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Abstract: The paper studies unbounded symmetric and dissipative implementations
(5, G) of *-superderivations δ of G*-algebras ϋ. It associates with them representa-
tions πδ

s of the domains D(δ) of δ on the deficiency spaces N(S) of the symmetric
operators 5. A link is obtained between the deficiency indices n±(S) of S and the
dimensions of irreducible representations of iί. For the case when (5, G) is a maximal
implementation and max(n±(Sy) < oo, some conditions are given for the representa-

tion πf to be semisimple and to extend to a bounded representation of It.

1. Introduction

Let it be a G* -algebra and ρ be a * -representation of il on a Hubert space f). Let
δ be a linear closed mapping from a dense *-subalgebra D(δ) of il into the algebra
B(ft) of all bounded operators on 55 such that, for A E D(δ\
(i) δ(AB) = δ(A) Q(B) + ρ(φ(A))δ(B) ,

(ii) δ(φ(A)*) = δ(A)* ,
where φ is an automoφhism of D(δ). Then δ a closed * -super derivation of ii

relative to the pair (ρ, φ). A pair (5, G), where 5 is a densely defined closed operator
on f), 5* is its adjoint and G is a bounded operator on ft such that G"1 G
implements δ if, for A e D(δ),

(1)

GD(S) = D(S) and GD(S*) = D(S*) , (2)

C £)(5) and δ(A) \ D(S) = ί(Sρ(A) - G~ 1 ρ(A) GS) \ D(S} . (3)

If a pair (T, G) also implements δ and T extends 5, then (T, G) is a <5-extension of
(£, G). If 5 is symmetric and G is self adjoint, (5, G) is a symmetric implementation of
<5. If (S, G) has no symmetric ^-extensions, it is a maximal symmetric implementation
of δ.
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Remark, (i) If φ = id and G = 1 ,̂ then δ is a * -derivation of 11 into B(ft) relative
to ρ and S is an implementation of δ.
(ii) Changing condition (ii) in the above definition to the condition:

δ(φ(Af) = e™xδ(A)* , A G D(5) , 0 < λ < 2 ,

we obtain λ-symmetric superderivations of it. If, however, δ is λ-symmetric, then
τ(A) = e~l7rλ/2δ(A) is a *-superderivation of it. Moreover, if (5, G) implements δ,
then (e~lπλ/2S, G) implements r.

Davies and Lindsay [2] introduced 1 -symmetric superderivations δ, i.e.,

δ(φ(Af) = e™δ(Sf = - δ(Af , A e

for the case when ρ = id., φ2 = id. and δ(φ(A)) — — φ(δ(A)). By establishing a
Dirichlet property for a class of superderivations they were able to apply the theory
of non-commutative symmetric Markov semigroups to the construction of dynamical
semigroups on Z2 -graded algebras of quantum observables.

This paper studies unbounded symmetric and dissipative implementations of
* -superderivations. For derivations this was done in [3-5]. As in the case of deriva-
tions, with every symmetric implementation (5, G) of δ we associate a representation
πδ

s of D(δ) on the deficiency space N(S) of the symmetric operator S. Making use
of the fact that D(δ) is a Q-subalgebra of it [6], Theorem 3 obtains the link between
the deficiency indices of S and the dimensions of irreducible finite-dimensional rep-
resentations of it.

The space N(S) has a natural indefinite form which converts it into a Krein space.
However, unlike the case of derivations, πf is not symmetric with respect to this form.
To make up for this shortcoming, three new indefinite forms on N(S) are introduced
with respect to which πδ

s is symmetric. Although the geometry of N(S) supplied
with these forms becomes even more complicated than the geometry of N(S) as a
Krein space, they play a crucial role in the proof of the fact that δ always has a
maximal symmetric implementation. Theorem 5 also uses them to show that there is
a one-to-one correspondence between ^-extensions of (£, G) and invariant subspaces
in N(S) neutral with respect to the forms.

It was established in [3] that if δ is a derivation, 5 is a maximal implementation
of δ and max(n±(S)) < oc, then the representation π$ of D(δ) is semisimple
and extends to a bounded representation of it on N(S). Under some conditions
on the implementations, Theorems 6 and 7 prove this result for the case when δ
is a superderivation. Section 4 considers examples of symmetric implementations for
which Theorems 6 and 7 hold.

2. Maximal Symmetric Implementations of Superderivations

Let δ be a closed *-superderivation of it. The algebra D(δ) is a Banach *-algebra with
respect to the norm \\A\\δ = \\A\\ + \\δ(A)\\. Let (5, G) be a symmetric implementation
of δ. Set

σ(A) = Gδ(A), τ(A) = 6(A*fG and Δ(A) = \ (σ(A)+τ(A)), A e D(δ).

From (1) it follows that σ, r and Δ are closed derivations of it. We also have that

D(σ) = D(τ) = D(δ), σ(A*)* = <S(A*)*G = τ(A) and Δ(A*) = Λ(Af ,
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so that Δ is a *-derivation. Set

U = GS, V = SG and W = \ (U 4- V).

Then [7 and V are closed operators, PF is a symmetric but not necessarily a closed
operator and

D(U) = £>(\0 = D(WO = £>(£), D(U*) = D(V*) = D(S*) C D(W*)

and

Therefore
= i(Vρ(A) -

- ρ(A)U)\D(S) ,

= i(Wρ(A) - ρ(A)W)\D(S) .

