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Abstract: We study the limit distribution of zeros of a Ruelle ζ-function for the
dynamical system z H-> z2 + c when c is real and c -> — 2 — 0 and apply the results
to the correlation functions of this dynamical system.

Consider the dynamical system defined by the complex polynomial map
fc\ z i—>z2 + c, where c < — 2. We use the notions and results of the iteration
theory of rational functions (see for example [5]). Denote by/*π the nth iterate of
the function/c. The Julia set J(fc) is a Cantor set on the real line. So in particular all
finite periodic points are real. This system is expanding (hyperbolic) on its Julia set.
When c = — 2 the Julia set is the segment [ — 2, 2] and the map P =f~2 is not
expanding anymore. We have the conjugation

Poφ = φoQ, (1)

where φ: [0,1] -> [ — 2, 2], 11—>2cosπί and

Γίh->2ί O ^ ί g l 2 ,

Remark that the chaotic dynamic of P on [ — 2,2] was investigated by J. von
Neuman and S. Ulam on one of the first computers.

We are going to study the dynamics of fC9 c < —2 when c -> — 2 and then
compare it with the behavior of the limit system P. The chaotic dynamics of fc has
to be described in probabilistic terms. This can be done by introducing an
appropriate invariant probability measure σc on the Julia set. We will show that the
rate of asymptotic decrease of correlation functions of the system (fC9vc) changes
dramatically when we pass to the limit system as c -> — 2.

Our tool is the Thermodynamic Formalism [12-15]. Let us introduce the main
objects of this theory in our particular case. Consider the Frechet space C°°(17) of
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infinitely differentiate functions defined in some real neighborhood U of the Julia
set, such that/c"

1 (U) c U and U does not contain the critical point of/c. We define
the Ruelle operator Lc acting on C°°(17) by the formula

Lcg(x) = Σ
{y.fc(y) = *

The weight (//)~2 is strictly positive on U. According to Ruelle's extension of the
Perron-Frobenius theorem Lc has a simple maximal positive eigenvalue λΰ l(c)
such that the moduli of all other eigenvalues are strictly less than IΛ,^1^)!. Let hc

and vc denote the eigenvectors of Lc and the adjoint operator L* respectively,
corresponding to the eigenvalue IQ 1 (c) (hc is a positive continuous function and vc

is a Borel measure). Then σc = hcvc is an/c-invariant ergodic probability measure
on the Julia set, called "the Gibbs state, corresponding to the weight (/c')~2." The
operator Lc can be also considered on the space A of functions analytic in
a complex neighborhood of the Julia set. Namely, for every complex neighbour-
hood W of the Julia set such that U c W9f~

l(W) c Wand Wdoes not contain the
critical point of/c, consider the Banach space A(W) of functions analytic in W with
the supremum norm. Then A is the union of all such A(W). As the weight (/c')~2 is
analytic, the spectrum and eigenfunctions of Lc in A are the same as in C°°(C7) (see
[14], Corollary 3.3(i)). This fact allows us to use the explicit expressions for
eigenfunctions found in [10] with the help of complex analysis. The following
particular form of Ruelle's zeta-function is connected to the operator Lc:

xeFix(//») (

where Fix(/c*
m) is the set of fixed points of/c*

m. (We choose the weight φ = (fi)~l in
the definition of Ruelle C-function. See Sect. 8 of [14] and formula (3.3) with σ = oo
in [10].) The function ζc can be expressed in terms of generalized Fredholm
determinants ([14, Corollary 8.1]). In our particular case it coincides with the
Fredholm determinant Dc oϊLc [10]; this is an entire function of order zero and its
zeros are reciprocal to the eigenvalues of Lc. There is an explicit formula found in
[10] (see also [11]):

In the appendix we will give a short direct proof of the fact that the eigenvalues of
Lc are reciprocal to the zeros of Dc.

Remark. Let us consider another extension of the operator Lc\ C°°(L7) -> C°°(C7) to
the Frechet space C™(W) of the C°°-functions of two real variables u and v9

u + ίve W, given by the formula

g(y)

(Note that |/c'(x)|2 is the Jacobian of the mapfc: R2 -> R2 at the point x.) Then the
eigenvalues and eigenfunctions of L* coincide with those for Lc. Really, every
eigenfunction of L* restricted to U = W r\ R is an eigenfunction of Lc. Conversely,
the eigenfunctions of Lc are analytic and, hence, belong to C°°(JF). In particular,
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(A0(c))~1 is the leading eigenvalue of the operator Lf2 and the value Iogλ0(c) is the
so-called "escape rate" [8].

