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Abstract: The algebra of monodromy matrices for sl(n) trigonometric R-matrix is
studied. It is shown that a generic finite-dimensional polynomial irreducible repres-
entation of this algebra is equivalent to a tensor product of L-operators. Cocom-
mutativity of representations is discussed and intertwiners for factorizable
representations are written through the Boltzmann weights of the sl(n) chiral Potts
model.

Introduction

Let us consider an algebra generated by noncommutative entries of the matrix 7(u)
satisfying the famous bilinear relation originated from the quantum inverse scatter-
ing method [13, 20]

R(A—mTA)T(w) = T(WT(HRA — ),

where R(4) is R-matrix — a solution of the Yang—Baxter equation. For historical
reasons this algebra is called the algebra of monodromy matrices. It possesses
a natural bialgebra structure with the coproduct (1.5). If g is a simple finite-
dimensional Lie algebra and R(A) is a g-invariant R-matrix the algebra of mono-
dromy matrices after a proper specialization gives the Yangian Y(g) introduced by
Drinfeld [11]. If R(A) is the corresponding trigonometric R-matrix [2, 14] (see (1.1)
for sl(n) case) this algebra is closely connected with U,(g) and U,(§) at zero level
[11, 14, 15, 22, 23]. In the last case it is convenient to use a new variable u = exp 4
rather than A. If R(4) is sl(2) elliptic R-matrix [1, 5] the algebra of monodromy
matrices gives rise to Sklyanin’s algebra [24].

In this paper we shall study algebras of monodromy matrices for si(n) trigo-
nometric R-matrices [6, 19, 21]. In the framework of the quantum inverse scatter-
ing method finite-dimensional irreducible representations of these algebras which
depend polynomially on the spectral parameter u are of special interest. They
correspond to integrable models on a finite lattice. L-operators are irreducible
representations with linear dependence on the spectral parameter, and usually we
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get a polynomial representation as a tensor product of L-operators. The question is
to examine whether all finite-dimensional polynomial irreducible representations
can be obtained in this way. For the sl(2) case corresponding to the R-matrix of the
six-vertex model the answer is known. If w is generic then each wanted representa-
tion is equivalent to a tensor product of L-operators [27, 28]. If w is a root of 1 the
situation is more complicated. In this case only generic representations are equiva-
lent to tensor products of L-operators, but there also exist representations, which
are not of this form [28]. For generic w in the sl(n) case finite-dimensional
irreducible representations were described in [7, 12], but to obtain all of them from
L-operators the notion of an L-operator should be generalized. Here we study the
sl(n) case for w being a root of 1 and obtain the same results as for the sl(2) case [28].

As is well known, the deformation parameter being a root of 1 is a peculiar case
for quantum groups [8]. It is the same for algebras of monodromy matrices under
consideration if " = 1. In this case a generic polynomial finite-dimensional
irreducible representation is cyclic (without highest and lowest vectors). Moreover,
as usual irreducible representations do not cocommute; their tensor products in
direct and inverse orders are not equivalent in contrast to what takes place for
generic w. The whole set of irreducible representations exfoliate to varieties of
cocommuting representations. For a couple of cocommuting representations one
can define an intertwiner realizing an equivalence of two tensor products. Inter-
twiners give us solutions of the Yang-Baxter equation, representations playing
arole of spectral parameters. In the sl(2) case an intertwiner for L-operators can be
written as a product of four factors and each of them can be expressed explicitly
through the Boltzmann weights of the chiral Potts model [4, 28]. A direct
generalization of this construction for the si(n) case leads to the sl(n) chiral Potts
model [3] and minimal representations of U, (gl(n)) [9]. Unfortunately, minimal
L-operators from [3] (which correspond to m1n1ma1 representatmns of U (gl(n))
[9]) are not generic from the point of view of this paper. For a generic L-operator if
the necessary factorization exists it contains n factors instead of two factors for
a minimal one, so an intertwiner is a product of n? factors. But explicit expressions
for these factors can be written through the same Boltzmann weight of the sl(n)
chiral Potts model. Recently, another factorization for a generic L-operator was
obtained and the corresponding formula for an intertwiner was written by use of
the same Boltzmann weight [16].

The paper is organized as follows. In the first section we give definitions
and formulate results without proofs. The next two sections contain proofs of
Theorems 1, 2. In the fourth section we introduce factorized L-operators and build
their intertwiners; the connection with the si(n) chiral Potts model is also discussed.
In the last sections we give technical details and necessary proofs. Some proofs
which can be done by explicit calculation are omitted.

