverse on $N(S)$.
(i) There are a new scalar product (,), and a new involution I on $N(S)$ such that the norm $\left\|\|_{1}=(,)_{1}^{1 / 2}\right.$ is equivalent to the norm \mid on $N(S)$ and that $[x, y]_{t}=(I x, y)_{1}$. Thus $N(S)$ is a Krein space with respect to $(,)_{1}$ and $[,]_{t}$.
(ii) If (S, G) is a maximal symmetric implementation of δ and $\max \left(n_{ \pm}(S)\right)<\infty$, then π_{S}^{δ} is semisimple, bounded and extends to a bounded representation of \mathfrak{U} on $N(S)$ which is symmetric with respect to $[,]_{d}, d=l, r, t$

Proof. The operator $J R=\frac{1}{2}\left(J F+F^{+} J\right)$ is selfadjoint on $N(S)$ and, by (10) and (17), $[x, y]_{t}=[R x, y]=\langle J R x, y\rangle$. If R has a bounded inverse, $J R$ also has a bounded inverse and part (i) follows from [7].

Let K be a subspace in $N(S)$ invariant for π_{S}^{δ}, F and F^{J}. Since F and F^{J} have inverses and since $N(S)$ is finite-dimensional, $F K=K=F^{J} K$. Set

$$
M=K^{[\perp]_{t}}=\left\{y \in N(S):[x, y]_{t}=0, \text { for all } x \in K\right\}
$$

By Lemma 4(v), M is invariant for π_{S}^{δ}. We claim that

$$
\begin{equation*}
F M=M=F^{J} M, \quad K \cap M=\{0\} \quad \text { and } \quad N(S)=K[+]_{t} M . \tag{21}
\end{equation*}
$$

From (20) it follows that

$$
\begin{equation*}
[x, R y]_{l}=[F x, y]_{l}=0 \quad \text { and } \quad[x, R y]_{r}=\left[F^{J} x, y\right]_{t}=0, \quad x \in K, y \in M \tag{22}
\end{equation*}
$$

Therefore $[x, R y]_{t}=0$. Hence $R M \subseteq M$. Since R has a bounded inverse and M is finite-dimensional, $R M=M$. Therefore, by (22),

$$
\begin{equation*}
[x, y]_{l}=[x, y]_{r}=0, \quad x \in K, y \in M \tag{23}
\end{equation*}
$$

Since $F K=K=F^{J} K$, from (18) and (19) it follows that

$$
[x, F y]_{l}=[x, F y]_{r}=\left[x, F^{J} y\right]_{l}=\left[x, F^{J} y\right]_{r}=0
$$

Hence, by (12),

$$
[x, F y]_{t}=\left[x, F^{J} y\right]_{t}=0, \quad x \in K, y \in M
$$

so that $F M \subseteq M$ and $F^{J} M \subseteq M$. Therefore $F M=M$ and $F^{J} M=M$.
The subspace $P=K \cap M$ is invariant for $\pi_{S}^{\delta}, F P=P=F^{J} P$ and, by (23), it is neutral with respect to $[,]_{l}$. Since (S, G) is a maximal symmetric implementation of δ, it follows from Theorem 5(iii) that $P=\{0\}$. By (17),

$$
\begin{aligned}
M & =\left\{y \in N(S):[x, y]_{t}=[R x, y]=\langle J R x, y\rangle=\left\langle x, R^{+} J y\right\rangle=0, x \in K\right\} \\
& =\left(R^{+} J\right)^{-1} K^{\perp}
\end{aligned}
$$

where K^{\perp} is the orthogonal complement of K with respect to \langle,$\rangle . Hence \operatorname{dim} M=$ $\operatorname{dim} K^{\perp}$, so that $K[+]_{t} M=N(S)$. Thus (21) is proved.