Since W is symmetric, Δ is closable. From this and from Theorem 5 [6] we obtain
the following lemma.

Lemma 1. Let δ be a closed * -super 'derivation of a unital C* -algebra it.
(i) The * -derivation A = σ + τ is closable and implemented by the symmetric

operator W .
(ii) [6] D(S) is a Q-subalgebra of il, i.e., 1 G D(δ) and Sp^(A) = SpD(δ)(A),
A 6 D(δ).

For any operator B on ft and linear manifold L C 55, BL = {.Bx:x El/}.

Lemma 2. Lei (5, G) be a symmetric implementation of a closed * -super 'derivation δ
of a C* -algebra il relative to (ρ, φ). Then, for A G D(δ),

C

Let x G ̂ (5) and y G £>(£*). Then, for A G D(δ), by (3)

G-ly) = (G~l ρ(A)GSx,y) = ((i

Therefore Gρ(A*)G~lD(S*) C D(5*) and

^)ΊD(5*) - i(

From (1) it follows that

A*)). (4)

Hence, since 99 is an automorphism of D(δ) and D(δ) is a * -algebra, it follows from
(4) that, for all A G

ρ(A)D(S*) C D(5*) and

Setting B — φ~l(A*) and making use of (1), we obtain that

6(φ(Bff\D(S*} - i(S*ρ(B) - G'1
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Since 6 is a *-superderivation, δ(φ(B)*)* = δ(B). Hence

6(B)\D(S*} = i(S*Q(B] - G~lβ(B)GS*)\D(S*} . D

Let (S, G) be a symmetric implementation of a *-superderivation 5. Since D(S)
and Z)(5*) are invariant for all operators #CA), A G D(<5), and can be considered
as Hubert spaces (see below), we can define a representation ττ| of D(<5) on the
deficiency space N(S) of S by the formula:

πδ

s(A)x = Qρ(A)x , x G W(S) , (5)

where Q is the orthoprojection on N(S).
The following result is similar to the result of Theorem 3.11 (i) [3] about the

deficiency indices of symmetric implementations of * -derivations.

Theorem 3. Let δ be a * -superderi vation of a unital C* -algebra 11 and (S,G) be
a symmetric implementation of 6 If maxn±(S) < oo, then there are irreducible

representations {ft}™! of iί such that n+(S) -f n_(S) — ^dim^. If il has no
i=l

finite-dimensional representations, then either S is self adjoint or maxn±(S') = oo.

Proof. Since maxn±(S) < oo, N(S) is finite-dimensional. Using the standard
techniques of linear algebra, we obtain that there is a finite nest {0} = I/0 C
Ll C . . . C Lm = N(S) of subspaces invariant for πf such that the representations
πi of the algebra D(δ) in the quotient subspaces Ll/Li_l are irreducible and

ra

dim W(S) = n+(S) + n_(S) = Σ dirnπ,. From Lemma l(ii) it follows that 1 G D(δ)
i=l

and that D(δ) is a Q-subalgebra of it. Therefore all πi are non-trivial and it follows
from Theorem 2.2 [3] (cf. [6]) that every πϊ extends to an irreducible representation

n . D

Remark In Lemma 2 and Theorem 3 the conditon (2) was not used.

We shall now consider briefly the link between symmetric implementations of
*- superderi vations of C* -algebras and J-symmetric representations of * -algebras on
Krein spaces. Let H be a Hubert space with a scalar product (x, y) and H = H_

be an orthogonal decomposition of H. The involution J = defines an

indefinite form [x, y] = (Jx, y) on H. With this form H is called a Krein space. Let
kd = dimHd, d — ±. If fe = min(fc_, fe+) < oo, H is called a Πk-space.

A subspace L in if is called neutral if [x,y] = 0, x,y G L. The subspace
= {?/ G H : [x, y] = 0, x G L} is called the J -orthogonal complement of L. If L

is uniformly definite, i.e., there is r > 0 such that |[x,x]| > r(x,x) for x G L, then
H can be decomposed in the direct and J-orthogonal sum

H = L[+]L[±] .

A representation π of a * -algebra ̂  on a Krein space H is called
- J-symmetric if [π(A)x,y] = [x,π(A*)y], x,y G H, A G ̂
- non-degenerate if π has no neutral invariant subspaces.
If a subspace L is invariant for π, L^ is also invariant for π.

Let 5 be a symmetric operator on a Hubert space fj. The scalar product

(x, y) - (x, j/) + (5*x, 5*y) , x, y G D(5*) ,
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converts D(S*) into a Hubert space with the norm

\χ\ = (\\x\\2 + \\S*χ\\2γ/2

and
£>(£*) = D(S)(+)N+(S)(+)N_(S)

is the orthogonal sum of D(S) and the deficiency spaces

N±(S) = {x G £>(£*) :S*x = ±i

of 5. Let N(S) = N+(S)(+)N_(S) and let Q be the projection on N(S) and Q+ be
the projection on N+(S) in D(S*). Set J = 2Q+ - Q. Then J is an involution on
N(S), i.e., J* - J and J2 -

Set
{x, y} = i((χ, S*y) - (S*x, 2/)) , x, y G D(S*) .

