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Abstract: We study the stationary solution of the Boltzmann equation in a slab
with a constant external force parallel to the boundary and complete accommoda-
tion condition on the walls at a specified temperature. We prpve that when the
force is sufficiently small there exists a solution which converges, in the hydro-
dynamic limit, to a local Maxwellian with parameters given by the stationary
solution of the corresponding compressible Navier-Stokes equations with no-slip
boundary conditions. Corrections to this Maxwellian are obtained in powers of the
Knudsen number with a controlled remainder.

1. Introduction

In this paper we continue our study of the derivation of hydrodynamic equations
from the Boltzmann equation (BE), a problem which goes back to Hubert [1]. The
BE is believed to accurately describe the time evolution of rarefied gases on
a "kinetic" scale intermediate between the microscopic and macroscopic [2]. To go
from the BE to the macroscopic (hydrodynamic) descriptions the locally conserved
density fields have to be slowly varying on the kinetic (to which we shall refer from
now on as microscopic) scale but have sensible space variations over macroscopic
distances. Let ε be the ratio between microscopic and macroscopic space units
(usually called the Knudsen number). It can be shown that the conserved densities,
observed at microscopic times of order ε~ *, converge, as ε -> 0, to macroscopic fields
whose time evolution is given by the solution of the Euler equations (EE) (at least
when the latter have a smooth solution) [3, 4, 5]. This derivation of the EE in the
above hydrodynamical (Euler) scaling limit is consistent with (indeed made pos-
sible by) the fact that the EE are themselves invariant under uniform space and
time scaling.

Unfortunately there is no such scale invariance (and thus no such scaling limit)
for the Navier-Stokes equations (NSE). The NSE are usually deduced, via the
Chapman-Enskog expansion (see [6]), as corrections to the EE on the Euler time
scale ε~ * with viscosity coefficient and thermal conductivity of order ε. To describe
situations which discriminate between the two equations when the Knudsen
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number ε goes to zero we need to consider longer time scales, i.e. microscopic times
of order ε~2. On this time scale viscosity and thermal conductivity have finite
effects, but the effect of the Euler term may now become very large making any
rigorous mathematical analysis very difficult.

This problem can be controlled when the velocity field itself is of order ε - in
which case a kind of scale invariance is recovered for the NSE. It is then possible to
get the incompressible NSE as a scaling limit from the BE (see [7-11]). To deal
with the case of macroscopic velocities with non-vanishing Mach number it is
necessary to consider situations in which some of the non-linear terms, which
prevent invariance under scaling, are absent from the NSE due to the symmetry of
the problem. Some partial results in this direction are given in [12].

Alternatively we can consider stationary situations in the presence of bound-
aries in which the time independent NSE have suitable scaling behavior. In this
paper we consider such an example and show that the NS description is obtained
as the scaling limit of the stationary solution of the BE. More precisely we consider
a fluid in a channel with planar parallel boundaries subject to a constant force
parallel to the boundary. Using the Euler equations the fluid velocity would keep
on increasing linearly with time. For the NSE with no-slip boundary condition, on
the other hand, the effect of the viscosity counteracts the force field and a stationary
situation is reached, with the heat production balanced by a flow of energy to the
thermal walls. Experiments, as well as molecular dynamics simulations [13], show
that this situation can be reasonably described by the NSE.

The kinetic description of this problem in terms of a BE requires boundary
conditions; a natural choice is to assume a complete accommodation coefficient.
This means that any particle hitting the boundary is reflected with a velocity
chosen at random according to a Maxwellian with variance corresponding to the
fixed temperature of the walls. We confine ourselves to the fully symmetric
solutions of the hydrodynamic and kinetic equations. The solution to the rescaled
BE is then found like in [4] in terms of a truncated expansion in the Knudsen
parameter ε whose leading term is a Maxwellian with parameters given by the
solution of the NSE.

The corrections to the leading order are given in the bulk by a modified
truncated Hubert expansion with a remainder. It is also necessary to introduce
boundary layer terms to accommodate the expansion to the boundary conditions.
This is accomplished along the lines of [14-17], but there are some extra difficulties
arising from the force field.

Most of the paper is devoted to the proof of a bound on the remainder, which is
obtained for a sufficiently small force field; this implies that the solution will match
the expansion to any order, although, of course, no convergence of the expansion is
provided or expected.

The outline of the paper is as follows. In Sect. 2 we present the problem and the
basic results. Section 3 is devoted to the bulk and boundary layer expansions. The
control of the boundary layer expansion requires the use of some well known
results about the Milne problem (see [15-17]) and some estimates on the velocity
derivatives of the boundary layer terms; these are given in Appendix B. There are
many technical difficulties in estimating the remainder, which satisfies a weakly
non-linear equation, due to the fact that for the stationary problem the only
available a priori bound on the solution comes from the non-positivity of the
quadratic form corresponding to the production of entropy in the linearized
regime. Unfortunately the linearized Boltzmann operator has a non-trivial kernel
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so the control of the hydrodynamic component of the solution is very inefficient.
This difficulty, combined with the high velocity difficulty already present in [4] and
the low velocity difficulty typical of the stationary case make the estimates rather
intricate. In Sect. 4 we construct the solution of the remainder equation as the limit
of a sequence of solutions of approximating linear problems. The estimates for
these solutions are obtained, like in [4], by decomposing them into a low and high
velocity part, but the poor control of the hydrodynamic part at low velocities
allows only L2 bounds on the solution. The proof of these bounds is given in Sect. 5.
We then take advantage of the structure of the equation to improve the bounds to
pointwise estimates on the solution which can be used to handle the non-linear
terms. This is discussed in Sect. 6. Appendix A contains a short discussion of the
solution of the macroscopic equations.

2. Statement of Problem and Results

a) Hydrodynamical Description. We consider the flow of a compressible viscous
fluid in a three dimensional slab infinite (or periodic) in the x and z directions with
planar boundaries perpendicular to the y direction: top and bottom planes will
correspond to y = 1 and y = — 1 respectively. The fluid is subject to a constant
force parallel to the x-axis. A stationary state will be reached when the heat
produced by the friction due to the relative motion of the gas under the action of
the force is balanced by the energy loss to the walls maintained at a given
temperature To.

Considering only situations which have the full symmetry of the problem the
Navier-Stokes equations for this system, with a perfect gas equation of state,
reduce to

^(pT) 0, (2.1)
dy

where u(y) is the x-component of the velocity field (the only non-vanishing one),
T(y) > 0 is the temperature field, ρ(y) > 0 is the density of the fluid, F > 0 is the
constant intensity of the external field; η(T) and κ(T) are the viscosity and the
thermal conductivity, which for gases depend only on T. The hydrostatic condition
(2.1), stating the constancy of the pressure & given by the perfect gas law 0> = pT,
ensures that there is no flow in the y direction.

We complete the system (2.1)—(2.3) with a no-slip boundary condition on the
thermal walls at temperatures To, that is we assume

κ(-l) = u(l) = 0; T(-l)=T(l)=To>0. (2.4)

Once the total mass per unit area m = \ι_1 p(y)dy is given, the problem is com-
pletely specified. The functions η(T) and κ(T) are assumed to be smooth and satisfy
the conditions

η(T)^ηo>0\ κ(T)^κo>0 (2.5)

at least for Γ ̂  To. Under these conditions it is not difficult to prove the following



52 R Esposito, J.L Lebowitz, R. Marra

Proposition 2.1. The system (2.1)-(2.5) has solutions in C° °( [- l , 1]), such that
T(y) > To for ye(— 1,1). Moreover there is an Fo > 0 such that, if F ^ Fo the
solution is unique and for any positive n there is a c > 0 such that the following
estimate holds:

sup ^ Uu(y)\ + Σ \uθ\y)\ + I T(y) - To\ + £ \ Pk\y)\\ < cF , (2.6)

withf(k) denoting the kth derivative off

A sketch of the proof of Proposition 2.1 will be given in Appendix A.

b) Kinetic Description. To describe the situation in terms of the stationary BE we
note first that Eqs. (2.1)—(2.3) are clearly invariant under a rescaling of spatial
lengths by λ and the force F by λ~2. We therefore introduce into the BE the
Knudsen scale parameter ε such that the width of the slab in microscopic units is
2ε - 1 , and take the force field, in microscopic units, equal to ε2F. Physically this
means that the velocities of the particles of the gas are changed by a finite amount
in times in which the effect of the viscosity are felt (i.e. times of order ε~2).