From (21) it follows that $N(S)$ can be decomposed in the direct sum

$$
\begin{equation*}
N(S)=\sum_{\imath=1}^{m}[+]_{t} K_{\imath} \tag{24}
\end{equation*}
$$

of subspaces K_{i} invariant for π_{S}^{δ}, for F and F^{J}, orthogonal with respect to [, $]_{t}$ and such that they have no subspaces invariant for π_{S}^{δ}, F and F^{J}.

Let Γ be the group of operators on $N(S)$ generated by F and F^{J}. We have that $Q \varrho(A) Q=Q \varrho(A), A \in D(\delta)$. From this and from (1), (5) and (11) it follows that

$$
\begin{align*}
F^{-1} \pi_{S}^{\delta}(A) F & =Q G_{S}^{-1} Q \varrho(A) Q G_{S} Q \\
& =Q G^{-1} \varrho(A) G Q=Q \varrho(\varphi(A)) Q=\pi_{S}^{\delta}(\varphi(A)) \tag{25}
\end{align*}
$$

From (15), (16) and Lemma 4(iv) we have that

$$
\begin{aligned}
{\left[\pi_{S}^{\delta}(A) x, y\right]_{l} } & =\left[F \pi_{S}^{\delta}(A) x, y\right]=\left[x,\left(\pi_{S}^{\delta}(A)\right)^{J} F^{J} y\right] \\
& =\left[x, \pi_{S}^{\delta}\left(A^{*}\right) y\right]_{l}=\left[F x, \pi_{S}^{\delta}\left(A^{*}\right) y\right]=\left[x, F^{J} \pi_{S}^{\delta}\left(A^{*}\right) y\right]
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\pi_{S}^{\delta}(A) x, y\right]_{r} } & =\left[\pi_{S}^{\delta}(A) x, F y\right]=\left[x,\left(\pi_{S}^{\delta}(A)\right)^{J} F y\right] \\
& =\left[x, \pi_{S}^{\delta}\left(A^{*}\right) y\right]_{r}=\left[x, F \pi_{S}^{\delta}\left(A^{*}\right) y\right]
\end{aligned}
$$

Since the form [,] is not degenerate on $N(S)$,

$$
\left(\pi_{S}^{\delta}(A)\right)^{J} F^{J}=F^{J} \pi_{S}^{\delta}\left(A^{*}\right) \quad \text { and } \quad\left(\pi_{S}^{\delta}(A)\right)^{J} F=F \pi_{S}^{\delta}\left(A^{*}\right)
$$

Thus $F^{J} \pi_{S}^{\delta}\left(A^{*}\right)\left(F^{J}\right)^{-1}=F \pi_{S}^{\delta}\left(A^{*}\right) F^{-1}$ and from (25) we conclude that

$$
\begin{equation*}
F^{J} \pi_{S}^{\delta}(A)\left(F^{J}\right)^{-1}=\pi_{S}^{\delta}\left(\varphi^{-1}(A)\right) \tag{26}
\end{equation*}
$$

Let $B=F^{m_{1}}\left(F^{J}\right)^{p_{1}} \ldots F^{m_{n}}\left(F^{J}\right)^{p_{n}} \in \Gamma, m_{i}, p_{i} \in \mathbb{Z} . \operatorname{Set} \operatorname{deg}(B)=\sum_{i=1}^{n}\left(m_{\imath}+p_{i}\right)$. From (25) and (26) it follows that

$$
\begin{equation*}
B^{-1} \pi_{S}^{\delta}(A) B=\pi_{S}^{\delta}\left(\varphi^{\operatorname{deg}(B)}(A)\right) \tag{27}
\end{equation*}
$$

