Communications in Mathematical Physics © Springer-Verlag 1994

Superderivations of C^* -Algebras Implemented by Symmetric Operators

Edward Kissin

School of Mathematical Sciences, University of North London, 166-220 Holloway Road, London N7 8DB, United Kingdom

Received: 3 March 1993

Abstract: The paper studies unbounded symmetric and dissipative implementations (S, G) of *-superderivations δ of C^* -algebras \mathfrak{U} . It associates with them representations π_S^{δ} of the domains $D(\delta)$ of δ on the deficiency spaces N(S) of the symmetric operators S. A link is obtained between the deficiency indices $n_{\pm}(S)$ of S and the dimensions of irreducible representations of \mathfrak{U} . For the case when (S, G) is a maximal implementation and $\max(n_{\pm}(S)) < \infty$, some conditions are given for the representation π_s^{δ} to be semisimple and to extend to a bounded representation of \mathfrak{U} .

1. Introduction

Let \mathfrak{U} be a C^* -algebra and ϱ be a *-representation of \mathfrak{U} on a Hilbert space \mathfrak{H} . Let δ be a linear closed mapping from a dense *-subalgebra $D(\delta)$ of \mathfrak{U} into the algebra $B(\mathfrak{H})$ of all bounded operators on \mathfrak{H} such that, for $A \in D(\delta)$,

(i) $\delta(AB) = \delta(A) \varrho(B) + \varrho(\varphi(A)) \delta(B)$,

(ii) $\delta(\varphi(A)^*) = \delta(A)^*$,

where φ is an automorphism of $D(\delta)$. Then δ a closed *-superderivation of \mathfrak{U} relative to the pair (ϱ, φ) . A pair (S, G), where S is a densely defined closed operator on \mathfrak{H} , S^* is its adjoint and G is a bounded operator on \mathfrak{H} such that $G^{-1} \in B(\mathfrak{H})$, implements δ if, for $A \in D(\delta)$,

$$\varrho(\varphi(A)) = G^{-1}\varrho(A)G, \qquad (1)$$

$$GD(S) = D(S)$$
 and $GD(S^*) = D(S^*)$, (2)

$$\varrho(A)D(S) \subseteq D(S) \text{ and } \delta(A)|_{D(S)} = i(S\varrho(A) - G^{-1}\varrho(A)GS)|_{D(S)}.$$
 (3)

If a pair (T, G) also implements δ and T extends S, then (T, G) is a δ -extension of (S, G). If S is symmetric and G is selfadjoint, (S, G) is a symmetric implementation of δ . If (S, G) has no symmetric δ -extensions, it is a maximal symmetric implementation of δ .

Remark. (i) If $\varphi = \text{id}$ and $G = \mathbf{1}_{\mathfrak{H}}$, then δ is a *-derivation of \mathfrak{U} into $B(\mathfrak{H})$ relative to ϱ and S is an implementation of δ .

(ii) Changing condition (ii) in the above definition to the condition:

$$\delta(\varphi(A)^*) = e^{i\pi\lambda}\delta(A)^*, \quad A \in D(\delta), \quad 0 \le \lambda < 2,$$

we obtain λ -symmetric superderivations of \mathfrak{U} . If, however, δ is λ -symmetric, then $\tau(A) = e^{-i\pi\lambda/2}\delta(A)$ is a *-superderivation of \mathfrak{U} . Moreover, if (S,G) implements δ , then $(e^{-i\pi\lambda/2}S,G)$ implements τ .

Davies and Lindsay [2] introduced 1-symmetric superderivations δ , i.e.,

$$\delta(\varphi(A)^*) = e^{i\pi}\delta(S)^* = -\delta(A)^*, \quad A \in D(\delta),$$

for the case when $\rho = \text{id.}$, $\varphi^2 = \text{id.}$ and $\delta(\varphi(A)) = -\varphi(\delta(A))$. By establishing a Dirichlet property for a class of superderivations they were able to apply the theory of non-commutative symmetric Markov semigroups to the construction of dynamical semigroups on \mathbb{Z}_2 -graded algebras of quantum observables.

This paper studies unbounded symmetric and dissipative implementations of *-superderivations. For derivations this was done in [3–5]. As in the case of derivations, with every symmetric implementation (S, G) of δ we associate a representation π_S^{δ} of $D(\delta)$ on the deficiency space N(S) of the symmetric operator S. Making use of the fact that $D(\delta)$ is a Q-subalgebra of \mathfrak{U} [6], Theorem 3 obtains the link between the deficiency indices of S and the dimensions of irreducible finite-dimensional representations of \mathfrak{U} .

The space N(S) has a natural indefinite form which converts it into a Krein space. However, unlike the case of derivations, π_S^{δ} is not symmetric with respect to this form. To make up for this shortcoming, three new indefinite forms on N(S) are introduced with respect to which π_S^{δ} is symmetric. Although the geometry of N(S) supplied with these forms becomes even more complicated than the geometry of N(S) as a Krein space, they play a crucial role in the proof of the fact that δ always has a maximal symmetric implementation. Theorem 5 also uses them to show that there is a one-to-one correspondence between δ -extensions of (S, G) and invariant subspaces in N(S) neutral with respect to the forms.

It was established in [3] that if δ is a derivation, S is a maximal implementation of δ and $\max(n_{\pm}(S)) < \infty$, then the representation π_S^{δ} of $D(\delta)$ is semisimple and extends to a bounded representation of \mathfrak{U} on N(S). Under some conditions on the implementations, Theorems 6 and 7 prove this result for the case when δ is a superderivation. Section 4 considers examples of symmetric implementations for which Theorems 6 and 7 hold.

2. Maximal Symmetric Implementations of Superderivations

Let δ be a closed *-superderivation of \mathfrak{U} . The algebra $D(\delta)$ is a Banach *-algebra with respect to the norm $||A||_{\delta} = ||A|| + ||\delta(A)||$. Let (S, G) be a symmetric implementation of δ . Set

$$\sigma(A) = G\delta(A), \quad \tau(A) = \delta(A^*)^*G \text{ and } \Delta(A) = \frac{1}{2}(\sigma(A) + \tau(A)), \quad A \in D(\delta).$$

From (1) it follows that σ, τ and Δ are closed derivations of \mathfrak{U} . We also have that

$$D(\sigma) = D(\tau) = D(\delta), \quad \sigma(A^*)^* = \delta(A^*)^* G = \tau(A) \text{ and } \Delta(A^*) = \Delta(A)^*,$$

so that Δ is a *-derivation. Set

$$U = GS$$
, $V = SG$ and $W = \frac{1}{2}(U+V)$.

Then U and V are closed operators, W is a symmetric but not necessarily a closed operator and

$$D(U) = D(V) = D(W) = D(S), \quad D(U^*) = D(V^*) = D(S^*) \subseteq D(W^*)$$

and

$$U^* = S^*G$$
, $V^* = GS^*$, $W^*|_{D(S^*)} = \frac{1}{2}(U^* + V^*)$.

Therefore

$$\sigma(A)|_{D(S)} = i(V\varrho(A) - \varrho(A)V)|_{D(S)},$$

$$\tau(A)|_{D(S)} = i(U\varrho(A) - \varrho(A)U)|_{D(S)},$$

$$\Delta(A)|_{D(S)} = i(W\varrho(A) - \varrho(A)W)|_{D(S)}.$$

Since W is symmetric, Δ is closable. From this and from Theorem 5 [6] we obtain the following lemma.

Lemma 1. Let δ be a closed *-superderivation of a unital C*-algebra \mathfrak{U} .

(i) The *-derivation $\Delta = \sigma + \tau$ is closable and implemented by the symmetric operator W.

