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Abstract: We study the stationary solution of the Boltzmann equation in a slab
with a constant external force parallel to the boundary and complete accommoda-
tion condition on the walls at a specified temperature. We prove that when the
force is sufficiently small there exists a solution which converges, in the hydro-
dynamic limit, to a local Maxwellian with parameters given by the stationary
solution of the corresponding compressible Navier—Stokes equations with no-slip
boundary conditions. Corrections to this Maxwellian are obtained in powers of the
Knudsen number with a controlled remainder.

1. Introduction

In this paper we continue our study of the derivation of hydrodynamic equations
from the Boltzmann equation (BE), a problem which goes back to Hilbert [1]. The
BE is believed to accurately describe the time evolution of rarefied gases on
a “kinetic” scale intermediate between the microscopic and macroscopic [2]. To go
from the BE to the macroscopic (hydrodynamic) descriptions the locally conserved
density fields have to be slowly varying on the kinetic (to which we shall refer from
now on as microscopic) scale but have sensible space variations over macroscopic
distances. Let ¢ be the ratio between microscopic and macroscopic space units
(usually called the Knudsen number). It can be shown that the conserved densities,
observed at microscopic times of order ¢~ 1, converge, as ¢ — 0, to macroscopic fields
whose time evolution is given by the solution of the Euler equations (EE) (at least
when the latter have a smooth solution) [3, 4, 5]. This derivation of the EE in the
above hydrodynamical (Euler) scaling limit is consistent with (indeed made pos-
sible by) the fact that the EE are themselves invariant under uniform space and
time scaling.

Unfortunately there is no such scale invariance (and thus no such scaling limit)
for the Navier—Stokes equations (NSE). The NSE are usually deduced, via the
Chapman-Enskog expansion (see [6]), as corrections to the EE on the Euler time
scale ¢~ ! with viscosity coefficient and thermal conductivity of order ¢. To describe
situations which discriminate between the two equations when the Knudsen
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number ¢ goes to zero we need to consider longer time scales, i.e. microscopic times
of order ¢~2. On this time scale viscosity and thermal conductivity have finite
effects, but the effect of the Euler term may now become very large making any
rigorous mathematical analysis very difficult.

This problem can be controlled when the velocity field itself is of order ¢ — in
which case a kind of scale invariance is recovered for the NSE. It is then possible to
get the incompressible NSE as a scaling limit from the BE (see [7-11]). To deal
with the case of macroscopic velocities with non-vanishing Mach number it is
necessary to consider situations in which some of the non-linear terms, which
prevent invariance under scaling, are absent from the NSE due to the symmetry of
the problem. Some partial results in this direction are given in [12].

Alternatively we can consider stationary situations in the presence of bound-
aries in which the time independent NSE have suitable scaling behavior. In this
paper we consider such an example and show that the NS description is obtained
as the scaling limit of the stationary solution of the BE. More precisely we consider
a fluid in a channel with planar parallel boundaries subject to a constant force
parallel to the boundary. Using the Euler equations the fluid velocity would keep
on increasing linearly with time. For the NSE with no-slip boundary condition, on
the other hand, the effect of the viscosity counteracts the force field and a stationary
situation is reached, with the heat production balanced by a flow of energy to the
thermal walls. Experiments, as well as molecular dynamics simulations [13], show
that this situation can be reasonably described by the NSE.

The kinetic description of this problem in terms of a BE requires boundary
conditions; a natural choice is to assume a complete accommodation coefficient.
This means that any particle hitting the boundary is reflected with a velocity
chosen at random according to a Maxwellian with variance corresponding to the
fixed temperature of the walls. We confine ourselves to the fully symmetric
solutions of the hydrodynamic and kinetic equations. The solution to the rescaled
BE is then found like in [4] in terms of a truncated expansion in the Knudsen
parameter ¢ whose leading term is a Maxwellian with parameters given by the
solution of the NSE.

The corrections to the leading order are given in the bulk by a modified
truncated Hilbert expansion with a remainder. It is also necessary to introduce
boundary layer terms to accommodate the expansion to the boundary conditions.
This is accomplished along the lines of [ 14—17], but there are some extra difficulties
arising from the force field.

Most of the paper is devoted to the proof of a bound on the remainder, which is
obtained for a sufficiently small force field; this implies that the solution will match
the expansion to any order, although, of course, no convergence of the expansion is
provided or expected.

The outline of the paper is as follows. In Sect. 2 we present the problem and the
basic results. Section 3 is devoted to the bulk and boundary layer expansions. The
control of the boundary layer expansion requires the use of some well known
results about the Milne problem (see [15-17]) and some estimates on the velocity
derivatives of the boundary layer terms; these are given in Appendix B. There are
many technical difficulties in estimating the remainder, which satisfies a weakly
non-linear equation, due to the fact that for the stationary problem the only
available a priori bound on the solution comes from the non-positivity of the
quadratic form corresponding to the production of entropy in the linearized
regime. Unfortunately the linearized Boltzmann operator has a non-trivial kernel
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so the control of the hydrodynamic component of the solution is very inefficient.
This difficulty, combined with the high velocity difficulty already present in [4] and
the low velocity difficulty typical of the stationary case make the estimates rather
intricate. In Sect. 4 we construct the solution of the remainder equation as the limit
of a sequence of solutions of approximating linear problems. The estimates for
these solutions are obtained, like in [4], by decomposing them into a low and high
velocity part, but the poor control of the hydrodynamic part at low velocities
allows only L, bounds on the solution. The proof of these bounds is given in Sect. 5.
We then take advantage of the structure of the equation to improve the bounds to
pointwise estimates on the solution which can be used to handle the non-linear
terms. This is discussed in Sect. 6. Appendix A contains a short discussion of the
solution of the macroscopic equations.

2. Statement of Problem and Results

a) Hydrodynamical Description. We consider the flow of a compressible viscous
fluid in a three dimensional slab infinite (or periodic) in the x and z directions with
planar boundaries perpendicular to the y direction: top and bottom planes will
correspond to y =1 and y = —1 respectively. The fluid is subject to a constant
force parallel to the x-axis. A stationary state will be reached when the heat
produced by the friction due to the relative motion of the gas under the action of
the force is balanced by the energy loss to the walls maintained at a given
temperature Tj.

Considering only situations which have the full symmetry of the problem the
Navier—Stokes equations for this system, with a perfect gas equation of state,
reduce to

d
E;(PT) =0, (2.1)
d du
d_y< (T)J;> +pF=0, 22)
d dT du’\?
e <K(T)E> +n(T) <@> =0, (23)

where u(y) is the x-component of the velocity field (the only non-vanishing one),
T(y) > 0 is the temperature field, p(y) > 0 is the density of the fluid, F > 0 is the
constant intensity of the external field; #(7) and x(7T) are the viscosity and the
thermal conductivity, which for gases depend only on 7. The hydrostatic condition
(2.1), stating the constancy of the pressure £ given by the perfect gas law £ = pT,
ensures that there is no flow in the y direction.

We complete the system (2.1)—(2.3) with a no-slip boundary condition on the
thermal walls at temperatures T, that is we assume

u(—1)=ul)=0, T(-1)=T1)=T,>0. (2.4
Once the total mass per unit area m = fl , p(y)dy is given, the problem is com-

pletely specified. The functions #(T') and «(7T') are assumed to be smooth and satisfy

the conditions
n(T)zno >0, x(T)=xo>0 (2:5)

at least for 7 = T,. Under these conditions it is not difficult to prove the following
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Proposition 2.1. The system (2.1)—(2.5) has solutions in C*([—1, 1]), such that
T(y) > Ty for ye(— 1,1). Moreover there is an Fy >0 such that, if F < F, the
solution is unique and for any positive n there is a ¢ > 0 such that the following
estimate holds:

sup [1u(y)|+k§1|u<’"(y)|+|T(y)—To|+ > IT""(y)IJ<cF, 26)

yel[—1,1] k=1
with £ ® denoting the k™ derivative of f.

A sketch of the proof of Proposition 2.1 will be given in Appendix A.

b) Kinetic Description. To describe the situation in terms of the stationary BE we
note first that Eqs. (2.1)—(2.3) are clearly invariant under a rescaling of spatial
lengths by A and the force F by A~2. We therefore introduce into the BE the
Knudsen scale parameter ¢ such that the width of the slab in microscopic units is
2¢7 %, and take the force field, in microscopic units, equal to &*F. Physically this
means that the velocities of the particles of the gas are changed by a finite amount
in times in which the effect of the viscosity are felt (i.e. times of order ¢~ 2).