This scaling of space by ε, from microscopic to macroscopic units, produces the
following Boltzmann equation [7]:

where j /e[—1, 1], v = (vx, vy, z;z)e!R3 denotes the velocity of the particles of the
gas and Q(f,f)(y, v) is the collision operator. We consider for concreteness the case
of a hard sphere gas, for which Q(f g) is given for any y by

= ~ ί dv^dwiv* -υ) ω
Z 3

)l (2.8)

Here Si = {ωeIR3 s.t. ω2 = 1, (v% — v) ω ^ 0}, v' and v'^ are the incoming vel-
ocities, v and v* the outgoing velocities and ω the impact parameter of an elastic
collision of hard spheres. In (2.8) the dependence on y is implicit.

The thermal wall and the no-slip conditions are simulated by a Maxwell
boundary condition with unit accommodation coefficient, temperature To and
vanishing mean velocity. Namely we assume, [6]

), vy>0,

(v)9 vy<0, (2.9)

with

^ 2 / 2 T o , (2.10)

normalized so that j y < 0 \vy\M(v)dv = 1. In (2.9) the coefficients α+ are determined

by the condition of impermeability of the walls, i.e.

(vyf) = 0 foτy=±ί9 (2.11)
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and we use the notation
< # > = j g(υ)dυ. (2.12)

R 3

Hence α+ are given by
α± = ± f Όyf(±l9v)dυ (2.13)

and can be interpreted as the flux of mass outgoing from the fluid toward the walls.
We now make explicit our restriction to flows which are symmetric under

reflection of the y-axis. Denote by Stυ the reflected velocity, Mv = (vx, —vy, vz\
and by 0i*f(y9v)=f( — y,0lv)'9 we consider only solutions of (2.7) such that
M*f = f. As a consequence of this reflection symmetry we have: Jυ >odvf(l, ϋ)vy
= ~Ly<odvf(—l, v)υy, so that α+ = α_ = α. Finally we require that the kinetic
mass be equal to the hydrodynamic one, that is we assume the normalization
condition

} dy(f) = m . (2.14)
- 1

The collision operator Q(f, g) has the following properties:

0
<XiQ(f,g)> = 0 f o r / = < ) , . . . , 4 , ( 2 . 1 5 )

w h e r e

(2.16)

= 0 iff / ^ t ; ) = M P i ϋ ι Γ ( ι ; ) = - ^ e - ( B - W Γ (2.17)
(2πΓ)2

with p and T positive and t/eIRA The function MPtUtT is called a local
Maxwellian with parameters p, T and t/ depending on position.

Integrating (2.7) over velocities, it follows from (2.15) and (2.11) that any solution of
(2.7) with the property (2.11) satisfies

<*;,/> = 0 f o r a n y y e E - U ] . (2.18)

We denote by M the Maxwellian MPtUtT with T = T(y), p = p(y) and
U = (u(y), 0, 0) given by the solution of (2.1)-(2.4) and write, following [4, 7], the
solution to (2.7)-(2.9) as

/ = M + Σ εnfn + ε% . (2.19)

The functions/Π's will be specified in the next section as a combination of terms
of a bulk expansion and of a boundary layer expansion. The remainder fR, defined
by (2.19), then has to solve the weakly non-linear equation
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with

Sef=2Q(M,f) (2.21)

( 2 2 2 )

and A a given function, specified in terms of the functions /„ and their derivatives.
Moreover, to satisfy the normalization condition (2.14), we must have

$dvdyfR = 0. (2.23)

We summarize our results in the following

Theorem 2.2. Given p, T and u satisfying (2.1)-(2.4) and the force field F small
enough, then it is possible to determine uniquely functions /„, n = 1, . . . , 6 and
a remainder fR such thatf given by (2.19), is a solution to the BE (2.7), (2.9) and (2.14)
for ε sufficiently small. Moreover

ll/JL<cF, (2.24)

l l / κ l l o o < c ε f . (2.25)

In Sect. 3 we prove the estimate (2.24); Sects. 4-6 are devoted to the proof of
(2.25).

Before going on to the proofs we make some remarks.

Remark 1. In principle we could carry the sum in (2.19) up to any order k ^ 6 and
get a solution to the BE valid to O(ε^), for a suitable £ increasing with k.

Remark 2. Scaling the force field like ε3 instead of ε2, a factor ε2 appears in front of
F in Eq. (2.7). The stationary macroscopic velocity field generated by such a force is
of order ε. This corresponds, after a suitable rescaling, to the macroscopic flow
being described by the incompressible NSE discussed in [7]. Equations (2.1)-(2.3)
then reduce just to the linear equation (2.2), with constant p and T, whose solution
is the well known parabolic velocity profile. The arguments of this paper then
provide the convergence of the stationary solution of the rescaled BE to the
stationary solution of the incompressible NSE.

Remark 3. The planes y = — 1 and y = 1 could move along the x-direction with
velocities + F instead of being fixed. Our results remain true, as long as | V\ is small
enough. For F = 0 this corresponds to the well known planar Couette flow.

Remark 4. If the temperatures of the two planes are different the results of this
paper do not apply because we then can no longer take advantage of reflection
symmetry. Nevertheless, if the temperature difference is small, independently of ε,
then we still have a unique solution of the hydrodynamic equations and the above
results can be obtained by non-trivial modifications of our proof. This will be
presented elsewhere.

3. The Expansion

Since the gradients of the hydrodynamical fields are non-vanishing on the bound-
aries, the behavior of the solution/of the BE (2.7) is quite different in the bulk and
in some thin (of order ε on the macroscopic scale) region near the boundaries



Hydrodynamic Limit of Stationary Boltzmann Equation 55

(kinetic boundary layer). To discriminate between these two behaviors we split the
functions /„ into the sum Bn + bn so that the expansion in ε with coefficients Bn

represents a good approximation to / away from the boundaries, while bn are
boundary layer corrections.

The main properties of them's are summarized in Proposition 3.1 below, in
which the relevant norms are

\f\r= sup sup(l + \v\γ\f(y9v)\ (3.1)
ye[-l, 1] i e R 3

for any non-negative integer r.

Proposition 3.1. Given p, T and u satisfying (2.1)-(2.4), and F small enough, it is
possible to determine constants ocn and functions y * ε of the velocity, exponentially
small with ε~ \ uniformly in v, in such a way that the functions fn satisfy the following
conditions:

i)
fn = BH + bf+b-, forn=l,...,6 (3.2)

with Bn satisfying (3.11)—(3.13) and b* solutions of Eqs. (3.15)—(3.17) below.

ϋ)
<»,/„> = 0 for ye[-1,1]. (3.3)

iii)

H 0. (3.4)

iv)
/ „ ( - 1 , v) = <xnM{-1, υ) + y'M vy>0

) + γUv), vy<0. (3.5)

v) There is for any positive r, a constant c such that:

\M~%\r<cF, (3.6)

\M-*A\r<cF, (3.7)

with A defined in (3.19) below satisfying

vi)
= 0 /or j , e [ - l , l ] . (3.8)

Remark. It follows by reflection symmetry that

fn = 3t*fn9 y-ε(υ) = y+ε(@v) for n = 1, . . . , 6 , (3.9)

@*A = A . (3.10)

The bulk terms Bn satisfy the following set of conditions, corresponding to
a modified Hubert expansion:

P)ΛΛ

(3.11)

B i ) , (3.12)

"> dy

3B1 δM
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and for n = 3, . . . , 6,

^ ^ + Σ Q(Bk,Bm) (3.13)

with <£f given by (2.21).
The boundary layer corrections bn will turn out to go to zero exponentially fast

on distances of order ε from the boundary. They are best described in terms of the
rescaled variables y" = ε~1(l — y); y' = ε~1(y + 1) with values in [0, 2 a " 1 ] , such
that

bn = bn(y") -f- bn(y') . (3-14)

We require the b~ to solve the following set of equations:

Vy4-Jbi=^obϊ, (3.15)

2β(Bi, &Γ) + Q(bϊ,bϊ) + 2Q(AM, 6f) -

(3.16)

and for n = 3, . . . , 6,

δ δ
vyT-,bή +F — b--2 = J?ob; + 2Q(AM, b~.,

dy δυx

bϊ)-], (3.17)

i + j = n

where J?of=2Q(Mo,f), Mo = M P ( ± 1 ) ; O , Γ ( ± 1 ) and AM = ε~\M - Mo). The
functions bf will satisfy an analogous set of equations relative to the boundary
y=\.