(ii) [6] $D(\delta)$ is a Q-subalgebra of \mathfrak{U} , i.e., $\mathbf{1} \in D(\delta)$ and $Sp_{\mathfrak{U}}(A) = Sp_{D(\delta)}(A)$, $A \in D(\delta)$.

For any operator B on \mathfrak{H} and linear manifold $L \subseteq \mathfrak{H}$, $BL = \{Bx : x \in L\}$.

Lemma 2. Let (S, G) be a symmetric implementation of a closed *-superderivation δ of a C*-algebra \mathfrak{U} relative to (ϱ, φ) . Then, for $A \in D(\delta)$,

$$\begin{aligned} \varrho(A) D(S^*) &\subseteq D(S^*), \quad \delta(A)^*|_{D(S^*)} = i(S^* G \varrho(A^*) G^{-1} - \varrho(A^*) S^*)|_{D(S^*)}, \\ \delta(A)|_{D(S^*)} &= i(S^* \varrho(A) - G^{-1} \varrho(A) G S^*)|_{D(S^*)}. \end{aligned}$$

Proof Let $x \in D(S)$ and $y \in D(S^*)$. Then, for $A \in D(\delta)$, by (3),

$$(Sx, G\varrho(A^*)G^{-1}y) = (G^{-1}\varrho(A)GSx, y) = ((i\delta(A) + S\varrho(A))x, y) = (x, (-i\delta(A)^* + \varrho(A^*)S^*)y).$$

Therefore $G\varrho(A^*)G^{-1}D(S^*) \subseteq D(S^*)$ and

$$\delta(A)^*|_{D(S^*)} = i(S^* G \varrho(A^*) G^{-1} - \varrho(A^*) S^*)|_{D(S^*)}$$

From (1) it follows that

$$G\rho(A^*)G^{-1} = \rho(\varphi^{-1}(A^*)).$$
 (4)

Hence, since φ is an automorphism of $D(\delta)$ and $D(\delta)$ is a *-algebra, it follows from (4) that, for all $A \in D(\delta)$,

$$\varrho(A)D(S^*) \subseteq D(S^*)$$
 and $\delta(A)^*|_{D(S^*)} = i(S^*\varrho(\varphi^{-1}(A^*)) - \varrho(A^*)S^*)|_{D(S^*)}.$

Setting $B = \varphi^{-1}(A^*)$ and making use of (1), we obtain that

$$\delta(\varphi(B)^*)^*|_{D(S^*)} = i(S^*\varrho(B) - G^{-1}\varrho(B)GS^*)|_{D(S^*)}.$$

Since δ is a *-superderivation, $\delta(\varphi(B)^*)^* = \delta(B)$. Hence

$$\delta(B)|_{D(S^*)} = i(S^*\varrho(B) - G^{-1}\varrho(B)GS^*)|_{D(S^*)}.$$

Let (S, G) be a symmetric implementation of a *-superderivation δ . Since D(S) and $D(S^*)$ are invariant for all operators $\varrho(A)$, $A \in D(\delta)$, and can be considered as Hilbert spaces (see below), we can define a representation π_S^{δ} of $D(\delta)$ on the deficiency space N(S) of S by the formula:

$$\pi_S^{\delta}(A)x = Q\varrho(A)x, \quad x \in N(S), \tag{5}$$

where Q is the orthoprojection on N(S).

The following result is similar to the result of Theorem 3.11(i) [3] about the deficiency indices of symmetric implementations of *-derivations.

Theorem 3. Let δ be a *-superderivation of a unital C^* -algebra \mathfrak{U} and (S,G) be a symmetric implementation of δ If $\max n_{\pm}(S) < \infty$, then there are irreducible representations $\{\varrho_i\}_{i=1}^m$ of \mathfrak{U} such that $n_+(S) + n_-(S) = \sum_{i=1}^m \dim \varrho_i$. If \mathfrak{U} has no finite-dimensional representations, then either S is selfadjoint or $\max n_{\pm}(S) = \infty$.

Proof. Since $\max n_{\pm}(S) < \infty$, N(S) is finite-dimensional. Using the standard techniques of linear algebra, we obtain that there is a finite nest $\{0\} = L_0 \subset L_1 \subset \ldots \subset L_m = N(S)$ of subspaces invariant for π_s^{δ} such that the representations π_i of the algebra $D(\delta)$ in the quotient subspaces L_i/L_{i-1} are irreducible and $\dim N(S) = n_+(S) + n_-(S) = \sum_{i=1}^m \dim \pi_i$. From Lemma 1(ii) it follows that $\mathbf{1} \in D(\delta)$ and that $D(\delta)$ is a Q-subalgebra of \mathfrak{U} . Therefore all π_i are non-trivial and it follows from Theorem 2.2 [3] (cf. [6]) that every π_i extends to an irreducible representation ϱ_i of \mathfrak{U} on L_i/L_{i-1} . \Box

Remark In Lemma 2 and Theorem 3 the conditon (2) was not used.

We shall now consider briefly the link between symmetric implementations of *-superderivations of C^* -algebras and J-symmetric representations of *-algebras on Krein spaces. Let H be a Hilbert space with a scalar product (x, y) and $H = H_- \oplus H_+$ be an orthogonal decomposition of H. The involution $J = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ defines an indefinite form [x, y] = (Jx, y) on H. With this form H is called a Krein space. Let $k_d = \dim H_d, d = \pm$. If $k = \min(k_-, k_+) < \infty$, H is called a Π_k -space.

A subspace L in H is called *neutral* if [x, y] = 0, $x, y \in L$. The subspace $L^{[\perp]} = \{y \in H : [x, y] = 0, x \in L\}$ is called the J-orthogonal complement of L. If L is uniformly definite, i.e., there is r > 0 such that $|[x, x]| \ge r(x, x)$ for $x \in L$, then H can be decomposed in the direct and J-orthogonal sum

$$H = L[+]L^{\lfloor \perp \rfloor}$$

A representation π of a *-algebra \mathcal{A} on a Krein space H is called

- J-symmetric if $[\pi(A)x, y] = [x, \pi(A^*)y], x, y \in H, A \in \mathscr{A};$

- non-degenerate if π has no neutral invariant subspaces.

If a subspace L is invariant for π , $L^{[\perp]}$ is also invariant for π .

Let S be a symmetric operator on a Hilbert space \mathfrak{H} . The scalar product

$$\langle x, y \rangle = (x, y) + (S^* x, S^* y), \quad x, y \in D(S^*),$$

converts $D(S^*)$ into a Hilbert space with the norm

$$|x| = (||x||^2 + ||S^*x||^2)^{1/2}$$

and

$$D(S^*) = D(S)\langle + \rangle N_+(S)\langle + \rangle N_-(S)$$

is the orthogonal sum of D(S) and the deficiency spaces

$$N_{\pm}(S) = \{x \in D(S^*) : S^*x = \pm ix\}$$

of S. Let $N(S) = N_+(S)\langle + \rangle N_-(S)$ and let Q be the projection on N(S) and Q_+ be the projection on $N_+(S)$ in $D(S^*)$. Set $J = 2Q_+ - Q$. Then J is an involution on N(S), i.e., $J^* = J$ and $J^2 = \mathbf{1}_{N(S)}$.

Set

$$\{x, y\} = i((x, S^*y) - (S^*x, y)), \quad x, y \in D(S^*).$$

Then $\{,\}$ is an indefinite form on $D(S^*)$ and

$$\{x,y\} = \overline{\{y,x\}}, \quad x,y \in D(S^*), \tag{6}$$

$$\{x, y\} = 0 \quad \text{if} \quad x \in D(S) \quad \text{or if} \quad y \in D(S) , \tag{7}$$

$$\{x, y\} = 0 \quad \text{if} \quad x \in N_d(S) \quad \text{and} \quad y \in N_{-d}(S) \,, \qquad d = \pm \,, \tag{8}$$

$$\{x,y\} = 2d(x,y) = d\langle x,y\rangle \quad \text{if} \quad x,y \in N_d(S), \qquad d = \pm. \tag{9}$$

We denote the restriction of $\{,\}$ to N(S) by [,], i.e.