Let $K=K_{i}$ be a subspace in decomposition (24). Since \mathfrak{U} is unital, $\mathbf{1} \in D(\delta)$, by Lemma 1. Therefore there is a subspace L in K invariant for π_{S}^{δ} such that the restriction π_{L} of π_{S}^{δ} to L is irreducible and non-trivial. The subspace K is invariant for all $B \in \Gamma$. Hence $B L \subseteq K$ and it follows from (27) that $B L$ is invariant for π_{S}^{δ} and the restriction of π_{S}^{δ} to $B L$ is irreducible. Therefore if M is a subspace in K invariant for π_{S}^{δ}, then either $M \cap B L=\{0\}$ or $B L \subseteq M$. From this and from the fact that K is finite-dimensional and has no subspace invariant for π_{S}^{δ}, for F and F^{J} it follows that there are $B_{j} \in \Gamma, j=1, \ldots, q$, such that K is the direct sum of the subspaces $B_{j} L: K=B_{1} L+B_{2} L+\ldots+B_{n} L$. From this and from (24) we conclude that π_{S}^{δ} decomposes in the direct sum of irreducible representations of the algebra $D(\delta)$. Hence π_{S}^{δ} is a semisimple representation. Since, by Lemma $1, D(\delta)$ is a Q-subalgebra of \mathfrak{U}, it follows from Theorem 6 [6] that π_{S}^{δ} is bounded with respect to the norm on \mathfrak{U} and extends to a bounded representation ψ of \mathfrak{U} on $N(S)$. Since π_{S}^{δ} is symmetric with respect to $[,]_{d}, d=l, r, t, \psi$ is also symmetric.

In Theorem 6 we assumed that the operator R has a bounded inverse on $N(S)$. Now we assume that $R=0$, i.e., $F^{J}=-F$. Then, by (16) and (17),

$$
\begin{equation*}
[x, y]_{r}=-[x, y]_{l} \quad \text { and } \quad[x, y]_{t} \equiv 0 \tag{28}
\end{equation*}
$$

Set $\llbracket x, y \rrbracket=i[x, y]_{l}$ and $R_{1}=i F$. Then, by (14),

$$
\llbracket y, x \rrbracket=i[y, x]_{l}=-i[y, x]_{r}=-i \overline{[x, y]_{l}}=\overline{\llbracket x, y \rrbracket},
$$

and, by (18) and (28),

$$
\begin{equation*}
\llbracket R_{1} x, y \rrbracket=-[F x, y]_{l}=[F x, y]_{r}=[x, F y]_{l}=\llbracket x, R_{1} y \rrbracket . \tag{29}
\end{equation*}
$$

Since $R=\frac{1}{2}\left(F+F^{J}\right)=0$, the proof of Theorem 6 obviously fails. However, the following theorem holds which replaces Theorem 6.
Theorem 7. Let \mathfrak{U} be a unital C^{*}-algebra and let $F^{J}=-F$.
（i）There are a new scalar product $(,)_{1}$ and a new involution I on $N(S)$ such that the norm $\left\|\|_{1}=(,)_{1}^{1 / 2}\right.$ is equivalent to the norm \mid on $N(S)$ and that $\llbracket x, y \rrbracket=(I x, y)_{1}$ ． Thus $N(S)$ is a Krein space with respect to $(,)_{1}$ and \mathbb{I} ，】］．
（ii）If (S, G) is a maximal symmetric implementation of δ and $\max \left(n_{ \pm}(S)\right)<\infty$ ，then π_{S}^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} on $N(S)$ which is symmetric with respect to $[\llbracket, \rrbracket$ ．
Proof．Since $F^{J}=-F, R_{1}^{J}=R_{1}$ ．Hence $R_{1}^{+} J=J R_{1}$ ．It follows from（16）that

$$
\llbracket x, y \rrbracket=\left[R_{1} x, y\right]=\left\langle J R_{1} x, y\right\rangle .
$$

The operator $J R_{1}$ is selfadjoint and has a bounded inverse，since F has a bounded inverse．Thus part（i）follows from［7］．