Note that AM as a function of / is bounded in compact intervals uniformly in ε.
In fact, by Proposition 2.1,

\AM(y',υ)\ =
δy 2 y

,=,.*
(3.18)

with a suitable y * e [ — 1, y] and ί; the vector (fx — u, vy, vz). The last step is
a consequence of (2.6).

With such a choice of/π the remainder fR will satisfy Eq. (2.20) with A given by

(3-19)

The mass flux condition (2.18) and the normalization condition (2.14) for/are
assured by requiring that the/,, satisfy condition (3.3) and (3.4). These conditions
and the boundary conditions which we will discuss later couple the bulk and
boundary layer expansions.
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Before proceeding to determine these intertwined expansions, we give some well
known properties of the linear Boltzmann operator 5£ proven by Grad [18, 19, 20].
These are needed in the sequel and establish notation.

The Linearized Boltzmann Operator. It is convenient to denote by 1H the space
L2(IR3) and by (/, g) the scalar product in 1H. For any ye[-1,1] the operator

) (3.20)

is an unbounded operator on H, which can be written as

Lf= -vf+Kf (3.21)

with v the multiplication operator by the function

v(y,v)= J dv+dw(v*-v)-coM(y,v*) (3.22)
R 3 x S2

+

and K defined by (3.21). For hard spheres there are positive constants v0 and v1

such that:

vo(l + 1̂ 1) ^ v(y, 17) ̂  v±(l + |i7|) . (3.23)

Moreover K is a bounded operator in H, so that L is well defined on the domain
@L= {/eHs.t. v/eH}.

We need some notation. For any ye\_— 1, 1] define

Xo(v) = — F ,

Vx - U

and

Tp

11 ~1Λ +"2 + "2-JΣ, (3.24)

4 . (3.25)

The set {φh ί = 0, . . . , 4} is an orthonormal set in H. Let y be the linear span of
{φh i = 0, . . . , 4}, P the orthogonal projector on y and P the projector on iV^ the
orthogonal complement of y in H. We will refer to the projections of a function

/on y and iV as the hydrodynamic and non-hydrodynamic part of/respectively.
We summarize here the properties of the operator L that will be used in the rest of
the paper.

i)
Lf=0 iff fey, (3.26)

( ψ i 9 L f ) = 09 i = 0 , . . . , 4 (3.27)

for a n y / e ^ L .
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ii) For any f,geDL

(f,Lg) = (Lf,g)9 (3.28)

(f,Lf)^-Cl J (1 + \v\){Pff , (3.29)
R3

\(f,Lg)\^c2 J (1 + M)|/0| (3.30)

for suitable positive constants cγ and c2.
iii) There is a positive constant c such that

sup (1 + \v\γ\Kf(υ)\ ^ c sup (1 + M Γ 1 ^ ) ! (3.31)

i eR 3 υelR3

for r ^ 1,

f f |/(t>)|2A>Y, (3.32)
R3 /

!\Kf(υ)\2dυZcS\f(v)\2dυ. (3.33)
R 3 ]R3

iv) The operator K is compact on H.
v) The equation

Lf=g (3.34)

is uniquely solvable for geΨ*. Denoting by L~x the inverse of the restriction of
L to 7F, L" 1 ^ is in Ψ* and the general solution to (3.34) has the form

f=L~ίg + t, ίer , (3.35)

sup (1 + M Π L - 1 ^ ) ! ^ c sup (1 + It IΠ^WI , (3.36)
t eK.3 ueR3

sup (1 + \v\f\DiL-'g{υ)\ ^ c sup (1 + \υ\)'\D{g{v)\ (3.37)
t elR3 yeR3

for any r ^ 0, / ^ 1 and a suitable constant c, D{ denoting any partial derivat-
ive of order { with respect to v. The estimate (3.37) is not contained in [20], but
can be obtained by similar arguments (see [21]).

In the following we will also need the slightly different orthonormal set {ψo,
ί = 0,. . . , 4 in H}, defined by (3.24) and (3.25) with the following modifications: p,
T and M are replaced by ρ0, To and Mo respectively and u = 0 because of the
no-slip condition. We call Yo the linear span of φ0 and Po the ̂ associated ortho-
gonal projectors. #" 0 is the orthogonal complement of rΓ0 and Po is the projector
on # V We will refer to the decomposition of an element of H on τΓ0 and i^0 as its
hydrodynamical and non-hydrodynamical part without further specifications
when it is clear from the context what we mean. We will also use the notation
Lof= 2Mo1/2J£o(Mo/2f). Of course Lo has the same properties as L.

The Milne Problem. To deal with Eqs. (3.15)—(3.17) we have to consider the
following linear transport half-space problem, which is a special case of the well
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known Milne problem:

vyγj= Loj + s, 0 ^ 1

/(0, v) = 3(v) for vy > 0 ,

<uv/(τ, v)} = 0 for τ e R + ,

59

(3.38)

(3.39)

(3.40)

(3.41)

for a given distribution 3 of incoming particles at the boundary τ = 0 and a given
source of particles s such that

<5> = 0 . (3.42)

This problem has been studied by several authors (see for example [16,15, 17] and
references quoted therein).

Theorem 3.2.
1) Suppose that for r > 3 and some σ' > 0 there are finite constants c1 and c2 such

that
supα + M Π M o - ^ i ; ) ! ^ , (3.43)
t elR3

sup eσ'τ sup (1 + \v\Y\M0 *s(τ, t;)| < c2 .
τeR+ t eR 3

(3.44)

Then there is a unique solution feL00(R+ xlR 3) to (3.38)—(3.41). Moreover there
exist constants c and d such that f verifies the conditions:

/ooeNulL^o ? (3.45)

sup eστ sup (1 + \v\)r\MoHf(τ, v) -U{v)\ < ^ (3.46)

for any σ < d.
2) Suppose that for r > 3, t ^ 1 and some σ' > 0,

s u p ( l sup eσ ' τ s u p ( l + \v\)r

for some constant c^. There are finite constants c and dj such that

sup eστ s u p ( l + \υ\Y Mo"

< c, (3.47)

(3.48)

/or fl^ίj; σ < c.

For the proof of part 1) of Theorem 3.2 we refer to [16] where the case of hard
spheres is discussed in detail. In [15] and [17] more general interactions are
considered. The second part of Theorem 3.2 will be proven in Appendix B.

We are going to use (3.35) to solve (3.11)—(3.13) and Theorem 3.2 to solve
(3.15)—(3.17). Actually Eqs. (3.15)—(3.17) are in the variables y' and y" which take
values in [0, 2 s " 1 ] , while in the Milne problem the variable τ is in 1R+. Of course it
would be possible to reformulate the Milne problem in a bounded domain, but, in
view of the fact that eventually ε will go to 0, it is more convenient to extend Eqs.
(3.15)—(3.17) to IR+ by putting the functions Bn and AM which will be computed in
[0, 28" 1 ] , equal to 0 outside this interval. Since we do not exploit smoothness in
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τ of the solutions, the discontinuity introduced in this way is harmless. Of course
for any finite ε the only relevant part of the solution will be the restriction to

To find the functions Bn solving (3.11)—(3.13) we have to check the solvability
conditions which follow from (3.27). Since the function M~^Q(f,g) is in IV by
(2.15), it is enough to check that M and Bn's verify the following conditions for
i = 0,. . . , 4:

(3.50)

and for 3 ̂  n ̂  6

,^f + ̂ ] ) = 0. (3.51)

Condition (3.49) is satisfied because of (2.1). Hence we can solve (3.11) to find Bί.
We have, by (3.35),

Bί(y,υ) = jίp-iL ^ 1 + h(y,v) (3.52)

with the functions
4

(3.53)

to be determined and £f~1f =
The explicit expression oί <£~1\υydyM~\ is (see for example [6])

ίvxvy^+ Θ2(v2 - ^T)υy—\ , (3.54)

where the Θt are some positive functions of v2. Substituting now (3.52) and (3.54) in
(3.50) the latter will be satisfied if (2.2), (2.3) and (2.5) hold with η(T) and κ{T) given
in terms of Θ± and Θ2. Moreover we have