One of the reasons why the study of eigenvalues of Lc is important is their
connection to correlation functions. For any two continuous A and B on the Julia
set define the correlation function pc,A,B by

Pc,A,B(m) = σc(A(f?mYB) - σc(A) σc(B) ,

where σ(A) = \Aάσ. Let

00

SC,A,B(Z) = Σ Pc,A,B(m)zm

m = 0

be the corresponding generating function. If A and B are infinitely differentiable on
the Julia set then SCiA>B is meromorphίc in C and its poles can be located only at the
points λλv 1

9 where λ~ ί runs over the eigenvalues ofLc other than A0 [14, Proposition
5.3].

1. First we investigate the limit distribution of eigenvalues of Lc or, which is
equivalent, zeros of Dc. The following facts about distribution of zeros of Dc were
established in [9]. For all c < — 2 the zeros with moduli greater than 1000 are
negative, and simple. There exists a constant c0 = - 2.85 . . . such that for c ̂  c0

all zeros of Dc are real. If c < — 2 is close to — 2 then there are non-real zeros and
their number tends to infinity as c tends to — 2.

To study the asymptotic distribution of complex zeros we introduce the
probability measures μc which charge equally every zero whose modulus is less
than 1000.

Theorem 1. The measures μc tend weakly to the uniform distribution on the circle
{λ: \λ\ = 4}.

Remarks. Notice that 4 is the radius of convergence of the series
D-2 = (4 — 2λ)/(4 — λ). Our proof is also applicable to the family of entire func-
tions

whose distribution of zeros was studied by G.H. Hardy [6]. He proved that for
fixed a all zeros with moduli greater than r0(ά) are negative. (In fact rQ(a) can be
replaced by an absolute constant [9]). Our argument shows that the limit distribu-
tion of zeros of Ha when a -» 1 is the uniform distribution on the circle {z: \z\ = 1}.
Theorem 1 should be compared with the following theorem of Jentzsch and Szegό:
The limit distribution of zeros of partial sums of a power series ^akz

k is the uniform
distribution on {z: \z\ = 1}, provided that \ak\

1/k -> 1. Our proof is based on the same
idea as Beurling's proof of the Jentzsch-Szego theorem [3].

Proof. We assume that — 3 < c < — 2. It is convenient to introduce the variable
z = A/2 and set Fc(z) = Dc(2z) and rn(c) =/c*

M(0). Thus

fc(*) -1 + Σ Γ feΐ *" r(c)n=ίr1(c) . . . rn(C)
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and

rπ+1(c) = r2(c) + c, r1(c) = c, c< -2. (2)

It is easy to see that all rM, except r1? are positive, the sequence (rn) is increasing and
rn + ! (c)/rn(c) -> oo, n -» oo, c < — 2. Denote by fc = k(c) the smallest natural k such
that

^ 36 . (3)
r f c c

It was proved in [9] that the number of zeros of Fc in any fixed disk {z : |z| < R}9

R > 1000 is asymptotically equivalent to k(c) when c -> - 2. This fact also follows
from the estimates below (formula (7) plus Rouche theorem).

Lemma 1. Ifk = k(c) is as defined above, then

(i) 36 ̂  |rk(c)| ^ 1521 = 392.
(ii) k(c) ~ (logic + 2Γ1)/log 4, c -> - 2.

(iii) (l/fc(c)) loglMc) . . . rk(c)(c)| -» log 2, c -> - 2.

Proof, (i) From (3) we conclude that k = k(c) > 1. If rk(c) < 36 then by (2)
rk + 1(c)/rk(c) = rk(c) + c/rk(c) < rk(c) < 36, which contradicts the definition of k.
This proves the left inequality in (i). Now assume that \rk\ > 392. Then in view of (2)
we have | r f e _ 1 |>39 and we obtain \rk\ = \rk-ι\2 + c > |r f c_!|2 — 3 and
kfc l/kfe- i l > 36, which contradicts the definition of k. This proves the right inequal-
ity in (i).

(ii) Set c = — 2 — ί, ί>0. An easy induction gives

|rn(c)|^2 + (4«-1-l)ί, n = l , 2 , . . . . (4)

To prove an inequality in the opposite direction we remark that
r«+i(c) = We)]2 - 2 - ί ̂  [rn(c)]2 - 2 = P(rn(c}\ so

rn(c) ^ P*(M"1}(rι(c)) < P^n~1\2 + ί) .