Let K be a subspace in $N(S)$ invariant for π_{S}^{δ} and R_{1} ．Since R_{1} has a bounded inverse and since $N(S)$ is finite－dimensional，$R_{1} K=K$ ．Set

$$
M=\{y \in N(S): \llbracket x, y \rrbracket=0, \text { for all } x \in K\}
$$

By Lemma 4（v）and by（29），M is invariant for π_{S}^{δ} and R_{1} ．Therefore $K \cap M$ is invariant for π_{S}^{δ} and for R_{1} and is neutral with respect to 【I，】．It follows from Theorem 5（iv）that $K \cap M=\{0\}$ ．In the same way as in Theorem 6 we obtain that $\operatorname{dim} M=\operatorname{dim} K^{\perp}$ ，so that

$$
N(S)=K \llbracket+\rrbracket M
$$

Making use of the above formula and repeating the argument of Theorem 6，we conclude the proof of the theorem．

Recall that an operator T is called dissipative if

$$
(T x, x)+(x, T x) \leq 0, \quad x \in D(T)
$$

and maximal dissipative if it is dissipative but not a proper restriction of any other dissipative operator．

If S is a maximal symmetric implementation of a ${ }^{*}$－derivation σ and $\max \left(n_{ \pm}(S)\right)<\infty$ ，the representation π_{S}^{σ} of $D(\sigma)$ on $N(S)$ is non－degenerate with respect to［，］and，hence，semisimple and extends to a bounded J－symmetric rep－ resentation of the C^{*}－algebra \mathfrak{U}［3］．From this it follows（see Theorem 3.2 ［5］）that there exist disjoint sets of irreducible ${ }^{*}$－representations $\left\{\pi_{i}\right\}_{i=1}^{p}$ and $\left\{\varrho_{j}\right\}_{j=1}^{m}$ of \mathfrak{U} such that

$$
n_{-}(S)=\sum_{i=1}^{p} \operatorname{dim} \pi_{i} \quad \text { and } \quad n_{+}(S)=\sum_{j=1}^{m} \operatorname{dim} \varrho_{j} .
$$

This fact was also used in Theorem 3.2 ［4］to prove that there exist operators T_{j} ， $j=1,2$ ，such that $T_{1}^{*}=T_{2}$ ，that $S \subseteq T_{j} \subseteq S^{*}$ ，that $i T_{1}$ and $-i T_{2}$ are maximal dissipative operators and that T_{j} implement σ ，i．e．，

$$
A D\left(T_{j}\right) \subseteq D\left(T_{j}\right) \quad \text { and }\left.\quad \sigma(A)\right|_{D\left(T_{j}\right)}=\left.i\left(T_{j} A-A T_{\jmath}\right)\right|_{D\left(T_{j}\right)}, \quad A \in D(\sigma)
$$

Let (S, G) be a maximal symmetric implementation of a ${ }^{*}$－superderivation δ of a unital C^{*}－algebra \mathfrak{U} and $\max \left(n_{ \pm}(S)\right)<\infty$ ．If $W=\frac{1}{2}(G S+S G)$ is a closed operator and $D\left(W^{*}\right)=D\left(S^{*}\right)$ ，it follows from Lemma 4（iii）that the operator $R=\frac{1}{2}\left(F+F^{J}\right)$ has a bounded inverse．Although the representation π_{S}^{δ} may be degenerate with respect
to $[,]_{d}, d=l, r, t$, nevertheless it follows from Theorem 6 that π_{S}^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} on $N(S)$ symmetric with respect to $[,]_{t}$. Similarly, if $F^{J}=-F$, i.e., $R=0$, it follows from Theorem 7 that π_{S}^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} on $N(S)$ symmetric with respect to \llbracket, \rrbracket. The operator $J R=\frac{1}{2}\left(J F+F^{+} J\right)$ in the first case and the operator $J R_{1}=i J F$ in the second case are selfadjoint on $N(S)$ and invertible. Let N_{-}and N_{+}be the subspaces in $N(S)$ generated by all eigenvectors of $J R$ (resp. $J R_{1}$) which correspond respectively to negative and positive eigenvalues. Set $m_{ \pm}=\operatorname{dim}\left(N_{ \pm}\right)$. Then $m_{-}+m_{+}=\operatorname{dim} N(S)$. Using the same argument as in Theorems 3.2 [5] and 3.2 [4] we obtain the following corollary which refines the result of Theorem 3.

