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Abstract: In this paper we study the finitely generated algebras underlying W alge-
bras. These so called "finite W algebras" are constructed as Poisson reductions of
Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are
labeled by the inequivalent embeddings of sl2 into the simple Lie algebra in
question. For arbitrary embeddings a coordinate free formula for the reduced
Poisson structure is derived. We also prove that any finite W algebra can be
embedded into the Kirillov Poisson algebra of a (semi)simρle Lie algebra (gener-
alized Miura map). Furthermore it is shown that generalized finite Toda systems
are reductions of a system describing a free particle moving on a group manifold
and that they have finite W symmetry. In the second part we BRST quantize the
finite W algebras. The BRST cohomology is calculated using a spectral sequence
(which is different from the one used by Feigin and Frenkel). This allows us to
quantize all finite W algebras in one stroke. Examples are given. In the last part of
the paper we study the representation theory of finite W algebras. It is shown, using
a quantum version of the generalized Miura transformation, that the representa-
tions of finite W algebras can be constructed from the representations of a certain
Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able
to construct the Fock realizations of arbitrary finite W algebras.

1. Introduction

It is only relatively recent that it was realized that nonlinear symmetry algebras
play an important role in physics. The discovery of W algebras in Conformal Field
theory [1] (see [2] for a recent review) made it clear that they would play an
important role in string theory, field theory, integrable systems and the theory of
2D critical phenomena. One reason for their late discovery is that up to now they
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are only known as infinitesimal symmetries. The global invariances of a system
with a nonlinear symmetry are not known. This is of course related to the fact that
nonlinear algebras don't exponentiate to groups like Lie algebras.

A lot of work has been done on trying to understand what the meaning of
W algebras is. It turns out that many W algebras found in CFT are not completely,
unrelated to the linear theory of Lie algebras after all. This was first realized when it
was shown in [3] that certain Poisson algebras occurring in the theory of integr-
able hierarchies of evolution equations were nothing but classical versions of the
nonlinear algebras found in CFT. In particular the well known Wn algebras are
related in this way to the second Hamiltonian structures of KdV like hierarchies.
These hierarchies, and their Hamiltonian structures were however already shown
to be reductions of a different class of integrable hierarchies which have a second
Hamiltonian structure that is equal to the Kirillov Poisson structure on the dual of
an affine Lie algebra [4]. This means on an algebraic level that classical
Wn algebras can be obtained from affine Lie algebras by Poisson reduction. This
picture was worked out in [5] where it was shown that a classical Wn algebra is
nothing but the Dirac bracket algebra on a submanifold of the affine Lie algebra.

In the meantime many new W algebras were constructed by what can be called
the "direct method," i.e. by imposing Jacobi identities on general nonlinear exten-
sions of the Virasoro algebra. Since the Jacobi identities are themselves nonlinear
algebraic equations the construction of W algebras in this manner is rather
cumbersome. It was therefore a natural question to ask (also from the point of view
of Poisson reduction of Poisson manifolds) whether more of these algebras can be
obtained via Poisson reduction from affine Lie algebras. That this is the case was
shown in [6] where the construction of [4, 5] was generalized to include many
more W algebras besides Wn. Motivated by a similar situation encountered in the
theory of dimensional reductions of selfdual Yang-Mills equations it was shown
that to every embedding of sl2 into the simple Lie algebra underlying the affine
algebra there is associated a Poisson reduction leading to a If algebra. sl2
embeddings that are related to one another by inner automorphisms lead to the
same reductions, so in order to find out how many inequivalent reductions there
are one needs to count the number of equivalence classes of sl2 embeddings. For sln
this number is P(n), the number of partitions of n. The standard reductions leading
Wn algebras turned out to be associated to the so-called "principal embeddings."

The fact that one knows that these W algebras have a linear origin helps a lot
when one tries to analyse them. For example the construction of invariant chiral
actions is facilitated as was shown in [7]. Also the construction of the classical
covariant W gravities and their moduli spaces have been made possible by this
[8,9].

The procedure of Poisson reduction is of course purely classical. In order to
really make contact with CFT one would like to quantize the W algebras obtained
by Poisson reduction. The Wn algebras were quantized in [10] by (naively)
quantizing the well known Miura transformation. In essence what one does is
classically express the Wn generators in terms of classical harmonic oscillators via
the Miura transform. One then quantizes the Wn algebra by quantizing the
harmonic oscillators and normal ordering. This gives a quantum algebra that
closes for An. It does not work for all algebras however [2], as was to be expected
since this is in general not a valid quantization procedure. The quantization of the
Poisson reduction leading to Wn algebras was made more precise in [11] where the
BRST formalism was used to tackle this problem.
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It was also attempted to construct the representation theory of W algebras from
the representation theory of affine Lie algebras [13, 12,11]. In principle the BRST
procedure provides a functor from the representation theory of affine Lie algebras
to the representation theory of W algebras. It turned out to be possible to obtain
Wn characters from Kac-Moody characters. The general theory of Wn representa-
tions is however far from complete. Furthermore for the other reductions the
quantizations (let alone the representation theories) are not known.

Up to now the study of W algebras has concentrated on the infinite dimensional
case. This situation is comparable to trying to develop the theory of Lie algebras by
starting with the infinite dimensional case. As the structure and representation
theory of affine Lie algebras is largely determined by that of the finite dimensional
simple Lie algebras that underly them it is our opinion that it might be helpful to
look for and study the finitely generated structures underlying W algebras. This
program was initiated in [14] and will be carried out in the present paper. It will
turn out that the theory of "finite W algebras" is remarkably rich and contains
already many of the features encountered in ordinary W algebras. It is therefore
our expectation that much of what we will say in this paper will transfer without
much alteration to the infinite dimensional case.

The paper is roughly split up into three parts. The first part deals with the
classical theory. Classical finite W algebras are constructed as Poisson reductions
of Kirillov Poisson structures on simple Lie algebras (in complete analogy with
ordinary W algebras which are constructed as reductions of affine Lie algebras).
The Poisson algebras thus obtained are nonlinear and finitely generated. We
discuss their structure and show that in general they do have linear Poisson
subalgebras that are isomorphic to Kirillov Poisson algebras. We also derive
a coordinate free expression for the reduced Poisson structure of an arbitrary
reduction. The Miura transformation turns out to have a finite dimensional
analogue which can in fact be extended to arbitrary reductions. From this it follows
that any finite W algebra can be embedded into the Kirillov Poisson algebra of
a certain subalgebra of the simple Lie algebra with which we started. At the end of
the first part of the paper we investigate which theories have finite W symmetry. It
turns out that (as could have been expected) these are generalized finite Toda
systems. In deriving this however we show that finite Toda systems are reductions
of a system describing a free particle moving on a group manifold. This allows us to
give general formulas for the solution space of such systems.

In the second part of the paper we BRST quantize the finite W algebras. The
nontrivial part of this is of course calculating the BRST cohomology and its
algebraic structure. Since the BRST differential is a sum of two other differentials
one can associate a double complex to the BRST complex. In order to calculate the
BRST cohomology one can then use the theory of spectral sequences. There is
a choice to be made between one out of two spectral sequences that one can
associate to a double complex. These spectral sequences must give the same final
answer for the BRST cohomology, as is well known from the theory of spectral
sequences, but for the calculation it is crucial which one one takes. The choice we
make is different from the one made by Feigin and Frenkel and allows us to
quantize any finite W algebra and reconstruct its algebraic structure.

In the third and last part of the paper we discuss the representation theory of
finite W algebras. Crucial for this is a quantum version of the generalized Miura
transformation which embeds any finite W algebra into the universal enveloping
algebra of some (semi)simple Lie algebra. An arbitrary representation of this Lie
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algebra therefore immediately yields a representation of the finite W algebra. This
also allows us to derive Fock realizations for arbitrary finite W algebras since Fock
realizations for simple Lie algebras are well known. This replaces the cumbersome
construction of W algebras as commutants of screening operators. As an illustra-
tive example we realize the finite dimensional representations of the finite W alge-
bra Wi2) as a subrepresentation of certain Fock realizations. In principle this
provides the first term of a Fock space resolution of these representations [15].

2. Classical Finite W Algebras

In this section we develop the theory of classical finite W algebras. As mentioned
before these will be certain reductions of Kirillov Poisson structures on simple Lie
algebras. This Poisson structure is well known to be given by

{F, G}(α) = (α, [gradαF, grad α G]), (2.1)

where F, GeC™(g\ a eg, ( , ) is the Cartan-Killing form on g and gradαF is
defined by

^•F(α + εi8)|β=o = (Agrad β F). (2.2)
αε

More explicitly if {ta} is a basis of g,Ja is the dual basis (Ja(tb) = δζ) and
[tathi =fabtc> then {Ja,Jb}=fc

ahJc. Here we used the Cartan-Killing metric
Gab — (ίβ» h)t0 r a i s e a n d lower indices.

Let us now briefly discuss what we mean by reduction. Let (M, {•,•}) be
a Poisson manifold and [φi]

n

i=1 a set of second class constraints, then on the zero
set M of the constraints { , } induces a Poisson structure known as the Dirac
bracket [18]

h9}, (2.3)

where f9geC°°(Aί), the bar denotes restriction to M and Διj is the inverse of
Aij = {φi9 φj}. If some constraints are first class then the Dirac bracket is not
defined as one can easily see from (2.3). This is caused by the fact that first class
constraints generate gauge invariances [18]. These can be fixed by adding gauge
fixing constraints in such a way that the total set of constraints is completely
second class.