Using the semiconjugacy

2cosh2z = [2 cosh z]2 -2 = P(2coshz) ,

(it is more convenient to use cosh rather than cos here) we obtain rn(c) ^
2 cosh (2n ~ly\ where y is the smallest positive solution of the equation
2 cosh y = 2 + t. There exists an absolute constant C0 = 30 such that 2 cosh x
^ C0x

2 + 2 whenever 2coshx ^ 1521, x e R. Thus we obtain

rn(c) ^ 2 + 4"-1 C0ί, n = 1,2, . . . ,/c(c) . (5)

The statement (ii) follows from (4) and (5).
(iii) From (ii) follows

(6)
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In view of (4), (5) and (6) we have

I Σlog|rn(c)|)-log2
Λ n = l J

This finishes the proof of Lemma 1.
Denote by A(tl9t2) the annulus {z: t1 < \z\ < t2} and set A(c) = A(4rk(c\9rk(c)\

where k = k(c). Put Mc(z) = zk/(r1(c) . . . rk(c)). If z e A(c) we have

1 _ f<(z)

Mc(z)
7 = 1

^ Σ4-' + Σ4- j = τ (7)
j=ι j=ι J

Thus if we denote uc(z) = (fe(c))~1log|Fc(z)| then by (iii) of Lemma 1,

ue(z) = (/c(c)-1) log|Mc(z)| + o(l) = log|z/2| + 0(1), c -> - 2 , (8)

uniformly when zeA(c). We are going to prove that

Wc(z)^log + |z/2|, |z |^324, (9)

where the convergence holds in L1 with respect to the Lebesgue measure (area) in
[ z : |z| ̂  324}.

From the definition of A(c) and Lemma 1, (i) follows that Ac a A(144,13689).
So from any sequence cm -> — 2, cm < — 2 we can choose a subsequence (which we
again denote by cm] such that the annuli A(cm) contain a fixed annulus A(qi,q2),
<?ι < #2> #2 > 324. Then in view of (8) we have

uCm(z) -> log|z/2| uniformly in A(ql9 q2). (10)

Furthermore we have

wCw(z)^0, z | < 2 , (11)

(convergence in L1 on compacts in {z: |z| < 2}), because Fc(z)-> F_2(z)
= 1 — z/(2 — z), c ->• — 2 uniformly on compacts in {z: |z| < 2}. Now we use the

following fact (see for example [7], Theorem 4.1.9): if a sequence of subharmonίc
functions um is bounded from above on {z: |z| = R} and their values at the point 0 are
bounded from below then there is a subsequence which converges in L1 on every
compact in {z: |z| < R} to a subharmonic function u. Applying this statement
to our functions uCrn and R = q2, we obtain a subsequence (which we again denote
by uCm) which converges to a subharmonic function u. This function u has the
properties:

ιι(z) = 0, | z | < 2 (12)

and

tι(z) = log|z/2|, q1<\z\<q29 (13)

which follows from (11) and (10) respectively. Remark that u(z) ̂  0, |z| = 2. This
follows from (12) and the following theorem of M. Brelot [4]: ifu is a subharmonic
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function and w(z0) = a then for every ε > 0 there exists a sequence of circles centered
at z0 and radii tending to zero such that u(z) ^ a — ε on these circles. (It follows from
the upper semi-continuity of u that u(z) ̂  0, |z| = 2, but we do not need this.) Now
log \z/2\ is a harmonic majorant of u in the annulus A(29 q2\ but u(z) = log|z/2| at
some points in this annulus, for example for |z| = q^ It follows from the Maximum
Principle that u(z) = log+ \z/2\9 \z\ < q2.

Thus we have proved that from every sequence uCγn we can select a subsequence
tending to log+ \z/2\. This means that (9) is true. In fact our proof shows that uc

converge to log+ \z/2\ in L1 on every compact in the plane. Now we conclude from
the general results on convergence of subharmonic functions [1, 2, 7] that the Riesz
measures μc of uc converge weakly to the Riesz measure of w, which is the uniform
measure on the circle \λ\ = 2\z\ = 4. This proves the theorem.

2. Now we consider the application of Theorem 1 to the dynamical system (/c, σc),
where σc is the Gibbs state defined in the introduction. We have

f c W - l - , c-» - 2 ,

uniformly on compacts in {λ: \λ\ < 4}. So λQ(c) -> 2 and

infμ:fcμ) = 0,λ=M0}->4, c-> -2.