Corollary 8. Let (S, G) be a maximal symmetric implementation of δ and $\max \left(n_{ \pm}(S)\right)<\infty$.
(i) If $W=\frac{1}{2}(G S+S G)$ is a closed operator and $D\left(W^{*}\right)=D\left(S^{*}\right)$, then
(a) there exist disjoint sets of irreducible ${ }^{*}$-representations $\left\{\pi_{i}\right\}_{i=1}^{p}$ and $\left\{\varrho_{j}\right\}_{j=1}^{m}$ of \mathfrak{U} such that $m_{-}=\sum_{i=1}^{p} \operatorname{dim} \pi_{i}$ and $m_{+}=\sum_{j=1}^{m} \operatorname{dim} \varrho_{j}$,
(b) there exist operators $T_{j}, j=1,2$, such that $T_{1}^{*}=T_{2}$, that $W \subseteq T_{j} \subseteq W^{*}$, that $i T_{1}$ and $-i T_{2}$ are maximal dissipative operators and that T_{j} implement the ${ }^{*}$. derivation Δ associated with δ, i.e.,

$$
A D\left(T_{j}\right) \subseteq D\left(T_{j}\right) \quad \text { and }\left.\quad \Delta(A)\right|_{D\left(T_{j}\right)}=\left.i\left(T_{j} A-A T_{j}\right)\right|_{D\left(T_{j}\right)}, \quad A \in D(\Delta)
$$

(ii) If $F^{J}=-F$, then (i) (a) holds.

4. Special Type of Symmetric Implementations of Superderivations

In this section we consider examples of symmetric implementations (S, G) which satisfy Theorems 6 and 7 . Assume that there are $\lambda, \mu \in \mathbb{C}$ such that the operator

$$
\begin{equation*}
\left.B\right|_{D(S)}=\left.(S G-\lambda G S-\mu S)\right|_{D(S)} \tag{30}
\end{equation*}
$$

is bounded. Set $\nu=-\frac{\mu}{1+\lambda}$ if $\lambda \neq-1$.
Lemma 9. (i) Let $(\lambda, \mu) \neq(-1,0)$ and let $\nu \notin S p G$ and $\left(G-\bar{\nu} \mathbf{1}_{\mathfrak{H}}\right) D\left(S^{*}\right)=D\left(S^{*}\right)$ (for example, $\mu=0)$. Then the operator $W=\frac{1}{2}(G S+S G)$ is closed and $D\left(W^{*}\right)=D\left(S^{*}\right)$, so that the form $[,]_{t}$ on $N(S)$ is non-degenerate. If, in addition, (S, G) is a maximal implementation of δ and $\max \left(n_{ \pm}(S)\right)<\infty$, then the operator $R=\frac{1}{2}\left(F+F^{J}\right)$ has a bounded inverse and Theorem 6(ii) and Corollary 8(i) hold.
(ii) The following are equivalent \cdot a) $|\lambda|=1$, b) $\mu+\lambda \bar{\mu}=0$.
(iii) If $|\lambda|=1$, then

$$
\begin{gather*}
B^{*}=-\bar{\lambda} B,\left.\quad B\right|_{D\left(S^{*}\right)}=\left.\left(S^{*} G-\lambda G S^{*}-\mu S^{*}\right)\right|_{D\left(S^{*}\right)} \\
\nu \notin S p G, \quad[x, y]_{l}=\lambda[x, y]_{r}+\mu[x, y], \quad \text { and } \quad F^{J}=\bar{\lambda} F+\bar{\mu} \mathbf{1}_{N(S)} \tag{31}
\end{gather*}
$$

(iv) [3] If $|\lambda|=1, \mu=0$ and $B=\nu G, \nu \in \mathbb{C}$, and if $(\lambda, \nu) \neq(1,0)$, then $n_{-}(S)=n_{+}(S)$.