Then { , } is an indefinite form on D(S*) and

(6)

{x, y} - 0 if x G D(5) or if ye D(S) , (7)

{x,y} = 0 if xGΛ^ d(^) and yG7V_ d (5) , d = ±, (8)

{x,2/} = 2d(α:,y) = d{a:,2/) if x,yζNd(S), d = ±. (9)

We denote the restriction of { , } to JV(5) by [ , ], i.e.

[x, y] = {x, y} , x, y G JV(S) .

It follows from (8) and (9) that

(10)

so that JV(5) is a Krein space and N(S) = N+(S) + ̂ (S') is the orthogonal and
J-orthogonal sum. The numbers n±(S) = dim7V±(5) are the deficiency indices of 5.
If k = minn±(5) < oo, then N(S) is a 77^,-space.

From (2) we have that G~1D(S) = D(S) and G'1D(S*) = D(S*). Set

Then G^1 = G~l\D(S^ ) is the inverse of Gs. From (2) it follows that

QGSQ = QGS and QG^Q = QG~s

l. (11)

We define now new indefinite forms on Z)(5*):

{x, y}z - {G5x, y} = i(

{x, y}r - {x, Gsy} = i((x,

= ί((x,E7*2/)-(F*x,2/)),

{x, 2/}t - I ({x, y}l + {x, 2/}r - i
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Since GD(S) = D(S)9 it follows from (7) that

{x,y}l = {x,y}r = {x,y}t = 0 if xeD(S) or if y G D(S). (13)

From (6) and (12) it follows that

{y, x}l = {Gsy, x] = {x, Gsy} = {x, y}r and {y, x}t = {x, y}t. (14)

Set

F = QGSQ and [x,τ/]d - {x,y}d, x,y £ N(S) and d = /,r , ί .

Then F is an operator on TV(S') and, by (11), F"1 = QG$1Q is the inverse of F.
For every operator B on ΛΓ(S') we denote by B+ its adjoint with respect to { , )

and BJ its J-adjoint:

[Bx,y] = [x,BJy], x , τ / G 7 V ( S ) , i.e., BJ = (JBJ)+ = JB+J, (15)

since J+ = J. We have that (BJ)J = B.

Lemma 4. (i) The operators Gs and G^1 on D(S*) are bounded with respect to the
norm \ \, so that the operators F and F"1 are bounded, and {Gsx, y}r — {x, Gsy}L.

(ii) Set R = \ (F + FJ\ For x, y G

[x, y\ = [Fx, y] = (JFx, y ) , [x, y]r = [x, Fy] = (F+Jx, y ) , (16)

[x, y]t = i ([Fx, y] + [x, Fy]) = [Rx, y ] , (17)

[Fx, y]r = [x, Fy\ι, [FJx, y]r = [x, Fy]r (18)

[Fx, y\ = [x, FJy\ , [FJx, y], = [x, FJy]r (19)

[Rx, y]t = [x, Ry]t, [Fx, y]t = [x, Ry\ , [FJx, y]t = [x, Ry]r . (20)

The forms [ , ]t and [ , ]r are not degenerate on N(S).
(iii) IfW is closed and D(W*) = Z>(5*), ί/z^w the form [,]t w «6>ί degenerate on
N(S) If, in addition, max(n±(5)) < oo, ί/i^w Jΐ /ία^ ίΛ^ inverse.
(iv) {^)x,τ/}d - {x,ρ(A*)τ/}d, A G D(δ) andx,y G .D(5*), where d = l,r,t.
(v) Γ/z^ representation πδ

s of D(δ) on N(S) is symmetric with respect to the forms
[,]d, d = /,r,ί, /.e.,

A G D(5) , x,τ/ G

|xf , wter* ||A||, -
(vi) A subspace in N(S) is neutral with respect to [ , ]L if and only if it is neutral with
respect to [ , ]r. A subspace in N(S) invariant for F and F~l , is neutral with respect
to [,] if and only if it is neutral with respect to [ , ]z, ([ , ]r).

Proof. Let \xn\ -> 0 and \y - Gsxn\ -> 0. Then ||xn|| -» 0 and \\y - Gxn\\ -+ 0.
Since G is bounded on f), y = 0. Thus G5 is closed with respect to the norm | |.
Since it is defined everywhere on ΰ(5*), it is bounded. Similarly, G^1 is bounded.
By (12), {Gsx,y}r = {Gsx,Gsy} = {x.Ggy}^ Part (i) is proved.

For x,τy G 7V(5), (1D(5*) - Q)Gsx G D(S), so that, by (7) and (10),

[x,y\ = {Gsx,y} = {QGsx,y} + {(1D(5*) - Q)Gsx,y} = [Fx,τ/] = (JFx,τy) .

By (6) and (14),

[x, y]r = [τ/,x]z = [FT/, x] = [x, FT/] = (F+ Jx, y) .
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Therefore (16) and (17) hold and

and
[FJx, y]r = [FJx, Fy] = [x, F2y] = [x, Fy]r ,

so that (18) holds. Similarly, one can prove (19). Then (20) follows immediately from
(18) and (19).