The constraints we impose will be determined by a certain sl2 embedding [19].
The motivation for this was given in [6] in which it was shown that to every sl2

embedding into the simple Lie algebra underlying a certain Kac-Moody algebra
there is associated a reduction leading to a W algebra. Since we are interested in
constructing the finite W algebras associated to those W algebras we will mimic the
constraints used in [6]. Before this let us introduce some notations and prove some
lemmas that we shall need later on.

Let ί: sl2 q; g be an embedding of sl2 into a simple Lie algebra g and let
{ί0, t+, t- } be the standard generators of ί(sl2). The Cartan element t0, called the
defining vector of the embedding, can always be chosen to be an element of the
Cartan subalgebra of g [19]. Therefore it defines a ^ Z gradation of g given by

9 = © 9im) (2.4)
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where g{m) = {xeg\ [ίO ί x] = mx}. We can choose a basis

of g = s/w (where rc;

ad is the multiplicity of the spin j representation of sl2) such
that

± l 9 (2.6)

where c(j, m) are standard normalization factors. We will always take the labeling
to be such that t[]\ x = t± and ίίlo = ί0. We have the following

Lemma 1. The spaces g{m) and g{n) are orthogonal w.r.t. the Car tan-Killing form on
g9 i.e.

(0 ( m U ( Λ ) ) = O (2.7)

iff m Φ — n.

Proof. Let xe^f(m) and ye^ ( π ), then obviously ([ί 0, x], y) = m(x, y) but also
([ί θ 5 x], y) = — (x, [ίos J7]) = — H(X, y)? where we used the invariance property of
the Cartan-Killing form. It follows immediately that (n + m)(x, y) = 0. Therefore if
n Φ — m we must have (x, y) = 0. This proves the lemma.

For notational convenience we shall sometimes denote the basis elements
t{^l simply by ta, where a is now the multi-index a = (j\ m; μ). Let Kab denote the
matrix components of the Cartan-Killing form in this basis, i.e. Kab = (ta, tb) and
let Kab denote its matrix inverse.

From the above lemma and the fact that the Cartan-Killing form is non-
degenerate on g follows immediately that g{k) and g(~k) are non-degenerately
paired. This implies that if taeg{k) then Kabtbeg{~k) (where we used summation
convention).

We then have the following lemma which we shall need later.

Lemma 2. Ifta is a highest weight vector (i.e. a — (jjl fήfar some j and μ) then Kabtb

is a lowest weight vector (and vice versa). In particular iftaeC(ί) then KabtbeC(i).

Proof Since ta is a highest weight vector we have 0 = ([ta, ί + ], x) = (ta9 [ί + , x])
for all xeg which means that ta is orthogonal to Im(ad ί+) or put differently
Ker(ad ί+) 1 Im(ad ί+). It is easy to do the same thing for ί_. One therefore has the
following decomposition of g into mutually orthogonal spaces:

g = (Ker(adr+) + Ker(ad^)) ® (Im(ad f+) π Im(adf J ) (2.8)

where

(Ker(ad ί+) + Ker(adr J ) 1 (Im(ad t+) n Im(adr J ) . (2.9)

Also one has the following decomposition:

Ker(ad ί+) + Ker(adf_) - C(ί) 0 Ker(ad f +) ( k ) 0 Ker(ad f_) (" fc ) . (2.10)
k>0 k>0
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As we saw above Kabtbeg(~k) iff taeg{k). Therefore

Ker(ad ί + ) ( ± f c ) l K e r ( a d ί + ) ( ± ί ) for all k, / > 0

Ker(ad ί+)( fc) 1 K e φ φ J * " 0 for k Φ /

Ker(ad ί + ) ( f c ) lC(0 for all k > 0

Ker(adt_)(-*> 1 C(i) for all k> 0 ,

from which the lemma follows.
Note that from the proof of this lemma follows that the spaces Ker(ad ί+) ( fc) and

Ker(adί_){~fc) are nondegenerately paired. The same is true for the centralizer C(i)
with itself.

The procedure of Poisson reduction can be applied to Kirillov Poisson struc-
tures to give new and in general nonlinear Poisson algebras. If the Lie algebra is
a KM algebra then, as was shown in [6] many PF-algebras appearing in Conformal
Field theory can be constructed in this way. These Poisson reductions are asso-
ciated to inequivalent sl2 embeddings into the finite underlying algebra of the KM
algebra. In [14] it was announced that the same procedure can be applied to finite
dimensional Lie algebras and an interesting special example was considered in
detail. In this section the general theory of these reductions will be developed.

Let there be given a certain sl2 subalgebra {ί0, ί+, £_ } of # and let {ίjf™} be the
basis of g introduced in the previous section. Associated with this basis is a set of
C 0 0 functions {J{£} on g with the property Jh?(t(/l>) = δμ

μδ
J

yδZ> These can be
called the (global) coordinate functions on g in the basis {t)%}.

Let's now (motivated by [6]) impose the following set of constraints

(remember that fί^±i = t±; ίi!o = ô) Denote the "zero set" in g of these con-
straints by gc. Its elements have the form

« = t + + Σ Σ Σ «&*#». (2 i2)
j m^O μ

where α^J" are real or complex numbers (depending on which case we want to
consider).

The constraints postulated above are motivated in the infinite dimensional case
by the requirement that the Poisson algebra which we obtain after reduction must
be a W algebra [5, 6]. In principle, from a mathematical point of view, one could
consider more general sets of constraints, however since we are primarily interested
in applications of our theory in conformal field theory we shall restrict ourselves to
the constraints (2.11).

As discussed earlier we need to find out which of the constraints (2.11) are first
class for they will generate gauge invariances on gc. This is the subject of the next
lemma.

Lemma 3. The constraints {Φtμ™}m^ l care first class.

Proof. First we show that

r jj,rn Ίj',m'χ v-> μ" jj",m + m'

\J(μ)>J(μ') / = L aJ"J(n")



Quantization and Representation Theory of Finite W Algebras 491

for some coefficients αjμ ). Let xeg(m"\ then

{•C J[rf}(x) = (x, [gracUά"1, grad,j/ ,"']) (2-14)
Now let y be an element of g(k\ then

(y, grad, JάΓ) = ^ ά Γ ( x + βjOI.=o , (2.15)

which is zero except when k = m (see definition of J^J"). From this and the lemmas

of the previous section one concludes that gmdxJ(μ™eg{~m) and that the Poisson
bracket (2.14) is nonzero if and only if m" = m + m'. From this Eq. (2.13) follows.

Consider now the Poisson bracket between two constraints in the set
( i h m \

{Φ(μ) imZU

ί rhj>m λ j ' t m ' \ — ί Tj'm Tj''m'\

Σ jj",m + m'

= Σ α7", r(μ")

which is obviously equal to zero on gc. Note that the fact m, mr ^ 1 was used in the
last equality sign. This proves the lemma.

Note that in general the set {φl'μ™}m^\ is not equal to the total set of
constraints since the constraints with m = \ are not included. These constraints will
turn out to be second class.

Let us now determine the group of gauge transformations on gc generated by
the first class constraints. Again we use the multi-index notation where now
Roman letters a, b9. . . run over allj, m and μ, and Greek letters α, β . . . over ally, μ
but only m > 0 (those are the indices associated with the constraints). Let φa be one
of the first class constraints (i.e. α = (j9 m; μ) with m ̂  1), then the gauge trans-
formations associated to it are generated by its Hamiltonian vectorfields
Xa ΞΞ {</>α, }. Let x = xataeg, then the change of x under a gauge transformation
generated by φa is given by

δax = ε{φ\ Ja}(x)ta = ε{J\ Ja}(x)ta

= sg"af:bx
btc = lεg"ata,χ-]. (2.16)

Since gaataeg(~k) iff tasg(k) (see lemmas in the previous section) we find that the
Lie algebra of gauge transformations is given by

h = 0 g(~k) . (2.17)

This is obviously a nilpotent Lie subalgebra of g and can be exponentiated to
a group H. This is the gauge group generated by the first class constraints. Note
that from Eq. (2.16) it follows that H acts on gc in the adjoint representation, i.e. the
gauge orbit of a point xegc is given by 0 = {gxg~x \geH).

Now that we have identified the gauge group we can come to the matter of
constructing the space gJH, or equivalently, gauge fixing. Of course this can be
done in many ways, however in [5, 6] it was argued that there are certain gauges
which are the most convenient from the conformal field theoretic point of view.



492 J. de Boer, T. Tjin

These are the so-called "lowest weight gauges." Define the subset gΐix of gc as
follows:

ix = \t + + Σ xLΆ14)eCj . (2.18)

We then have the following

Theorem 1.

Hxgfix*ge. (2.19)

Proof. Note first the obvious fact that g{~l) = g\~l) ® g{

0~
ι\ where g(

0~
ι+1) =

[ ί + , # ( Z ) ] and [t-,g(ι~l)^ = 0. Let now x e # c which means that x =
ί+ H- x ( 0 ) + 4- x (" p ), where x(~k)eg(~k) and p e ^ N is the largest; value in the
decomposition of the adjoint representation w.r.t. the embedding i. Of course each
x(~k) can be written as a sum Xo~k) + x\~k\ where x ( - f e ) e#o and x ( " f c ) e ^ k ) .
Let also α(~fe) be an element of grade — k in h9 i.e. oc(~k)eg(~k) c ft. Then

\C Xβ J — X IOΓ 1 "^ I Ss K ,

i.e. only the elements x{~k+1\ . . . , x{~p) are changed by this gauge transformation.
Now, since ad ί +: g{~k) -+go~k+1) is bijective by definition, there exists a unique

a(-k)eg(-k) s u c h t h a t a d t + ( α ( - k ) ) = xo~ fc+1), i.e. the element Xo~k+1) can be gauged
away by choosing α ( ~ k ) appropriately. From this follows immediately that there
exist unique elements a{~l)eg{~l) [I = 1,. . . , p) such that

e . . . e xe . . . e = yeg^x. (z.zuj

This provides, as one can now easily see, a bijective map between H x gfix and
gc given by

(e—l-1\..e—l-*9y)-+x. (2.21)

This proves the theorem.