Proof. Let $\lambda \neq-1$. By (30),

$$
W=\frac{1}{2}(G S+S G)=\frac{1+\lambda}{2} G S+\frac{\mu}{2} S+\frac{1}{2} B=\frac{1+\lambda}{2}\left(G-\nu \mathbf{1}_{\mathfrak{H}}\right) S+\frac{1}{2} B
$$

Since $G-\nu \mathbf{1}_{\mathfrak{H}}$ has the inverse and S is closed, we have that W is closed and $D(W)=D(S)$. Let $y \in D\left(W^{*}\right)$. Then for $x \in D(S)$,

$$
(W x, y)=\left(x, W^{*} y\right)=\frac{1+\lambda}{2}\left(S x,\left(G-\bar{\nu} \mathbf{1}_{\mathfrak{H}}\right) y\right)+\frac{1}{2}\left(x, B^{*} y\right) .
$$

Hence $\left(G-\bar{\nu} \mathbf{1}_{\mathfrak{F}}\right) y \in D\left(S^{*}\right)$. Since $\left(G-\bar{\nu} \mathbf{1}_{\mathfrak{H}}\right) D\left(S^{*}\right)=D\left(S^{*}\right)$, there is $z \in D\left(S^{*}\right)$ such that $\left(G-\bar{\nu} \mathbf{1}_{\mathfrak{H}}\right) y=\left(G-\bar{\nu} \mathbf{1}_{\mathfrak{H}}\right) z$. Since G is selfadjoint and $G-\nu \mathbf{1}_{\mathfrak{H}}$ is invertible. $G-\bar{\nu} \mathbf{1}_{\mathfrak{H}}$ also has a bounded inverse. Hence $y=z \in D\left(S^{*}\right)$. Thus $D\left(W^{*}\right)=D\left(S^{*}\right)$.

If now $\lambda=-1$ and $\mu \neq 0$, then $W=\frac{\mu}{2} S+\frac{1}{2} B$ is closed, $W^{*}=\frac{\bar{\mu}}{2} S^{*}+\frac{1}{2} B$ and $D\left(W^{*}\right)=D\left(S^{*}\right)$. It follows from Lemma 4(iii) that in both cases, $\lambda \neq-1$ and $\lambda=-1, \mu \neq 0$, the form [$]_{t}$ is non-degenerate. If $\max \left(n_{ \pm}(S)\right)<\infty$, then, by Lemma 4(iii), the operator R has a bounded inverse. Thus Theorem 6(ii) and Corollary 8(i) hold. Part (i) is proved.

Let $x \in D(S)$ and $y \in D\left(S^{*}\right)$. By (30),

$$
\begin{aligned}
\lambda(S x, G y) & =(\lambda G S x, y)=(S G x, y)-((B+\mu S) x, y) \\
& =\left(x,\left(G S^{*}-B^{*}-\bar{\mu} S^{*}\right) y\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left.B^{*}\right|_{D\left(S^{*}\right)}=\left.\left(G S^{*}-\bar{\lambda} S^{*} G-\bar{\mu} S^{*}\right)\right|_{D\left(S^{*}\right)} \tag{32}
\end{equation*}
$$

Restricting (32) to $D(S)$, we obtain that $\left.B^{*}\right|_{D(S)}=\left.(G S-\bar{\lambda} S G-\bar{\mu} S)\right|_{D(S)}$. Hence

$$
\begin{equation*}
\left.\left(B+\lambda B^{*}\right)\right|_{D(S)}=\left.\left(\left(1-|\lambda|^{2}\right) S G-(\mu+\lambda \bar{\mu}) S\right)\right|_{D(S)} \tag{33}
\end{equation*}
$$

If $|\lambda|=1$, then, since $B+\lambda B^{*}$ is bounded, $(\mu+\lambda \bar{\mu}) S$ is bounded. Since S is unbounded, $(\mu+\lambda \bar{\mu})=0$. Conversely, if $\mu+\lambda \bar{\mu}=0,\left(1-|\lambda|^{2}\right) S G$ is bounded. If $\lambda \neq 1, S G$ is bounded. Since $G D(S)=D(S), S$ is bounded. This contradiction shows that $|\lambda|=1$. Part (ii) is proved.