This scaling of space by ¢, from microscopic to macroscopic units, produces the
following Boltzmann equation [7]:

o 2 oF 2L =00, )

where ye[—1, 1], v = (vx, v,, v,) € R? denotes the velocity of the particles of the
gas and Q(f, f)(y, v) is the collision operator. We consider for concreteness the case
of a hard sphere gas, for which Q(f, g) is given for any y by

0(£9)0) = 5 ] v, =0

><S2

X [f(v )9 W) + g(@) f(vh) — f©)g@s) — 9(0) f(v4)] - 2.8

Here S = {weR3 s.t. w*> =1, (v, — v)*@ = 0}, v’ and v/, are the incoming vel-
ocities, v and v,, the outgoing velocities and w the impact parameter of an elastic
collision of hard spheres. In (2.8) the dependence on y is implicit.

The thermal wall and the no-slip conditions are simulated by a Maxwell
boundary condition with unit accommodation coefficient, temperature 7, and
vanishing mean velocity. Namely we assume, [6]

f(=L,v)=a_-M@), v,>0,

fLv)y=0as M), v,<0, (2.9)
with
_ 1
— —-v2/2To
M(v) ——27[T02 e , (2.10)

normalized so that fvy§0 |vy|1\7I (v)dv = 1. In (2.9) the coefficients o, are determined
by the condition of impermeability of the walls, i.e.

o, f>=0 fory=+1, (2.11)
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and we use the notation
(9> = [ g)do. (212)
]R3

Hence o, are given by
ay =+ [ v, f(+1,v)dv (2.13)

vy 20

and can be interpreted as the flux of mass outgoing from the fluid toward the walls.

We now make explicit our restriction to flows which are symmetric under
reflection of the y-axis. Denote by %v the reflected velocity, Zv = (vs, —v,, v,),
and by Z*f(y,v) =f(—y, #Av); we consider only solutions of (2.7) such that
R*f = f. As a consequence of this reflection symmetry we have: juy>0du f(1,v)v,
= —j,,y<0dv f(—1, v)v,, so that @, = a_ = a. Finally we require that the kinetic
mass be equal to the hydrodynamic one, that is we assume the normalization
condition

[ dy<fy=m. (2.14)
-1

The collision operator Q( f, g) has the following properties:

{:iQ(fg)>)=0 fori=0,...,4, (2.15)

where

R 1
L) =1; falv) = ) v,

1@ =vs, 220) =10, F0)=0v.. (2.16)

QUAf)=0 iff f(y,v) =M, () =—2—se @01 (217
(2rT)?

with p and T positive and UeIR3. The function M, y r is called a local
Maxwellian with parameters p, T and U depending on position.

Integrating (2.7) over velocities, it follows from (2.15) and (2.11) that any solution of
(2.7) with the property (2.11) satisfies

v, f>=0 forany ye[—1,1]. (2.18)

We denote by M the Maxwellian M, y r with T=T(y), p = p(y) and
U = (u(y), 0, 0) given by the solution of (2.1)—(2.4) and write, following [4, 7], the
solution to (2.7)—(2.9) as

6
f=M+ )Y &f+efr. (2.19)
n=1
The functions f,’s will be specified in the next section as a combination of terms

of a bulk expansion and of a boundary layer expansion. The remainder f, defined
by (2.19), then has to solve the weakly non-linear equation

b P4 ek T2 Gt Lot QU fo) + A (2.20)



54 R. Esposito, J L. Lebowitz, R Marra

with
Lf=20(M.f) (2.21)
6
Lr=20 ( Z s”“fn,fn> (2:22)

and A a given function, specified in terms of the functions f, and their derivatives.
Moreover, to satisfy the normalization condition (2.14), we must have

fdvdyfr=0. (2.23)
We summarize our results in the following

Theorem 2.2. Given p, T and u satisfying (2.1)—(2.4) and the force field F small
enough, then it is possible to determine uniquely functions f,, n=1,...,6 and
a remainder f such that f, given by (2.19), is a solution to the BE (2.7), (2.9) and (2.14)
for ¢ sufficiently small. Moreover

[ fallw < cF, (2.24)
I fllo < cét . (2.25)

In Sect. 3 we prove the estimate (2.24); Sects. 4—6 are devoted to the proof of
(2.25).
Before going on to the proofs we make some remarks.

Remark 1. In principle we could carry the sum in (2.19) up to any order k = 6 and
get a solution to the BE valid to O(e%), for a suitable £ increasing with k.

Remark 2. Scaling the force field like &* instead of 2, a factor ¢? appears in front of
F in Eq. (2.7). The stationary macroscopic velocity field generated by such a force is
of order ¢. This corresponds, after a suitable rescaling, to the macroscopic flow
being described by the incompressible NSE discussed in [7]. Equations (2.1)—(2.3)
then reduce just to the linear equation (2.2), with constant p and 7, whose solution
is the well known parabolic velocity profile. The arguments of this paper then
provide the convergence of the stationary solution of the rescaled BE to the
stationary solution of the incompressible NSE.

Remark 3. The planes y = —1 and y = 1 could move along the x-direction with
velocities FV instead of being fixed. Our results remain true, as long as | V| is small
enough. For F = 0 this corresponds to the well known planar Couette flow.

Remark 4. If the temperatures of the two planes are different the results of this
paper do not apply because we then can no longer take advantage of reflection
symmetry. Nevertheless, if the temperature difference is small, independently of e,
then we still have a unique solution of the hydrodynamic equations and the above
results can be obtained by non-trivial modifications of our proof. This will be
presented elsewhere.

3. The Expansion

Since the gradients of the hydrodynamical fields are non-vanishing on the bound-
aries, the behavior of the solution f of the BE (2.7) is quite different in the bulk and
in some thin (of order ¢ on the macroscopic scale) region near the boundaries
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(kinetic boundary layer). To discriminate between these two behaviors we split the
functions f, into the sum B, + b, so that the expansion in ¢ with coefficients B,
represents a good approximation to f away from the boundaries, while b, are
boundary layer corrections.

The main properties of the f,’s are summarized in Proposition 3.1 below, in
which the relevant norms are

Iflr=sup sup (1 +[v])|f(y,0)l (3.1)
ye[—1,1] veR3
for any non-negative integer r.
Proposition 3.1. Given p, T and u satisfying (2.1)—(2.4), and F small enough, it is
possible to determine constants o, and functions yE, of the velocity, exponentially

small with ¢~ 1, uniformly in v, in such a way that the functions f, satisfy the following
conditions:

! fi=B,+b  +b,, forn=1,...,6 (3.2)
) with B, satisfying (3.11)—(3.13) and b} solutions of Egs. (3.15)—(3.17) below.
K vy fu> =0 forye[—1,1]. (3.3)
iii)
1
_jl dy{fy>=0. (34
iv)
So(=Lv)=o,M(—1,0) + y,.(v), v, >0,
Hv)y=o,M1,0) + v, .(v), v,<0. (3.5
V) There is for any positive r, a constant ¢ such that:
IM |, < cF, (3.6)
M~ %A|, < cF, (3.7
with A defined in (3.19) below satisfying
vi)
{A>=0 forye[-1,1]. (3.8)
Remark. 1t follows by reflection symmetry that
fo =Ry Vno®) = s (Rv) forn=1,...,6, (3.9)
R*A=A. (3.10)

The bulk terms B, satisfy the following set of conditions, corresponding to
a modified Hilbert expansion:

oM
Yoy = ZB,, (3.11)

0B oM
! { F=—=¥B, + 0(B;,B,), (3.12)

Oy oy O,
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and forn=3,...,6,
aBn—2

aBn—l
T +F o —gSfB,,-i-k,;ZlQ(Bk,Bm) (3.13)

k+m=n

with #f given by (2.21).