 $[x, y] = \{x, y\}, \quad x, y \in N(S).$

It follows from (8) and (9) that

$$[x,y] = \langle Jx,y \rangle, \quad x,y \in N(S), \tag{10}$$

so that N(S) is a Krein space and $N(S) = N_+(S) + N_-(S)$ is the orthogonal and *J*-orthogonal sum. The numbers $n_{\pm}(S) = \dim N_{\pm}(S)$ are the *deficiency indices* of *S*. If $k = \min n_{\pm}(S) < \infty$, then N(S) is a Π_k -space.

From (2) we have that $G^{-1}D(S) = D(S)$ and $G^{-1}D(S^*) = D(S^*)$. Set

$$G_S = G|_{D(S^*)}.$$

Then $G_S^{-1} = G^{-1}|_{D(S^*)}$ is the inverse of G_S . From (2) it follows that

$$QG_S Q = QG_S \quad \text{and} \quad QG_S^{-1} Q = QG_S^{-1}. \tag{11}$$

We define now new indefinite forms on $D(S^*)$:

$$\{x, y\}_{l} = \{G_{S}x, y\} = i((Gx, S^{*}y) - (S^{*}Gx, y))$$

$$= i((x, V^{*}y) - (U^{*}x, y)),$$

$$\{x, y\}_{r} = \{x, G_{S}y\} = i((x, S^{*}Gy) - (S^{*}x, Gy))$$

$$= i((x, U^{*}y) - (V^{*}x, y)),$$

$$\{x, y\}_{t} = \frac{1}{2} (\{x, y\}_{l} + \{x, y\}_{r} = \frac{1}{2} (\{G_{S}x, y\} + \{x, G_{S}y\})$$

$$= i((x, W^{*}y) - (W^{*}x, y)).$$
(12)

(14)

Since GD(S) = D(S), it follows from (7) that

$$\{x,y\}_l = \{x,y\}_r = \{x,y\}_t = 0 \quad \text{if} \quad x \in D(S) \quad \text{or if} \quad y \in D(S) \,. \tag{13}$$

From (6) and (12) it follows that

$$\{y,x\}_l = \{G_Sy,x\} = \overline{\{x,G_Sy\}} = \overline{\{x,y\}_r} \quad \text{and} \quad \{y,x\}_t = \overline{\{x,y\}_t} \,.$$

Set

$$F = QG_SQ \quad \text{and} \quad [x,y]_d = \{x,y\}_d \,, \qquad x,y \in N(S) \quad \text{and} \quad d = l,r,t \,.$$

Then F is an operator on N(S) and, by (11), $F^{-1} = QG_S^{-1}Q$ is the inverse of F. For every operator B on N(S) we denote by B^+ its adjoint with respect to \langle , \rangle

and B^J its J-adjoint:

 $[Bx, y] = [x, B^J y], \quad x, y \in N(S), \text{ i.e., } B^J = (JBJ)^+ = JB^+J,$ (15)since $J^+ = J$. We have that $(B^J)^J = B$.

Lemma 4. (i) The operators G_S and G_S^{-1} on $D(S^*)$ are bounded with respect to the norm | |, so that the operators F and F^{-1} are bounded, and $\{G_s x, y\}_r = \{x, G_S y\}_l$. (ii) Set $R = \frac{1}{2}(F + F^J)$. For $x, y \in N(S)$,

$$[x,y]_l = [Fx,y] = \langle JFx,y \rangle, \quad [x,y]_r = [x,Fy] = \langle F^+Jx,y \rangle, \quad (16)$$

$$[x, y]_t = \frac{1}{2} \left([Fx, y] + [x, Fy] \right) = [Rx, y],$$
(17)

$$[Fx,y]_r = [x,Fy]_l, \quad [F^Jx,y]_r = [x,Fy]_r;$$
 (18)

$$Fx, y]_{l} = [x, F^{J}y]_{l}, \qquad [F^{J}x, y]_{l} = [x, F^{J}y]_{r};$$
(19)

$$[Rx, y]_t = [x, Ry]_t, \quad [Fx, y]_t = [x, Ry]_l, \quad [F^J x, y]_t = [x, Ry]_r.$$
(20)

The forms $[,]_l$ and $[,]_r$ are not degenerate on N(S). (iii) If W is closed and $D(W^*) = D(S^*)$, then the form $[,]_t$ is not degenerate on N(S) If, in addition, $\max(n_{\pm}(S)) < \infty$, then R has the inverse.

(iv) $\{\varrho(A)x, y\}_d = \{x, \varrho(A^*)y\}_d, A \in D(\delta) \text{ and } x, y \in D(S^*), \text{ where } d = l, r, t.$ (v) The representation π_S^{δ} of $D(\delta)$ on N(S) is symmetric with respect to the forms $[,]_d, d = l, r, t, i.e.,$

$$[\pi_S^{\delta}(A)x, y]_d = [x, \pi_S^{\delta}(A^*)y]_d, \quad A \in D(\delta), \quad x, y \in N(S)$$

and bounded: $\|\pi_S^{\delta}(A)x\|^2 \leq 2\|G\| \|G^{-1}\| \|A\|_{\delta}^2 \|x\|^2$, where $\|A\|_{\delta} = \|A\| + \|\delta(A)\|$. (vi) A subspace in N(S) is neutral with respect to $[,]_l$ if and only if it is neutral with respect to $[,]_r$. A subspace in N(S) invariant for F and F^{-1} , is neutral with respect to [,] if and only if it is neutral with respect to $[,]_l$, $([,]_r)$.

Proof. Let $|x_n| \to 0$ and $|y - G_S x_n| \to 0$. Then $||x_n|| \to 0$ and $||y - G x_n|| \to 0$. Since G is bounded on $\mathfrak{H}, y = 0$. Thus G_S is closed with respect to the norm $| \cdot |$. Since it is defined everywhere on $D(S^*)$, it is bounded. Similarly, G_S^{-1} is bounded. By (12), $\{G_S x, y\}_r = \{G_S x, G_S y\} = \{x, G_S y\}_l$. Part (i) is proved. For $x, y \in N(S)$, $(\mathbf{1}_{D(S^*)} - Q)G_S x \in D(S)$, so that, by (7) and (10),

 $[x,y]_l = \{G_S x,y\} = \{QG_S x,y\} + \{(\mathbf{1}_{D(S^*)} - Q)G_S x,y\} = [Fx,y] = \langle JFx,y\rangle.$ By (6) and (14),

$$[x,y]_r = \overline{[y,x]_l} = \overline{[Fy,x]} = [x,Fy] = \langle F^+Jx,y\rangle\,.$$

Therefore (16) and (17) hold and

$$[Fx, y]_r = [Fx, Fy] = [x, Fy]_l$$

and

$$[F^{J}x, y]_{r} = [F^{J}x, Fy] = [x, F^{2}y] = [x, Fy]_{r},$$

so that (18) holds. Similarly, one can prove (19). Then (20) follows immediately from (18) and (19).