1. The Algebra of Monodromy Matrices

Let us define an algebra of monodromy matrices for the sl(n) trigonometric
R-matrix. Denote for short .# = End C". The R-matrix R(u) is considered as an
element of .#®2 and has the following nonzero entries:

Riw=1—-uw,
Rij(u) = wy(1 —u), Rj@) =u"(l-w), i+j, (L1)
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where 0;; = {1 l <J

0,i=j’
introduce a tensor & such that w;; = »*. This definition of R(u) differs slightly from
the original one [6, 21]. A variable u is called the spectral parameter. R(u) satisfies
the Yang—Baxter equation:

, w;jm;; = o' T% and §;; is the Kronecker symbol. We also

12 13 23 23 13 12
R(u)R(uv)R(v) = R(v) R(uv) R (u) .
Here we use the standard matrix notations, the superscripts indicating the way of

embedding # < .#®3 as corresponding factors.

Definition 1.1. The algebra of monodromy matrices &/ is an associative algebra
defined by generators Ty;(u), H;, i,j =1,. .., n and relations

R(u) T(uw) T(v) = T(0) Two)R(u) , (12)

[0, ® H, Tw)] =0, & =diag(l,... ,la)h,. 1),
HiHj = HjHi, HH[ =1 5 (1‘3)
l

where T(u) € M @ o with entries T;(u) € .

Here and later [ [, = [[}-, and the same convention is implied for sums. A more
explicit form of Eq. (1.3) is

H,T;;(u) = T;j(u)H,w® ™% (1.4)
One can introduce the natural coproduct 4: o7 — o/ ®2:
A(TW) = Ty To(u) € M ® 42,
A4(H,) = H,® H, (L5)
(subscripts indicate the way of embedding ./ = ./ ®2) and counit &: .o/ — C:
e(Tw)=1, eH)=1

making o/ a bialgebra, hence a tensor product of «/-modules is also .«/-module.
The algebra .« is closely connected with the algebra U, (gl(n)) but does not exactly
coincide with it In Sect. 8 we shall discuss the structure of the algebra .« in more
detail.

We are interested in a special class of representation of the algebra /. Often the
representation will be indicated by a superscript.

Definition 1.2. A representation © of the algebra o is called a polynomial repre-
sentation if dimm < co, T™u) is polynomial on u and TT(0)=0 for i<j.
degn = deg T™ = max;;(0;; + deg T'}) is called a degree of the representation .

The algebra o/ has the well known element det, 7(u) which is called the
quantum determinant (the exact definition of det, T'(u) is given in Sect. 6). Hence-
forward we assume that all ¢;; are integer.

Lemma 1.1. Q(u) = det, T(w)[ [, Hi" is a central element.
Proof. In Sect. 6. [
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Lemma 1.2. A(det,T(u)) = det, T(u) ® det, T'(u).
Proof. In Sect. 7. O
For a polynomial representation n, degm = M, T'(u) = T™(u) we define
T =TF(—wM+ - +T§,
Tijw) = (—wls(T(—wM P+ -+ T, i+j,
QW) = Q=(—uy™ +- - +0°. (L6)

Lemma 1.3. Let n be a polynomial representation, T(u) = T™u), H; = H}. Oper-
ators tP° = TZ [ [, Hr * and t? = T§-[],Hf" commute with T(u), H, . .., H,.

It is obvious that 9° =[], ¢, Q° = [, 7.

Henceforth throughout the paper we take w being a primitive N** root of 1. In
this case the algebra .o/ has an additional large set of central elements. To describe
them explicitly we introduce an operation <*) as follows: <O (") = [r-, O(ua").

Lemma 14. {T;;>(v), HY, . . ., HY are central elements.
Proof. In Sect. 7. O
Define the element {T)(v) € # ® & such that (T );(v) = {T};>(v).
Lemma 15. A({T>®)) = <T; >0){T>>().
For any 7 € M let A, B], C{ be the following minors:

AY is the principal minor generated by the first k rows and columns.
BY is generated by the first k rows and k + 1 columns (except the k™ column).
C7 is generated by the first k + 1 rows and k columns (except the k™ row).