So starting from g, after imposing constraints and fixing gauge invariances we
have arrived at a submanifold gfix of g. We now want to determine the Poisson
algebra structure of C°°(^fix). For this we need to calculate the Dirac brackets

( τh-j τJ',-J'Ί* if) "s^\
\ (jl) 5 (jW') / \ί* **Λ*)

between the generators {J(μ)J) of C°°(όffix). We shall first address a slightly more
general problem and then specialize to reductions associated to sl2 embeddings.

Let {ίf}fi™<flί) be a basis of the Lie algebra g, let k be a positive integer smaller or
equal to dim(#) and denote tk+1 = Λ. Consider then the following subset of g

(2.23)
ΐ = l J

which can be seen as the zero set of the constraints φ1 = Jk+1 — 1 and φι = Jk+ι

for 1 < i < dim(#) — k. Also suppose that the Kirillov bracket on g induces a Dirac
bracket {.,.}* on gf (i.e. all constraints are second class).
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Denote by ffl the set of smooth functions R: Ck x gf -* g of the form

R(z;y)=ΣziRι(y)> (2-24)

where z = {zjf= 1e Cfe, )> e #/ and #'()>)esln. To any element JR G ^ one can associ-
ate a map β R : Ckxgf-+ C°°(όf) defined by

dim(g)

e«(2;y)= Σ (R&ylW (2.25)

(where as before JieCco(g) is defined by ./'(£/) = (5j). We are going to use certain
elements of the set 01 in order to explicitly calculate the Dirac brackets on gf. We
have the following theorem.

Theorem 2. If there exists an Re & such that for allzeCk and yegf we have

Λ + \_R(z\y\y\egf (2.26)

and

β*(z; y)\βt = Σ V + (*(z; Λ ^i) (2-27)

(i.e. ί/ze restriction ofQR(z; y) to gf is equal to the right-hand side o/(2.27)), then

WJ ΛΛ (2.28)

/or α// zeC f e

The proof of this theorem has been given for the affine case and for the principal
embedding in [5]. It is however straightforward to prove the more general state-
ment given above using the same arguments.

Note that from Eq. (2.28) one can read off all the Dirac brackets between the
generators {Jι}f= x of C °° (gf) since the formula holds for all I e Ck and the elements
tj are all independent. The only thing that one therefore needs to determine is the
map £. Also note that from Eq. (2.27) it follows that within the Dirac bracket
{•>•}* the function QR(z; y) is equal to Σ*= i ZiJ\ i e

{QR(z;y)r}*= Σ ZiW'}*, (2.29)
i=ί

since constants commute with everything and restriction to gf is always implied
within the Dirac bracket.

Note that conversely in order to show the existence of the Dirac bracket on gf it
is sufficient to prove that Eqs. (2.26) and (2.27) of the above theorem are solvable
within 0t. We will now show that this is the case when gf = gίix associated to an
arbitrary sl2 embedding.

Theorem 3. Let \i\be the total number ofsl2 multiplets in the branching of the adjoint
representation of g. There is a unique Reϊ% such that

t+ + lR{z;y),y]egfix,

QR& y)\g* = Σ ) J

for all leC1*1 and yegΐιx.
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The proof of this theorem for the principal embedding (and in the affine case) has
been given in [5]. It is straightforward however to generalize the proof to arbitrary
embeddings.

It is possible to derive a general formulae for R(z; y) using arguments similar to
those used in [8]. Let again

9ι» = θ 9™ = span({ίjf

μ2,},;μ , (2.30)

and let Π be the orthogonal (w.r.t. the Cartan-Killing form) projection onto
Im(ad ί+). Obviously the map ad ί +: Im(ad ί_)->Im(ad ί +) is invertible. Denote the
inverse of this map, extended by 0 to g by L. As before what we want to do is solve
the equation [R, j/] = xeg l w for y eg ΐ ix. Noting that y = t + + w, where weg i w and
applying Π this equation reduces to

Πoadt+R(ε) = βJI([Λ(ε), w]), (2.31)

where we introduced a parameter ε in the right-hand side which we want to
put to 1 later. Note that the left-hand side is equal to adt+R(ε) since this is
already an element of Im(ad ί+). Assume now that R{ε) can be (perturbatively)
written as

R(ε) = Σ Rkε
k (2.32)

fc = 0

(we shall have to justify this later). The zeroth order part of Eq. (2.31) reads

a d ί + £ o = 0 . (2.33)

This means that Ro is of the form £ . zjμ)t^ = F(z). The first order equation is

equal to a d ^ l ^ = Π(\_F, w]). Obviously this equation is solved by

Rx = — L°adwF. Proceeding with higher orders we find

Rk+i(z;y)= -Loadw(Rk(z;y)), (2.34)

which means that

R(z; y; ε) = \ F(ϊ). (2.35)
1 + εL ° adw

There are no convergence problems with this series since the operator L lowers
the degree by one which means that after 2p steps it must cancel. Taking ε = 1 we
find

2.36)

Now let wegιw and Q G C ° ° ( ^ W ) . We then define grad w βeKer(ad ί + ) = ghw by

d
(x, grad w β) = -rQ(w + εx)\ε=0 for all xegiw . (2.37)

αε

Note that this uniquely defines gradwQ because, as we saw before, gtw and ghw are
nondegenerately paired. Using Eq. (2.36) we can now give the following general
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description of the classical finite W algebra: it is nothing but the Poisson algebra
( C 0 0 ^ ) , {.,•}•), where

M = (w, [gr a d wei, 1 + J ? o a d grad w 6 2 j^ (2.38)

for all Qι,QieCco(gιw) and wegiw. For the so-called trivial embedding
(ί0 = t + = 0 ) the map L is equal to the zero map and the above formula reduces to
the ordinary Kirillov bracket as it should (because in that case g{ix = g). For
nontrivial sl2 embeddings however (2.38) is a new and highly nontrivial Poisson
structure.

From now on denote the Kirillov Poisson algebra associated to a Lie algebra
g by K(g) and the Poisson algebra (C°°(^/w), { , }*) by if{i\ where i is again the
5/2 embedding in question.

In general i^(i) is a non-linear Poisson algebra as we shall see when we
consider examples. However it can happen that i^(i) contains a subalgebra that is
isomorphic to a Kirillov algebra. The next theorem deals with this.

Theorem 4. The finite W algebra Ψ*{ϊ) has a Poisson subalgebra which is isomorphic
to K(C\ where C is the centralίzer of the sl2 subalgebra in g.

Proof. Since all elements of the centralizer are lowest (and highest) weight vectors
w.r.t. ι(sl2) the function Ja is not constrained if taeC(i\ i.e. all the elements Ja

associated to the centralizer survive the reduction. It is not obvious however that
they still form the same algebra w.r.t. the Poisson bracket (ref PA). This is what we
have to show.

The part of the equation

X ήμ){j^j, J(iVO*ωίK-;' = [*(*; y\ y~\ (2.39)

that determines the Poisson relations between the currents associated to the
centralizer is

:2 = ίR(z;y),yY0) (2.40)
μ,μ'

The right-hand side of this equation reads in more detail

0 ) ] + + LR{p\y(-p)l

+ [ # ( - 1 ) , ί + ] . (2.41)

Note that R^ and y(0) are both elements of C(i) which means that the first term in
the right-hand side is also an element of C(ϊ). We will now show that
R{o\ R{1\ . . . , R(p) and R{~1] do not depend on { 4 μ ) } μ which means that all but
the first term in the right-hand side of Eq. (2.41) are irrelevant for the Poisson
hrarkets ί 7°'° Γθ'°\*
D r a c i c e t s {J(μ) , J ( μ Ί j .

One can easily see that Ro is only a function of zp

μ ,. . . , zk+\ for k ^ 0 and
therefore Rik) = R(k){z{/\. . . , z[μ)). Now, K ( " 1 } is determined by the equation

[t+,R(~^ = [K(O),3>(O)]o + + lR{p\/-p)lo (2.42)
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Note that the terms [R(l\ y(~l)] for / > 0 certainly do not contain z(

o

μ) as we just
saw. Also note that

ίR(0\ y(O)]o = [ 4 0 ) + Rt:\ y(O)]o = lR(o\ y ( 0 ) ] (2.43)

because of the reason we mentioned earlier that R^ and y{0) are both in C(i).
However, as we have seen above R^ does not contain z{

o

μ). From this we conclude
that the only term in [#, y ] ( 0 ) that contains z{

o

μ) is [JR,(°\ y ( 0 ) ] , i.e.

V 7

{μ)ί T°'° T°'°\*(v\tiμ)

Σ Z0 \J(μ)>J{μ')S \y)t

- Γ
-

L

- ΓJ?
L

The generators {t(

0%} are a basis of C(i). From this, Eq. (2.44) and Theorem
2 follows immediately that the Poisson algebra generated by {jfy0} w.r.t. the Dirac
bracket is isomorphic to Kirillov algebra of C(i). This proves the theorem.