If $x \in N(S)$ is such that $[x, y]_l = 0$, for all $y \in N(S)$, then, by (13), $\{x, z\}_l = 0$ for all $z \in D(S^*)$. Therefore, by (12),

$$(Gx, S^*z) = (S^*Gx, z),$$

so that $Gx \in D(S^{**}) = D(S)$, since S is closed. Thus $x \in D(S)$. Similarly, if $[y, x]_l = 0$, for $y \in N(S)$, then, by (13), $\{z, x\}_l = 0$ for all $z \in D(S^*)$. Hence

$$(Gz, S^*x) = (S^*Gz, x).$$

Since $GD(S^*) = D(S^*)$, $x \in D(S)$. This contradiction shows that $[,]_l$ is not degenerate. From this and from (14) it follows that $[,]_r$ also is not degenerate. Part (ii) is proved.

If $[,]_t$ is degenerate, there is $x \in N(S)$ such that $[x,y]_t = [Rx,y] = 0$, for all $y \in N(S)$. By (12) and (13),

$$i((x, W^*z) - (W^*x, z)) = \{x, z\}_t = 0 \text{ for all } z \in D(S^*).$$

Thus $(x, W^*z) = (W^*x, z), z \in D(S^*)$. Since $D(S^*) = D(W^*), x \in D(W^{**})$. Since W is closed, $W^{**} = W$, so that $x \in D(W) = D(S)$ which contradicts the assumption that $x \in N(S)$. Thus $[,]_t$ is non-degenerate. If dim $(n_{\pm}(S)) < \infty$, N(S) is finite-dimensional. If R does not have the inverse, there is $x \in N(S)$ such that Rx = 0, so that $[x, y]_t = [Rx, y] = 0, y \in N(S)$. Since $[,]_t$ is non-degenerate, R has the inverse. Part (iii) is proved.

Since $GD(S^*) = D(S^*)$, it follows from Lemma 2 that

$$S^* G \varrho(A)|_{D(S^*)} = (-i\delta(A^*)^* G + \varrho(A)S^*G)|_{D(S^*)}.$$

From this, from (12) and from Lemma 2 we obtain that

$$\begin{split} \{\varrho(A)x,y\}_{l} &= i((G\varrho(A)x,S^{*}y) - (S^{*}G\varrho(A)x,y)) \\ &= i((G\varrho(A)x,S^{*}y) + i(\delta(A^{*})^{*}Gx,y) - (\varrho(A)S^{*}Gx,y)) \\ &= i((G\varrho(A)x,S^{*}y) - (\varrho(A)S^{*}Gx,y) + i(Gx,\delta(A^{*})y)) \\ &= i((G\varrho(A)x,S^{*}y) - (\varrho(A)S^{*}Gx,y) + (Gx,S^{*}\varrho(A^{*})y)) \\ &- (Gx,G^{-1}\varrho(A^{*})GS^{*}y)) \\ &= i((Gx,S^{*}\varrho(A^{*})y) - (S^{*}Gx,\varrho(A^{*})y)) = \{x,\varrho(A^{*})y\}_{l}. \end{split}$$

By (14),

$$\{\varrho(A)x,y\}_r = \overline{\{y,\varrho(A)x\}_l} = \overline{\{\varrho(A^*)y,x\}_l} = \{x,\varrho(A^*)y\}_r.$$

Thus also $\{\varrho(A)x, y\}_t = \{x, \varrho(A^*)y\}_t$. Part (iv) is proved. By (5), for $x, y \in N(S)$,

$$[\pi_{S}^{\delta}(A)x, y]_{l} = \{ \varrho(A)x, y\}_{l} - \{ (\mathbf{1}_{D(S^{*})} - Q) \varrho(A)x, y\}_{l} .$$

Since $(\mathbf{1}_{D(S^*)} - Q) \varrho(A) x \in D(S)$, it follows from (13) and (iv) that

$$\begin{split} [\pi_{S}^{\delta}(A)x,y]_{l} &= \{\varrho(A)x,y\}_{l} = \{x,\varrho(A^{*})y\}_{l} \\ &= \{x,Q\varrho(A^{*})y\}_{l} + \{x,(\mathbf{1}_{D(S^{*})}-Q)\varrho(A^{*})y\}_{l} = [x,\pi_{S}^{\delta}(A^{*})y]_{l} \,. \end{split}$$

Thus π_S^{δ} is symmetric with respect to $[,]_l$. From (14) it follows that π_S^{δ} is also symmetric with respect to $[,]_r$ and $[,]_t$.

From (10) and Lemma 2(ii) we obtain that

$$\begin{aligned} \left| \pi_{S}^{\delta}(A)x \right|^{2} &= \left| Q\varrho(A)x \right|^{2} \leq \left| \varrho(A)x \right|^{2} = \left\| \varrho(A)x \right\|^{2} + \left\| S^{*}\varrho(A)x \right\|^{2} \\ &= \left\| \varrho(A)x \right\|^{2} + \left\| (-i\delta(A) + G^{-1}\varrho(A)GS^{*})x \right\|^{2} \\ &\leq \left\| \varrho(A)x \right\|^{2} + 2\left\| \delta(A)x \right\|^{2} + 2\left\| G^{-1}\varrho(A)GS^{*}x \right\|^{2} \\ &\leq 2\left\| G \right\| \left\| G^{-1} \right\| (\left\| \varrho(A) \right\|^{2} + \left\| \delta(A) \right\|^{2}) \left\| x \right\|^{2}. \end{aligned}$$

Since ρ is a *-representation, $\|\rho(A)\| \le \|A\|$. Part (v) is proved.

From (14) it follows that $[x,y]_l = 0$ for all $x, y \in L \subset N(S)$ if and only if $[x,y]_r = 0$ for $x, y \in L$. Let L be a subspace in N(S) neutral with respect to [,] and invariant for F and F^{-1} . By (16), for $x, y \in L$, $[x,y]_l = [Fx,y] = 0$, since $Fx \in L$. Conversely, if L is neutral with respect to $[,]_l$, then, for $x, y \in L$, $[x,y] = [F^{-1}x,y]_l = 0$, since $F^{-1}x \in L$. \Box

The following theorem extends some results about *-derivations of C^* -algebras (see Theorems 3.6 and 3.7 [3]), to the case of *-superderivations. It establishes a link between symmetric δ -extensions of a symmetric implementation (S, G) of a *-superderivation δ and neutral invariant subspaces in N(S) and proves the existence of a maximal symmetric implementation of δ .

Theorem 5. Let (S, G) be a symmetric implementation of a closed *-superderivation δ relative to (ϱ, φ) .

(i) There is a one-to-one correspondence between closed symmetric δ -extensions of (S, G) and subspaces L in N(S) neutral with respect to $[,]_l$ $([,]_r)$, invariant for π_S^{δ} and such that FL = L and $F^JL = L$.

(ii) There is a maximal symmetric implementation (T, G) of δ such that T extends S. (iii) If (S, G) is a maximal symmetric implementation of δ , N(S) has no subspaces L neutral with respect to $[,]_l$ $([,]_r)$, invariant for π_S^{δ} and such that FL = L and $F^JL = L$.

Proof. There is a one-to-one correspondence (see [1]) between closed symmetric extensions T of the operator S and subspaces M, $D(S) \subset M \subset D(S^*)$, neutral with respect to $\{,\}: M(T) = D(T)$ and $T(M) = S^*|_M$. Since $D(S^*)$ is a Hilbert space, $D(T) = D(S)\langle + \rangle L(T)$, where $L(T) \subseteq N(S)$ and L(T) is neutral with respect to [,]. From Lemma 15 [1] it follows that

$$D(T^*) = D(S) \langle + \rangle L(T)^{[\perp]},$$

where $L(T)^{[\perp]}$ is the *J*-orthogonal complement of L(T) in N(S) with respect to [,].