If x G N(S) is such that [x, y]t = 0, for all y G N(S)9 then, by (13), {x, z}l = 0
for all z G D(S*). Therefore, by (12),

so that Gx G £>(£**) = D(S), since 5 is closed. Thus x G D(S). Similarly, if
[y, x\ = 0, for y G N(S), then, by (13), {z, x}l = 0 for all z G D(S*). Hence

Since GD(S*) = D(S*)9 x G -D(S). This contradiction shows that [,]z is not
degenerate. From this and from (14) it follows that [ , ]r also is not degenerate. Part
(ii) is proved.

If [,]t is degenerate, there is x G N(S) such that [ x , y ] t = [Rx,y] = 0, for all
y G N(S). By (12) and (13),

i((x, W*z) - (W*x, z)) = {x, z}t = 0 for all z G D(S*) .

Thus (x,W*z) = (W*x,z)9 z G D(S*). Since D(S*) = D(W*), x G D(W**)
Since VF is closed, VF** = W, so that x G D(VF) = D(S) which contradicts the
assumption that x G AΓ(5). Thus [,]t is non-degenerate. If dim(n±(5)) < oo, ^"(5)
is finite-dimensional. If R does not have the inverse, there is x G N(S) such that
Rx = 0, so that [ x , y ] t = [Rx,y] = 0, y G A/X5). Since [,]t is non-degenerate, jR
has the inverse. Part (iii) is proved.

Since GD(S*) = D(5*), it follows from Lemma 2 that

S*Gρ(A)\D(S*) = (-iδ(A*fG

From this, from (12) and from Lemma 2 we obtain that

[ρ(A)x,y}l = i((Gg(A)x,S*y) - (S*Gρ(A)x,y))

= i((GQ(A)x, S*y) + i(δ(A*fGx, y) - (ρ(A) 5*Gx, y))

= i((Gρ(A)x, 5*y) - (Q(A)S*Gx, y) + i(Gx, 5(A*)2/))

= i((Gρ(A)x, 5*2/) - (ρ(A)S*Gx, y) + (Gx, S* ρ(A*)y)

y) - (5*Gx, ρ(A*)y)) = {x,

By (14),

{ρ(A)x,y}r = {y,ρ(A)x}l = {ρ(A*)y,x}l = {x,ρ(A*)y}

Thus also {ρ(A)x,y}t — {x, ^(-4*)y}t. Part (iv) is proved.
By (5), for x, ye N(S),

[πδ

s(A)x,y]l = {ρ(A)x,y}l - {(1D(5*) - Q)ρ(A)x,y}l .
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Since (1D(S*) - Q)ρ(A)x 6 D(5), it follows from (13) and (iv) that

[4(A)x,t/]; = {ρ(A)x,y}l = {x,ρ(A*)y}l

= {x,Qρ(A*ϊy}l + {x,(lD{S*) - Q)β(A*)y}l = [x^s(A*)y\ι .

Thus πf is symmetric with respect to [,];. From (14) it follows that πδ

s is also
symmetric with respect to [ , ]r and [ , ]t.

From (10) and Lemma 2(ii) we obtain that

\πδ

s(A)x\2 = \Qρ(A)xf < \ ρ ( A ) x f = \\ρ(A)x\\2 + \\S*ρ(A)x\\2

= \\ρ(A)x\\2 + \\(-iδ(A) + G~lρ(A)GS*)X\\2

<\\ρ(A)x\\2+2\\δ(A)x\\2

Since ρ is a * -representation, ||^(A)|| < \\A\\. Part (v) is proved.
From (14) it follows that [#,?/]/ = 0 for all x,y G L c N(S) if and only if

[x,y]r — 0 for x, y G L. Let L be a subspace in N(S) neutral with respect to
[,] and invariant for F and F~l. By (16), for x,y G L, [ x , y ] l = [Fx,y] = 0,
since Fx G L. Conversely, if L is neutral with respect to [,]j, then, for x,2/ G L,
[x, y] - [F-1^, 2/]z = 0, since F-1x G L. Π

The following theorem extends some results about * -derivations of C* -algebras
(see Theorems 3. 6 and 3.7 [3]), to the case of *-superderivations. It establishes a
link between symmetric ^-extensions of a symmetric implementation (5, G) of a
*-superderivation (5 and neutral invariant subspaces in N(S) and proves the existence
of a maximal symmetric implementation of 6.

Theorem 5. Let (5, G) &£ α symmetric implementation of a closed * -super derivation
6 relative to (ρ,φ).

(i) There is a one-to-one correspondence between
(5, G) and subspaces L in N(S) neutral with respect
and such that FL = L and FJ L = L.
(ii) There is a maximal symmetric implementation (T, G) of 6 such that T extends S.

(in) If (5, G) is a maximal symmetric implementation of 6, N(S) has no subspaces
L neutral with respect to [ ,] j ([,]r), invariant for ττ| and such that FL — L and
FJL = L.

Proof. There is a one-to-one correspondence (see [1]) between closed symmetric
extensions T of the operator 5 and subspaces M, D(S) C M c D(S*\ neutral with
respect to { , }:M(T) = D(T) and T(M) = 5*|M. Since D(S*) is a Hubert space,
D(T) = D(S)(+)L(T), where L(T) C N(S) and L(T) is neutral with respect to [,].
From Lemma 15 [1] it follows that

closed symmetric ^-extensions of
ct to [ , ]^ ([, ]r), invariant for π|

where L(T)[J-] is the J-orthogonal complement of Z/(T) in ]V(5) with respect to [ , ].
If (T, G) implements δ, it follows from (2) that GD(T) = D(T) and GD(T*) =

£>(Γ*).By(ll),

= QGSQD(T) = QGD(T) = QD(T) = L(T) .