The boundary layer corrections b, will turn out to go to zero exponentially fast
on distances of order ¢ from the boundary. They are best described in terms of the
rescaled variables y” = ¢~ (1 — y); ' = ¢ 1(y + 1) with values in [0, 26~ 1], such
that

by =b, (y") + by (¥). (3.14)
We require the b, to solve the following set of equations:
0
U)’a /bl = ’?Obl 5 (315)
0
YB /b2 = hg()bZ +2Q(B1’b1)+ Q(bl_,bl_)+ 2Q(AM,bl_)+ Q(bl_>bi+)’
(3.16)
and forn=3,...,6,
0 _ J ., _ _ _
UYE?b" + Fa—Ux n—-2 = gobn + 2Q(AM, bn—l)
i,j=1
i+j=n

Where $0f= 2Q(M0,f), Mo = Mp(il),O,T(il) and AM = 8_1(M - Mo) The
functions b, will satisfy an analogous set of equations relative to the boundary
y=1

Note that AM as a function of ' is bounded in compact intervals uniformly in &.
In fact, by Proposition 2.1,

ol 2
|AM(y', v)] = Mo()[ °yg” BT %—T—(”—maq Y| < cFy

*

y=y

(3.18)

with a suitable y*e[—1,y] and ¢ the vector (v, — u,v,,v,). The last step is
a consequence of (2.6).
With such a choice of f, the remainder f will satisfy Eq. (2.20) with 4 given by

_ 0Bs g6 0I5 ~ b
A= [vy 5t o +Favj+[2Q(AM,b6 +b&)]

+ 2 O ) - (3.19)

k,m=1
k+m>7

The mass flux condition (2.18) and the normalization condition (2.14) for f are
assured by requiring that the f, satisfy condition (3.3) and (3.4). These conditions
and the boundary conditions which we will discuss later couple the bulk and
boundary layer expansions.
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Before proceeding to determine these intertwined expansions, we give some well
known properties of the linear Boltzmann operator % proven by Grad [18, 19, 20].
These are needed in the sequel and establish notation.

The Linearized Boltzmann Operator. It is convenient to denote by IH the space
L,(R?) and by (f, g) the scalar product in H. For any ye[—1, 1] the operator

Lf=M 2 (M?¥) (3.20)
is an unbounded operator on IH, which can be written as
Lf= —vf+ Kf (3.21)
with v the multiplication operator by the function

vy, v)= | dogdw(v, — v):0M(y, vy) (3.22)

3
R’ x 82

and K defined by (3.21). For hard spheres there are positive constants v, and v,
such that:

vo(1 + [o]) = v(y,v) = vi(1 + [v]). (3.23)

Moreover K is a bounded operator in H, so that L is well defined on the domain
2, = {feH st. vfe H}.
We need some notation. For any ye[—1, 1] define

1
Xo(v)=7,
v,y — U b _ b
X1(U)—ﬁ XZ(U)_—\/T_p x3(v) \/TT)’

(ve — u)? + v} + 02 — 3T

X4(U) = ZTﬁ ’

lpi:Xi\/M i=09""4~ (325)

The set {;,i =0, ..., 4} is an orthonormal set in IH. Let ¥~ be the linear span of
{$;,i =0, ..., 4}, Pthe orthogonal projector on ¥" and P the projector on ¥, the
orthogonal complement of ¥~ in H. We will refer to the projections of a function
fon ¥ and # as the hydrodynamic and non-hydrodynamic part of f respectively.
We summarize here the properties of the operator L that will be used in the rest of
the paper.

i)

AS)

(3.24)

and

Lf=0 ifffey, (3.26)
(Y, Lf)=0, i=0,....4 (3.27)

for any fe 9,.
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il) For any f,geD,,

(f, Lg) = (Lt 9), (3.28)
(LLf) S —cy 11{ (1 + [v])(Pf)?, (329)
I(f; Lg)| < ¢, HL(I + [v])| f91 (3.30)

for suitable positive constants ¢; and c,.
iii) There is a positive constant ¢ such that

Sung(l + ) IKf @) = ¢ Sung(l + ol S @) (3.31)
forr>1, )
sup |[Kf (v)] = C< ) If(v)lzdv)2 , (3.32)
veR3 R3
JIKf@Pdv<c | |f@))dv. (3.33)
R3 R3

iv) The operator K is compact on H.
v) The equation

Lf=g (3.34)

is uniquely solvable for g e #". Denoting by L~ ! the inverse of the restriction of
Lto %, L 'gisin % and the general solution to (3.34) has the form

f=L'g+1t, tev, (3.35)

sup (1 + [o])'|L™'g(v)| < c sup (1 + [v]) [g(v)] , (3.36)
velR3 velR3

sup (1 + [v])' DL g(v)| < ¢ sup (1 + [0])"| Dg(v)] (3.37)
velR3 veR3

for any r = 0,/ = 1 and a suitable constant ¢, D} denoting any partial derivat-
ive of order £ with respect to v. The estimate (3.37) is not contained in [20], but
can be obtained by similar arguments (see [21]).

In the following we will also need the slightly different orthonormal set {i/},
i=0,...,4in H}, defined by (3.24) and (3.25) with the following modifications: p,
T and M are replaced by po, Tp and M, respectively and u = 0 because of the
no-slip condition. We call ¥, the linear span of ¥, and P, the associated ortho-
gonal projectors. #, is the orthogonal complement of ¥5 and P, is the projector
on # . We will refer to the decomposition of an element of IH on ¥, and #7, as its
hydrodynamical and non-hydrodynamical part without further specifications
when it is clear from the context what we mean. We will also use the notation
Lof=2Mg 1?2 #o(M§?f). Of course L, has the same properties as L.

The Milne Problem. To deal with Egs. (3.15)—(3.17) we have to consider the
following linear transport half-space problem, which is a special case of the well
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known Milne problem:

vyaf Lof+s, 0Z1<ow0, (3.38)
f0,v) = 9(v) forv,>0, (3.39)
{v,f(r,v)) =0 forreR™, (3.40)
lim f=f, €L, (R (3.41)

for a given distribution 4 of incoming particles at the boundary T = 0 and a given

source of particles s such that
(s)=0. (3.42)

This problem has been studied by several authors (see for example [16, 15, 17] and
references quoted therein).

Theorem 3.2.
1) Suppose that for r > 3 and some ¢’ > O there are finite constants ¢, and ¢, such
that

sup (1 + |v])|Mg 2 3(0)| < ¢y , (3.43)
velR3
sup e”“sup (1 + [v|)|Mg ?s(t,v)| < ¢, . (3.44)

teR* velR3
Then there is a unique solution fe L,(R* x R?®) to (3.38)—(3.41). Moreover there
exist constants ¢ and ¢’ such that f verifies the conditions:
fo €NUlLY, , (3.45)
sup e”* sup (1 + [v])'[Mg *(f(z, v) — fu(v)] < c3 (3.46)
teR* veR3

for any o < ¢
2) Suppose that for r >3, ¢ = 1 and some ¢’ > 0,
z

6‘3 .
sup (1 + |v])'|M 6 ——|+ sup e”*sup (1 + [v])" |Mq? Wt <c, (347
velR3 teR+ veR3
for some constant c,. There are finite constants ¢ and cj such that
o .
ot 1 "My = / 3.48
,S:ﬁge vseung( + [v])" | Mg {au Wt <c¢ (3.43)

for any o < c.

For the proof of part 1) of Theorem 3.2 we refer to [16] where the case of hard
spheres is discussed in detail. In [15] and [17] more general interactions are
considered. The second part of Theorem 3.2 will be proven in Appendix B.

We are going to use (3.35) to solve (3.11)—(3.13) and Theorem 3.2 to solve
(3.15)—(3.17). Actually Egs. (3.15)—(3.17) are in the variables y’ and y” which take
values in [0, 2¢ 7], while in the Milne problem the variable 7 is in R *. Of course it
would be possible to reformulate the Milne problem in a bounded domain, but, in
view of the fact that eventually ¢ will go to 0, it is more convenient to extend Egs.
(3.15)—(3.17) to R* by putting the functions B, and AM which will be computed in
[0,2¢ 17, equal to 0 outside this interval. Since we do not exploit smoothness in
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7 of the solutions, the discontinuity introduced in this way is harmless. Of course
for any finite ¢ the only relevant part of the solution will be the restriction to
[0,2¢1].