2.1. Generalized Finite Mima Transformations. In this section we will present
a generalized version of the Miura transformation. Roughly this is a Poisson
homomorphism of the finite W algebra iV(ι) in question to a certain Kirillov
algebra. In order to be able to describe this map for arbitrary embeddings however
we first have to concern ourselves with the cases when in the decomposition of
g into si2 multiplets there appear half integer grades. As we have seen, in those cases
the constraints φ^ are second class. In what follows it will be necessary to be able
to replace the usual set of constraints by an alternative set which contains only first
class constraints but which gives rise to the same reduction [20]. Roughly what one
does is impose only half of the constraints that turned out to be second class in such
a way that they become first class. The other constraints that were second class can
then be obtained as gauge fixing conditions. In this way gfix stays the same but gc is
different. Since the resulting Poisson algebra only depends on gfix it is clear that we
obtain the same algebra if{f).

Let's now make all of this more precise for g = sln. We describe the sln algebra
in the standard way by traceless nxn matrices; Etj denotes the matrix with a one in
its (ίj) entry and zeroes everywhere else. As we said earlier embeddings of sl2 into
sln are in one-to-one correspondence with partitions of n. Let (nun2,. . .) be
a partition of n, with n^ ^ n2 ^ . . .. Define a different partition (mί9 m 2 , . . .) of n,
with mk equal to the number of i for which n{ ^ k. Furthermore let st = Yι

t

i=1mί.
Then we have the following

Lemma 1. An embedding of sl2 in sln under which the fundamental representation
branches according to n-+ (J) nt is given by

ni-l

/£ 1 k=ί

* (m + l Λ
t o = Σ Σ [—9 κ\Eι + Sk_uι + Sk_l9

t-= Σ Σ fc("i-*)£/ + *,* + * - , - (2.45)
/ ^ 1 fc=l
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The proof is by direct computation1. If the fundamental representation of sln is
spanned by vectors vl9, . . ,vn, on which sln acts via Eij(vk) = δjkvh then the
irreducible representations nx of sl2 to which it reduces are spanned by
{vι + Sk_1 }i ^ k ̂  nr Previously we decomposed the Lie algebra g into eigenspaces of
ad ίo. However, for our present purposes it is convenient to introduce a different
grading of the Lie algebra g, that we need to describe the generalized Miura map
and the BRST quantization. The grading is defined by the following element of the
Cartan subalgebra of sln:

*= Σ Σ(ψ~-k]ESk_1+j,Sk_ι+j. (246)

This leads to the alternative decomposition g = g-ξBg0®g+oϊg into spaces with
negative, zero and positive eigenvalues under the adjoint action of δ respectively
(note that in case the grading of ad ίo is an integral grading then we have ί0 = δ so in
those cases nothing happens. In general however t0 Φ δ and also g(m) Φ gm). The
subalgebra g0 consists of matrices whose nonzero entries are in square blocks of
dimensions mίxmum2xm2, etc. along the diagonal of the matrix and is therefore
a direct sum of sίWfc subalgebras (modulo w(l) terms). The nilpotent subalgebra g+ is
spanned by {£/ + Sk_ur + sJ/ ^ 1; i ^ k ^ nι _ 1 ; r > 0 , and the nilpotent subalgebra g_ by
the transpose of these. Let π+ denote the projections onto g + . Then the following
theorem describes the replacement of the mixed system of first and second class
constraints by a system of first class constraints only.

Theorem 1. The constraints { Jι + s^~1'r + Sk — δr'ι}/ ^ 1; i ^ k ^ nι _ 1; r > 0 are first class.
The gauge group they generate is H = Qxp(g-) acting via the adjoint representation
on g. The resulting finite W algebra is the same as the one obtained by imposing the
constraints (2.11).

Proof. Decompose g in eigenvalues of adδ, g = ©kQk Note that ad^ has only
integral eigenvalues. Using the explicit form of t+ in (2.45), one easily verifies that
[<5, ί + ] = ί+.Thus, t+6 0!. Again since [g + ,g + ] = \_g^ i, g^ i] cz g^2 it follows
(exactly like in Lemma 3) that the constraints {Jι + Sk-ur + Sk — δr'ι}ι^ i; i ^ k^ Άι _ 1 ; r >o
are first class. The gauge group can be determined similarly as in Sect. 3.2, and the
analogue of Theorem 1 of Sect. 3.2 can be proven in the same way with the same
choice of # f i x , if one uses the decomposition of g in eigenspaces of adδ rather than
ad ίo. Therefore the resulting finite W algebra is the same, because Theorem 2 and
3 of Sect. 3.2 show that it only depends on the form of gfix.

Let us explain this theorem in words. The number of second class constraints
in any system is necessarily even. If one switches to the ad5 grading the set
of second class constraints is split into half: one half gets grade 1 w.r.t. ad5

while the other half gets grade 0. Now what one does is impose only that half
that has obtained grade 1 w.r.t. the ad5 grading. These constraints are then
first class. The gauge transformations they generate can be completely fixed
by imposing the constraints that were in the other half. Having done that we are
back in exactly the same situation as before. The only difference is that we now
know of a system of first class constraints that in the end leads to the same
reduction.

1 The commutation relations are [ ί 0 , ί ± ] = + t± , and [ ί+, ί_] = 2ί 0
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Note that the number of generators of the finite W algebra is equal to
dim(g0) = ( Σ f tfif) — 1. This is indeed the same as the number of irreducible
representations of s/2, minus one, one obtains from ( φ i «i) <8) ( φ i Wί)> as the
latter number equals (£.(2/ - l)nj) — 1, and one easily checks that

The generalized Miura transformation can now be formulated as

Theorem 5. There exists an injective Poisson homomorphism from iΓ(ϊ) to K(g0).

Proof. First we show that for every element xet+ + g0 there exist a unique
element h in the gauge group H such that h x ft"1 egίix. For this note that
there exists a unique element h! eH such that h! 'X /z'"1 egc. This follows from
the previous theorem and the remarks made after it. In fact it follows from
those remarks that h! is an element of that subgroup of H that is generated
by the "ex" second class constraints (the ones that were made into first class
constraints by not imposing the other half). It was shown earlier however that
gΐixxH ~ gc which means that there exists a unique element h"eH such that
h'h''X'(h"h')~1egίix. We conclude from this that there is a surjective map
from xet+ + g0 to gfix. The pull back of this map C "> (gfix) = W(ι) -» Cco(t+ + go)
(which will therefore be injective) is then the Miura map. Of course we still
have to check whether this map is a Poisson homomorphism. This we address
next.

What is the Poisson structure on C°°(ί+ + go)Ί Since the constraints of which
the space t+ + g0 is the zero set are obviously second class the Kirillov bracket on
g induces a Dirac bracket on it. It is not difficult to see that the Dirac term in the
Dirac bracket cancels in this case which means that the Poisson algebra
C°°(ί+ + g0) with the induced Poisson structure is isomorphic to the Poisson
algebra K(g0). Since the transformation from iΓ(ί) to K(g0) corresponds to
a gauge transformation the map is necessarily a homomorphism.

2.2. Examples. The simplest examples of finite W algebras are those associated to
the so-called "principal sl2 embeddings." These embeddings are associated to the
trivial partition of the number n: n = n. The fundamental representation of g = sln

therefore becomes an irreducible representation of the sl2 subalgebra, i.e. nn~ n2.
The branching rule for the adjoint representation of g therefore reads

ad« ^ 3 2 0 5 2 0 0 In- U . (2.47)

From this follows immediately that the finite W algebra will have n — 1 generators
(since there are n — 1 sl2 multiplets). Without going into details we can immediately
predict the Poisson relations between these generators from the generalized Miura
transformation for in this case the subalgebra g(0) = g0 coincides with the Cartan
subalgebra of sln. Since the Cartan subalgebra is an abelian algebra, and since the
Kirillov algebra of an abelian Lie algebra is a Poisson commutative algebra we find
that a finite W algebra associated to a principal embedding must also be Poisson
commutative since it is isomorphic to a Poisson subalgebra of K(g0). We conclude
therefore that the principal sl2 embedding into sln leads to the abelian Poisson
algebras with (n — 1) generators.

The simplest nontrivial case of a finite W algebra is associated to the (only)
nonprincipal embedding of sl2 into 5/3. This embedding is associated to
the following partition of 3: 3 -• 2 + 1. The branching rule of the fundamental
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representation of sl3 is therefore 3 3 ~ 22 0 i 2 . From this we find the following
branching rule for the adjoint representation

ads ^ 3 2 0 2.22 φ 1 2 (2.48)

from which follows immediately that the finite W algebra associated to this
embedding will have 4 generators. We shall go through the construction of this
finite W algebra in some detail in order to illustrate the theory discussed above.

The explicit form of the sl2 embedding is t+ = Elt3; fo = diag(i, 0, — i);
t- = E3t l 5 where as before £ y denotes the matrix with a one in its (ij) entry and
zeros everywhere else. The (sl3 valued) function J = t)%j(l£ (where we used
summation convention) reads

j — I fί, -Ί —21?:? ήΛ Γ2 49Ί

r ί ,- i r°'° _ 1 r 1 ' 0 )

According to the general prescription the constraints are

Jii)1 ~ 1 = Jk) = Jh) = ° ' ( 2 50^
the first one being the only first class constraint. As was shown earlier the gauge
invariance generated by this constraint can be completely fixed by adding the
"gauge fixing condition" J^}° = 0. The Dirac brackets between the generators

{J(i)°, jfiΓ\ J(i)~^} a n < ^ ^ ( i ) 1 c a n n o w e a s ϋ y be calculated. In order to describe
the final answer in a nice form introduce

H = 4J^° (2.51)

(note that this is an invertible basis transformation). The Dirac bracket algebra
between these generators reads [14]

{#,£}* = 2 £ ,

{£,F}* = # 2 + C, (2.52)

and C Poisson commutes with everything. This algebra which is called Wψ was
first constructed in [21] as a nonlinear deformation of su(2). In [14] it was shown
to be a reduction of s/3 and its representation theory was explicitly constructed.