From (3.54) we see that, since dyu and dyTάo not vanish on the boundary, Bx does
not vanish either and the terms bf have to be introduced to compensate B±. To
satisfy the boundary condition for y = — 1 we have to choose bϊ to be the solution
to (3.15) with boundary condition in y' = 0 given by the value of 5£~ι [vydyM~\ for
y = — 1. This corresponds to^solving the problem (3.38)—(3.41) with s = 0 and

1 l bl ) i,9 = <£~1 [VydyM] \y= -!. Let bϊ be the solution of this problem. Then by (3.45) in
Theorem 3.2 we^see that bϊ approaches, as / - > oo, a function qϊ (v) in NullJ^f.
Defining bϊ = bϊ — qΐ, then bϊ will be a solution to (3.15), with boundary
condition

(3.56)

which goes to zero as / goes to oo. In the same way we construct bt which is
related to bϊ in an obvious way by reflection symmetry.
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The above construction gives at y = — 1:

Λ ( - 1 , υy > 0) = t±(-1, ») + fcί (2εΛ i;) - <?i» , (3.57)

and at 3; = 1,

Ml vy<0) = tl(l, v) + ftΓ(2ε-S t>) - < h » , (3.58)

where the function ίx will be determined later.
Notice that by (3.45) qι(v) and t1(± 1, v) are both in Nullj£?0, so that we can use

ίi (± 1, v) to compensate q* (v). The terms bf (2ε~1, 1;) are exponentially small in ε~1

by (3.46) and in fact they are the terms denoted by γr,ε in (3.5). By (3.40) (vybr > = 0
and, of course, (vyq\ > = 0 too. Therefore to satisfy (3.3) we have to choose

p? = 0 . (3.59)

To determine completely the hydrodynamic part of Bί9 that is the remaining
coefficients p\x\ i + 2, we use the linear differential equations obtained for them by
means of the solvability conditions. First we solve (3.12) and obtain B2 up to
t2 = Σt = oPί2)(y){l/iMl/2' T h e n t h e solvability condition (3.51) with n = 3 gives
a system of three second order linear non-homogeneous differential equations for
the unknown functions pj(1) for i = 1, 3 and 4. The coefficients Atj of the derivatives
are given by Ay = {vy\j/h L~ 1f3,̂ J ). Since L~ * is a strictly non-positive operator on
TF, Mi.jll are the coefficients of a 3 x 3 non-singular matrix. Hence the functions

\l) for i = 1,3 and 4 are completely determined up to the values on the boundary.
We write qf = Σf = 0 qttΦo^o and, for i = 1, 3, 4, we choose the boundary values

ofp{1}as

plί\±l) = qii. (3.60)

Then PQ1} is determined by the first equation of (3.55) up to an additive constant
that is chosen so that (3.4) is satisfied for n = 1. Finally we obtain

/ 1 ( ± l , ^ > 0 ) = α1

±Mo + y1

±,ε (3.61)

with oci = po 1 }(±l) — q^0

 a n d 7uε — ̂ ί"(2ε~1). In fact, by reflection symmetry
/1 = ^/i and, in particular, αί" = αf.

Now that 5 X and the non-hydrodynamical part of B2 are completely deter-
mined, we can solve (3.16). To do that we have to use Theorem 3.2 with

s = 2Q(Bubϊ) + QΨϊ ,bϊ) + 2Q(AM,bn + Q(bϊ ,bΐ) (3.62)

and 3 given, as before, by the difference between the value of the non-hydrodynami-
cal part of B2 in y = — 1 and the limit value q2 of b2 . Reserving to Appendix B the
check of the conditions of applicability of Theorem 3.2, we proceed as before to the
construction of b2 which vanish for y' -• oo. The determination of t2 follows the
same lines as the determination of ί1? and, in fact, we can repeat the above
procedure step by step for the functions /„.

The only difference in the nth step, for n > 2, is due to the presence of the
ι>x-derivative of b^-2 in the sources, arising from the presence of the external field.
Their control is guaranteed by part 2 of Theorem 3.2.

We note that t5 and t6 are not completely determined by the above considera-
tions. In fact (3.51) with n = 6 only implies the conditions

U (5) . •> (5) Λ

 a (5) Λ ,~ r^\

Ty[Po +~P* 1 = 0, -p2 = 0 . (3.63)
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Since there is no compatibility condition to satisfy for n > 6, there is also no
differential equation to be satisfied by t6. Nevertheless we still need to assume

P(25) = O, pf = 0 (3.64)

to satisfy (3.3) for n = 5, 6. Moreover we have to satisfy boundary conditions of the
form

pl5)(±l,υ) = qUv), (3.65)

\ 6 ) ) = qtί(v) (3.66)

for i = 1, 3, 4. Therefore we choose p 5 ) and pf\ i = 1, 3, 4, as constants matching
the prescribed boundary values: they coincide by reflection symmetry. Moreover
we use the arbitrary constant arising from the first equation in (3.63) to satisfy (3.4)
with n = 5. Finally we choose PQ6) as a constant such that (3.4) is satisfied for n = 6.
The condition (3.8) is automatically satisfied by (3.19) since we have already chosen
P26) = 0. The estimate (3.6) easily follows by combining Proposition 2.1 with (3.36),
(3.37), (3.46) and (3.48).

Finally we get the estimate (3.7) for A The first three terms in (3.19) are
controlled using (3.36), (3.37), (3.46) and (3.48).

To bound the last term of (3.19) we use (3.46) and the following estimate which
has been proved by Grad [20] for any Maxwellian:

) | r _ 1 ^ c | M - - J R U M - ^ | , . (3.67)

We use again (3.67) to estimate the remaining terms:

^cF sup \τe~στ\ ^ cF , (3.68)
τelR +

where the second inequality is due to (3.46) and (3.18), since
This concludes the proof of Proposition 3.1. D

4. The Remainder

In this section we construct the remainder fR and prove the crucial estimate (2.25).
To fulfill the condition (2.23) it is convenient to put

fR = ocRM + R (4.1)

so that (2.23) is satisfied if ocR is given by

ocR= --UυdyR. (4.2)
m

In order to satisfy the boundary conditions (2.9) for /, taking into account the
conditions (3.5) verified by them's, we complete the non-linear problem (2.20) with
the following boundary conditions:

6

M h v) = aRM(ί, v ) - Σ ε " " V ε v y < 0 . (4.3)
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The outgoing mass flux at the walls is thus determined in terms of the constants we
have already fixed and ocR as

α = Po(To/2π)1/2 (1 + £ εnocn + ε3aR) . (4.4)|

Using (2.20) we obtain the following equation for R, defined by (4.1),

vy ΊΓ + εF 1 ^ = "
dy d*;* ε

where the linear operator JίR is the following modification of i ? 1 :

1 I dM dM I
JίR = 1£XR J£1M — ε F — vv -r— f dvdyR . (4.6)

m |_ cw* dy J J

The non-linear term is given by

Q{R, R) = β(R, R) + - i ? R J dυdyR . (4.7)

The boundary conditions for R are
6

R ( _ l , ι ; ) = - X ε " " 3 y - ε ι;y > 0 ,

6

Λ(l, υ) = - X ε"-3y+ε i>y < 0 . (4.8)

The reflection symmetry of R implies that R(0, v) is an even function of vy and, as
a consequence, <t;yR(0, f)) = 0. Therefore, integrating (4.5) on velocities, we see by
(3.8) that R satisfies the vanishing mass flux condition,

(VyR} = 0. (4.9)

We prove the existence of the solution of a suitable integral form of Eqs. (4.5),
(4.8) and (4.9) that will be specified in Sect. 6. It is constructed as a limit of the
sequence {Rk, /ceN} of solutions of the approximate equations,

^ϊ?. ^ P . 1

" f ε2Q(Rk-URk^) + ε3A, (4.10)υy ^ + εF ̂  = XRk

ay dvx ε

with boundary conditions

Rk(-l,v)=- X ε"- 3 y- ε ϋ y > 0 ,
n = l

R » ( l , p ) = - Σ ε " " 3 C u , < 0 (4.11)

for k ^ 1, with Ro = 0.
To prove the convergence of the sequence {Rk, /ceN} we have to deal with

a preliminary linear problem. We consider a function D such that

@*D = D, <D> = 0 (4.12)
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and a function ζ_ of velocity, defined for vy > 0. We look for the solution of the
following linear boundary value problem:

Vy^ + εF^ = -&R + JTR + s2D , (4.13)
y dy dvx ε

R(-l9υ) = ζ- vy>0,

R(l,v) = ζ+ vy<0 (4.14)

with ζ + (υ) = ζ~(Stυ). The solution R of (4.13), (4.14) will be estimated using the
following norm:

\f\τ,,= sup sup(l + | » | Π / 0 ' , » ) | e * ' \ (4.15)

and the same notation will be used also for the norm of functions of velocity even if
defined for incoming velocities only. We shall prove the following

Proposition 4.1. There are ε0 > 0, F x > 0 and β0 > 0 such that for any ε < ε0,
F < Fλ and β < β0 the solution to the linear problem (4.13), (4.14) is bounded as
follows:

| R | r f / , ^ c f i * | D | r _ l f / , + ce- 2 | r i r ,/i (4-16)

for any r ^ 3 and for some constant c.