Hence F~1L(T) = L(T). By Lemma 4(vi), L(T) is neutral with respect to
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Similarly, we obtain from (11) that

and F~l(L(T)[±]) = L(T)[±] .

Let x G L(T) and y G L(Γ)[±]. Then Fy G L(T)[±] and, by (15), 0 - [x,Fy] =
[FJx,y]. Therefore, FJx G (L(T)[J-])[±] = L(T) (see [7, Lemma 2.1]). Hence
FJL(T) C L(T). Similarly, (F~l)J L(T) C L(T). Since (F-7)"1 = (F~l)J ', we
obtain that FJ L(T) = L(T). We also have that 0(A)D(T) C L>(T), A G D(δ).
Hence from (3) and (5) it follows that L(T) is invariant for π$.

Conversely, let L be a subspace in N(S) neutral with respect to [ , ] l 9 invariant for
πδ

s and such that FL = L = FJL. Then F~1L = L. By Lemma 4(vi), L is neutral
with respect to [,]. Set M = D(S) + L. By (7), M is a subspace in D(S*) neutral
with respect to { , }. Hence T = 5* M is symmetric,

ρ(A)D(T) C D(T) , A G L>(£), and GD(T) = GM = D(S) + FL - M = D(Γ) .

Since FJL = L, (FJ)~1L = L and, for x G L, j/ G Lc±], it follows from (15) that

Hence Fy G L[±], so that FL[±] C L[±]. Similarly, F~1L[±] C L[±]. Therefore
FL[±] = L[±]. Thus GP(Γ*) - £>(T*).

From Lemma 2 it follows that

ί(-4)|D(Γ) - i(5*^) - G'lρ(A)GS*)\D(T) = i(Tρ(A) - G~l ρ(A)GT)\D(T) ,

so that the pair (T, G) implements <5. Part (ii) is proved.
Let {La} be a set of subspaces in N(S) neutral with respect to [ , ] t , invariant for

π|, ordered by inclusion and such that FLa = La = FJL0ί. Let L — \jLa. By
Lemma 4, the operators F, F~\ and π|(A), A G D(<5), are bounded on N(S) with
respect to | |. Hence L is invariant for πf and FL — L — FJ L. From Lemma 4 it
also follows that |[x,y]/| < \GS\ \x\ \y\, x,y G N(S). Therefore L is neutral with
respect to [ , ] / Φ Hence by Zorn's theorem, there exists a maximal subspace L0 in
TV(S') neutral with respect to [,]z, invariant for π| and such that FL = L = FJL.
Thus, by (i), the corresponding pair (T, G) is a maximal symmetric implementation
of δ such that Γ extends 5. Part (ii) is proved. Part (iii) follows immediately from
(i). D

3. Extensions of π| to Representations of the C*-Algebra it

If δ is a *-derivation of iί, 5 is a maximal implementation of δ and max(n±(5')) < oo,

then ττ| is a non-degenerate representation of D(6) on a finite-dimensional space
N(S). It was proved in [3] that ττ| is semisimple and extends to a bounded
representation of iί. Theorems 6 and 7 prove this result for some maximal symmetric
implementations of *-superderivations.

Theorem 6. Let 11 be a unital C*-algebra and the operator R — i (F -f FJ) /zαve #

bounded inverse on N(S).
(i) TTzere are a new scalar product ( , )l and a new involution I on N(S) such that the

norm \\ | | j = (, )\'2 is equivalent to the norm \ \ on N(S) and that [x, y]t = (Ix, y)l.
Thus N(S) is a Krein space with respect to (,)l and [ , ] t .
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(ii) If(S, G) is a maximal symmetric implementation ofδ and max(n±(5)) < oc, then

ττ| is semisimple, bounded and extends to a bounded representation of 11 on N(S)
which is symmetric with respect to [ , ]d, d — I, r, t

Proof. The operator JR=\ (JF + F+ J) is selfadjoint on N(S) and, by (10) and

(17), [x,y]t = [Rx,y] — (JRx.y). If R has a bounded inverse, JR also has a
bounded inverse and part (i) follows from [7].

Let K be a subspace in N(S) invariant for ττ|, F and FJ . Since F and FJ have
inverses and since N(S) is finite-dimensional, FK — K — FJ K. Set

M = K[±]t = {ye N(S) : [x, y]t = 0, for all x e K} .

By Lemma 4(v), M is invariant for ττ|. We claim that

FM = M = FJM, KΠM = {0} and 7V(S) - K[+\tM . (21)

From (20) it follows that

[Fx,y]l=Q and [x,Ry]r = [FJx,y]t = 0 , xeK.yeM. (22)

Therefore [x, Λτ/]t = 0. Hence RM C M. Since /ϋ has a bounded inverse and M is
finite-dimensional, #M = M. Therefore, by (22),

[x,2/]z = [x,y]r = 0, xeK.yeM. (23)

Since FK = K = FJK, from (18) and (19) it follows that

[x, F2/]z = [x, Fτ/]r = [x, FJy\ = [x, FJy]r = 0 .