To find the functions B, solving (3.11)—(3.13) we have to check the solvability
conditions which follow from (3.27). Since the function M ~2Q(f, g) is in # by
(2.15), it is enough to check that M and B,’s verify the following conditions for

i=0,...,4
<92ivy %Ayf—> =0, (3.49)
<x[ 6631+ng]>=0, (3.50)
andfor3<n<6
<;z,.[uy 61;.;_1 + F01;;;2]> =0. (3.51)

Condition (3.49) is satisfied because of (2.1). Hence we can solve (3.11) to find B;.
We have, by (3.35),

Bi(y,v) = Q‘l[vy%—];/l]+ t1(y,v) (3.52)

with the functions
ty(y,0) = 2 (M (3.53)

to be determined and &~ f = M*L~ 1(M‘%f),
The explicit expression of £~ *[v,0,M] is (see for example [6])

P [@lvxvyg + @, — 3Ty, zT] (3.54)

where the @; are some positive functions of #2. Substituting now (3.52) and (3.54) in
(3.50) the latter will be satisfied if (2.2), (2.3) and (2.5) hold with #(7) and x(7T’) given
in terms of ®; and ®,. Moreover we have

dl o, 5 o d
— =0, — =0. 3.55
2 [po + 2\51)4 dy p2 (3.55)

From (3.54) we see that, since 0,u and 0, T do not vanish on the boundary, B; does
not vanish either and the terms b have to be introduced to compensate B;. To
satisfy the boundary condition for y = — 1 we have to choose by to be the solution
to (3.15) with boundary condition in y’ = 0 given by the value of ¥~ ![v,0,M] for
y = —1. This corresponds to_solving the problem (3.38)-(3.41) with s =0 and
$=%""v,0,M]|,- . Let by be the solution of this problem. Then by (3.45) in
Theorem 3.2 we_see that by approaches, as y' — oo, a function g7 (v) in Null.Z.
Defining by = by — g1, then by will be a solution to (3.15), with boundary
condition

'9=$_1[DyayM]|y=—1_ql_a (356)

which goes to zero as y’ goes to co. In the same way we construct b; which is
related to by in an obvious way by reflection symmetry.
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The above construction gives at y = —1:
fil=10,>0)=t;(—=1,0) + b 2e7",0) — g1 (v) , (3.57)
and at y =1,
fil,o, < 0)=t,(1,0) + by 2e7 1, 0) — ¢ (v) , (3.58)

where the function t; will be determined later.

Notice that by (3.45) ¢f (v) and ¢, (+ 1, v) are both in Null.%,, so that we can use
t1(+ 1, v) to compensate g (v). The terms b (2¢ !, v) are exponentially small in ¢ ™!
by (3.46) and in fact they are the terms denoted by y{ , in (3.5). By (3.40) {v,b{ > = 0
and, of course, {v,q{ » = 0 too. Therefore to satisfy (3.3) we have to choose

ps’=0. (3.59)

To determine completely the hydrodynamic part of By, that is the remaining
coefficients p, ", i & 2, we use the linear differential equations obtained for them by
means of the solvablllty conditions. First we solve (3.12) and obtain B, up to
t=Y1_ Op, ?(y)y; M2, Then the solvability condition (3.51) with n = 3 gives
a system of three second order linear non-homogeneous differential equations for
the unknown functions pl for i=1,3and 4 The coefficients A4;; of the derivatives
are given by A;; = (v,¥;, L™ 'v, ;). Since L™ is a strictly non- posmve operator on
W || 4;, ;1| are the coeflicients of a 3 x 3 non-singular matrix. Hence the functions

WDiori= 1 3and 4 are completely determined up to the values on the boundary.
We write g = Zl Oql lx//(,Mo and, for i = 1, 3, 4, we choose the boundary values
of pi as

p(£1) =g . (3.60)

Then p{" is determined by the first equation of (3.55) up to an additive constant
that is chosen so that (3.4) is satisfied for n = 1. Finally we obtain

fil£1,0,>0) = af Mo + 75, (3.61)

with o«f = p“)(—lrl) —qio and y{, = b{ (2¢71). In fact, by reflection symmetry
fi = Af; and, in particular, of = oy .

Now that B; and the non-hydrodynamical part of B, are completely deter-
mined, we can solve (3.16). To do that we have to use Theorem 3.2 with

s =2Q(B1,b1) + Q(by, bi) + 2Q(4M, b1) + Q(b1 , by) (3.62)

and $given, as before, by the difference between the value of the non-hydrodynami-
cal part of B, in y = —1 and the limit value g, of b; . Reserving to Appendix B the
check of the conditions of applicability of Theorem 3.2, we proceed as before to the
construction of b which vanish for y' - co. The determination of ¢, follows the
same lines as the determination of t;, and, in fact, we can repeat the above
procedure step by step for the functions f,.

The only difference in the n'® step, for n > 2, is due to the presence of the
v.-derivative of b, in the sources, arising from the presence of the external field.
Their control is guaranteed by part 2 of Theorem 3.2.

We note that ¢5 and t4 are not completely determined by the above considera-
tions. In fact (3.51) with n =6 only implies the conditions

d d

2f dy
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Since there is no compatibility condition to satisfy for n > 6, there is also no
differential equation to be satisfied by t¢. Nevertheless we still need to assume

ps’ =0, p =0 (3.64)

to satisfy (3.3) for n = 5, 6. Moreover we have to satisfy boundary conditions of the

form
(1, 0) = qi,v), (3.69)

‘W+1w—%xm (3.66)

for i = 1, 3, 4. Therefore we choose pi ) and p(G) i =1, 3,4, as constants matching

the prescribed boundary values: they coincide by reflection symmetry. Moreover
we use the arbitrary constant arlsmg from the first equation in (3.63) to satisfy (3.4)
with n = 5. Finally we choose p06) as a constant such that (3.4) is satisfied for n = 6.
The condition (3.8) is automatically satisfied by (3.19) since we have already chosen
p2 = 0. The estimate (3.6) easily follows by combining Proposition 2.1 with (3.36),
(3.37), (3.46) and (3.43).

Finally we get the estimate (3.7) for A. The first three terms in (3.19) are
controlled using (3.36), (3.37), (3.46) and (3.48).

To bound the last term of (3.19) we use (3.46) and the following estimate which
has been proved by Grad [20] for any Maxwellian:

IM *Q(R, S)|,-1 < ¢|M *R|,|M ~3S], . (3.67)
We use again (3.67) to estimate the remaining terms:
|M ~%2Q(4M, bg )|~y < |M ~*4AMe™"|,|M ~*bg e”|,

< c¢F sup |[te” 7| £ ¢F, (3.68)
teR+*

where the second inequality is due to (3.46) and (3.18), since M ~% < cM, *.
This concludes the proof of Proposition 3.1. [
4. The Remainder

In this section we construct the remainder fi and prove the crucial estimate (2.25).
To fulfill the condition (2.23) it is convenient to put

fR = OCRM + R (41)
so that (2.23) is satisfied if ag is given by

1
oag = —— [ dvdyR . 4.2)
m

In order to satisfy the boundary conditions (2.9) for f, taking into account the
conditions (3.5) verified by the f,’s, we complete the non-linear problem (2.20) with
the following boundary conditions:

6
fR(_lsU):‘aRM(_ls U)_ Z 8"—3'}),:8 U)’>0’

6
fr(1,v) = agM(1, v) z & . v, <0. 4.3)
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The outgoing mass flux at the walls is thus determined in terms of the constants we
have already fixed and oy as

6
o= po(To/2m)*/? <1 + Y &, + s3ch> ) 4.4
n=1
Using (2.20) we obtain the following equation for R, defined by (4.1),
OR 0R 1 ~
vy—+eF—=-%R+ AR+ Q(R,R) + &4, 4.5)
dy o, ¢
where the linear operator 4R is the following modification of £
1 oM oM
=%'R——| %M —¢F——v,— . 4.
N'R=%'R m[ﬁM 8Fﬁvx v, ay:|jdvdyR (4.6)
The non-linear term is given by
~ 2
Q(R,R) = Q(R,R) + - ZR [ dvdyR . 4.7

The boundary conditions for R are

Mo

R(-1Lv)y=-> & 3,, v,>0,

E]
1
-

Mo

R1l,v)=— Y &3, v,<0. 4.8)

=
[l
-

The reflection symmetry of R implies that R(0, v) is an even function of v, and, as
a consequence, <v,R(0, v)) = 0. Therefore, integrating (4.5) on velocities, we see by
(3.8) that R satisfies the vanishing mass flux condition,

<vyR> =0. (49)

We prove the existence of the solution of a suitable integral form of Egs. (4.5),
(4.8) and (4.9) that will be specified in Sect. 6. It is constructed as a limit of the
sequence {Ry, ke N} of solutions of the approximate equations,

OR, OR,
—— + ¢F
O oy e ovy

with boundary conditions

1 ~
=E$Rk+JVRk+82Q(Rk—1,Rk—1)+83A7 (4.10)

8n—3

Mo

Rk(_lav)=_ 'yr:s Uy >0,

=
1
—-

Mo

R(l,v)=—Y &3 0v,<0 4.11)

B
I
—-

for k > 1, with Ry = 0.
To prove the convergence of the sequence {R;, ke N} we have to deal with
a preliminary linear problem. We consider a function D such that

#*D =D, (DY=0 4.12)
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and a function {_ of velocity, defined for v, > 0. We look for the solution of the
following linear boundary value problem:

vaE+gFa—R=1$R+/VR+azD, (4.13)
Jy ov, ¢
R(—l,v)=c_ Uy>03
R,y =" 0,<0 (414

with {*(v) = {” (%v). The solution R of (4.13), (4.14) will be estimated using the
following norm:

|flrg=sup sup (1 + o]y |f(y,0)le””, (4.15)
ye[—1,1] veR3
and the same notation will be used also for the norm of functions of velocity even if
defined for incoming velocities only. We shall prove the following

Proposition 4.1. There are ¢y >0, F; >0 and o >0 such that for any ¢ < &,
F < F; and B < B, the solution to the linear problem (4.13), (4.14) is bounded as
follows:

|R|r,[3§cs%|Dlr—1,ﬁ+cs_zlc_lr,ﬂ (416)
for any r = 3 and for some constant c.