If (T,G) implements δ , it follows from (2) that GD(T) = D(T) and $GD(T^*) = D(T^*)$. By (11),

$$FL(T) = QG_SQD(T) = QGD(T) = QD(T) = L(T).$$

Hence $F^{-1}L(T) = L(T)$. By Lemma 4(vi), L(T) is neutral with respect to $[,]_l$.

Similarly, we obtain from (11) that

$$F(L(T)^{[\perp]}) = L(T)^{[\perp]}$$
 and $F^{-1}(L(T)^{[\perp]}) = L(T)^{[\perp]}$.

Let $x \in L(T)$ and $y \in L(T)^{[\perp]}$. Then $Fy \in L(T)^{[\perp]}$ and, by (15), $0 = [x, Fy] = [F^Jx, y]$. Therefore, $F^Jx \in (L(T)^{[\perp]})^{[\perp]} = L(T)$ (see [7, Lemma 2.1]). Hence $F^JL(T) \subseteq L(T)$. Similarly, $(F^{-1})^JL(T) \subseteq L(T)$. Since $(F^J)^{-1} = (F^{-1})^J$, we obtain that $F^JL(T) = L(T)$. We also have that $\varrho(A)D(T) \subseteq D(T)$, $A \in D(\delta)$. Hence from (3) and (5) it follows that L(T) is invariant for π_S^{δ} .

Conversely, let L be a subspace in N(S) neutral with respect to $[,]_l$, invariant for π_S^{δ} and such that $FL = L = F^J L$. Then $F^{-1}L = L$. By Lemma 4(vi), L is neutral with respect to [,]. Set M = D(S) + L. By (7), M is a subspace in $D(S^*)$ neutral with respect to $\{,\}$. Hence $T = S^*|_M$ is symmetric,

 $\varrho(A) D(T) \subseteq D(T), A \in D(\delta), \text{ and } GD(T) = GM = D(S) + FL = M = D(T).$

Since $F^J L = L$, $(F^J)^{-1} L = L$ and, for $x \in L$, $y \in L^{[\perp]}$, it follows from (15) that

$$0 = [F^J x, y] = [x, Fy].$$

Hence $Fy \in L^{[\perp]}$, so that $FL^{[\perp]} \subseteq L^{[\perp]}$. Similarly, $F^{-1}L^{[\perp]} \subseteq L^{[\perp]}$. Therefore $FL^{[\perp]} = L^{[\perp]}$. Thus $GD(T^*) = D(T^*)$.

From Lemma 2 it follows that

$$\delta(A)|_{D(T)} = i(S^* \varrho(A) - G^{-1} \varrho(A) GS^*)|_{D(T)} = i(T \varrho(A) - G^{-1} \varrho(A) GT)|_{D(T)},$$

so that the pair (T, G) implements δ . Part (ii) is proved.

Let $\{L_{\alpha}\}$ be a set of subspaces in N(S) neutral with respect to $[,]_{l}$, invariant for π_{S}^{δ} , ordered by inclusion and such that $FL_{\alpha} = L_{\alpha} = F^{J}L_{\alpha}$. Let $L = \bigcup L_{\alpha}$. By Lemma 4, the operators F, F^{-1} , and $\pi_{S}^{\delta}(A), A \in D(\delta)$, are bounded on N(S) with respect to []. Hence L is invariant for π_{S}^{δ} and $FL = L = F^{J}L$. From Lemma 4 it also follows that $|[x,y]_{l}| \leq |G_{S}| |x| |y|$, $x, y \in N(S)$. Therefore L is neutral with respect to $[],]_{l}$. Hence by Zorn's theorem, there exists a maximal subspace L_{0} in N(S) neutral with respect to $[],]_{l}$, invariant for π_{S}^{δ} and such that $FL = L = F^{J}L$. Thus, by (i), the corresponding pair (T, G) is a maximal symmetric implementation of δ such that T extends S. Part (ii) is proved. Part (iii) follows immediately from (i). \Box

3. Extensions of π_S^{δ} to Representations of the C^* -Algebra \mathfrak{U}

If δ is a *-derivation of \mathfrak{U} , S is a maximal implementation of δ and $\max(n_{\pm}(S)) < \infty$, then π_S^{δ} is a non-degenerate representation of $D(\delta)$ on a finite-dimensional space N(S). It was proved in [3] that π_S^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} . Theorems 6 and 7 prove this result for some maximal symmetric implementations of *-superderivations.

Theorem 6. Let \mathfrak{U} be a unital C^* -algebra and the operator $R = \frac{1}{2}(F + F^J)$ have a bounded inverse on N(S).

(i) There are a new scalar product $(,)_1$ and a new involution I on N(S) such that the norm $\| \|_1 = (,)_1^{1/2}$ is equivalent to the norm $\| \|$ on N(S) and that $[x, y]_t = (Ix, y)_1$. Thus N(S) is a Krein space with respect to $(,)_1$ and $[,]_t$.

(ii) If (S, G) is a maximal symmetric implementation of δ and $\max(n_{\pm}(S)) < \infty$, then π_{S}^{δ} is semisimple, bounded and extends to a bounded representation of \mathfrak{U} on N(S) which is symmetric with respect to $[\,,\,]_{d}, d = l, r, t$

Proof. The operator $JR = \frac{1}{2}(JF + F^+J)$ is selfadjoint on N(S) and, by (10) and (17), $[x, y]_t = [Rx, y] = \langle JRx, y \rangle$. If R has a bounded inverse, JR also has a bounded inverse and part (i) follows from [7].

Let K be a subspace in N(S) invariant for π_S^{δ} , F and F^J . Since F and F^J have inverses and since N(S) is finite-dimensional, $FK = K = F^J K$. Set

$$M = K^{[\perp]_t} = \{ y \in N(S) : [x, y]_t = 0, \text{ for all } x \in K \}.$$

By Lemma 4(v), M is invariant for π_S^{δ} . We claim that

$$FM = M = F^{J}M$$
, $K \cap M = \{0\}$ and $N(S) = K[+]_{t}M$. (21)

From (20) it follows that

$$[x, Ry]_l = [Fx, y]_l = 0$$
 and $[x, Ry]_r = [F^J x, y]_t = 0$, $x \in K, y \in M$. (22)

Therefore $[x, Ry]_t = 0$. Hence $RM \subseteq M$. Since R has a bounded inverse and M is finite-dimensional, RM = M. Therefore, by (22),

$$[x, y]_l = [x, y]_r = 0, \qquad x \in K, \ y \in M.$$
(23)

Since $FK = K = F^J K$, from (18) and (19) it follows that

$$[x, Fy]_l = [x, Fy]_r = [x, F^J y]_l = [x, F^J y]_r = 0.$$

Hence, by (12),

$$[x, Fy]_t = [x, F^J y]_t = 0, \quad x \in K, y \in M,$$

so that $FM \subseteq M$ and $F^JM \subseteq M$. Therefore FM = M and $F^JM = M$.

The subspace $P = K \cap M$ is invariant for π_S^{δ} , $FP = P = F^J P$ and, by (23), it is neutral with respect to $[,]_l$. Since (S, G) is a maximal symmetric implementation of δ , it follows from Theorem 5(iii) that $P = \{0\}$. By (17),

$$\begin{split} M &= \{ y \in N(S) : [x, y]_t = [Rx, y] = \langle JRx, y \rangle = \langle x, R^+ Jy \rangle = 0, x \in K \} \\ &= (R^+ J)^{-1} K^{\perp} \;, \end{split}$$

where K^{\perp} is the orthogonal complement of K with respect to \langle , \rangle . Hence dim $M = \dim K^{\perp}$, so that $K[+]_t M = N(S)$. Thus (21) is proved.