We note that the constant β0 will turn out to be any positive number smaller
than (4supy Γ(j;))~1, while F x may be smaller than Fo introduced in Proposition
2.1. Sections 5 and 6 are devoted to the proof of Proposition 4.1.

To bound the function Rk we choose

D = εA + Q(Rk-uRk-ί), (4.17)

while ζ± are given by the r.h.s. of (4.11). Both terms in (4.7) can be bounded by
\Rk-ι\?,β> using (3.67) with the Maxwellian exp{ — 2βv2}. By Proposition 3.1 the
functions y* are exponentially small in ε~ 1

J so that \ζ± \r,β are bounded by ce~cε~\
Hence, for any k > 0 and for any r ^ 3 we have the estimate

\Rk\r,β ύ cεH\Rk-i\r,β)
2 + c?\A\rtβ + cε-te-"-1 . (4.18)

This implies that, for ε small enough, uniformly in fc, for any c" < c\

\Rk\r,βύci*\A\r,β + ce~c"*-\ (4.19)

Denoting by Wk = Rk — Rk-i, for k > 1, Wk satisfies the equation

lJ*Wk + ̂ Wk + ε2&{Rk-1 + Rk2> Wk~l]' (4 20)

Wk(-l,v) = 0 vy>0,

Wk(l, v) = 0 vy < 0 . (4.21)

In (4.20) we used the notation Q(R, S) = Q(R, S) + ocs^R + OCR&S. Hence, by
choosing D = Q(Rk_ί + Rk-2, Wk-λ) and ζ± = 0, using again Proposition 4.1,
(3.67) and (4.19), it follows that

\Wk\r,βScε2\Wk\r-Uβ. (4.22)
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Therefore for ε ̂  ε 0 the sequence Rk converges and the limit satisfies (4.19). Let
Rx and R2 be two solutions of (4.5), (4.8) with uniformly bounded \ \r,β. Then
W = Rλ - R2 satisfies

dW 1
vy-ζ~ + εF— = -g'W+ JTW+ ε2Q(R1 + R2, W) . (4.23)

oy ovx ε
By Proposition 4.1 it follows that | W\Ttβ ̂  cε*| W\rtβ, which implies uniqueness for
ε small enough. We have thus proved the following

Theorem 4.2. There are ε0 > 0, F1 > 0 and β0 > 0 swc/i that for any ε< ε0, F < Fx

and β < βo the solution to the problem (4.5), (4.8), satisfies the bound

IRlr.p^cέlAlr.β + ce-*'*-1 (4.24)

for any r ^ 3 and for some constant c.

Theorem 4.2 implies Theorem 2.2 and hence the solution of (2.7), (2.9) converges
as ε -• 0 to the local Maxwellian with parameters solving the hydrodynamic
equations (2.1)-(2.4).

5. Z,2-Estimates for the Linear Problem

The natural way to deal with the linearized Boltzmann equation is to symmetrize
j£? to get the operator L in (3.20), and use the non-positivity (3.29) of L to control
the ε~xS£ term in (4.5). On the other hand, when the Maxwellian is not space
homogeneous, this procedure produces derivatives of the Maxwellian with respect
to y and vX9 which diverge as a polynomial in v for large velocities. This difficulty
has been solved by Caflisch in the time dependent case [4], by means of a decompo-
sition of R into a low velocity and high velocity part. The Caflisch method has to be
modified here, since for the stationary problem the control of the hydrodynamic
part of R is worse. Like in [4], we introduce a global Maxwellian

, (5.1)

where T* > s\xpye[-1Λ]T(y) which is finite by Proposition 2.1. In this way
^ cM for all (y, v) and some positive c.

We look for a solution of Eq. (4.13) in the form

, (5.2)

where the low velocity part g and the high velocity part h are defined as the solutions
of the following system of coupled equations:

υy^ + εFp- + (μ + εFμ')g = ε^Lg + ε-^σ^K+h + ZΛ? , (5.3)
oy ovx

vy — + εF — + εFμ'+h + (μ + εFμf)σ(g + g2)— + εF —

χyKJh + Ll[σ(g + g2) + Λ] + e2d . (5.4)
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The notation is:

- dy\og M, μ' = - ayχlog M, //* = -
2 1 2

= vy- dy\og M, μ' = - ayχlog M, //* = - δVχ\og M*, σ= — , (5.5)
2 1 2 V M

l, M ^

LJ= M*1/22Q(M, Ml/2f) = (-v + KJf. (5.7)

K% is an integral operator analogous to K, for which the same properties (3.31)—
(3.33) hold (see [4]).

Lίf= M~1/2jr(M1/2f) Llf= M*ί/2Jf(Ml/2f), (5.8)

d = M^2D. (5.9)

The low velocity part g has been decomposed into a hydrodynamical part g + g2

and a non-hydrodynamic part g,

g = g + g2 + g, withg2 = p2(y)ιl/2, g= Σ PJWΨJ (5 1 0 )

We choose the following boundary conditions for g and ft in Eqs. (5.3) and (5.4):

1? v) = 0 vv < 0 f ft(l, v) = ζ+MΣ1/2 = ft+ fv < 0
j (5.11)(-lv) = 0 vy>0 \h(-l9v) = ζ-M-lί2 = h- vy>0

Of course h + (v) = h-{βv). It is also convenient to consider h± extended to IR3,
putting it equal to 0 for vy ^ 0.

The norm we are interested in is

\l/2

\v\)f2(y9Ό)) . (5.12)
/

We remark that in (5.4) the unbounded terms μ and μ' are compensated by the
factor σ for large velocities while in (5.3) they appear as multipliers of g\ g has
a good behavior for large velocities, but has a bad estimate in ε. This is the reason
why we chose our decomposition in such a way that g does not appear in (5.4).
Finally, the factor μ'o is also unbounded for large velocities but is a polynomial of
degree 1, so that it can be dominated in the norm (5.12). (For cross sections softer
than hard spheres this would not be true because the natural norm to be used
would include a power of \v\ less than 1.)

Theorem 5.1. There exist positive ε0, Ft and c > 0 such that the solutions to Eqs.
(5.3), (5.4) and (5.11) satisfy the bounds

l l^ l l^β^iKi + M Γ ^ i i + c f i - 1 / 2 ! ! / ! - ! ! , (5.13)

l l ί l l ^ ε c l K l + H Γ ^ I I + c ε - 3 / 2 ! ! / ! - ! ! , (5.14)

II02 II + HλH g ε 3 c | | ( l + M Γ 1 d | | + c ε 1 ' 2 | | Λ _ | | . (5.15)

The proof is organized as follows: First we will obtain a bound for || g \\ in terms
of || ft ||. Using such a bound it will be possible to estimate ||ft|| in terms of
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To estimate the operators L 1 and L* we will use the following estimate on the
collision operator Q proven in [22]: for any Maxwellian M and for any y e [ — 1,1],

(A) Estimates on g. The condition (4.9) together with (5.2) and the fact that g + g is
orthogonal to ψ2, implies that

j dv(^Mg2 + yfiΛ*h)υy = 0 . (5.17)

As a consequence

y/pTp2 = — j dvy/M^hVy . (5.18)

Therefore, by Proposition 2.1 and the Schwarz inequality, we conclude that

| | < / 2 | | ^ C | | / z | | . (5.19)