Definition 1.3. 7 (v) € A [v], deg T = M is called an A-polynomial if it enjoys the
properties

1) 7,000 =0ifi <.

() degTij <M ifi>].

(3) For any k < n A7 (v) has exactly kM nonzero simple zeros.
(4) If A (vo) = O then B (vo) + 0 and C¥ (vo) * O.

AM [v] denotes the set of all A-polynomials.

It is evident that deg Ay = kM, degB] < kM, degC; <kM and A (0) +0,
B (0) = 0.

Let Y3, be a variety of sets £ = {7 (v) € AM [v], 2(u) € C[ul, h;, z{°, 20},
such that deg7 = M and

Ti@) = ((— oMW+ + )] A,
l
2(u) =(—u)"M]f[z,f’O + 4 Hz? ,

det 7 (1) = <2)(0) [ s, H hi=1. (1.7)
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Lemma 1.6. Y, is diffeomorphic to a dense open set in C"”M*2~1,
Proof. In Sect.2. O

Definition 1.4. The polynomial representation 7 is called an A-representation if
{T>™v) € AM[v] and deg{T)™ = degn. An irreducible A-representation of degree
1 is called an elementary representation (L-operator).

For any irreducible A-representation © we put

I = {{TH)™v), Q™(w), (HY), ()", (t?)"} .
Lemma 1.7. X" € Yy, M = degm.
Proof. In Sect. 7. O

Theorem 1. For any set X € Yy there exists a unique irreducible A-representation
7t such that ™ = X. Moreover, degm = M and dimn = N®~VnM/2,

Remark. Minimal L-operators from [3] do not fall into the set of A-representa-
tions. It is a posteriori obvious, since their dimension is equal to N"~ ! which is less
than it should be for irreducible A-representations according to Theorem 1. But
one can also see a priori that in the case of a minimal L-operator the conditions (3)
and (4) of Definition 1.3, which have to be checked for the corresponding matrix
consisting of central elements, fail for k > 2 and k > 1 respectively.

Theorem 2. A generic irreducible A-representation of degree M = 1 is equivalent to
a tensor product of M elementary representations.

Remark. One can check if a representation =« is equivalent to a tensor product of
elementary representations using only {7 )>™(v).

2. The Proof of Theorem 1. Uniqueness

In order to prove Theorem 1 we shall describe the construction of an irreducible
A-representation inspired by Drinfeld’s new realization of Yangians [12] and the
ideas of the functional Bethe ansatz [26]. Let us introduce the special elements of
the algebra «/-quantum minors of 7T'(u); the exact definition and the calculation of
commutation relations for quantum minors is given in Sect. 6. The following
quantum minors will play an important role:

Aw)is a principal minor generated by the first k rows and columns;

Bi(u) is generated by the first k rows and k + 1 columns (except the k'® column);
Ci(u) is generated by the first k + 1 rows and k columns (except the k™ row);

D, (u) is generated by the first k + 1 rows and columns (except the k™ row and column);

It is also convenient to introduce improved minors whose commutation relations
are simpler than for original ones:

Aw) = A Hy, Bi(w) = B(wH, ,
Ci(u) = Co)Hy, Di(u) = D) H,— JTH o+,
1

k
A= [[[]H . 1)
i=1 1
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Main commutation relations read as follows:
[4i(w), 4;()] = [4i(w), H,] =0,
[4i(w), Bi(v)] = [4i(w), C(v)] = [B;(u), C;(v)1 =0, i+j,
[Bi(w), Bi(v)] = [Ci(w), C;(v)] =0, 22
HBy(w) = o”* " BiwH;, H,Ci(u) = 0®*~%*>'Ci(wH,,

BWB/W) = oM BWB)
Ci(w)C;i(v) = 0" C;(v)Ci(u)
Mij = &, j+1 T &1, — & — &iv1,j+1 (2.3)
(v — v)A4;(u) B;(v) = (u — vw)B;(v) A:(u) — v(1 — w)B;(u) A;(v) ,
o(u — v)4;w) C;(v) = (uw — v)C;(v) A;(u) + u(l — w)Ci(u) A;(v) , 2.4)
D;(u) A;(uw) — wB;(u)C;(uw)H® = A; 4 (uw)4;-1(u) , (2.5)

H(i) — nHm—aiH,l (26)
1

s

where Ay(u) = 1, A,(u) = Q(u). Note that
H9B(u) = o™ Bjw)H®, HYCju)= o "CijuH®?.
Let us also define improved minors of (T )(v):
AR = A{PWAHY, BP() =B WAY,
CP = C{PwAY, 2.7
where minors 45T (v), B§T(v), C5T (v) were defined above.
Lemma 2.1. {4;>(v) = 48 (v), {B;»(v) = B{(v), {C;>(v) = C£(v) .
Proof. In Sect.7. O

Denote by of the subalgebra generated by {Ak(u), Bk(u) Ci(w), H,}?Z1. Certainly,
o is also generated by {A4;(u), Bx(u), Cy(u), Hk}k 1.