Hence, by (12),

\x,Fy\ = [x,FJy]t = 0, x e K, y G M ,

so that FM C M and FJM C M. Therefore FM = M and FJM = M.
The subspace P = K Π M is invariant for τr|, FP = P = FJP and, by (23), it

is neutral with respect to [,]z. Since (5, G) is a maximal symmetric implementation
of δ, it follows from Theorem 5(iii) that P = {0}. By (17),

M = {y G N(S):[x9y]t =

where X-1 is the orthogonal complement of AT with respect to { , }. Hence dimM =
diniK-1, so that K[+]tM = N(S). Thus (21) is proved.

From (21) it follows that N(S) can be decomposed in the direct sum

771

N(S) - ί+]tKt (24)

of subspaces Ki invariant for τr|, for F and FJ, orthogonal with respect to [ , ]t and
such that they have no subspaces invariant for π|, F and FJ.

Let F be the group of operators on N(S) generated by F and FJ. We have that
Qρ(A)Q - Qρ(A), A G D(δ\ From this and from (1), (5) and (11) it follows that

F-lπδ

s(A)F = QG~s

lQρ(A)QGsQ

= QG~lρ(A)GQ = Qρ(φ(A))Q = πδ

s(φ(A)) . (25)
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From (15), (16) and Lemma 4(iv) we have that

[πδ

s(A)x,y\ = [Fπδ

s(A)x,y] = [x,(πδ

s(A))JFJy]

= [x,π|(A*)3/]z = [Fx,πδ

s(A*)y] = [x,FJπδ

s(A*)y]

and
[πδ

s(A)x,y]r = [πδ

s(A)x,Fy] = [x, (πδ

s(A»J Fy]

= [x,πδ

s(A*)y]r - [x,Fπ|(A*)2/].

Since the form [, ] is not degenerate on N(S),

(πδ

s(A)f FJ = FJπδ

s(A*) and (πδ

s(A))J F = Fπf (A*).

Thus FJπδ

s(A*)(FJΓl = Fπ^A*)^-1 and from (25) we conclude that

FJπδ

s(A)(FJΓl = πδ

s(ψ~\A)). (26)

LetE = Fm\(FJ)Pl . _Fmn(FJ)pn G Γ, m ,_p G Z. Setdeg(E) = Σ(π
From (25) and (26) it follows that i=l

B~lπδ

s(A)B = πδ

s(φά^(B\A)). (27)

Let K = Ki be a subspace in decomposition (24). Since il is unital, 1 G D(δ)9

by Lemma 1. Therefore there is a subspace L in K invariant for πf such that the
restriction TΓL of π| to L is irreducible and non-trivial. The subspace K is invariant
for all E G Γ. Hence EL C K and it follows from (27) that EL is invariant for
7r| and the restriction of ττ| to EL is irreducible. Therefore if M is a subspace in
K invariant for πf, then either M Π EL = {0} or EL C M. From this and from
the fact that K is finite-dimensional and has no subspace invariant for τr|, for F and
FJ it follows that there are B3; G Γ, j = 1, . . . , q, such that K is the direct sum
of the subspaces B^L'.K = B{L + E2L + . . . + EnL. From this and from (24) we

conclude that πδ

s decomposes in the direct sum of irreducible representations of the
algebra D(6). Hence πδ

s is a semisimple representation. Since, by Lemma 1, D(δ) is
a Q-subalgebra of il, it follows from Theorem 6 [6] that ττ| is bounded with respect
to the norm on il and extends to a bounded representation ψ of il on N(S). Since πδ

s

is symmetric with respect to [, ]d, d = /, r, t, ψ is also symmetric. D

In Theorem 6 we assumed that the operator R has a bounded inverse on N(S).
Now we assume that R = 0, i.e., FJ = -F. Then, by (16) and (17),

[x, 2/]r — — L«^5 y\ι and [x, yj^ Ξ 0. (2o)

Set [[x, 2/1 = ί[x,2/]/ and Λ j = zF. Then, by (14),

and, by (18) and (28),

[LRjZ, 2/1 = - [Fx, y\ = [Fx, y]r = [x, Fy\ = [x, βl2/]]. (29)

Since /£ = ^ (F + FJ) — 0, the proof of Theorem 6 obviously fails. However, the

following theorem holds which replaces Theorem 6.

Theorem 7. Lei il be a unital C*-algebra and let FJ — — F.
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(i) There are a new scalar product ( , )l and a new involution I on N(S) such that the

norm \\ \\{ — ( , )}' is equivalent to the norm \ \ on N(S) and that dx, y~Ά = (Ix, y)v.
Thus N(S) is a Krein space with respect to ( , )l and [[,]].
(ii) If (5, G) is a maximal symmetric implementation of 6 and max(n±(S)) < oo, then
πδ

s is semisimple and extends to a bounded representation of 11 on N(S) which is
symmetric with respect to d , J.

Proof. Since FJ = - F, Rf = Rv Hence R+ J = JRλ. It follows from (16) that

D X , yB = [R{x, y] = (JRλx, y) .

The operator JR\ is self adjoint and has a bounded inverse, since F has a bounded
inverse. Thus part (i) follows from [7].