We now give estimates on g and on g separately,

a) Bound on g. Multiplying Eq. (5.3) by g and integrating it on R^ we have

g9 Ug) , (5.20)

where λ = χγσ
 1K*h. Let us observe that

<μU2>= Σ PiPj$dvμφiψj = O (5.21)

since, for i,j Φ 2, μφiφj, is an odd polynomial in υy times the Maxwellian, which is
even in vy. Moreover, using (3.11) in (4.6) we get

= J?1R-^ Ϊ2Q (

X +bϊ)- εFψλ I dvdyR (5.22)

from which we see that the only term in Jίf ^that is not orthogonal to the collision
invariants is εFdVχM. Hence we have

] . (5.23)

We remark that (5.21) and (5.23) are crucial to get an estimate on g.
Integrating Eq. (5.20) on [—1,1] we get

J + jdydv(μ + εFμ')gg = J dydv^^gLg + ε~^λg + gL1^ , (5.24)

where

•/ = \ ί<vyg
2(h v)} - (υyg

2{-1, ι;)>] ^ 0 , (5.25)

using the boundary conditions (5.11) for g.
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Let us examine more closely the term involving L1. By (5.16), (5.22) and (5.8),
we have:

||(1 + \v\y'L'g\\ ^ Γ Σ β ^ l M - 1 ' 2 / ^ + cεF\ \\g\\ . (5.26)

Hence, using (3.6), it follows that

] dyli^L'g^^cFWgWWgW . (5.27)
- 1

To conclude the analysis of Eq. (5.24) consider the term <(μ + εFμ')gg)}.
Taking into account that μ is a function of the derivatives of p, Γ, u it follows by
Proposition 2.1 and (5.10) that

) 2 £ || φj\\2 ί cF \\g || , (5.28)
Φ2

using the decay of g in v to get the first inequality and the relation p( = (g, ψi) to
obtain the second inequality. In the same way it follows that || μ'g \\ ^ c \\ g ||. Hence,
using (5.21) we have the following bound

ί ^ | ( ( μ + βFμ')^^l^^ll^ll(II^ΊI + ll^ll) + c ε F y | | 2 . (5.29)
- 1

Since λ = χyσ~1K^ih we have, by the L2-boundedness of K* (see [4]),

μ | | ^ C y | | A | | . (5.30)

Finally, by (5.29), (5.30), (5.21), (5.23), (5.27) and (3.29) we have:

ε.Z + V o l ^ l l ^ C . I I / z l l l ^ l l + ε c F y i l l ^ l l + ε ^ y i l 2 . (5.31)

b) Bound on g. Multiplying Eq. (5.3) by υyφu i = 0,1, 3, 4 and integrating on
[— 1, y] x R 3 , we have

*ι(y) = *,(-1) + f dy' J dv υyφt \-(μ + εFμ')§ - εF ψ-
- 1 R3 L ϋVx

ε~1λ + Lιg + v^gdyφA , (5.32)

where Φ, (y) = (vjψig}.
First we give the estimate for Φ(— 1). By the Schwarz inequality

(5-33)

because g(— 1, v) = 0 for υy > 0. Therefore, tak ing in to a c c o u n t the b o u n d (5.31) for
«/, we have

(5.34)

When the term involving the vx-derivative in (5.32) is integrated by parts, then all
the terms in Eq. (5.32) can be estimated using the Schwarz inequality and the
bounds (5.26), (5.27), (5.29) and (3.30). The result is

\Φt(y)\ ^φ-'CyWhW \\g\\+ F\\g\\ \\g\\ + εF\\g||2]-

1 (5.35)
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By the definition of Φi(y) we have:

Σ ΛijPj + <v2yΨ22>P2δi,2 + <v2

yψig> , (5.36)

where δij is the Kronecker delta. The matrix A whose elements are
Aij = (Vyψiψjy, ij = 0,1, 3, 4 is non-singular. Hence the pu i = 0,1, 3, 4 are deter-
mined by

Pt = Σ Λ^lΦj - <v2

yψ
22>P2δj,2 - <v2

yψjgy] . (5.37)

Therefore

] dy\Pi(y)\2 ύ c ] d y \ ̂  [_Φf + Cp2Λ + c\\g\\2 . (5.38)
-1 -1 |_ί*2 Ji Φ 2 - 1

Hence, using the bound (5.35) for the Φ/s and (5.19) for \\g2 ||, we obtain

(5.39)

We simplify the right-hand side of Eq. (5.39) using the inequality

\ab\ ̂ κa2 + (4κy1b2 (5.40)

for a n y K > 0, t o b o u n d t h e p r o d u c t ε " 1 ! ! ^ I I II^11 w i t h κ : | | ^ | | 2 + {Aκ)~ιε~2\\h\\2.
So we get

1 1 ( ' ^ (5.41)

Finally, choosing K and F sufficiently small, we get

WgW^cε^WgW+ε-'CJhW. (5.42)

Using (5.19) in (5.31) we have

llίll^CJIfclKII^II + y i l + IIΛIIί + c ε F l l f f l i y i l + c ε ^ l l ^ l l ^ (5.43)

Substituting (5.42) in (5.43), using again (5.40) we get

| | # | | 2 <.(σCγ + c F ) | | # | | 2 + —\ \h\2 . (5.44)

Hence, choosing σ and F sufficiently small, we have

\\g\\ ^ε^CyllήH . (5.45)

In conclusion we have the following estimates for the hydrodynamic and non-
hydrodynamic parts of g:

|| 021| ^ Cy II h || , (5.46)

(5.47)

(5.48)

Estimates (5.46) and (5.47) will be used below to estimate ||Λ||.
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(B) Estimates on h. The way to get bounds on h is analogous to the one followed
for g but simpler since we do not need to control separately the hydrodynamic and
the kinetic part. In fact in (5.4) the operator L has been replaced by ( —v + XγK*)
which has a trivial null space.

Multiplying Eq. (5.4) by h and integrating on [— 1,1] x 1R3 we have

εFμ')hσ(g + g2)}

^-v + χyKJh + Lj[σ(0 + g2) + ft] + ε2d] , (5.49)

where f = (vyh
2(l,v)} - <ι?yft

2(-l,ϋ)> ^ -< |^ | f t-> by the boundary condi-
tions (5.11).

We observe that, by the L2-boundedness of the operator K^ it follows that

\μy{χyhK^y\ £ \\h\\(jdy(χy(K*h)2(l + WΓ1})112 S c\\h\\2(\ + y)'1'2 .

(5.50)

Hence

(5.51)

In fact the first integral in the l.h.s of (5.49) has been bounded by εF \\ h \\2, the

second using the estimate |(μ + εFμ')σ\ ^ cF. Moreover we used (3.6), (5.16), (5.22),

(5.8) to get the bound

||(1 + M Γ ^ i ί f t + σ(g + g2))\\ < cF(\\g\\ + | | ^ 2 | | + | | λ | | ) . (5.52)

Then, using (5.46) and (5.47), we have

ll^ll2 ^ ( C ^ ^ -i- ^(1 -K r)~^) 11̂  II2 H- ̂ 3II ̂ Π 11 (̂1 H- l ^ l ) " 1 II H - C : ^ < | ^ | ^ ^ > .

(5.53)

We fix y large enough to make c(l + γ)~* ^ ^ and then F sufficiently small to

make CyF ^ ^, so that we can conclude that

- M Γ 1 ! ! + ε 1 / 2 | | / ι _ | | . (5.54)

The proof of Theorem 5.1 then follows by combining (5.46)-(5.48) and (5.54). D

6. Pointwise Estimates for the Linear Problem

Pointwise estimates of the solution of the linear problem are necessary to deal with
the non-linear term of the Boltzmann operator. To get them we have to use an
integral form of the equations for g and h. This will give estimates of L^ -norms in
terms of the norms used in the previous section.

Let us consider the equation

y dy dvx

with the boundary conditions

/(- l ,ϋ) =/ . , !>,> 0; f(l,v)=f+9υy<0. (6.2)
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We use the following notation:

y ( εF \
Φyyy = \ dzv[z,vx + —(z-y), Vy, vz ,

1 y ( εF \ Γ Φ
UεG(y,v) = — j dy'Gly',vx + — (y'-y),Vy,vzjexp\ - - ^

for υy > 0 and

71

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

f=v;f+ + V~f- + UεG. (6.8)

Proposition 6.1. For any integer r ^ 0 there is a constant c such that the integral
operator Uε satisfies the following inequality, uniformly in ε:

for vy < 0.