We note that the constant f, will turn out to be any positive number smaller
than (4sup, T(y))~ !, while F; may be smaller than F, introduced in Proposition
2.1. Sections 5 and 6 are devoted to the proof of Proposition 4.1.

To bound the function R, we choose

D=¢eAd+ QRe-1,Ri_y), (4.17)

while {* are given by the r.hs. of (4.11). Both terms in (4.7) can be bounded by
|Ri— 1?5, using (3.67) with the Maxwellian exp{—2Bv?}. By Proposition 3.1 the
functions y7 are exponentially small in ¢ ™%, so that |{*|, ; are bounded by ce™**™",
Hence, for any k > 0 and for any r = 3 we have the estimate

IRl s < c(IRe—11,,p)? + & | Al, g + ce™2e™* 7" 4.18)
This implies that, for ¢ small enough, uniformly in k, for any ¢” < ¢,
|Rilr.p < c&¥| Al g+ ce™7" (4.19)
Denoting by W, = R, — Ry, for k > 1, W, satisfies the equation

oW, oW, 1
Gy T, T

LW+ N Wi+ EQRy—1 + R, Wey),  (4.20)

Wi(—1,0=0 v,>0,
Wi(l,v)=0 v,<0. 4.21)

In (4.20) we used the notation Q~(R, S)=0(R, S) + asZR + ax #S. Hence, by
choosing D = Q(R,_; + R,_,, W;_,) and {* = 0, using again Proposition 4.1,
(3.67) and (4.19), it follows that

| VVklr,[i = 032| u/;clr—l,ﬂ . (4.22)
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Therefore for ¢ < ¢, the sequence R, converges and the limit satisfies (4.19). Let
R, and R, be two solutions of (4.5), (4.8) with uniformly bounded |+|, ;. Then
W = R; — R, satisfies

ow ow 1
vy——+ eF — =

- 20(R, + R ) 4,
% 0. ~ LW+ N W+ QR + Ry, W) 4.23)

By Proposition 4.1 it follows that | W|, ; < ce| W|, 5, which implies uniqueness for
¢ small enough. We have thus proved the following

Theorem 4.2. There are ¢, >0, F; > 0 and By > 0 such that for any ¢ < &y, F < F;
and B < B, the solution to the problem (4.5), (4.8), satisfies the bound

[R|,.5 < cé'|Al, g+ ce " (4.24)
for any r = 3 and for some constant c.

Theorem 4.2 implies Theorem 2.2 and hence the solution of (2.7), (2.9) converges
as ¢—> 0 to the local Maxwellian with parameters solving the hydrodynamic
equations (2.1)—(2.4).

5. L,-Estimates for the Linear Problem

The natural way to deal with the linearized Boltzmann equation is to symmetrize
Z to get the operator L in (3.20), and use the non-positivity (3.29) of L to control
the ¢~ 1% term in (4.5). On the other hand, when the Maxwellian is not space
homogeneous, this procedure produces derivatives of the Maxwellian with respect
to y and v,, which diverge as a polynomial in v for large velocities. This difficulty
has been solved by Caflisch in the time dependent case [4], by means of a decompo-
sition of R into a low velocity and high velocity part. The Caflisch method has to be
modified here, since for the stationary problem the control of the hydrodynamic
part of R is worse. Like in [4], we introduce a global Maxwellian

M, = (2nT,) 3 exp[—v*/2T,], (5.1

where T, > supy¢;-1,1;7(y) which is finite by Proposition 2.1. In this way M,
= ¢M for all (y, v) and some positive c.
We look for a solution of Eq. (4.13) in the form

R=/Mg+ . /M, (5.2)

where the low velocity part g and the high velocity part h are defined as the solutions
of the following system of coupled equations:

0 0
Uy_f; + Sngg +(u+eFp)g=¢"'Lg+e g0  'Kyh+ LG, (5.3)
oh

oh -
vya + SFEU_ + eFuyh+ (p + eFu')o(g + g2)

=& Y—v+ 1, Ko)h+ Li[o(g+ g,) + h] + &d . (54)
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The notation is:

1 1 1 | M
,u=vy§6ylogM, ,u/=§6,,xlogM, p’*=§80xlogM*, o= M (5.5

*

L el=y
xy(v)—{o’ o> (5.6)
)Zy =1- Xy»
Lof=M;'220(M, MJ*f)=(—v+ K,)f. (5.7

K, is an integral operator analogous to K, for which the same properties (3.31)-
(3.33) hold (see [4]).

Lif= M2 (M) Lif= Mg 24 (MI2S), (538)
d=M;'"D . (5.9)

The low velocity part g has been decomposed into a hydrodynamical part § + g,
and a non-hydrodynamic part g,

g=4+g,+4, withg, =p(D¥2, 9= ) p(VY;. (5.10)
j*2
We choose the following boundary conditions for g and h in Egs. (5.3) and (5.4):
gl,y)=0 v,<0 hQ,0) ="M =h, v,<0
g(=Lv)=0 v,>0 |h(—Lo)y={"M;"?=h_ v,>0"
Of course h. (v) = h_(Av). It is also convenient to consider #. extended to R3,

putting it equal to 0 for v, 20.
The norm we are interested in is

1/2
||f||=< ) dydv(1+|v|)f2(y,v)> : (5.12)

[-1,1]xR3

(5.11)

We remark that in (5.4) the unbounded terms u and u’ are compensated by the
factor o for large velocities while in (5.3) they appear as multipliers of §: § has
a good behavior for large velocities, but has a bad estimate in ¢. This is the reason
why we chose our decomposition in such a way that § does not appear in (5.4).
Finally, the factor yj is also unbounded for large velocities but is a polynomial of
degree 1, so that it can be dominated in the norm (5.12). (For cross sections softer
than hard spheres this would not be true because the natural norm to be used
would include a power of |v| less than 1.)

Theorem 5.1. There exist positive ¢, Fy and ¢ > 0 such that the solutions to Egs.
(5.3), (5.4) and (5.11) satisfy the bounds

Igll < el + o))~ d] + ce™ 2| h_]|, (5.13)
g1l < ecll(1 + o)~ dll + ce™>2 | h-]| (5.14)
lgzll + Al < &)X + [~ 'dll + ce[[h-] . (5.15)

The proof is organized as follows: First we will obtain a bound for ||g || in terms
of ||k|. Using such a bound it will be possible to estimate | k| in terms of
ld(1 + o))~ ! and [[h_||.
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To estimate the operators L' and L} we will use the following estimate on the
collision operator Q proven in [22]: for any Maxwellian M and for any ye[—1, 1],

j-d |Q(\/_f \/—g)l J‘ dv(1 + |v))|f]? j dv(1 + [v])]gl?>. (5.16)
R3 (1 + | l R3 R3

(A) Estimates on g. The condition (4.9) together with (5.2) and the fact that g + § is
orthogonal to ,, implies that

[ dv(y/Mg, + /M h)v,=0. (5.17)
JPTp, = —[dv /M hv, . (5.18)

Therefore, by Proposition 2.1 and the Schwarz inequality, we conclude that

g2l = Clihl . (5.19)

As a consequence

We now give estimates on g and on § separately.

a) Bound on §. Multiplying Eq. (5.3) by g and integrating it on R? we have
d 1 P - .
& <vy 592> +{(p+eFu)ggy = e (g, LG + e ' (4, 9) + (9. L'9),  (5:20)

where 1 = y,0” 'K, h. Let us observe that
Cug*y =% pip; [ doppity; =0 (5:21)

i,j¥2
since, for i, j * 2, uy;;, is an odd polynomial in v, times the Maxwellian, which is
even in v,. Moreover, using (3.11) in (4.6) we get