Let K be a subspace in N(S) invariant for πδ

s and R{. Since R{ has a bounded
inverse and since N(S) is finite-dimensional, R\K = K. Set

M = {y e N(S):lx, yl = 0, for all x e K} .

By Lemma 4(v) and by (29), M is invariant for π| and Rλ. Therefore K Π M is
invariant for ττ| and for R± and is neutral with respect to [[,]]. It follows from
Theorem 5(iv) that K Π M = {0}. In the same way as in Theorem 6 we obtain that
dim M = dim K^, so that

Making use of the above formula and repeating the argument of Theorem 6, we
conclude the proof of the theorem. D

Recall that an operator T is called dissipative if

(Tx, x) + (x, Tx) < 0 , x e D(T) ,

and maximal dissipative if it is dissipative but not a proper restriction of any other
dissipative operator.

If 5 is a maximal symmetric implementation of a * -derivation σ and
max(n±(6')) < oo, the representation πg of D(σ) on N(S) is non-degenerate with
respect to [ , ] and, hence, semisimple and extends to a bounded J-symmetric rep-
resentation of the C*-algebra 11 [3]. From this it follows (see Theorem 3.2 [5]) that
there exist disjoint sets of irreducible * -representations {^}^=1 and {QJ}™^ of H
such that

p m

n_ (S) — ̂  dim /κi and n+(S) = J^ dim ρ .
i=\ j=l

This fact was also used in Theorem 3. 2 [4] to prove that there exist operators T ,

j = 1,2, such that Γ* = Γ2, that 5 C Γ^ C 5*, that iTλ and -iT2 are maximal
dissipative operators and that Tj implement σ, i.e.,

and σ(A)\DT = i(TA- AT)\DT, A e D(σ) .

Let (5, G) be a maximal symmetric implementation of a *-superderivation 5 of a

unital C* -algebra U and max(n±(5)) < oo. If W = | (GS + 5G) is a closed operator

and D(W*) = D(S*)9 it follows from Lemma 4(iii) that the operator R=\ (F+FJ)

has a bounded inverse. Although the representation ττ| may be degenerate with respect
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to [,]d, d = /,r, t, nevertheless it follows from Theorem 6 that πf is semisimple
and extends to a bounded representation of il on N(S) symmetric with respect to
[,]t. Similarly, if F J = - F, i.e., R = 0, it follows from Theorem? that πf is
semisimple and extends to a bounded representation of il on N(S) symmetric with

respect to [[,]]. The operator JR — | (JF -f F+ J) in the first case and the operator

JRγ = IJF in the second case are self adjoint on N(S) and invertible. Let N_ and
7V+ be the subspaces in N(S) generated by all eigenvectors of JR (resp. JRλ) which
correspond respectively to negative and positive eigenvalues. Set ra± = dim(7V±).
Then m_ + m+ = dim N(S). Using the same argument as in Theorems 3.2 [5] and
3.2 [4] we obtain the following corollary which refines the result of Theorem 3.

Corollary 8. Let (5, G) be a maximal symmetric implementation of 6 and
max(n±(5)) < oo.

(i) IfW =\(GS + SG) is a closed operator and D(W*) = D(S*), then

(a) there exist disjoint sets of irreducible * -representations {^}^=1 and {QJ}™=I ofίί
P ΎYl

such that m_ = Σ dimπ^ and m+ = ]Π dim 0 ,
i=l j=l

(b) there exist operators Tjt j = 1,2, such that T* = Γ2, that W C Tj C W*,

that iTλ and —iT2 are maximal dissipative operators and that T implement the *-
derivation A associated with 8, i.e.,

and Λ(A)\D(Tj} = i(^A - ^Tp|D(T.} , A e D(Δ) .

(ϋ) lfFJ = - F, then (i)(a)

4. Special Type of Symmetric Implementations of Superderivations

In this section we consider examples of symmetric implementations (5, G) which
satisfy Theorems 6 and 7. Assume that there are λ, μ E C swc/z ίΛαί ίA^ operator

is bounded. Set z/ - - — — if λ ̂  -1.
1 -f Λ

Lemma9. (i) Let (λ,μ) ^ (-1,0) and let v £ SpG and (G -vl^)D(S*) = D(S*)

(for example, μ = 0). TVzew ί/ze operator W = ^ (GS + SG) is closed and

D(W*) = D(S*), so that the form [,]ton N(S) is non-degenerate. If, in addition,
(5, G) is a maximal implementation of δ and max(n±(5)) < oo, then the operator

R = 2 (F + F J) has a bounded inverse and Theorem 6(ii) and Corollary 8(i) hold.

(ii) The following are equivalent' a) |λ| = 1, b) μ + λμ = 0.
(iii) 7/|λ| = I, then

B =-λB, 5 * = (5 G-

and FJ = λF

(iv) [3] // |λ| = 1, μ = 0 and B = vG, v e C, and if (λ,z/) / (1,0), then
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Proof. Let λ ̂  -1. By (30),

Since G — v\^ has the inverse and S is closed, we have that W is closed and
D(W) = D(S). Let y G D(W*\ Then for x G D(S),

(Wx, y) = (x, W*y) = ~ (Sx, (G - Pl^) + 1 (x, B*y) .