Let's now consider the finite Miura transformation for this algebra. Since the
grading of 5/3 by adto is half integer we have to switch to the grading by ad^. The
explicit form of δ is δ = jdiag(l, 1, —2). It is easily checked that this defines an
integer grading of sl3. The crucial change is that the elements £ 2 3 and El2 have
grade 1 and 0 w.r.t. the ad^ grading while they have grade \ w.r.t. adίo. According to
the prescription given in the previous section the alternative set of constraints that
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one now imposes in order to reduce the mixed system of first and second class
constraints to a system of first class constraints only is

j ^ 1 - l = jiΛ = 0 . (2.53)

As we already mentioned in the previous section, what has happened here is that
one has now imposed only half of the constraints that turned out to be second class.
The result is that both constraints in (2.53) are first class. The point however is that
the gauge symmetry induced by the second constraint in Eq. (2.53) can be com-
pletely fixed by adding the gauge fixing condition J^ = 0 which then leaves us
with exactly the same set of constraints and gauge in variances as before.

We can now describe the generalized Miura map for this case. An arbitrary
element of t+ + g0 is given by

lh + s e 1

Jo = \ f s-h 0 ). (2.54)

Note that g0 ~ sl2 Θ u(ϊ) which means that the Poisson relations in K(g0) between
the generators, λ, £,/and s (viewed as elements of C 0 0 ^ ) ) are given by

= - / ,

{ej} = 2h , (2.55)

and s commutes with everything. As shown in the previous section the equation
that we have to solve in order to get explicit formulas for the Miura map is the
following equation for h e H (where H is again the group of gauge transformations
generated by the two first class constraints (2.53)),

0 1 \

(2)
0

\J(1) J(l) J(l)

(2.56)

The unique solution of this equation is given by

/ I 0 0\

h = \ 0 1 0 . ( 2 . 5 7 )

\h + H e ίj
Inserting this back into Eq. (2.56) one finds certain expressions for
J(i) J ^ π Γ 1 ' J(i)~Ί a n < ^ ^ ( 1 ) ^n * e r m s °f ^ e functions {e,/, h, s}. In terms of the
generators (2.51) these read

H = 2h - Is ,

E = (3s - h)e ,

Λ(h2 + 3s2+fe). (2.58)
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It is easy to check, using the relations (2.55) that these satisfy the algebra (2.52).
Therefore we find that indeed (2.58) provides an injective Poisson homomorphism
from wψ into the Kirillov Poisson algebra of the Lie algebra g0 = sl2 Θ u(l).

3. Finite W Symmetries in Generalized Toda Theories

It is well known [22] that infinite W algebras arise as algebras of conserved
currents of Toda theories. The infinite W algebras related to arbitrary sl2 embed-
dings are related to the conserved currents of so-called generalized Toda theories
[23, 7]. Since finite W algebras are essentially a dimensional reduction of infinite
W algebras, one expects that there are one-dimensional analogues of the ordinary
two-dimensional Toda actions whose conserved currents are related to a finite
W algebra. Indeed, the construction of these one-dimensional Toda actions is
completely straightforward, and has the desired properties.

One starts with the action for a free particle moving on the group manifold
G = SL(n)

with equations of motion,

d

4 μ I"0" ™
Therefore the quantities

J = j-g~ί =Jata a n d J = g~1γ = Jata (3.3)

are conserved.They form a Poisson algebra [24] {Jα, J 5 } —fah

cJ
c with similar

equations for J. This is precisely the Kirillov Poisson bracket we used as a starting
point for the construction of finite W algebras.

Finite W algebras were obtained by imposing a set of first class constraints. In
terms of the decomposition g = g- ®g0® g + , these constraints were π+ (J) = t +,
where π ± are the projections on g±. Here we want to impose the same constraints,
together with similar constraints on J, i.e. π _ (J) = t _. If G ± denote the subgroups
of G with Lie algebra g±, and Go the subgroup with Lie algebra g0, then almost
every element g of G can be decomposed as g _ g0 g+, where # +, 0 are elements of the
corresponding subgroups, because G admits a generalized Gauss decomposition
G = G-G0G+.2 Inserting this decomposition into the definition of J and J a n d
using arguments similar to those used in [7, 5] one finds that the equations of
motion for these constrained currents are equivalent to

_χdJ d ίdg0 _Λ _ x

• lt-,g0 t+g0] , (3.4)

Strictly speaking G-G0G+ is only dense in G but we will ignore this subtlety in the remainder
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which are generalized finite Toda equations as will be shown in a moment. The
corresponding action is

-g^U). (3.5)

This generalized finite Toda action describes a particle moving on Go in some
background potential. Two commuting copies of the finite W algebra leave the
action (3.5) invariant and act on the space of solutions of the equations of motion
(3.4).3 This action is only given infinitesimally, because we do not know how to
exponentiate finite (or infinite) W algebras. One can, however, sometimes find
subspaces of the space of solutions that constitute a minimal orbit of the W algebra,
see for example [25] where this was worked out for the ordinary W3 algebra.

For the principal embeddings of sl2 in s/M, the equations of motion reduce to
ordinary finite Toda equations of the type

= 0, (3.6)

where i = 1,. . . , n — 1, K(j is the Cartan matrix of sln, and g0 =
The general solution of the equations of motion (3.4) can be constructed as

follows. Let h(o\ h™ be elements of Go. Let Xo be an arbitrary element of g0. If
go(t) is defined by the Gauss decomposition

flf-(ί)flfo(Oβ + W = C e x p ί ( X 0 + ( C Γ ' ί + C + htfh-Qi?)-1^ , (3.7)

then go(t) is the most general solution of (3.4). The easiest way to find the action of
the finite W algebra on these solutions, is to construct the conserved charges
associated to these finite W symmetries (which can be done via a time dependent
Miura transformation), and to study the transformations they generate. This might
provide a valuable tool in the study of the solutions (3.7). We leave a detailed
investigation of this, as well as many other issues like the quantization of the action
(3.1), to future study.

4. Quantization of Finite W Algebras

In quantum mechanics, quantization amounts to replacing Poisson brackets by
commutators. Since finite W algebras are Poisson algebras, the question arises
whether it is possible to quantize these Poisson algebras, to give finite quantum
Ŵ  algebras. In the infinite dimensional case (i.e. the usual infinite W algebras), this
is known to be possible for the standard Wn algebras associated to the principal
embeddings. The W3 algebra constructed by Zamolodchikov is a quantization of
the Poisson algebra one gets from hamiltonian reduction of the affine sl3 algebra.
The most difficult task in constructing infinite quantum W algebras, is to check
that the resulting commutator satisfies the Jacobi identity, or, equivalently, to
check that the operator product algebra is associative. Zamolodchikov did this
explicitly for his W3 algebra. It is clear that this will become very cumbersome for

3 More precisely, the symmetries of (3.5) form an algebra that is on-shell isomorphic to a finite
W algebra
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higher W algebras, and that it is difficult to obtain generic results in this direct
approach.

A different way to find (infinite) quantum W algebras has been pioneered by
Feigin and Frenkel [11], In this approach the quantum W algebra is described as
the zeroth cohomology of a certain complex. The advantage of this approach is
that one automatically knows that the resulting operator algebra will be asso-
ciative. This procedure is closely related to BRST quantization, and is usually
called "quantum hamiltonian reduction." We will employ this method to study the
quantization of finite W algebras, related to arbitrary sl2 embeddings of sln.
Another advantage of this method is that it provides a functor from the category of
representations of g to those of the quantum finite W algebras, and is thus very
useful to study the representation theory of quantum finite W algebras.

4.1. Quantization. Let (si0, { , }) be a commutative associative Poisson algebra.
A quantization of (siOi { , }) is an associative algebra si depending on a para-
meter h such that (i) si is a free C[[ft]] module, (ii) si/hsi ^ si0 and (iii) if
π denotes the natural map π: si -+s4jhsi ~ si0, then {π{X),π(Y)} =
π((XY — YX)/h). In most cases one has a set of generators for si0, and si is
completely fixed by giving the commutation relations of these generators.

For example, let si0 be the Kirillov Poisson algebra of polynomial functions on
a Lie algebra g, determined by Eq. (11). Then a quantization of this Poisson algebra
is the algebra si generated by the Ja and ft, subject to the relations
\_Ja,Jh] = hfab

cJ
c. Obviously, the Jacobi identities are satisfied. Specializing to

ft = 1, this algebra is precisely the universal enveloping algebra <%g of g.
To find quantizations of finite W algebras, one can first reduce the sln Kirillov

Poisson algebra, and then try to quantize the resulting algebras that we studied in
the previous sections. On the other hand, one can also first quantize and then
constrain. We will follow the latter approach, and thus study the reductions of the
quantum Kirillov algebra

[Jα, J b ] = hfc

abJc. (4.1)

We want to impose the same constraints on this algebra as we imposed previously
on the Kirillov Poisson algebra, to obtain the quantum versions of the finite
W algebras related to sl2 embeddings. Imposing constraints on quantum algebras
can be done using the BRST formalism [26]. In the infinite dimensional case, this
has been done for the usual WN algebras by Feigin and Frenkel [11]. We use the
finite dimensional counterpart of this approach.

BRST quantization in the presence of second class constraints is more cumber-
some than in the presence of first class constraints; it requires the introduction of
extra auxiliary fields to change the second class constraints into first class con-
straints. However, it was shown above that for arbitrary embeddings of sl2 one can
always choose a set of constraints that is completely first class and leads to the
same W algebras as the set {Φw). To perform a BRST quantization of the finite
W algebras we use these alternative systems of first class constraints.