Thus by Theorem 1 and by Ruelle's theorem mentioned in the introduction we
have the following asymptotic behavior of correlation functions:

where r(c) -> 1/2 as c -> — 2.
We want to compare this result with the behavior of the limiting dynamical

system when c -> — 2. First we have to understand what the limit invariant
measure is. Recall the conjugation (1). The Lebesgue measure ίx on [0, 1] is
invariant with respect to β thus its image σ _ 2 = </>*/i is invariant with respect to
P =f-2> The measure σ_ 2 is absolutely continuous with the density

1

on the interval [ - 2,2].

Proposition 1. σc -> σ_2 weakly as c -> — 2.

Proof. We will use the explicit expressions for the eigenfunction hc oϊLc and for the
Cauchy transform

X — Z

of the eigenmeasure vc of L*, corresponding to the greatest eigenvalue λ0 * (see
[16,10]). Using the notation rn(c) = /c*

w(0) we have
00 ί n (sΛ

MX) = Σ o ( }

,r02"r1(c)...r.(c)[r.+ 1(c)-
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and

The function z\-^Hc(z) is holomorphic in the complement of the Julia set J(fc). We
have

- ^Γ—+ x 2 - x

inC\((-oo, - 2] u [2, oo)) and

inC\[-2,2].

Consider the measure v _ 2 on [ — 2, 2] with the density ^/4 — x2. We claim that
H-2(

z) is proportional to the Caushy transform of v_ 2 . This follows from the fact
that they both satisfy the same functional equation

z z

Now Proposition 1 follows from the identity

1 1

jc -

So the dynamical system (P, σ_ 2) is the limit of (fC9 σc) when c -> — 2. We will
show that the asymptotic behavior of correlations changes drastically when we
pass to the limit as c -> — 2.

Proposition 2. Lei ^4 and B be holomorphic functions on [ — 2, 2]. TTien f/zere exists
a constant a = a(A,B) > 1 swc/z f/iαί

P-2,Λ,uM~fl~ 2 m , m-> oo .

Proo/ In view of Cauchy formula is enough to prove the proposition for the set of
functions

, xe[-2,2], zeC\[-2,2].
z x

After the pullback to the segment [0, 1] via the conjugation (1) we have to consider
the correlations

with A and B of the form

1

z — 2cosπί
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If we introduce the operator

G:g(t)^ Σ 0(7) = ̂ fe(ί/2) + <K1 - f/2)) , (14)
zy Q(y) = t z

then

PA.B(m) = k(A G™(B}) - I, (A) I, (B) . (15)

Now we notice that

G ___
z - 2cosπί/ 2(P(z) - 2cosπί) '

which implies

z - 2cosπt 2m(P*m(z) - 2cosπί)
= Sfz) + (16)v ' m - 1 * m 2 ' v '

where S is a function depending only on z. Combining (15) and (16) we get the
statement of Proposition 2.

Remark. The analyticity assumption in Proposition 2 is crucial. Indeed consider
the operator G defined in (14) in the space of infinitely differentiable functions on
[0,1]. Its eigenvalues are 4~m m = 0, 1, 2 . . . , and to each eigenvalue 4~m

corresponds one (up to a constant multiple) eigenfunction pm which is a polynomial
of degree 2m. Now if A and B belong to the subspace of L2 ([0, 1], /O generated by
[pm: m = 0, 1, 2, . . .} then we have

PA,B(™) ~ const.4~*m, m^ oo ,

where const φ 0 and k depend on A and B.

Appendix. Here we indicate a direct proof of the fact that the eigenvalues of Lc are
reciprocal to the zeros of Dc, c < — 2 (see also [11]). Let us look at the eigenvalues
of the adjoint operator L*. The dual space A* is the space of functions g analytic in
the complement of the Julia set J(fc) and equal to zero at infinity. To every such
function corresponds a linear functional given by

where the integral is taken along some contour surrounding J(fc). Now a change of
the variable in this integral shows that λ~l is an eigenvalue iff for every function
h holomorphic in a neighborhood of J(fc\

Thus w = g — λgofc/fc is holomorphic on Jc. It is also holomorphic in
C\C/(/c) u {0}) because /c'(z) = 2z. We conclude that w(z) = const/z and after the
normalization of g we get the functional equation
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from which follows that

g(z) = - + Σι2

Now g is holomorphic at 0 so the residue of the series in the right side should
vanish, that is

We thank the referee for his valuable comments.
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