Now let us fix throughout this section in irreducible A-representation n of
degree M and take all elements of the algebra .o/ in this representation. (The
explicit indication of 7 will be omitted.) Let {{;;} be the set of all zeros of the
polynomial A{(v). Because n is an A-representation, all these zeros are nonzero
and simple. Introduce operators oy;, Bi;, vi; as follows:

kM k
Ak(u) = A;:o H (ockj — u), akNj = ij, A;o = l—[ t,oo N (2.8)
j=1 i=1

ﬁij = Bi(“ij)s Yij = Ci(aij) . (2.9)

When substituting o;; instead of the spectral parameter the ordering of non-
commuting factors has to be chosen. We prefer to put all o’s to the right,
but one can choose another ordering and all the following remains correct.
Equations (2.2)-(2.6) and Lemma 2.1 lead to the following relations for these
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operators:
Lot ijl] = fog, H]=[H;, H]=0,

517 _ — 518
B = B0 0°% Y, ayy = 040 U

HiBj =’ 7%B,H,, Hyj= o %1y, H,, (2.10)
[Biks Bul = [Bixs ] = i, val =0, i%j,
BuBi = BuPu@™, yuyp = ypyuc”™, li—jl>1, (2.11)
wﬂikVikH(i) = — A 1(°Cik)Ai—1(°‘ik@_1) s
YiaBuH® = — Ajp 1 (0p0) Ai— 1 () (2.12)
N=BP(Cy), vi=CPLy), (2.13)
kM K

A;:O n Okj = l—_[ t?Hl—l . (214)

j=1 i=1

Since & is an A-representation f§;; and y;; are invertible (see (2.13)). For present the
definition (2.8) of operators o;; is formal. To make it sensible we introduce a vector
v —a common eigenvector of 4;(u),i =1, ...,n — 1 and the subspace V = n(</)v.

Lemma 2.2.

1. V is spanned by common eigenvectors of A;(u) with different eigenvalues.

2. i, Bij, yij can be well defined on V as operators satisfying relations (2.10)—(2.14).
3. dim V= N®- Mz,

Proof. Evidently we can define «;; and v claiming v to be its eigenvector with the
appropriate eigenvalue. Then the subspace ¥V can be set up step by step starting
from v by use of f;; and y,. At every step the definition of «;; can be naturally
extended to fulfill relations (2.10). It is easy to check that this construction can be
realized selfconsistently giving the subspace V' of the required dimension and
operators a;;, B, y;; on it satisfying the relations (2.10)—(2.14). And for the oper-
ators B,(u) and C,(u) we have the interpolating formulae:

M M
Byw) =u Y, Puttii' Pu(u), Ci(w)= Y yuPulw),
i=1 i=1
kM
where P(u) =
¢ 1131 Olgi — Olgj
Ji

R 2.15)

O

Remark. By the definition of o’s one can retell the first point saying that V is
spanned by common eigenvectors of «’s with different eigenvalues.

One can also see that for v/ — another common eigenvector of A;(u) V and
V' = n(«f )v' are isomorphic as (< )-orbits.

To complete this part of the proof of Theorem 1 it is enough to show that V'is
invariant with respect to n(.2/). To have more compact notations we shall show
that n(«/) < n(o/ ) using a;;, B;;, ;. The way of doing this is the following recursive
process. The first step is trivial:

Tii(w) = A;(), Tio(w)=Biw), Tow) =Ci(u
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(see (2.1), (2.6)). T2,(u) can be tested by means of the relation
Ay (uw) = Ty uw) Ty () — wy1 Tay (uw) Ty (u) .
To pass to the 3 by 3 principal submatrix one has to use relations
éz(uw) = 031 (031" Tr3uw) T11 (W) — Tay (uw) Ty3(w) ,
C(uw) = w31 (@31 T3 (o) Ty; (4) — Ty (uo) Ti2(w)) - (2.16)
Substituting here u = ay; we obtain the interpolating formulae for 7'y (u), T3, (u):