4.2. The BRST Complex. Consider the map χ: g+ -» C defined by χ(E, + Sfe_i5, + Sk)
= 1 for Z ^ l , l gfc^Wί—1 and χiEy) = 0 otherwise. Because the constraints

{Jz + s*-i»Γ + s* — δ r '}z ^ 1 ; ! ^ fc ̂  Πi _ 1 ; Γ > 0 are first class, χ defines a one-dimensional
representation of g+. In terms of χ, the constraints can be written as
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π+ (J) = χ(π + (J)), where π+ again denotes the projection g -> #+. It is this form of
the constraints that we will use. Furthermore we will take ft = 1 for simplicity; the
explicit h dependence can be determined afterwards.

As before latin indices will be supposed to run over a basis ta of the Lie algebra
g, Greek indices run over a basis of g + and barred Greek indices (like ά) run over
a basis of #_ © g0. Indices can again be raised and lowered by use of the Cartan
Killing metric. The basis elements ίΛ, ta and t$ are as before so chosen that they
have a well defined degree with respect to ad^.

To set up the BRST framework we need to introduce anticommuting ghosts
and antighosts cα and fcα, associated to the constraints that we want to impose [26].
They satisfy bacβ + cβb* = δβ and generate the Clifford algebra Cl(g+ © g+). The
quantum Kirillov algebra is just the universal enveloping algebra tflg, and the total
space on which the BRST operator acts is Ω = tfίg (x) Cl(g+ © g%). A Z grading on
Ω is defined by deg( Ja) = 0, deg(cα) = + 1 and deg(bα) = — 1, and we can decom-
pose Ω = (£)kΩ

k accordingly. The BRST differential on Ω is given by
d(X) = [β, X\ where Q is the BRST charge

Q = (Γ - χ{Γ))ca - ^Γ*WcΛcβ , (4.2)

and [ , ] denotes the graded commutator (as it always will from now on)

[4, 5] = AB - (-

Note that deg(β) = 1.
This is the standard BRST complex associated to the first class constraints

of the previous section. Of interest are the cohomology groups of this
complex, Hk(Ω;d). The zeroth cohomology group is the quantization of the
classical finite W algebra. Because the gauge group H in (39) acts properly on
gc, we expect the higher cohomologies of the BRST complex to vanish, as they
are generically related to singularities in the quotient gc/H. In the mathematics
literature the cohomology of the BRST complex is called the Hecke algebra
<^(g>g+>x) associated to g,g+,χ. Hecke algebras related to arbitrary sl2

embeddings have not been computed, apart from those related to the principal
sl2 embeddings. In that case it was shown by Kostant [27] that the only non-
vanishing cohomology is H°(Ω;d) and that it is isomorphic to the center
of the universal enveloping algebra. Recall that the center of the °Ug is generated
by the set of independent Casimirs of g. This set is closely related to the generators
of standard infinite Wn -algebras; in that case there is one W field for each
Casimir which form a highly nontrivial algebra [28]. We see that for finite
W algebras the same generators survive, but that they form a trivial abelian
algebra. For non-principal sl2 embeddings however quantum finite W algebras are
non-trivial.

To compute the cohomology of (Ω; d\ Feigin and Frenkel make the crucial
observation that the operator d can be decomposed into two commuting pieces.
Write Q = Q0 + Qu with

β i = - X(J")C« , (4.4)
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and define do(X) = \_Qo,X~\,dι(X) = [βi,X], then one can verify by explicit
computation that d£ = d^dx = dγdQ = d\ = 0. Associated to this decomposition is
a bigrading of Ω = @kjiΩ

kJ defined by

= (/c,-fc), iϊtaegk,

deg(cα) = (l -k,k\ iϊtaegk,

= (fc-l,-fc), iϊtaegki (4.5)

with respect to which d0 has degree (1,0) and d1 has degree (0,1). Thus (Ωk ι; do; dγ)
has the structure of a double complex. Explicitly, the action of d0 and dx is
given by

= - -fβlcβcy ,

di(b*) = - χ(J"). (4.6)

To simplify the algebra, it is advantageous to introduce

fa = Ja

Our motivation to introduce these new elements Ja is twofold: first, similar
expressions were encountered in a study of the effective action for W3 gravity [8],
where it turned out that the BRST cohomology for the infinite W3 algebra case
could conveniently be expressed in terms of J 's; second, such expressions were
introduced for the Jα 's that live on the Cartan subalgebra of g in [11], and
simplified their analysis considerably. In terms of J we have

do(Ja) =fψ*cΛ ,

do(ca)= ~^f

do(ba) = J" ,

dι{b«)=-χ{Γ). (4.8)

The advantage of having a double complex is that we can apply the technique
of spectral sequences [29] to it, in order to compute the cohomology of (Ω; d). The
results from the theory of spectral sequences that we need are gathered in the next
section.

4.3. Spectral Sequences for Double Complexes. Let (Ωpq; do; d^) denote a double
complex, where d0 has degree (1,0) and d1 has degree (0,1). The standard spectral
sequence for this double complex is a sequence of complexes (E?>q; Dr\ ̂  0> where
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Dr is a differential of degree (1 — r, r), and is defined as follows: E$q — Ωp'q,
Do = dθ9 D1 = du and for r ^ 0,

leer D Fp>q -+ Fp+1~r'q + r

E p l q , - Hip>q)(E D ) - r r r

The differential Dr+1 for r > 0 is given by Dr+1(a) = d1(β\ where β is chosen such
that doβ = Drα. Such a β always exists and Dr+ί is uniquely defined in this way.
The usefulness of this spectral sequence is provided by the following [30]:

Theorem 2. / / 0 g Θ p , « £ * f l M = (°}> ί / i e n £ S β = Or E?'q exists, and

FΉ<>+*(Q;d)

*«> -F«+1H(p+«\Ω;d)' { }

where

This spectral sequence is especially useful if it collapses at the n t h term for some n,
i.e. Dr = 0 for r ^ n, because then En~ E^ and one needs only to compute the first
n terms of the spectral sequence.

If the double complex is also an algebra, i.e. there is a multiplication operator
m: ΩVΛ ®<πΩp'«' -* Ωp+P'>q+q\ and d satisfies the Leibniz rule with respect to this
multiplication, then (4.10) is also an equality of algebras. It is in general nontrivial
to reconstruct the full algebra structure of H*(Ω; d) from E£*, due to the quotient
in the right-hand side of (4.10).

Another useful tool in the computation of cohomology is the following version
of the Kύnneth theorem

Lemma 2. Let A = @fc Λk be a graded differential algebra over C with a differential
d of degree 1 that satisfies the Leibniz rule, and assume that A has two graded
subalgebras A1 = @k^i and A2 = (J)fc^2 such that d(Ax) c A1 and d(A2) <= A2,
that ^2 = {0} for k sufficiently large, and that m: Aγ ®^A2 -* A given by
m{a1 ® a2) = aίa2 is an isomorphism of vector spaces. Then

H*(A;d)~{aίa2\aίeH*(Aί;dla2eH*(A2;d)}. (4.12)

Proof Form the double complex (Ω^ do d^ with ΩPΛ ~ m(Ap ® A\\
do{aλa2) = d(a1)a2f and d 1(α 1α 2) = (~l)άeg{ai)a1d(a2). The spectral sequence
for this double complex collapses at the E2 term, and one finds
Ep« = {a^^a^H^Aύd), a2eHq(A2;d)}. The condition A2 = 0 for k suffi-
ciently large guarantees that FqHp+q = 0 ϊor q sufficiently large, and one can
assemble tf *(Ω; d) from Ep£ using (4.10). This leads to (4.12) on the level of vector
spaces. Because aγa2 is really a representative of an element of H*{A\ d), it follows
that (4.12) is also an isomorphism of algebras.

By induction, one can easily prove that the theorem still holds if instead of two
subalgebras n subalgebras Al9. . . , An are given, with A ^ At <g> • ® An. The
condition A2 = {0} for sufficiently large k is replaced by A2 = = A* = {0} for
sufficiently large k. Without such a condition, it may not be so easy to reassemble
H* from JEOO. To illustrate some of the difficulties that can arise, let us give an
example where i/* cannot be recovered directly from E^. This example is not
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related to the above theorem, but it represents a situation we will encounter in the
computation of the BRST cohomology.

Consider the algebra Ω = (C[x, y~]/(y2 = 0), where x is an even generator of
bidegree (1, — 1), and y is an odd generator of bidegree (0, — 1). The differentials
dQ,d1 are given by do,ι(x) = 0, do(y) = x and d^y) = — 1. One immediately
computes Hk(Ω; d) = <C[x]/(x - l)(C[x] ~ C for k = 0, and Hk = 0 otherwise.
The spectral sequence associated to the double complex collapses at the first term,
and one finds Ep^ = (CδPίOδqtO. Because F1H* = 0, one deduces that
Hk(Ω; d) ~ <C<5fej0 On the other hand, we could also have started with the mirror
double complex obtained by interchanging d0 and dx and the bigrading. Thus, we
assign bidegree ( — 1,1) to x and bidegree ( — 1,0) to y. The spectral sequence
associated to the mirror double complex also collapses at the first term, but now
one finds E™ = 0. This is not in conflict with the previous computation, because
we cannot a priori find a q for which FqHp+q = 0, and we can only conclude that

FQHP+Q ~ FQ + ίHP+q^ if w e conpute explicitly with respect to this bigrading what
FqHp+q is, we find that it is only nontrivial for p + q = 0, and then FqH° =
xq<£W/(x - l)xβ<C[x] ~ C for q ^ 0, and FqH° = C[x]/(x - l )C[x] c- C for
q < 0. This indeed yields Ep^q = 0. The lesson is that one should be careful in
deriving #*(Ω; d) from £ ^ .