1 i / εp \ Vφ ,
UεG(y, υ)= J dy'G y\ vx + — (yf - y\ υy, vz I exp M ^

y y \ ^y / |_ ^^y

V.~f~ = X(vy > 0)/~exp - - ^ ,

Ve

+f+=χ(vy<0)f +

The solution of Eq. (6.1), (6.2) can be written as

εvy

(6.9)

Proof It is sufficient to prove (6.9) for r = 0. In fact, let Gr = G(l + \v\)r and
fr = UεG(l + \v\)r. Then the/ r satisfy equations of the same type as Eq. (6.1),

δy
(6.10)

where dr = εrFvx[\v\(l + | f | )] \ \dr\ S εFr, with vanishing boundary conditions.
Since for ε small enough v — ε dr ^ cv the proof for r = 0 can be applied. Now for
r = 0 we have (uy > 0)

|(I/.G)O0|S— J (y,^ + ^(/-y),,^2)|exp[-i-Φ^]

Γ ! * Ί
p Φy<y

y 1 / εF
J dy — vly9vx + — {y-y),Όy9v

o -l bVy \ vy

(6.11)

because $y_ίdy'(εvy)
 xv exp{ —(ει;y)

 1Φ y, y '} < 1.
The estimate for the case vy < 0 is obtained in the same way. D

In the next proposition we use the following norm:

N(f)= sup ( $ dv\f(y,v 12 (6.12)
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Proposition 6.2. For any δ > 0 and for any r ̂  2 there is a constant Cδ such that

Proof. We give explicitly the proof only for vy > 0. Let us consider

f dv\UεG\2 =
Uy>0

Γ1+y 1 / εF \ Γ 1 Ί 1 2

Jέfo J rfί— G y - ί , vx t,Όy,υx exp Φ , . y - t (6-14)
L 0 εvy \ vy / L εϋy J J

In analogy to [22] we estimate the r.h.s. of (6.14) by decomposing it in the three
parts Il9I2, h defined as

h= J dv\UεG\\ (6.15)

Γί+y l / sF \ Γ l Ί Ί 2

h= f ώ J —G[y-t9Όx- — t,υy,vx exp _ — φ ^ . , I (6.16)

-t ι ' " - ? ί ' i 7 ' ι ' ' ) e x p Γ - ^ * " - Ί Ϊ (6 17)

vy J |_ ε ^ J J
By the Schwarz inequality we get

i+y i G 2

hύ \ dυ I dt— —
Vy~£ί o cvy

i+y v

x j dt — exp-<[ — Φy9y-t^c(εt)~1\\v~1G\\2 . (6.18)
0 ευy

The bound on I2 is obtained as follows. We observe that by Eq. (3.23),

Setting t' = t — σ in (6.16) we are left with a term like Ix times the l.h.s. of (6.19).
Hence, using (6.19) we have

h^cσ-'Wv-'GW2 . (6.20)

The third term 73 can be handled by noting that for 0 ̂  β ̂  1,

(6.21)
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Hence, by the Schwarz inequality,

O 2 — 2β J Λι t \β J /ΛI + \β J ii2 — 2/?
ε 0 lv0Γl>) 0 lv0Γ2>! ( X v y g ^ y

,Γr 2/ ε i ? \Ί 1 / 2

T f ώ ^ G 2 Γ -t v - —ί
1 / 2

(6.22)

Then

J 3 ^ c | G | 2 Q 2 ^ S^^rβ $dvxdvz{{ + υl + v2y , (6.23)

where we have fixed β < 1 to make finite the integral over t. If we choose also
β > 1/2 and r > 1 all the integrals in Eq. (6.23) are finite. Finally, since σ is
arbitrary, we can take σ ~ ε getting

(6.24)

Combining (6.18), (6.20) and (6.24) we get the result. D

The regularizing properties of the operator Uε suggest to consider the following
integral form of Eq. (4.5):

R = Uε U {&R - vR) + JTR + ε2Q(R9 R) + S3A

- v; [ Σ β""3y.:.] - y? [ Σ ̂ n " 3 c ] (6.25)

In fact we define a solution of (4.5), (4.8) as any solution of (6.25).
We consider now the integral versions of (5.3) and (5.4) that allow to prove

estimates for the norm | | r of g and h.

Proposition 6.3. There exist positive constants c and Hy such that for any r ^ 2 the
solution g of Eq. (5.3) verifies

\g\r ^ Cyf*\\d(\ + M Γ 1 1 | + Hγ\h\r + cε-2\h-\r . (6.26)

Proof We write Eq. (5.3) as

with

5 = - ε ( μ + εFμ')g + χ . σ " 1 ^ ^ / ! + εL1^ . (6.28)

Most of the proof is devoted to getting an estimate for N(g) in terms oίN(h) and
the L2 norms of g and h, whose control is assured by the results of Sect. 4. Then we
conclude by relating N(h) to the L^ norm of h.
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By Proposition 6.2 the solution of Eq. (6.27) verifies, for any r ^ 2, the in-
equality

i V ^ ) ^ ^ C , | | v - 1 ^ | | + ^ | ^ | , + - ^ C , | | v - 1 S | | + ^ | S | r . (6.29)

v ε v ε

The first and third terms on the right-hand side are easily estimated using
Theorem 5.1 and the inequalities

I l v - ^ U ^c\\g\\; Wv-'SW^εFcWgW + Cy\\h\\ . (6.30)

The second term in (6.29), is controlled by using the estimates (3.31) and (3.32),
which allow to relate the supremum on velocities of Kf with the L2(dv) norm of/ In
fact

^c s u p sup(l + \v\γ-1\g(y,v)\ = c\g\r-1 (6.31)

by (3.31) and

\l£c sup \dvg2{y,v) = cN{g)2 (6.32)

by (3.32).
Furthermore, since g = UεKg + UeS, we get by Proposition (6.1),

ί \Kg\0 + ί }S\k S N(g) + £ \S\k, (6.33)
Λ=0 k=0

where we have used (6.32) to get the last inequality.

Thus to complete the proof we have to estimate S in the norm | | r. We have

\S\r g ε\(μ + εFμ')g\r + Ix^-'K^ + ε | L ^ | r . (6.34)

By the exponential decay of g in velocities and (6.32) we have

\(μ + εFμ')g\, S cF\g\0 ί cFN(g). (6.35)

By the analogue of (6.32) for K^ (see [4]) we have

| χ , < r X A | r ^ sup sup [(1 + M ) ^ " 1 ]
ye[-l,ί] veWL3

x sup sup \K*h\^HyN(h). (6.36)
ye[-l,l] veJR.3

The operator L1 satisfies the estimate

^dfl (6.37)

analogous to the one proved in [4]. Using it we can estimate the last term:

^ c sup Σ Pt(y)
ί Φ 2

ί cN(g) . (6.38)

Collecting together (6.34), (6.35) and (6.38) we have the following bound for S:

\S\r ̂  cεN(g) + HyN(h). (6.39)



Hydrodynamic Limit of Stationary Boltzmann Equation 75

By (6.31), (6.33) and (6.34), we have

\Kg\r£cN(g) + H7N(h). (6.40)

Now we can estimate N(g) by combining (6.29), (6.30), (6.39) and (6.40):

N(g) ^ c I — C,||01| + δN(g) + HyN(h) + - = CδHγ\\h\\ \. (6.41)

Finally, taking into account estimates (5.46)-(5.48) and (5.54), we get, for
δ small enough,

(6.42)

On the other hand Proposition 6.1 implies

\g\r S c\v-ιKg\r + Iv-^l , ^ c\N{g) + HrN(h)]

(6.43)

where the second inequality comes from (6.39) and (6.40) and the third one from
(6.42).