From (21) it follows that N(S) can be decomposed in the direct sum

$$N(S) = \sum_{i=1}^{m} [+]_t K_i$$
(24)

of subspaces K_i invariant for π_S^{δ} , for F and F^J , orthogonal with respect to $[,]_t$ and such that they have no subspaces invariant for π_S^{δ} , F and F^J .

Let Γ be the group of operators on N(S) generated by F and F^J . We have that $Q\varrho(A)Q = Q\varrho(A), A \in D(\delta)$. From this and from (1), (5) and (11) it follows that

$$F^{-1}\pi_{S}^{\delta}(A)F = QG_{S}^{-1}Q\varrho(A)QG_{S}Q$$

= $QG^{-1}\varrho(A)GQ = Q\varrho(\varphi(A))Q = \pi_{S}^{\delta}(\varphi(A)).$ (25)

From (15), (16) and Lemma 4(iv) we have that

$$\begin{split} [\pi_{S}^{\delta}(A)x,y]_{l} &= [F\pi_{S}^{\delta}(A)x,y] = [x,(\pi_{S}^{\delta}(A))^{J}F^{J}y] \\ &= [x,\pi_{S}^{\delta}(A^{*})y]_{l} = [Fx,\pi_{S}^{\delta}(A^{*})y] = [x,F^{J}\pi_{S}^{\delta}(A^{*})y] \end{split}$$

and

$$\begin{aligned} [\pi_{S}^{\delta}(A)x,y]_{r} &= [\pi_{S}^{\delta}(A)x,Fy] = [x,(\pi_{S}^{\delta}(A))^{J}Fy] \\ &= [x,\pi_{S}^{\delta}(A^{*})y]_{r} = [x,F\pi_{S}^{\delta}(A^{*})y] \,. \end{aligned}$$

Since the form [,] is not degenerate on N(S),

$$(\pi_{S}^{\delta}(A))^{J} F^{J} = F^{J} \pi_{S}^{\delta}(A^{*}) \text{ and } (\pi_{S}^{\delta}(A))^{J} F = F \pi_{S}^{\delta}(A^{*}).$$

Thus $F^J \pi_S^{\delta}(A^*) (F^J)^{-1} = F \pi_S^{\delta}(A^*) F^{-1}$ and from (25) we conclude that

$$F^{J}\pi_{S}^{\delta}(A)(F^{J})^{-1} = \pi_{S}^{\delta}(\varphi^{-1}(A)).$$
(26)

Let $B = F^{m_1}(F^J)^{p_1} \dots F^{m_n}(F^J)^{p_n} \in \Gamma, m_i, p_i \in \mathbb{Z}$. Set deg $(B) = \sum_{i=1}^n (m_i + p_i)$. From (25) and (26) it follows that

$$B^{-1}\pi_S^{\delta}(A)B = \pi_S^{\delta}(\varphi^{\deg(B)}(A)).$$
(27)

Let $K = K_i$ be a subspace in decomposition (24). Since \mathfrak{U} is unital, $\mathbf{1} \in D(\delta)$, by Lemma 1. Therefore there is a subspace L in K invariant for π_S^{δ} such that the restriction π_L of π_S^{δ} to L is irreducible and non-trivial. The subspace K is invariant for all $B \in \Gamma$. Hence $BL \subseteq K$ and it follows from (27) that BL is invariant for π_S^{δ} and the restriction of π_S^{δ} to BL is irreducible. Therefore if M is a subspace in K invariant for π_S^{δ} , then either $M \cap BL = \{0\}$ or $BL \subseteq M$. From this and from the fact that K is finite-dimensional and has no subspace invariant for π_S^{δ} , for F and F^J it follows that there are $B_j \in \Gamma$, $j = 1, \ldots, q$, such that K is the direct sum of the subspaces $B_j L: K = B_1 L + B_2 L + \ldots + B_n L$. From this and from (24) we conclude that π_S^{δ} decomposes in the direct sum of irreducible representations of the algebra $D(\delta)$. Hence π_S^{δ} is a semisimple representation. Since, by Lemma 1, $D(\delta)$ is a Q-subalgebra of \mathfrak{U} , it follows from Theorem 6 [6] that π_S^{δ} is bounded with respect to the norm on \mathfrak{U} and extends to a bounded representation ψ of \mathfrak{U} on N(S). Since π_S^{δ} is symmetric with respect to $[,]_d, d = l, r, t, \psi$ is also symmetric. \Box

In Theorem 6 we assumed that the operator R has a bounded inverse on N(S). Now we assume that R = 0, i.e., $F^J = -F$. Then, by (16) and (17),

$$[x, y]_r = -[x, y]_l$$
 and $[x, y]_t \equiv 0$. (28)

Set $[[x, y]] = i[x, y]_l$ and $R_1 = iF$. Then, by (14),

$$\llbracket y, x \rrbracket = i \llbracket y, x \rrbracket_l = -i \llbracket y, x \rrbracket_r = -i \overline{\llbracket x, y \rrbracket_l} = \overline{\llbracket x, y \rrbracket},$$

and, by (18) and (28),

$$[[R_1x, y]] = -[Fx, y]_l = [Fx, y]_r = [x, Fy]_l = [[x, R_1y]].$$
⁽²⁹⁾

Since $R = \frac{1}{2} (F + F^J) = 0$, the proof of Theorem 6 obviously fails. However, the following theorem holds which replaces Theorem 6.

Theorem 7. Let \mathfrak{U} be a unital C^* -algebra and let $F^J = -F$.

(i) There are a new scalar product $(,)_1$ and a new involution I on N(S) such that the norm $|| ||_1 = (,)_1^{1/2}$ is equivalent to the norm || on N(S) and that $[[x, y]] = (Ix, y)_1$. Thus N(S) is a Krein space with respect to $(,)_1$ and [[,]].

(ii) If (S, G) is a maximal symmetric implementation of δ and $\max(n_{\pm}(S)) < \infty$, then π_{S}^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} on N(S) which is symmetric with respect to $[\![,]\!]$.

Proof. Since $F^J = -F$, $R_1^J = R_1$. Hence $R_1^+J = JR_1$. It follows from (16) that

$$\llbracket x, y \rrbracket = \llbracket R_1 x, y \rrbracket = \langle J R_1 x, y \rangle.$$

The operator JR_1 is selfadjoint and has a bounded inverse, since F has a bounded inverse. Thus part (i) follows from [7].

Let K be a subspace in N(S) invariant for π_S^{δ} and R_1 . Since R_1 has a bounded inverse and since N(S) is finite-dimensional, $R_1K = K$. Set

$$M = \{ y \in N(S) : [[x, y]] = 0, \text{ for all } x \in K \}.$$

By Lemma 4(v) and by (29), M is invariant for π_S^{δ} and R_1 . Therefore $K \cap M$ is invariant for π_S^{δ} and for R_1 and is neutral with respect to [[,]]. It follows from Theorem 5(iv) that $K \cap M = \{0\}$. In the same way as in Theorem 6 we obtain that dim $M = \dim K^{\perp}$, so that

$$N(S) = K[[+]]M.$$

Making use of the above formula and repeating the argument of Theorem 6, we conclude the proof of the theorem. \Box

Recall that an operator T is called *dissipative* if

$$(Tx, x) + (x, Tx) \le 0, \qquad x \in D(T),$$

and *maximal dissipative* if it is dissipative but not a proper restriction of any other dissipative operator.