NR=2'R —rln[zQ< i sn-lf,,,M>

n=2

+ L7

51;4 ] { dvdyR (5.22)

from which we see that the only term in 4f that is not orthogonal to the collision
invariants is eFd, M. Hence we have

1
[ dyl(g, L'g)| < ceF g1 . (5:23)
-1

We remark that (5.21) and (5.23) are crucial to get an estimate on g.
Integrating Eq. (5.20) on [ —1, 1] we get
S+ [dydv(p + eFp')gg = [ dydv[e™*gLg + ¢ 'Ag + gL'9],  (524)

where

1
F=3 [Kv,g°(1,0)> — <v,9°(=1,0)>12 0, (5.29)

using the boundary conditions (5.11) for g.
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Let us examine more closely the term involving L!. By (5.16), (5.22) and (5.8),
we have:

6
1A+ o)™ LYl < [ Y T HM T+ csF} gl - (5.26)
n=1
Hence, using (3.6), it follows that
1
fayl@ L9 <cFlgligl . (527)
-1

To conclude the analysis of Eq. (5.24) consider the term {(u + eFu')dg)>.
Taking into account that u is a function of the derivatives of p, T, u it follows by
Proposition 2.1 and (5.10) that

lugl = cF(fdy > Pf) ScFlgll Y Iy12 =cFlgl, (5.28)

j*2 jE2
using the decay of § in v to get the first inequality and the relation p; = (g, {;) to
obtain the second inequality. In the same way it follows that || 4'g || < ¢/ §|. Hence,
using (5.21) we have the following bound

}ldyl((u +eFi)g, 9l < cFlIgI gl + lg2ll) + ceF g% . (5.29)
Since A = x,0 'K, h we have, by the L,-boundedness of K, (see [4]),
[Al = G lRl . (5.30)
Finally, by (5.29), (5.30), (5.21), (5.23), (5.27) and (3.29) we have:
ef + vl gI> < C,lhll gl +ecFlgllgl+eFlgl?. (5.31)

b) Bound on §. Multiplying Eq. (5.3) by v,¥;, i=0,1, 3,4 and integrating on
[—1,y] xR3, we have

T A a9
Di(y) = &:i(—1) + j dy 11£ dv o,y [—(# + eFu')g — 3F%
-1 3 X
+e 'Lg+e A+ L9+ vfgﬁytpi:l , (5.32)
where @,(y) = (v ¥:g).
First we give the estimate for @(— 1). By the Schwarz inequality

IKey¥ig(—1,0)>| = cIylg* (=1, 0> u, Py )12 s e s V2, (5.33)

because g(— 1, v) = 0for v, > 0. Therefore, taking into account the bound (5.31) for
#, we have

|@(=DI<cle”'C, Ikl gl + Flgl gl + eF g1 . (5.34)

When the term involving the v -derivative in (5.32) is integrated by parts, then all
the terms in Eq. (5.32) can be estimated using the Schwarz inequality and the
bounds (5.26), (5.27), (5.29) and (3.30). The result is

12 < cle”*C, Ikl lIgl + Fligl gl + eFl4121*
+ee gl + e 1C Ikl + cFligl] . (5.35)
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By the definition of &;(y) we have:
D(y) = vsig) = Y. Aipj + 033> p20i2 + {v3¥ig) (5.36)

Jj¥2
where 6;; is the Kronecker delta. The matrix 4 whose elements are
Aij = v}y, i,j = 0, 1, 3, 4 is non-singular. Hence the p;, i = 0, 1, 3, 4 are deter-
mined by

pi= z Ai;l[(pj - <03‘//§>P251‘,2 - <U;2:‘//jg>] . (5.37)

j*2

Therefore

1917 <cy | dylp(y)IP=c | dy[ Y [#7 + Cp%]+ clgl®. (5.38)

i¥2 ~1 1 i%2
Hence, using the bound (5.35) for the @;’s and (5.19) for | g, ||, we obtain
Igll < cle™*C, IRl gl + Fllg 141l + eF 14171
+ce gl +e Gl + cFlgl . (5.39)
We simplify the right-hand side of Eq. (5.39) using the inequality
lab| < ka® + (4x)~'b? (5.40)

for any x > 0, to bound the product ¢~ | k| || g| with x| g|? + (4x) e~ 2| h|>
So we get

1
gl < ce” gl +e'C, <1 + R) IRl + Q2F + ©)llgll - (5:41)

Finally, choosing k and F sufficiently small, we get
191 < ce”tlIgl + e Cylhl . (5.42)
Using (5.19) in (5.31) we have
112 < Co IRl (UGl + gl + I1h1) + ceFlgIIg1 + ce®FlIg1>.  (543)
Substituting (5.42) in (5.43), using again (5.40) we get

_ _ cC
|Ig||2§(6Cy+cF)Ilg||2+4—yz (e (5.44)

o€

Hence, choosing ¢ and F sufficiently small, we have

Il <& *C,linll . (5.45)

In conclusion we have the following estimates for the hydrodynamic and non-
hydrodynamic parts of g:

gzl = Cylihl, (5.46)
Igl <& *C,lhl, (5.47)
lgl <& 2C,[hll . (5.48)

Estimates (5.46) and (5.47) will be used below to estimate | /]
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(B) Estimates on h. The way to get bounds on & is analogous to the one followed
for g but simpler since we do not need to control separately the hydrodynamic and
the kinetic part. In fact in (5.4) the operator L has been replaced by (—v + j,K,)
which has a trivial null space.
Multiplying Eq. (5.4) by h and integrating on [ —1, 1] x R® we have
T + [dy<{eFuh®y + [dy{(u + eFu')ha(g + g2))
= fdydvh[e™'(—=v + 1, K, )h + Li[0(g + g2) + h] + ¢%d] , (5.49)
where 7 = (v,h*(1,v)> — (v,h*(—1,v)> = —|vy|h% ) by the boundary condi-
tions (5.11).
We observe that, by the L,-boundedness of the operator K, it follows that
| dy<TyhK o h)| < ThI(fdy<zy(K h? (1 + o)) 2 S cllh]2(A + )12
(5.50)
Hence
e ollh)|* < c[eF | hI? + FllhI (141l + llg21l) + FIh]* +
+ e[l + (o) + e A+ )T 2RI+ oy |h2 )T
(5.51)

In fact the first integral in the Lh.s of (5.49) has been bounded by ¢F | k|2, the
second using the estimate |(u + eFu')o| < cF. Moreover we used (3.6), (5.16), (5.22),
(5.8) to get the bound
1A+ o)™ Ly(h + (g + g2)) | < cF(I g1l + llgall + 11 - (5.52)
Then, using (5.46) and (5.47), we have
Ih1? S (CF + c(1+ )" HIRI? + &l d(1 + o))~ ]| +ced]o, |2 ) .
(5.53)

We fix y large enough to make ¢(1 + ) * < § and then F sufficiently small to
make C,F < 1, so that we can conclude that

Ihl < ce®lld(1 + o)~ | + e 2||h_] . (5.54)
The proof of Theorem 5.1 then follows by combining (5.46)—(5.48) and (5.54). [

6. Pointwise Estimates for the Linear Problem

Pointwise estimates of the solution of the linear problem are necessary to deal with
the non-linear term of the Boltzmann operator. To get them we have to use an
integral form of the equations for g and h. This will give estimates of L, -norms in
terms of the norms used in the previous section.
Let us consider the equation
of of

vy5§+eFaT+s'1vf= e G 6.1)

with the boundary conditions
=L =f0,>0 f(Lio)=fr,0,<0. 62)
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We use the following notation:

[ Y

F
¢Y»Y' = |dzv <Z’ Uy + sv_ (Z - y)a Uy, vz) ) (63)

y

=

1y (. eF o,
UsG(y9 v)=5 j‘ dy G()’,Ux'f‘v_(y _y)’ vy’vz) exp[_#:ls (64)
y

y —1 &V,

for v, >0 and

1! F D,
U,G(y,v)= —— [dyG (Y, v, + il (V' =y vy, 0, Jexp| =2 |, (6.5)
evy ) vy )

y

for v, < 0.
D, _
Vif~ =2x,>0)f ‘CXP[— —y—l] , (6.6)
v,
+p+ + D1y
Veft =y, <0)f"exp [?] . 6.7)
y
The solution of Eq. (6.1), (6.2) can be written as
f= Vs+f+ + Vs_f_ + UG . (68)

Proposition 6.1. For any integer r = O there is a constant c such that the integral
operator U, satisfies the following inequality, uniformly in &:

G
|U.Gl, = ¢

6.9

r

Proof. 1t is sufficient to prove (6.9) for r = 0. In fact, let G, = G(1 + |v])" and
f = U,G(1 + |v]). Then the f; satisfy equations of the same type as Eq. (6.1),

a
vy%+sF—£+a‘l(v—sd,)f,=8'1G,, (6.10)
oy v,

where d, = erFuv,[|v|(1 + |v])]7?, |d,| £ eFr, with vanishing boundary conditions.
Since for ¢ small enough v — & d, = cv the proof for r = 0 can be applied. Now for

r = 0 we have (v, > 0)
1
P .,
CXP[ &0, m:l

172 eF
|(UEG)(y)| é_ j dy,’G<yl9 vx+_(yl_y)’ Uy7 vz)
&L vy,

y -1

G| ? 1 eF 1

|- d — /, x - - > s Vz -—,

= o_fl ywyv<y v +vy(y ) 0y v>exp[ o y.y]
G

<2 (6.11)
Vio

because [~ | dy'(ev,) " 'v exp{—(ev,)"'®, , } < L.
The estimate for the case v, < 0 is obtained in the same way. [

In the next proposition we use the following norm:

1/2
N(f)= sup <Idvlf(y,v)lz> : (6.12)

ye[—1,1] \R3
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Proposition 6.2. For any 6 > 0 and for any r = 2 there is a constant Cy such that
1
N(U,G) £ —=Cs||v 2G| + 6|G|, . (6.13)
€

Proof. We give explicitly the proof only for v, > 0. Let us consider

[ dv|U,G|>=

vy>0
1+y 1 8F 1 2
fdv[ g dte—UyG<y~t, vx—v—yt,vy,vz>exp|:—gv—y<1§”_,]:| . (6.14)

In analogy to [22] we estimate the r.h.s. of (6.14) by decomposing it in the three
parts Iy, I,, I3 defined as

L= [ dlUGP, (6.15)
vy2l
1y eF 1 2
I = d —G(y—t,0.—— ——o,,. 1
2 0<,£,§/ U[ :‘; SUyG<y L, Uy v, L, Uyavz)exp[ ev, (p.v,y t:':l H (6 6)

71 eF 1 2
I, = d —Gly—tv,——tuvy,0, -, _ . 6.17
’ 0<u{§/ U|:£8”y <y ’ Uy ot )exp[ vy > t:|:| ©17

By the Schwarz inequality we get

Lty 1 G? eF
L | dv | dt57<<y—t,vx—v—yt,uy,vz>

vyt 0 y

1+y M 2
x | dt—exp— {—— diy‘y_,} <c(e) v iG|?. (6.18)
o ¢ ev

UY y

The bound on I, is obtained as follows. We observe that by Eq. (3.23),

1 2
—exp—{— diy,y_a}gco_‘ ) (6.19)
ev, ev,

Setting t' =t — o in (6.16) we are left with a term like I; times the Lh.s. of (6.19).
Hence, using (6.19) we have

L <co tviG|*. (6.20)

The third term I3 can be handled by noting that for 0 < f < 1,

1 1 e
o, " {5 %—v} < clev,)' 1050

< clevy)f " Tvot)7E . (6.21)
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Hence, by the Schwarz inequality,

1

‘ 1
I3§C 2—2ﬂ§dt1
€ 0

dt
(vot1 ) g 2

F 1/2
X |:j”dv,cdv,G2 <y — by, 0, — %— ty, Uy, UZ)J

1 dv,

(vot2 ) o<vjy§z vy~ %

y

EF 1/2
><|:fdv,,dsz2 <y— ts, vx—;—tz, vy, vz):l . (6.22)

y

Then

o\* "% dv 1
L <clG]2 (2 LY P P — 623
20 (7)o, 69

where we have fixed f < 1 to make finite the integral over ¢. If we choose also
B >1/2 and r > 1 all the integrals in Eq. (6.23) are finite. Finally, since ¢ is
arbitrary, we can take g = ¢ getting

I £ C3*|G|} (6.24)

with §2 = #2671,
Combining (6.18), (6.20) and (6.24) we get the result. O
The regularizing properties of the operator U, suggest to consider the following

integral form of Eq. (4.5):

1 .
R=U, [E (#R —vR) + /'R + ¢20(R, R) + 33A]

6 6
-V [ ) 8"‘3%,}] - [ > s"““’v:,s]. (6.25)
n=1 n=1

In fact we define a solution of (4.5), (4.8) as any solution of (6.25).
We consider now the integral versions of (5.3) and (5.4) that allow to prove
estimates for the norm ||, of g and h.

Proposition 6.3. There exist positive constants ¢ and H, such that for any r = 2 the
solution g of Eq. (5.3) verifies

lgl, < e/alld( + o))" | + H,|hl, + ce™2|h_], . (6.26)
Proof. We write Eq. (5.3) as
dg dg -1, _ -1
vy 2y + eF o0, +e lvg=¢""(Kg+9S) (6.27)
with
S=—e(u+eFu)g+ x,0 'Kyh+eL'g. (6.28)

Most of the proofis devoted to getting an estimate for N(g) in terms of N (h) and
the L, norms of g and h, whose control is assured by the results of Sect. 4. Then we
conclude by relating N(h) to the L,, norm of h.
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By Proposition 6.2 the solution of Eq. (6.27) verifies, for any r = 2, the in-
equality
1
—Cs|v S| + 6]S), - (6.29)
€

/e

The first and third terms on the right-hand side are easily estimated using
Theorem 5.1 and the inequalities

Iv"'Kgl <clgls [v='S| S eFel gl + C,lh] . (6.30)

1
N(g9) = —~ Gsllv_'Kg| + é|Kgl, +
€

The second term in (6.29), is controlled by using the estimates (3.31) and (3.32),
which allow to relate the supremum on velocities of Kf with the L,(dv) norm of f. In
fact

|Kgl,<c sup sup (1 + o]y "Ig(y, v)| = clgl,-, (6.31)
ye[—1,1] veR3
by (3.31) and
|Kgl§ <c sup [dvg*(y,v) =cN(g)? (6.32)
yel-1,1]
by (3.32).
Furthermore, since g = U,Kg + U,S, we get by Proposition (6.1),

<|Kglo+ Y ISL=N(@)+ Y ISk, (6.33)
k=0 k=0

where we have used (6.32) to get the last inequality.
Thus to complete the proof we have to estimate S in the norm |-|,. We have

ISI, < el(u + eFu)gl + 11,0~ ' Kyhl, + e| L'g), . (6.34)
By the exponential decay of § in velocities and (6.32) we have

(1 + eFu)gle = cFlglo = cFN(9) . (6.35)

By the analogue of (6.32) for K, (see [4]) we have
|20 Kyhl, < sup sup [(1 + |v]fx,07"]

ye[—1,1] veR3
x sup sup|K,h|<H,N(h). (6.36)

ye[—1,1] veR?

The operator L' satisfies the estimate

VI < cl f (6.37)
analogous to the one proved in [4]. Using it we can estimate the last term:
IL'gl, Sclgh+1=c sup | ) py)| = cldlo S cN(9) . (6.38)
ye[—1,1] |i+2

Collecting together (6.34), (6.35) and (6.38) we have the following bound for S:
[S], = ceN(§) + H,N(h) . (6.39)
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By (6.31), (6.33) and (6.34), we have
|Kgl, < cN(g) + H,N(h) . (6.40)

Now we can estimate N(g) by combining (6.29), (6.30), (6.39) and (6.40):

N(g)<0[-—CaHgH + 0N(g) + H, N(h)+\/CaH Ilhll] (6.41)

7

Finally, taking into account estimates (5.46)—(5.48) and (5.54), we get, for
0 small enough,

N(g) < c[\/eld(l + o)) 7! + & 2|h_[3] + H,N(1)] . (6.42)
On the other hand Proposition 6.1 implies
lgl. < cv"'Kgl, + [v7'S|, < c[N(g) + H,N(h)]

< c[eld(1 + [ol) "] + e 2h-|5] + H,N()], (6.43)

where the second inequality comes from (6.39) and (6.40) and the third one from
(6.42).
For r = 2 we have

[N(W1* < sup sup [h*(p,v)(1 + |0])*"] f ———ﬁ= clhl? . (6.44)
ye[—1,1] veR? 1+| |)

Putting together estimates (6.43) and (6.44) we get the result (6.26). [
Finally, we prove