Finally, let us present another fact that will be useful later.

Lemma 3. Suppose A is a differential graded algebra, A = Q)n ^oAn, with a differen-
tial of degree 1. Assume furthermore that A has a filtration

{0} = F°Λ cz F^A cz F2A cz - cz A , (4.13)

such that FpAFqA cz Fp+qA, and that d preserves the filtration, d{FpA) cz FPA. If
Hk(Fp+1A/FpA; d) — 0 unless k = 0, then we have the following isomorphism of
vector spaces

H°(A; d) ~ @pk0H°(Fp+1A/FpA; d) . (4.14)

Proof. One can assign a spectral sequence to such a filtered graded algebra [30],
whose first term contains the cohomologies Hk{Fp+1A/FpA; d). If only H° + 0,
then the spectral sequence collapses at the first term, and because the filtration is
bounded from below ({0} = F°A), one can collect the vector spaces that make up
£ * ' * , to get the isomorphism (4.14).

4.4. The BRST Cohomology. The computation of the BRST cohomology is simpli-
fied considerably due to the introduction of the new set of generators Ja. The
simplification arises due to

Theorem 3. If(Ω;d) denotes the BRST complex, with Ω generated by Ja, cα and ba,
and d = d0 + dx given by (4.8), then H*(Ω;d) ~ H*{Ωτeά',d), where Ωred is the
subalgebra of Ω generated by Ja and ca.

Proof Apply the Kύnneth Theorem 2 to £2red (x) ((x)αΩα), where Ωa is the algebra
generated by J α and ba. Note that [J α , Z?α] = 0 and that the conditions of the
Kϋnneth theorem are satisfied. Therefore, H*(Ω;d) ~ H*(Ω r e d; d) ®
((x) α #*(Ω α ; d)). Now (Ωa;d) is essentially the same complex as the one we
examined in the last part of the previous section, and one easily proves that
Hk(Ωa; d) - C(5fe,0. This shows iϊ*(Ω; d) - tf*(Ωred; d).
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The reduced complex (Ωted; d) is described by the following set of relations:

do(Js) =ffPcx ,

do(ca) = - -fβlcβcy,

dΛr)=-f1x(Jy)cβ,

dχ{cx) = 0 ,

UaJβ~l=ffP,

[c«,c/,] = 0. (4.15)

Feigin and Frenkel [11] propose to use the spectral sequence for the
double complex (Ω do dx) to compute the BRST cohomology for the infinite
case, to obtain the standard W algebras. They claim that in that case, the spectral
sequence collapses at the second term, and use this to identify the W algebras
as the centralizers of some vertex operators in a free field algebra. Because finite
W algebras are the same as infinite W algebras, with all dependence on the
co-ordinates suppressed (so that derivatives vanish), we would expect the same
thing to happen for finite W algebras. However, this turns out not to be the
case here.

Let us demonstrate what happens for the case of the principal sl2 embedding in
sl2, i.e. the embedding is given byjhe identity map. The reduced algebra Ωred is
generated by H of degree (0, 0), F of degree (—1, 1) and c of degree (0, 1). The
nontrivial relations between these generators are [i/, F~]= —2F and
[H, c] = - 2c. Furthermore, d^F) = dx{c) = 0, d±(H) = - 2c, do(H) = do(c) = 0
and do(F) = He. To find £?'* we compute do(HaFbc) = 0 and

do(HaFb) = bHa(H + b - l )/*- 1 *;. (4.16)

Therefore in Hi the identity f(H)Fbc =/( l - b)Fbc is valid, and

£1*
f* = C [ H ] Θ C [ F ] c . (4.17)

Next we compute the E2 term of the spectral sequence. In E1 we have

= (/(0) -/(2))c , (4.18)

from which it follows that

£*'* = {/(Jί)|/(0) =/(2)} Θ F C [ F ] c . (4.19)

This does not yet look like the final answer [27], namely Hk = 0 for k φ 0 and H°
is isomorphic to the center of °lίg, generated by the second casimir of sl2. So let us
compute D2 to see whether the spectral sequence has already collapsed. Using the
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definition of D2 given at the beginning of the previous section, we compute
subsequently

\ H /

ff(H) -f(H + 2) Λ = /7(H) -f(H + 2) /(H + 2) - / ( £( f
\ H / V H iί + 2

= (/(3)-/(-l))Kc, (4.20)

and see that D2(f(H)) = (/(3) —/(—l))Xc. The spectral sequence does not col-
lapse, and the next term in the sequence is

=/(2) Λ / ( - 1 ) =/(3)}ΘF 2 C[F]c . (4.21)

Continuing in this way one finds for the next terms in the spectral sequence

£,*•* = {f(H)\f(-l) =/(/ + 2),0 g / ̂  r - 2 } Θ F V l C [ F ] c , (4.22)

and finally

+ H) =/( l - H)} = C[(H - I) 2] . (4.23)

This agrees with the result of Kostant [27]. The spectral sequence does not
collapse at all, and it is clear that this is a rather cumbersome procedure to compute
the BRST cohomology. Luckily, there is another spectral sequence one can
associate to a double complex, namely the sequence associated to the mirror
double complex obtained by interchanging the bigrading and d0 and dx. This
spectral sequence turns out to be much simpler, and will be examined in the next
section, where we use it to compute the BRST cohomology for arbitrary sl2

embeddings.

4.5. The Mirror Spectral Sequence. The main result of this section is

Theorem 4. As before let glw a g be the kernel of the map ad? : g -> g. Then the
BRST cohomology is given by the following isomorphisms of vector spaces

Hk(Ω;d)^(®glw)δk,0. (4.24)

Proof The Ex term of the mirror spectral sequence is given by the dx cohomology
of ΩTQά. To compute the cohomology we use Lemma 3. The filtration on Ώ r e d is:
FpΩred is spanned as a vector space by {J*ιJai. . . JCίrCβίCβ2. . .Cβjr + s ̂  p}.
Thus FpΩrcd/Fp~1Ωred is spanned by the products of precisely p J's and c%
and in this quotient J and c (anti)commute with each other. Now let us rewrite

di(Jα")=-Tr([χ(J%,ίδ]ί%)

= -Tr([ί+,ί*]ί%). (4.25)
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From this it is clear that d i (J α ) = 0 for taeghw. Furthermore, since t^ego Θ g~
and dim(#/w) = dim(#0), it follows that for each β there is a linear combination
a{β)aJ* with dι(a(β)&J") = cβ. This proves that

FPΩ A

Θ ® € [ j α " ] ® («[/α"]Θd(Jα")C[Jα~]). (4.26)

Using the Kϋnneth theorem (Lemma 2) for (4.26), we find that

Hk(Ωred;dί)= ® C[/β"]δ J k f O = (*flfίJ5jkfo. (4.27)

Because there is only cohomology of degree 0, the mirror spectral sequence
collapses, and E^ = E1. Because Ω^d = 0 for / > 0, we can find i ί*(Ω r e d ; d) from
E^. The theorem now follows directly from Theorem 3.

4.6. Reconstructing the Quantum Finite W Algebra. We succeeded in computing
the BRST cohomology on the level of vector spaces; as expected, there is
only cohomology of degree zero, and furthermore, the elements of gtw are in
one-to-one correspondence with the components of g that made up the lowest
weight gauge in Sect. 1. Therefore H*(Ω;d) really is a quantization of the
finite W algebra. What remains to be done is to compute the algebraic structure
of H*(Ω;d). The only thing that (4.24) tells us is that the product of two
elements a and b of bidegree (—p,p) and ( — q,q) is given by the product structure
on <% ίw, modulo terms of bidegree (—r,r) with r < p + q. To find these lower
terms we need explicit representatives of the generators of H°(Ω;d) in Ω.
Such representatives can be constructed using the so-called tic-tac-toe construc-
tion [29]: take some φoegιWi of bidegree (—p, p). Then do(φ) is of bidegree
(1 — p,p). Since d1d0(φ0)= — dod1(φo) = 0, and there is no dx cohomology
of bidegree (1 — p,p), do(φo) = d^φ^) for some φx of bidegree (1 - p,p - 1).
Now repeat the same steps for φl9 giving a φ2 of bidegree (2 — p, p — 2), such
that ί/0(Φi) = d1(φ2)- Note that d1d0(φ1) = — dodι(φι) = —dl(φ) = 0. In this
way we find a sequence of elements φx of bidegree (/ — p, p — /). The process
stops at / = p. Let W{φ) = Σ f = 0 ( - V>ιΦι- τ h e n dW{φ) = 0, and W(φ) is a repres-
entative of φ0 in H°(Ω; d). The algebra structure of H°(Ω; d) is then completely
determined by looking at the commutation relations oϊW(φ) in Ω, where φ0 runs
over a basis of glw.

Since the space glw is finite dimensional and is spanned by the elements
{ία|adί _ί<χ = 0} the finite W algebra is finitely generated. A set of generators is
{W(tχ)}t_E . In principle the algebra of these generators closes only modulo
d exact terms,but since we computed the d cohomology on a reduced complex
generated by J* and cα, and this reduced complex is zero at negative ghost number,
there simply aren't any d exact terms at ghost number zero. Thus the algebra closes
in itself. This is the quantum finite W algebra.

Let us now give an example of the construction described above.