For r ^ 2 we have

lN(h)T Z sup sup [h2(y, v)(ί + |»|) 2 '] J ^ S c\htf . (6.44)
yel-1,1] veTR.3 R3 U + 1^1)

Putting together estimates (6.43) and (6.44) we get the result (6.26). D

Finally, we prove

Proposition 6.4. For any r ^ 3 the solution h of Eq. (5.4) verifies

\h\r ^ c[ε f \\d(l + M Γ 1 1 | + ε3\v-ιd\r + ε-'lh-U . (6.45)

Proof. Let us write Eq. (5.4) in the form

h = Ut(χrKth) + UεZ + Vε

+h+ + Ve~h- , (6.46)

where

Z = -μ'0ε
2Fh - ε(μ + εFμ')σ(g + g2) + βLj(h + σ(g + g2)) + ε3d . (6.47)

Since | V*h+\r ^ |/ι_ |r, we have by Proposition 6.1,

\h\r ^ cl\Ut(v-%K.h)\, + Iv-'ZI, + \h-|r]

^ c Γ-j— I^ΛI, + ε2F\h\r + εF(\g\r + \g2\r) + εF\h\r + ε3 |v-^| r

+ \h-|Γ1 g c \-L-\h\τ + ε\g\r + ε^v-'dl + \h-\A . (6.48)

Choosing γ in such a way that < - we have, for ε small enough,

(6.49)
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Finally, substituting the estimate for g given by Proposition 6.3 in (6.49) and
taking ε small enough, we complete the proof of Proposition 6.4. D

By using (6.49) to estimate \h\r in (6.26), the estimate \\d(l + M)" 1 1 | ^ c\d/v\3

and taking ε small enough we then get the proof of Proposition 4.1.

Appendix A

To prove Proposition 2.1 we first consider Eqs. (2.1)-(2.4) with fixed pressure
2P instead of fixed total mass, by eliminating the density p from (2.2) using (2.1). We
then introduce the following sequence of approximate solutions:

d y \ ι ^ n ~ L / d y 1 ' —ΓnJl ° '

-̂  (κ{Tn^)^f) + */(?;_!) f^Y = 0 (A.2)

for n ̂  1, ΓQ being the value on the boundary and u0 = 0. The boundary conditions
are given by (2.4). By using induction, the maximum principle implies that

Tn{y) > To (A.3)

for ye(—1, 1). Hence

η(Tn)>η0 and κ(Tn) > κ0 (A.4)

f o r y e ( - l , 1).
Multiplying (A.I) by un and (A.2) by Tn and integrating on [— 1,1] one gets, by

the lower bounds (A.3) and (A.4), the uniform boundedness of Tn and un in the
Sobolev norm of order 1 on [—1,1], hence the compactness in C([—1,1]).
Therefore the existence of solutions follows by choosing subsequences. The esti-
mates (2.6) follow using the smoothness of η and K and the lower bounds (A.3) and
(A.4) in the explicit form of the solution:

un(y) = —0>F J dyrη~-1(y/) J dy"T~-\(y") 4- C1 J dy'ηn-i(y') , (A.5)
- 1 - 1 - 1

Tn(y)=T0- J dyKn^iy) J dy ηn-^y )\—{y ) \
-l -l Ldy J

+ C2 { dy'κ;.\(y'), (A.6)
- 1

with Cί and C2 chosen so that the boundary conditions are satisfied also at y = 1.
ηn and κn denote here η(Tn) and κ{Tn). To show the uniqueness, let (w(1), Γ ( 1 )) and
(w(2), Γ ( 2 )) be two solutions of (2.2), (2.3) with the given pressure ^ , the boundary
conditions (2.4), the lower bounds (A.3) and (A.4) and satisfying the estimates (2.6).
Denoting by w and σ the differences u ( 1 ) — u(2) and T(1) — T{2) respectively, using
above properties it is easy to prove that

1 ( T Λ W Ί 2 ΓΛΛ-Ί2^)

(A.7)
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for a suitable constant c. This of course implies the uniqueness for small F. Finally
we note that, to give a solution of the problem with fixed mass m > 0, one has to
solve the equation in 9

1

9 J dyT^1 = m, (A.8)

where T& denotes the solution with fixed pressure. Using Eqs. (A.5) and (A.6) it is
not difficult to prove the solvability of this equation for F small enough.

Appendix B

In this Appendix we prove the second part of Theorem 3.2. Moreover we check the
conditions on the source terms in Eqs. (3.16) and (3.17) and on the boundary values
that are needed in proving Proposition 3.1. First we state the following

Lemma B.I. The following identity holds for the Boltzmann collision operator (2.8):

where — stands for the partial derivative with respect to any of the components ofv.
ov

Proof We observe that for any derivative, say dVχ,

d c-— dv^dcoίv* — v)'ωχ((v^ — v) ω > Ό)[f'gL + g'fl —fg* — gLl

= J dv*dωχ((v*-v)-ω^o)\

(B.2)

S being the unit sphere, since the function (v# — v) ωχ((v* — v) ω ^ 0) depends on
the difference υ% — v. In (B.2) the notation is, as usual,/,/*,/',/* ϊoτ f (v\f (v^\f (v')
a n d / 0 4 ) respectively. Using the relations

v' = v + ω[ω (ι># — f)]; t/* = v* — ω[ω*(v* — v)~\ (B.3)

we get, for any function h(v)

\_dυx

+ ' ] * . ( * ) . (B.4,
dυx d v \ \dvj

The result then follows by a straightforward calculation. D

In order to prove part 2) of Theorem 3.2 we differentiate (3.38) to get, by Lemma
B.I,

vy j τ dvf= £eodvf+ 2Q(f dvM0) + dvs , (B.6)

where dvf stands for —-.
dvΎ
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We claim that s = 2Q(f, dvM0) + dvs verifies the condition (3.44). In fact δvs
satisfies (3.44) by the hypothesis (3.47). On the other hand

sup sup eT(ί + \Ό\Y + 1\Mϊ*Q{f9doM0)\
τeWL+ u e R 3

^ sup |(1 + \v\YMo*dvMo\ sup sup e°\\ + \v\Y\Mo*f\ • (B.7)
veWL3 τelR + veWL3

The second factor in the r.h.s. of (B.7) is bounded by Theorem 3.2, part 1), while the
first factor is obviously bounded. Besides, dv3(v) verifies (3.43) by the hypothesis
(3.47). Therefore we can apply the first part of Theorem 3.2 to (B.6) and conclude
that dvf exists and satisfies (3.48).

The proof of Theorem 3.2 is completed by the observation that the result for the
derivative of any order is achieved following the same procedure, i.e. differentiating
the equation for the derivative at the preceding order and controlling by direct
inspection that the resulting equation has a source that satisfies condition (3.42)
and (3.44) so that it is possible to apply part 1) of Theorem 3.2 to get the result. The

same argument applies to —- but not to ——, because in the latter case an extra term
dvz dvy

dyf would arise.
Now we verify that the source terms, that we denote by sM, in (3.16) and (3.17)

satisfy conditions (3.42), (3.44) and (3.48) in Theorem 3.2. The sw's are defined by

s2 = [2β(JM,&Γ) + 2β(B1,&Γ) + β(fcΓ,&Γ) + β(feΓ,&ί)] , (B.8)

and for 3 ^ n ^ 6,

,ft7)] ( B 9)
Property (3.42) is true for any n due to the property (2.15) of Q. Since in s2 all the

terms are of the form β ( / g\ they can be estimated using the Grad estimates (3.67).
For the first term, for any σ' < σ,

sup sup eσΎ(l + | ι ; | ) r " 1 | M 0 " i 2 β ( ^ M , 6 Γ ) |
y'eWL+ veWL3

^ c sup sup \MόiΛM\(l + \v\)re-(σ~σΊy'

x sup f * & )

^vh-y (B 10)

where the second inequality is obtained, as in (3.68), by means of the bound

sup sup eσy'(l + \v\γ\Mόibϊ \ < c (B.ll)
y'eWL+ υ e R 3

that follows from Theorem 3.2 applied to Eq. (3.15). The other terms in s2 are
estimated in a similar and simpler way, by means of the bound on Bx in Proposi-
tion 3.1 and the estimate (B.ll).
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To verify property (3.48) for s2, we apply Lemma B.I to evaluate dvs2 Since all
the terms in the expression of the derivative are of the form Q(f, dvg)we can bound
sup / e R + SUPERSέ?σV(l + M y - ^ M o " * ^ ! in terms of |M0~*Bi|r,

sup sup \Mo*AM\(l + \υ\γe-iσ~σ')y' and sup sup eσy'\M^bϊ\{\ + |u|) r |
y'elEL + y e R 3 y'eIR + veWL3

using again (3.67).

As far as sn is concerned we can estimate all the terms in the same way as for s2,

but the first one which involves the derivative of bΰ- 2, n — 3, . . . , 6. On the other

hand we have already proven the estimate for the ^-derivative of bί we need.

Therefore we are in a position to proceed from now on iteratively to get the result.
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