If $|\lambda|=1$, it follows from (33) that $B+\lambda B^{*}=0$. Hence $B^{*}=-\bar{\lambda} B$. From this, from (ii) and from (32) it follows that

$$
\begin{aligned}
\left.B\right|_{D\left(S^{*}\right)} & =-\left.\lambda B^{*}\right|_{D\left(S^{*}\right)}=\left.\left(S^{*} G-\lambda G S^{*}+\lambda \bar{\mu} S^{*}\right)\right|_{D\left(S^{*}\right)} \\
& =\left.\left(S^{*} G-\lambda G S^{*}-\mu S^{*}\right)\right|_{D\left(S^{*}\right)}
\end{aligned}
$$

Let $\lambda \neq-1$. If $\mu=0$, then $\nu=0$ and, since G has a bounded inverse, $\nu \notin S p G$. If $\mu \neq 0$, it follows from (ii) that $\lambda=-\mu / \bar{\mu}$, so that $\operatorname{Im} \mu \neq 0$. Then $\nu=i|\mu|^{2} / 2 \operatorname{Im}(\mu)$. Since G is selfadjoint, $\nu \notin S p G$.

By (31), $U^{*}=S^{*} G=\lambda G S^{*}+\mu S^{*}+B=\lambda V^{*}+\mu S^{*}+B$. Since $B^{*}=-\bar{\lambda} B$, it follows from (12) and from (ii) that

$$
\begin{aligned}
\{x, y\}_{l} & =i\left(\left(x, V^{*} y\right)-\left(U^{*} x, y\right)\right) \\
& =i\left(\left(x, V^{*} y\right)-\left(\lambda V^{*} x, y\right)-(B x, y)-\left(\mu S^{*} x, y\right)\right) \\
& =\lambda i\left(\bar{\lambda}\left(x, V^{*} y\right)-\left(V^{*} x, y\right)+(x, B y)\right)-i \mu\left(S^{*} x, y\right) \\
& =\lambda i\left(\left(x,\left(\lambda V^{*}+B+\mu S^{*}\right) y\right)-\left(V^{*} x, y\right)\right)-\lambda \bar{\mu} i\left(x, S^{*} y\right)-\mu i\left(S^{*} x, y\right) \\
& =\lambda i\left(\left(x, U^{*} y\right)-\left(V^{*} x, y\right)+\mu i\left(\left(x, S^{*} y\right)-\left(S^{*} x, y\right)\right)\right. \\
& =\lambda\{x, y\}_{r}+\mu\{x, y\}
\end{aligned}
$$

Therefore $[x, y]_{l}=\lambda[x, y]_{r}+\mu[x, y]$ and it follows from (16) that

$$
[x, y]_{l}=\langle J F x, y\rangle=\lambda[x, y]_{r}+\mu[x, y]=\lambda\left\langle F^{+} J x, y\right\rangle+\mu\langle J x, y\rangle
$$

Thus $J F=\lambda F^{+} J+\mu J$, so that $F^{J}=J F^{+} J=\bar{\lambda} F+\bar{\mu} \mathbf{1}_{N(S)}$.
Let now $(\lambda, \mu)=(-1,0)$ in (30), i.e., $\left.S G\right|_{D(S)}=\left.(-G S+B)\right|_{D(S)}$. By Lemma 9,

$$
\begin{align*}
B^{*}=B, \quad W & =B / 2, \quad[x, y]_{l}=-[x, y]_{r}, \\
{[x, y]_{t} } & \equiv 0, \quad F^{J}=-F . \tag{34}
\end{align*}
$$