4.7. Example. Consider again the embedding associated to the following partition
of the number 3:3 = 2 + 1. We constructed the classical W associated to this
embedding earlier. We shall now quantize this Poisson algebra by the methods
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developed above. Take the following basis of s/3:

(rΛ_rΛ

6 2

511

re

\

^ 3

6" + "2-

(4.28)

Remember that (in the present notation) the sl2 embedding is given by t+ = t u

t0 = — t5 and ί_ = ί8. The nilpotent subalgebra g+ is spanned by {ί1? ί3}, g0 by
{t29t49t5,t6} and gf_ by {ί 7 ? ί 8 }. The dx cohomology of Ωτed is generated by
{J4, J 7 , J 6 , J 8 } , and using the tic-tac-toe construction one finds representatives for
these generators in H°(Ωred; d)\

W{J6) = J6 ,

W{P) = J 7 - l-

Let us introduce another set of generators

4 - 1 -
C=--)

2

" ~3

E = W{JΊ),

4

(4.29)

(4.30)

The commutation relations between these generators are given by

IH, £ ] = 2£ ,

[H, F ] = - 2F ,

These are precisely the same as the relations for the finite Wf] algebra given in
[14]. Notice that in this case the quantum relations are identical to the classical
ones. The explicit h dependence can be recovered simply by multiplying the
right-hand sides of (4.31) by h. In this example the quantum relations are the same
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as the classical relations. This is not always true however, since in general there will
be quantum corrections, i.e. terms of order h2 or higher. An example of such a case
is given in the appendix.

5. The Representation Theory of Finite W Algebras

The next important topic in the theory of finite W algebras is their representation
theory. This representation theory will presumably play an important role in the
representation theory of ordinary W algebras as was already mentioned in the
introduction. It will be possible to construct the finite W representations by
a quantum version of the generalized Miura map. This will give us the i^(i)
representations as the Miura transform of g0 representations.

If we denote by X 0 ' 0 the component of an element X of bidegree (0,0), so that
°°

°(φ% W°<°{φ')-\ = [W(φ\ W(φ')T° , (5.1)

and therefore W(φ)-> W(φ)OίO is a homomorphism of algebras. We now have the
following important theorem which is a quantum version of the generalized Miura
map.

Theorem 5. (Quantum Miura Transformation). The map W(φ)->W(φ)°>°, or,
equivalently, the map H°(Ω; d) -> H°(Ω; d)°'°, is an isomorphism of algebras.

Proof Now that we know the cohomology of (Ω; d\ let us go back to the original
double complex (Ωred; do;dι). Because there is only cohomology of degree 0, we
know that the E%q term of the spectral sequence associated to (Ωred; do; dx) must
vanish unless p + q = 0. If we look at do( Jα) =fyUJ^cp, we see that do(J*) = 0 if
and only if α e g * From this it is not difficult, repeating arguments similar to those
in the proof of Theorem 4, to prove that the only nonvanishing piece of @Γ ^ί"~ r is
in £ i ' ° . This implies that E™ is only nonzero for p = q = 0. Because
H°(Ω;d) = E%° = H°(Ω;d)°>0 as vector spaces, it follows that the map
H°(Ω; d) -> H°(Ω; d)OfO can have no kernel, and is an isomorphism.

The quantum Miura transformation gives a faithful realization of the
quantum W algebra in <%g0. As g0 is nothing but a direct sum of simple Lie
algebras (up to w(l) terms) its representation theory is just the standard representa-
tion theory of (semi)simple Lie algebras. If p is a representation of g then
the composition of p with the Miura map is a representation of the finite W alge-
bra. In this way we get the representation theory of finite W algebras from the
representation theory of the grade zero subalgebras associated to the different sl2

embeddings.
Since ^(g0) is abelian for the principal 5/2 embeddings, this implies that in

those cases the quantum finite W algebras are also abelian, something which was
already proven by Kostant [27]. To get some interesting novel structure, one
should therefore consider nonprincipal sl2 embeddings.

Again let us consider the example of 3 = 2 + 1. The expressions for the
quantum Miura transformation of this algebra are obtained from (4.29) by restrict-
ing these expressions to the bidegree (0,0) part. If we introduce s = ( J 4 + 3J5)/4,
h = (J5 - J 4)/4, / = 2 J 6 and e = P/2, then ft, ej form an sl2 Lie algebra,
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[/z, e] = e and [h,f~\ = —/and [e,/] = 2h while s commutes with everything. In
terms of s and h, e,f, the quantum Miura transformation reads

2
H = 2h--s+l,

E= -2(s-h-l)e,

F = \f (5.2)

Notice that C contains the second Casimir of s/2, which is what one would expect
because it commutes with everything. Every g0 = sl2 Θ u(ϊ) module gives, using the
expressions (5.2), a module for the finite quantum algebra W^. So if we have
a representation of sl2®u{\) in terms of n x n matrices, we immediately get
a representation of Wψ in terms of n x n matrices.

5.7. Fock Realizations of Quantum Finite W Algebras. Using the quantum Miura
transformation we can turn any Fock realization of g0 into a Fock realization of
the corresponding finite W algebra. The Fock realizations of simple Lie algebras
are well known [31]. For example, the Fock realization of sl2 is given by

T- ,az

\{Λ,a)-Zjz, (5.3)

where α is the root of sl2. The expressions for arbitrary sln can be found in [15] and
will not be given here.

Using this one is immediately able to write down a Fock realization of the
algebra g0 (since it is essentially a direct sum of slk algebras). Then using the
quantum Miura transformation one thus arrives at a Fock realization of the finite
W algebra in question. Let us now explicitly do this in the example of Wf\
Inserting the expressions (5.3) into the Miura map (5.2) one finds

1 \d d2

- (A, α) I 2z —j
2 dz dz£

= - \{A a)2 - j(Λ, α) - | s 2 + ̂ s — 1 (5.4)
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(where we consider s to be a number). This realization is equal to the zero mode
structure of the free field realization of the infinite wψ algebra constructed in [32].
Note however that the derivation is completely different since in [32] (using
standard methods) the expressions in terms of free fields were obtained by con-
structing the generators of the commutant of certain screening charges. Construct-
ing this commutant is in general however rather cumbersome. The method we
presented above is more direct and works for arbitrary embeddings (and realiz-
ations).

The Fock realizations (5.4) contain for certain values of s and (Λ9 α) the finite
dimensional representations of wψ which were constructed in [14]. Before we
show this let us recall the results of [14].

Theorem 6. Let d be a positive integer and x a real number.

1. For every pair (p, x) the algebra W3 has a unique highest weight representa-
tion W(ά\ x) of dimension d with highest weight j(d; x) = d -f x — 1 and
central value c(d; x) = ^(1 — d2) — x2.

2. Let fce{l,. . . ,d — 1} then W(d\\k — 3d) is reducible and its invariant
subspace is isomorphic as a representation to W{d — k; — %{k + d)\

3. The representation W(d\ x) is unitary iff x > \d — f.

Now one can easily check that for d = (Λ9 α) and s = f (1 — x) the subspace

' ά
(5.5)

of C(z) is isomorphic as a representation to W(d\ x).

6. Discussion

In this paper we have studied finite ^algebras in great detail and it turns out that
they are very rich in their structure. There are several issues that deserve further
study. For example it would be very interesting to calculate the orbit of finite
W transformations on the solution space of the finite dimensional generalized Toda
systems we encountered in this paper. These systems were already derived in [33]
as a static and spherically symmetric solutions of the self dual Yang-Mills equa-
tions. In that paper some special solutions of generalized Toda theories were
constructed but as far as we know the general solution space is not known. Since
finite W algebras act on this solution space, transforming one solution into
another, it may be possible to generate the entire solution space by the finite
PF action (remember that the symmetry group of the free particle on the group also
acts transitively on the space of solutions).

Closely related to this problem is the problem of finding the symplectic orbits of
finite W algebras (cf. [34], where a characterization of these was given for the
infinite standard WN algebras). Remember that the Kirillov Poisson structure is not
associated to a symplectic form but that the Lie algebra splits up into union of
symplectic orbits. It is well known that these orbits are just the coadjoint orbits of
the group action on the Lie algebra. It may be interesting to apply the procedure of
geometric quantization to the symplectic orbits of classical finite W algebras and
see if one can reproduce the representations W(d; x). Of course this would be
equivalent to finding a Borel-Weil like theorem for finite W algebras.
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Another interesting problem is finding comultiplications for finite W algebras,
in order to be able to define tensor products. This is a difficult problem, since the
natural comultiplication on the universal enveloping algebra does not induce one
on the W algebras.

Many of the techniques developed in this paper can equally well be applied to
ordinary W algebras. We will come back to this in a future publication.

7. Appendix

In this appendix we give an example of a quantum finite W algebra in which the
quantum relations have obtained quantum corrections, i.e. terms of order h2 or
higher. It has 7 generators {H, E, F, G+, G°, G", C}. The generators {H,E,F}
form an sl2 subalgebra, C commutes with everything and the generators
{G~,G°,G+} form a triplet under the adjoint action of {H, E, F}9 i.e.
[fl, G f] = iG\ where i e {- , 0, +}, [£, G"] = tιG°, [£, G°] = 2hG+,
[F, G + ] = fiG°, [F, G°] = 2ftG~. These relations are the same as the classical
ones. The quantum corrections appear in the relations

= h(-CE + EH2 + l-E2¥ + ̂

°, G"] = ft( - C F + FH 2 + ^ F 2 F + ^ ^ ) - 2h3F ,

[G+, G"] = hi-CH + H 3 + -HEF + ^HF£ j - 2h3H .

The algebra described above is the finite W algebra associated to the partition
4 = 2 + 2.
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