Proposition 6.4. For any r = 3 the solution h of Eq. (5.4) verifies

[hl, < e[ [d(1 + (o))~ + &*[v"d|, + e *|h|,] . (6.45)
Proof. Let us write Eq. (5.4) in the form
h=U(7,Keh)+ U Z + V,rhe + V7 h_ (6.46)

where
Z = —poe?Fh — e(p+ eFp')o(d + g,) + eLi(h + o(g + g2)) + 3d . (6.47)
Since |V hy|, £ |h_|,, we have by Proposition 6.1,
[hl, < c[IU0 ™ 1, KB, + v Z + k-]

1
<
=c[1+

1
+h_|, |Sc h|, + glgl, + &3|vd|, + h_,J, 6.48
| |] [(1+y)| | gl ] |-+ 1h-| (6.48)

+ &2F|hl, + ¢F(Igl, + |92l,) + €F|hl|, + & |v™1d|,

1
< = we have, for ¢ small enough,
1+ 3 ¢ &

k. < clelgl, + &lv™1d|, + [h-|,] . (6.49)

Choosing y in such a way that
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Finally, substituting the estimate for g given by Proposition 6.3 in (6.49) and
taking ¢ small enough, we complete the proof of Proposition 6.4. [

By using (6.49) to estimate |h|, in (6.26), the estimate || d(1 + |v])" | < c|d/v|3
and taking ¢ small enough we then get the proof of Proposition 4.1.

Appendix A

To prove Proposition 2.1 we first consider Egs. (2.1)—(2.4) with fixed pressure
2 instead of fixed total mass, by eliminating the density p from (2.2) using (2.1). We
then introduce the following sequence of approximate solutions:

d du, _

o <n(Tn_1> d—‘;> + PFT4 =0, A
d aT, du,\?
Zi;( (n—l)’d_y">+’7(Tn—l)<E> =0 (A.2)

forn = 1, T, being the value on the boundary and u, = 0. The boundary conditions
are given by (2.4). By using induction, the maximum principle implies that

T,(y) > To (A3)

for ye(—1, 1). Hence
n(T,) >no and  k(T,) > Ko (A.4)

for ye(—1, 1).

Multiplying (A.1) by u, and (A.2) by 7, and integrating on [ — 1, 1] one gets, by
the lower bounds (A.3) and (A.4), the uniform boundedness of 7, and u, in the
Sobolev norm of order 1 on [—1, 1], hence the compactness in C([—1, 1]).
Therefore the existence of solutions follows by choosing subsequences. The esti-
mates (2.6) follow using the smoothness of # and x and the lower bounds (A.3) and
(A.4) in the explicit form of the solution:

y y y
u(y)= —2PF [ dyn;2,(y) | &y'T, 0"+ Cy | dyn2i(y), (AS)
-1 -1 -1
y _ v , du,, 2
L) =To— | dyx,21(y) | dy”nn—l(y’)[—dy (y”)]
-1 -1

y
+C | dyr (), (A.6)
-1

with C; and C, chosen so that the boundary conditions are satisfied also at y = 1.
1, and x,, denote here #(7;,) and x(7,). To show the uniqueness, let (uV, TV) and
u®, T?) be two solutions of (2.2), (2.3) with the given pressure 2, the boundary
conditions (2.4), the lower bounds (A.3) and (A.4) and satisfying the estimates (2.6).
Denoting by w and ¢ the differences u® — u® and T™ — T® respectively, using
above properties it is easy to prove that

ET (el ose LT BT w
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for a suitable constant c. This of course implies the uniqueness for small F. Finally
we note that, to give a solution of the problem with fixed mass m > 0, one has to
solve the equation in 2

1
P [dyTs'=m, (A.8)
-1

where T denotes the solution with fixed pressure. Using Egs. (A.5) and (A.6) it is
not difficult to prove the solvability of this equation for F small enough.

Appendix B

In this Appendix we prove the second part of Theorem 3.2. Moreover we check the
conditions on the source terms in Egs. (3.16) and (3.17) and on the boundary values
that are needed in proving Proposition 3.1. First we state the following

Lemma B.1. The following identity holds for the Boltzmann collision operator (2.8):

soua-o(r)+o(sd). ®.1)
where a—av stands for the partial derivative with respect to any of the components of v.
Proof. We observe that for any derivative, say d,_,
G ] doadolo, =0 0r(oy — 00 2 OLF Gy + 0%~ frn — o1.]

0 0
= | dodor(oy— 002 0) [g * av*j LG + 9t —fou — 011
(B.2)

S being the unit sphere, since the function (v, — v)* wy((v, — v)* ® = 0) depends on
the difference v, — v. In (B.2) the notation is, as usual, f, f,., f', fi. for f (v), f (v4), f (V")
and f(vy,) respectively. Using the relations

V=v+ o[w* (v, —v)]; vy = v, — 0[w* (v, — V)] (B.3)
we get, for any function h(v)
0 0 , oh '\
oo () By
0 0 oh '\
| == . B.
[avx + av*x:| i <8vx>* (B.3)

The result then follows by a straightforward calculation. [

In order to prove part 2) of Theorem 3.2 we differentiate (3.38) to get, by Lemma
B.1,

0
vya 6vf= Zoauf"' 2Q(f; avMO) + avs B (B6)

where 0,f stands for g
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We claim that § = 2Q(f, 0,M,) + 0,s verifies the condition (3.44). In fact d,s
satisfies (3.44) by the hypothesis (3.47). On the other hand

sup sup e”(1 + [v])""'[Mq *Q(f, 0,Mo)|

eR* veR3
< sup (1 + |v]yMg *0,Mo| sup sup e*(1 + [v])|Mg *f] . (B.7)
veR3 eR*+ velR3

The second factor in the r.h.s. of (B.7) is bounded by Theorem 3.2, part 1), while the
first factor is obviously bounded. Besides, d, 3(v) verifies (3.43) by the hypothesis
(3.47). Therefore we can apply the first part of Theorem 3.2 to (B.6) and conclude
that 0, f exists and satisfies (3.48).

The proof of Theorem 3.2 is completed by the observation that the result for the
derivative of any order is achieved following the same procedure, i.e. differentiating
the equation for the derivative at the preceding order and controlling by direct
inspection that the resulting equation has a source that satisfies condition (3.42)
and (3.44) so that it is possible to apply part 1) of Theorem 3.2 to get the result. The
same argument applies to gvl but not to gvi , because in the latter case an extra term

z y
0,f would arise.

Now we verify that the source terms, that we denote by s,, in (3.16) and (3.17)

satisfy conditions (3.42), (3.44) and (3.48) in Theorem 3.2. The s,’s are defined by

s2 = [20(4AM, by ) + 2Q(By, by ) + Q(by, by ) + Q(by , b1)], (B.8)
and for 3<n <6,

0

Sp=—F o byz +20(4AM, b,-,) + Y. [20(Bi, b))
x ‘i:i-jj—z_:ln
+ Qb ,bi )+ Qb b )] (B.9)

Property (3.42) is true for any n due to the property (2.15) of Q. Since in s, all the
terms are of the form Q( f, g), they can be estimated using the Grad estimates (3.67).
For the first term, for any ¢’ < o,

sup sup e’ (1 + [v]) ™| Mg $2Q(4AM, by )|

yeR* veR3
<c sup sup |[Mqg*AM|(1 + |v])ye "7
yeR* veR3
x sup sup e” |Mg *by |(1 + |v])|
yeR* velR3
F
< F (B.10)
(6 —0d')

where the second inequality is obtained, as in (3.68), by means of the bound
sup sup e’ (1 + |v|)|Mg 2b;|<c (B.11)
y'eR* veR3

that follows from Theorem 3.2 applied to Eq. (3.15). The other terms in s, are
estimated in a similar and simpler way, by means of the bound on B; in Proposi-
tion 3.1 and the estimate (B.11).
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To verify property (3.48) for s,, we apply Lemma B.1 to evaluate d,s,. Since all
the terms in the expression of the derivative are of the form Q( f, d,g) we can bound
SUp, <R+ SUPyers€” Y (1 + [v]) " Mg 2d,s,| in terms of |[My #B,|,,

sup sup [Mg*AM|(1 + |v])e "9 and sup supe” |Mg*hy|(1+ [v])]
yeR* veR3 y'eR* velR3

using again (3.67).

As far as s, is concerned we can estimate all the terms in the same way as for s,,
but the first one which involves the derivative of b,_,,n = 3, ..., 6. On the other
hand we have already proven the estimate for the v.-derivative of b; we need.
Therefore we are in a position to proceed from now on iteratively to get the result.
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