Suppose that $B=0$. Then $S G=-G S$. If $x \in N_{d}(S), d= \pm$, then

$$
S G x=-G S x=-d i G x .
$$

Therefore $G x \in N_{-d}(S)$, so that $F N_{d}(S) \subseteq N_{-d}(S)$. Since $F N(S)=N(S)$, $F N_{d}(S)=N_{-d}(S)$. Since $J x=d x, x \in N_{d}(S)$, we obtain that

$$
\begin{equation*}
n_{+}(S)=n_{-}(S) \quad \text { and } \quad F J=-J F, \tag{35}
\end{equation*}
$$

Recall (see Theorem 7) that in this case, instead of the operator $R=\frac{1}{2}\left(F+F^{J}\right)$, we consider the operator $R_{1}=i F$. Set $T=J R_{1}=i J F$. Then

$$
T J=i J(F J)=-i J^{2} F=-i F=-J T
$$

The operator T is selfadjoint, since, by (34), $T^{+}=-i F^{+} J=i J F=T$. If $\lambda>0$ is an eigenvalue of T and x is the corresponding eigenvector, then

$$
\begin{equation*}
T J x=-J T x=-\lambda J x \tag{36}
\end{equation*}
$$

so that $(-\lambda)$ is an eigenvalue of T and $J x$ is the corresponding eigenvector. Let, as in Corollary $8, N_{-}$and N_{+}be the subspaces in $N(S)$ generated by all eigenvectors of T which correspond respectively to negative and positive eigenvalues. Since T is invertible, $\operatorname{dim} N(S)=\operatorname{dim} N_{-}+\operatorname{dim} N_{+}$. From (36) it follows that $\operatorname{dim} N_{-}=\operatorname{dim} N_{+}$. From this and from (35) we conclude that

$$
n_{-}(S)=n_{+}(S)=\operatorname{dim} N_{-}=\operatorname{dim} N_{+} .
$$

From this and from Corollary 8(i) we obtain the following lemma.
Lemma 10. Let (S, G) be a maximal implementation of a^{*}-superderivation δ, let $\left.S G\right|_{D(S)}=\left.(-G S+B)\right|_{D(S)}$ and let $\max \left(n_{ \pm}(S)\right)<\infty$. Then
(ii) $F^{J}=-F$ and Theorem 7(ii) holds;
(ii) if, in addition, $B=0$, then there exist disjoint sets of irreducible ${ }^{*}$-representations $\left\{\pi_{i}\right\}_{i=1}^{p}$ and $\left\{\varrho_{j}\right\}_{j=1}^{m}$ of \mathfrak{U} such that

$$
n_{-}(S)=n_{+}(S)=\sum_{i=1}^{p} \operatorname{dim} \pi_{i}=\sum_{j=1}^{m} \operatorname{dim} \varrho_{j}
$$

Acknowledgement I am extremely grateful to Prof. E.B. Davies for his valuable advice.

References

1. Dunford, N., Schwartz, J.T.: Linear operators. Part II. New York, London: Interscience 1963
2. Davies, E.B., Lindsay, J.M.: Noncommutative symmetric Markov semigroups. Math. Z. 210, 379-411 (1992)
3. Kissin, E.: Symmetric operator extensions of unbounded derivations of C^{*}-algebras J. Funct. Anal. 81, 38-53 (1988)
4. Kissin, E.: Dissipative implementations of ${ }^{*}$-derivations of C^{*}-algebras and representations in indefinite metric spaces. J. London Math. Soc (2) 43, 451-464 (1991)
5. Kissin, E.: Indices of unbounded derivations of C^{*}-algebras. Pacific J. Math. 152, 125-150 (1992)

6 Kissin, E., Shulman, V.S.: Dense Q-subalgebras of Banach and C^{*}-algebras and unbounded derivations of Banach and C^{*}-algebras Proc. of Edinburgh Math. Soc. 36, 261-276 (1993)
7. Phillips, R.S.: On dissipative operators. Lecture series in differential equations, Vol. II. Mathematics studies 19. New York: von Nostrand 1969

Communicated by H. Araki