If S is a maximal symmetric implementation of a *-derivation σ and $\max(n_{\pm}(S)) < \infty$, the representation π_S^{σ} of $D(\sigma)$ on N(S) is *non-degenerate* with respect to [,] and, hence, semisimple and extends to a bounded J-symmetric representation of the C*-algebra \mathfrak{U} [3]. From this it follows (see Theorem 3.2 [5]) that there exist disjoint sets of irreducible *-representations $\{\pi_i\}_{i=1}^p$ and $\{\varrho_j\}_{j=1}^m$ of \mathfrak{U} such that

$$n_{-}(S) = \sum_{i=1}^{p} \dim \pi_{i} \quad \text{and} \quad n_{+}(S) = \sum_{j=1}^{m} \dim \varrho_{j}$$

This fact was also used in Theorem 3.2 [4] to prove that there exist operators T_j , j = 1, 2, such that $T_1^* = T_2$, that $S \subseteq T_j \subseteq S^*$, that iT_1 and $-iT_2$ are maximal dissipative operators and that T_j implement σ , i.e.,

$$AD(T_j) \subseteq D(T_j)$$
 and $\sigma(A)|_{D(T_j)} = i(T_jA - AT_j)|_{D(T_j)}, \quad A \in D(\sigma).$

Let (S, G) be a maximal symmetric implementation of a *-superderivation δ of a unital C^* -algebra \mathfrak{U} and $\max(n_{\pm}(S)) < \infty$. If $W = \frac{1}{2}(GS + SG)$ is a closed operator and $D(W^*) = D(S^*)$, it follows from Lemma 4(iii) that the operator $R = \frac{1}{2}(F + F^J)$ has a bounded inverse. Although the representation π_S^{δ} may be degenerate with respect

to $[,]_d, d = l, r, t$, nevertheless it follows from Theorem 6 that π_S^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} on N(S) symmetric with respect to $[,]_t$. Similarly, if $F^J = -F$, i.e., R = 0, it follows from Theorem 7 that π_S^{δ} is semisimple and extends to a bounded representation of \mathfrak{U} on N(S) symmetric with respect to [[,]]. The operator $JR = \frac{1}{2}(JF + F^+J)$ in the first case and the operator $JR_1 = iJF$ in the second case are selfadjoint on N(S) and invertible. Let N_- and N_+ be the subspaces in N(S) generated by all eigenvectors of JR (resp. JR_1) which correspond respectively to negative and positive eigenvalues. Set $m_{\pm} = \dim(N_{\pm})$. Then $m_- + m_+ = \dim N(S)$. Using the same argument as in Theorems 3.2 [5] and 3.2 [4] we obtain the following corollary which refines the result of Theorem 3.

Corollary 8. Let (S, G) be a maximal symmetric implementation of δ and $\max(n_{\pm}(S)) < \infty$.

(i) If $W = \frac{1}{2}(GS + SG)$ is a closed operator and $D(W^*) = D(S^*)$, then

(a) there exist disjoint sets of irreducible *-representations $\{\pi_i\}_{i=1}^p$ and $\{\varrho_i\}_{i=1}^m$ of \mathfrak{U}

such that
$$m_{-} = \sum_{i=1}^{p} \dim \pi_{i}$$
 and $m_{+} = \sum_{j=1}^{m} \dim \varrho_{j}$,

(b) there exist operators T_j , j = 1, 2, such that $T_1^* = T_2$, that $W \subseteq T_j \subseteq W^*$, that iT_1 and $-iT_2$ are maximal dissipative operators and that T_j implement the *-derivation Δ associated with δ , i.e.,

$$AD(T_j) \subseteq D(T_j)$$
 and $\Delta(A)|_{D(T_j)} = i(T_jA - AT_j)|_{D(T_j)}, \quad A \in D(\Delta)$.

(ii) If $F^J = -F$, then (i) (a) holds.

4. Special Type of Symmetric Implementations of Superderivations

In this section we consider examples of symmetric implementations (S, G) which satisfy Theorems 6 and 7. Assume that there are $\lambda, \mu \in \mathbb{C}$ such that the operator

$$B|_{D(S)} = (SG - \lambda GS - \mu S)|_{D(S)}$$

$$(30)$$

is bounded. Set $\nu = -\frac{\mu}{1+\lambda}$ if $\lambda \neq -1$.

ν

Lemma 9. (i) Let $(\lambda, \mu) \neq (-1, 0)$ and let $\nu \notin Sp G$ and $(G - \bar{\nu} \mathbf{1}_{5}) D(S^*) = D(S^*)$ (for example, $\mu = 0$). Then the operator $W = \frac{1}{2}(GS + SG)$ is closed and $D(W^*) = D(S^*)$, so that the form $[,]_t$ on N(S) is non-degenerate. If, in addition, (S, G) is a maximal implementation of δ and $\max(n_{\pm}(S)) < \infty$, then the operator $R = \frac{1}{2}(F + F^J)$ has a bounded inverse and Theorem 6(ii) and Corollary 8(i) hold. (ii) The following are equivalent `a) $|\lambda| = 1$, b) $\mu + \lambda \bar{\mu} = 0$. (iii) If $|\lambda| = 1$, then

$$B^{*} = -\bar{\lambda}B, \qquad B|_{D(S^{*})} = (S^{*}G - \lambda GS^{*} - \mu S^{*})|_{D(S^{*})},$$

$$\notin SpG, \qquad [x,y]_{l} = \lambda[x,y]_{r} + \mu[x,y], \quad \text{and} \quad F^{J} = \bar{\lambda}F + \bar{\mu}\mathbf{1}_{N(S)}.$$
(31)

(iv) [3] If $|\lambda| = 1$, $\mu = 0$ and $B = \nu G$, $\nu \in \mathbb{C}$, and if $(\lambda, \nu) \neq (1, 0)$, then $n_{-}(S) = n_{+}(S)$.

Proof. Let $\lambda \neq -1$. By (30),

$$W = \frac{1}{2}(GS + SG) = \frac{1+\lambda}{2}GS + \frac{\mu}{2}S + \frac{1}{2}B = \frac{1+\lambda}{2}(G - \nu \mathbf{1}_{\mathfrak{H}})S + \frac{1}{2}B.$$

Since $G - \nu \mathbf{1}_{\mathfrak{H}}$ has the inverse and S is closed, we have that W is closed and D(W) = D(S). Let $y \in D(W^*)$. Then for $x \in D(S)$,

$$(Wx, y) = (x, W^*y) = \frac{1+\lambda}{2} (Sx, (G - \bar{\nu}\mathbf{1}_{5})y) + \frac{1}{2} (x, B^*y).$$

Hence $(G - \bar{\nu} \mathbf{1}_{\mathfrak{H}}) y \in D(S^*)$. Since $(G - \bar{\nu} \mathbf{1}_{\mathfrak{H}}) D(S^*) = D(S^*)$, there is $z \in D(S^*)$ such that $(G - \bar{\nu} \mathbf{1}_{\mathfrak{H}}) y = (G - \bar{\nu} \mathbf{1}_{\mathfrak{H}}) z$. Since G is selfadjoint and $G - \nu \mathbf{1}_{\mathfrak{H}}$ is invertible. $G - \bar{\nu} \mathbf{1}_{\mathfrak{H}}$ also has a bounded inverse. Hence $y = z \in D(S^*)$. Thus $D(W^*) = D(S^*)$.

If now $\lambda = -1$ and $\mu \neq 0$, then $W = \frac{\mu}{2}S + \frac{1}{2}B$ is closed, $W^* = \frac{\overline{\mu}}{2}S^* + \frac{1}{2}B$ and $D(W^*) = D(S^*)$. It follows from Lemma 4(iii) that in both cases, $\lambda \neq -1$ and $\lambda = -1$, $\mu \neq 0$, the form $[,]_t$ is non-degenerate. If $\max(n_{\pm}(S)) < \infty$, then, by Lemma 4(iii), the operator R has a bounded inverse. Thus Theorem 6(ii) and Corollary 8(i) hold. Part (i) is proved.