Hence (G - vl^y G D(5*). Since (G - vlψD(S*) = D(5*), there is z G DOS'*)
such that (G — v\^} y = (G — z/1^) z. Since G is selfadjoint and G — z/1^ is invertible.
G - Pl^ also has a bounded inverse. Hence y = z G D(5*). Thus D(W*) = £>(£*).

If now λ - -1 and μ ̂  0, then W = ^ S + - S i s closed, W* - ̂  5* + - B

and L>(W*) = D(5*). It follows from Lemma 4(iii) that in both cases, λ φ -1
and λ = — 1, μ φ 0, the form [,]t is non-degenerate. If max(nd_(S')) < oo, then,
by Lemma 4(iii), the operator R has a bounded inverse. Thus Theorem 6(ii) and
Corollary 8(i) hold. Part (i) is proved.

Let x G D(S) and y G D(S*). By (30),

\(Sx, Gy) = (λG5x, y) - (5Gx, y) - ((B

Therefore

- λS*G - μ ^ S * ) ! * . (32)

Restricting (32) to D(S)9 we obtain that B* D(S} = (GS - XSG - βS)\D(Sy Hence

(B + λ£*)|D(5) = ((1 - |λ|2)SG - (μ + λμ)S)|D(5) . (33)

If |λ| = 1, then, since B + λ£* is bounded, (μ + λμ)^ is bounded. Since 5 is
unbounded, (μ + λμ) = 0. Conversely, if μ + λμ = 0, (1 — |λ|2)5G is bounded.
If λ ^ 1, SG is bounded. Since GD(S) = D(S), S is bounded. This contradiction
shows that |λ| = 1. Part (ii) is proved.

If |λ| = 1, it follows from (33) that B + XB* = 0. Hence B* = - XB. From this,
from (ii) and from (32) it follows that

B D(5*> ~ ~~ ^B \D(S*) = (S G — XGS + λ/LS )|jτ>(5*)

- (5*G - XGS* - μS*)\D(S*} .

Let λ ^ — 1. If μ = 0, then v — 0 and, since G has a bounded inverse, v φ Sp G. If
μ φ 0, it follows from (ii) that λ = — μ/μ, so that Imμ ^ 0. Then z/ = ό|μ|2/2Im(μ).
Since G is selfadjoint, v φ SpG.
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By (31), 17* - 5*G = ACS* + μS* + B = λF* + μS* + B. Since B* = - AB,
it follows from (12) and from (ii) that

{x,y}t=i((x,V*y)-(U*x,y))

- i((z, V*j/) - (λF*x, 2/) - (Bz, y) - (μS*x, y))

- λi(λ(x, y*y) - (F*x, y) + (x, By)) - iμ(S*x, y)

- \i((x, U*y) - (F*x, y) + μi((x, S*y) - (5*x, y))

= λ{x, y}r + μ{x, y} .

Therefore [x,y\ = λ[x,y]r + μ[x^y] and it follows from (16) that

[z, 2/]z = { JFx, y) = A[x, 2/]r + μ[x, y] = λ{F+ Jx, y) + μ{ Jx, y) .

Thus JF = \F+J + μ J, so that FJ = JF+J = XF + μlN(5). Π

Let now (λ,μ) = (-1,0) in (30), i.e., 5G|D(5) = (-GS + B)|D(S). By Lemma 9,

B* = B, W = B/2, [a:,2/]z = -[x,2/]r,

[x,ί/] t Ξθ, F J --F.

Suppose that B = 0. Then SG = - GS. If x G Wd(S), cZ = ±, then

SGx = - GSx = - diGx .

Therefore Gx e N_d(S), so that FNd(S) C N_d(S). Since FN(S) = N(S),
FNd(S) = N_d(S). Since Jx = dx, x G Nd(S), we obtain that

n+(S) = n_(S) and FJ=-JF, (35)

Recall (see Theorem 7) that in this case, instead of the operator R = | (F + F J),

we consider the operator Rγ = iF. Set T = JRλ = iJF. Then

TJ = iJ(FJ) = -iJ2F = -ίF = -JT.

The operator T is selfadjoint, since, by (34), T+ = - iF+J = iJF = T. If λ > 0 is
an eigenvalue of T and x is the corresponding eigenvector, then

TJx = - JTx = - \Jx , (36)

so that (— λ) is an eigenvalue of T and Jx is the corresponding eigenvector.
Let, as in Corollary 8, N_ and N+ be the subspaces in N(S) generated by all
eigenvectors of Γ which correspond respectively to negative and positive eigenvalues.
Since T is invertible, άimN(S) = dimΛL + dimiV+. From (36) it follows that
dimJV_ = dim JV+. From this and from (35) we conclude that

n_(S) = n+(S) = άimN_ = άimN+ .

From this and from Corollary 8(i) we obtain the following lemma.

Lemma 10. Let (5, G) be a maximal implementation of a * -superderivation δ, let
SG\D(S} = (-GS + B)|D(S) and let max(n±(5)) < oo. Then
(ϋ) F J = - F and Theorem 7(ii) holds;
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(ii) ift in addition, B = 0, then there exist disjoint sets of irreducible *-representations

{**}?=! and {Qj}T=ι of tt such that

p m

n__(S) = n+(S) = y] dim πi = V~^ dim ρ^ .
i=\ j=ι
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