Let $x \in D(S)$ and $y \in D(S^*)$. By (30),

$$\lambda(Sx, Gy) = (\lambda GSx, y) = (SGx, y) - ((B + \mu S)x, y) = (x, (GS^* - B^* - \bar{\mu}S^*)y).$$

Therefore

$$B^*|_{D(S^*)} = (GS^* - \bar{\lambda}S^*G - \bar{\mu}S^*)|_{D(S^*)}.$$
(32)

Restricting (32) to D(S), we obtain that $B^*|_{D(S)} = (GS - \bar{\lambda}SG - \bar{\mu}S)|_{D(S)}$. Hence

$$(B + \lambda B^*)|_{D(S)} = ((1 - |\lambda|^2)SG - (\mu + \lambda\bar{\mu})S)|_{D(S)}.$$
(33)

If $|\lambda| = 1$, then, since $B + \lambda B^*$ is bounded, $(\mu + \lambda \bar{\mu})S$ is bounded. Since S is unbounded, $(\mu + \lambda \bar{\mu}) = 0$. Conversely, if $\mu + \lambda \bar{\mu} = 0$, $(1 - |\lambda|^2)SG$ is bounded. If $\lambda \neq 1$, SG is bounded. Since GD(S) = D(S), S is bounded. This contradiction shows that $|\lambda| = 1$. Part (ii) is proved.

If $|\lambda| = 1$, it follows from (33) that $B + \lambda B^* = 0$. Hence $B^* = -\overline{\lambda}B$. From this, from (ii) and from (32) it follows that

$$B|_{D(S^*)} = -\lambda B^*|_{D(S^*)} = (S^*G - \lambda GS^* + \lambda \bar{\mu}S^*)|_{D(S^*)}$$
$$= (S^*G - \lambda GS^* - \mu S^*)|_{D(S^*)}.$$

Let $\lambda \neq -1$. If $\mu = 0$, then $\nu = 0$ and, since G has a bounded inverse, $\nu \notin SpG$. If $\mu \neq 0$, it follows from (ii) that $\lambda = -\mu/\bar{\mu}$, so that $\operatorname{Im} \mu \neq 0$. Then $\nu = i|\mu|^2/2\operatorname{Im}(\mu)$. Since G is selfadjoint, $\nu \notin SpG$.

By (31), $U^* = S^*G = \lambda GS^* + \mu S^* + B = \lambda V^* + \mu S^* + B$. Since $B^* = -\bar{\lambda}B$, it follows from (12) and from (ii) that

$$\begin{split} \{x,y\}_l &= i((x,V^*y) - (U^*x,y)) \\ &= i((x,V^*y) - (\lambda V^*x,y) - (Bx,y) - (\mu S^*x,y)) \\ &= \lambda i(\bar{\lambda}(x,V^*y) - (V^*x,y) + (x,By)) - i\mu(S^*x,y) \\ &= \lambda i((x,(\lambda V^* + B + \mu S^*)y) - (V^*x,y)) - \lambda \bar{\mu}i(x,S^*y) - \mu i(S^*x,y) \\ &= \lambda i((x,U^*y) - (V^*x,y) + \mu i((x,S^*y) - (S^*x,y)) \\ &= \lambda \{x,y\}_r + \mu \{x,y\}. \end{split}$$

Therefore $[x, y]_l = \lambda [x, y]_r + \mu [x, y]$ and it follows from (16) that

$$[x,y]_l = \langle JFx,y \rangle = \lambda [x,y]_r + \mu [x,y] = \lambda \langle F^+Jx,y \rangle + \mu \langle Jx,y \rangle.$$

Thus $JF = \lambda F^+ J + \mu J$, so that $F^J = JF^+ J = \bar{\lambda}F + \bar{\mu}\mathbf{1}_{N(S)}$. \Box

Let now $(\lambda, \mu) = (-1, 0)$ in (30), i.e., $SG|_{D(S)} = (-GS + B)|_{D(S)}$. By Lemma 9,

$$B^* = B, \quad W = B/2, \quad [x, y]_l = -[x, y]_r, [x, y]_t \equiv 0, \quad F^J = -F.$$
(34)

Suppose that B = 0. Then SG = -GS. If $x \in N_d(S)$, $d = \pm$, then

$$SGx = -GSx = -diGx$$
.

Therefore $Gx \in N_{-d}(S)$, so that $FN_d(S) \subseteq N_{-d}(S)$. Since FN(S) = N(S), $FN_d(S) = N_{-d}(S)$. Since Jx = dx, $x \in N_d(S)$, we obtain that

$$n_{+}(S) = n_{-}(S) \text{ and } FJ = -JF,$$
 (35)

Recall (see Theorem 7) that in this case, instead of the operator $R = \frac{1}{2}(F + F^J)$, we consider the operator $R_1 = iF$. Set $T = JR_1 = iJF$. Then

$$TJ = iJ(FJ) = -iJ^2F = -iF = -JT$$

The operator T is selfadjoint, since, by (34), $T^+ = -iF^+J = iJF = T$. If $\lambda > 0$ is an eigenvalue of T and x is the corresponding eigenvector, then

$$TJx = -JTx = -\lambda Jx, \qquad (36)$$

so that $(-\lambda)$ is an eigenvalue of T and Jx is the corresponding eigenvector. Let, as in Corollary 8, N_{-} and N_{+} be the subspaces in N(S) generated by all eigenvectors of T which correspond respectively to negative and positive eigenvalues. Since T is invertible, dim $N(S) = \dim N_{-} + \dim N_{+}$. From (36) it follows that dim $N_{-} = \dim N_{+}$. From this and from (35) we conclude that

$$n_{-}(S) = n_{+}(S) = \dim N_{-} = \dim N_{+}$$
.

From this and from Corollary 8(i) we obtain the following lemma.

Lemma 10. Let (S, G) be a maximal implementation of a *-superderivation δ , let $SG|_{D(S)} = (-GS + B)|_{D(S)}$ and let $\max(n_{\pm}(S)) < \infty$. Then (ii) $F^J = -F$ and Theorem 7(ii) holds; (ii) if, in addition, B = 0, then there exist disjoint sets of irreducible *-representations $\{\pi_i\}_{i=1}^p$ and $\{\varrho_i\}_{i=1}^m$ of \mathfrak{U} such that

$$n_{-}(S) = n_{+}(S) = \sum_{i=1}^{p} \dim \pi_{i} = \sum_{j=1}^{m} \dim \varrho_{j}.$$

Acknowledgement I am extremely grateful to Prof. E.B. Davies for his valuable advice.

References

- 1. Dunford, N., Schwartz, J.T.: Linear operators. Part II. New York, London: Interscience 1963
- 2. Davies, E.B., Lindsay, J.M.: Noncommutative symmetric Markov semigroups. Math. Z. 210, 379-411 (1992)
- 3. Kissin, E.: Symmetric operator extensions of unbounded derivations of C*-algebras J. Funct. Anal. 81, 38-53 (1988)
- 4. Kissin, E.: Dissipative implementations of *-derivations of C*-algebras and representations in indefinite metric spaces. J. London Math. Soc (2) 43, 451–464 (1991)
- 5. Kissin, E.: Indices of unbounded derivations of C*-algebras. Pacific J. Math. 152, 125-150 (1992)
- 6 Kissin, E., Shulman, V.S.: Dense Q-subalgebras of Banach and C*-algebras and unbounded derivations of Banach and C*-algebras Proc. of Edinburgh Math. Soc. **36**, 261–276 (1993)
- 7. Phillips, R.S.: On dissipative operators. Lecture series in differential equations, Vol. II. Mathematics studies 19. New York: von Nostrand 1969

Communicated by H. Araki