M
Ty3(u) = —uwsi Hy Z yiit Ba(oagiw)ar; Pi(u) ,

i=1
-~ M ~
Ts3y(u)= — w35 Hy Y, Cy04;0)B1:' Prilu) -
i=1
Now T,3(u), T3,(u) € n(&i ) due to (2.16) and to test T'33(u) we recall that
A3 (uw) = Ts3(uw)A,(u) + known terms .
For further steps we have to introduce additional quantum minors:

Bi(u) is generated by the first k rows and k — 1 columns together with (k + )
column;

C(u) is generated by the first k — 1 rows and k columns together with (k + )
row;

D2 (u) is generated by the first k — 1 rows and columns together with (k + )
row and (k + 1) column;

D§ (u) is generated by the first k — 1 rows and columns together with (k + 1)™
row and (k + [)*® column;

We also define the corresponding improved minors:
Bu(u) = By H,, DEu) = ﬁft(u)ﬁk—ln Ho+nt
1

Culw) = Cu@Hy, Dfw) = D@ Hy— 1 [T Hi ™
1
(cf. (2.1)) and use the relations

w
Di() Ax(ue0) — 0Bua(u) Colum) H® = =22 By iy oy (uo0) Ay (1),

k+1,k

@,
D3 () Ax(ue) — 0By(w) Cum) H® = =22 Gy 1oy () A a (), (217)

k+1,k

which look similar to (2.5). To check Tis(u) € n(&/ ), i=1, 2, 3, the following
formulae have to be written:

2M
HPBy,(u) = — uwisd Y, 72 B3(2i0) A (o) 05" Pai(u) , (2.18)
i=1
B2 (u0) = 051 (051 Toa(uw) Ty 1 (u) — Toy (ue) T1a()) , (2.19)
M

Tio(w) = —uwst Hit Z Y1t Bz (0yi0)arit Pyi(u) - (2.20)

i=1
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Equations (2.18), (2.20) are obtained from the first of Eq.(2.17) for k =2 and
Eq. (2.19) respectively after the following substitutions: u = 0,0~ ! and u = ay;.
Now T,4(u) € () due to (2.19) and to test Ts,(u) we use

W41 Dy l%(uw) = W31 W33 T34(uw)22(u) + known terms .

In the same manner we can show that T,;(u) € n(&i ), i =1, 2, 3. In order to test
T44(u) and thus to complete this step of the process we look to

Ay (uw) = Taq(uw)A4(u) + known terms .

It is quite evident how to do the next steps by means of relations (2.17) and
interpolating formulae. As a result of this recursive process we can express all T3,;(u)
through operators a;;, f;;, 7;;. Justifying this formal calculations like in Lemma 2.2
we convince ourselves that n(</ )V < V.

Proof of Lemma 1.6. The recursive process described above certainly has the
“classical limit” — a very similar one for usual matrix polynomials. It shows that the
variety Y3, can be parametrized by 2(u), minors A7 (v), BY (v), C/ (v),i=1,...,
n—1and h;, z, z), i=1,..., n. Now it is very easy to find independent
parameters in which the identity mapping is the required diffeomorphism. [

3. The Proof of Theorem 1. Existence

Let a set X € Yy, be given. We have fo find an irreducible A-representation n such
that £ = X" Define the algebra /s by generators {0y, Bu, Vi Hi} 121, and
relations (cf. (2.7)—(2.14)):

Loix, 0] = o, H;] = [Hi, Hi]1 =0,

aa B = Ppo; %%, gy = ppoe 0%
Hify = 7% B,H;,, Hyy= o %1y, H;,
(B Bul = [Bus vi]l = Dyis vl =0, i,
BBy = BaBu®™, yayp=ypyac”", li—j|>1,
OPayuH? = — Ais 1 (0a) Ai-1 (a0 1)

VB H® = — Aiy 1 (0e0) Ai -1 (o)

oc?,’- = Cij, I;\}' = ﬁEB?(CU)a Vli\;{ = ﬁic?(gij) s
kM

K k
[Mze [T awy=1]20H7",
=1 i=1

=1

k kM
) = T] 2 [] Cog— ), HO = [JH= 0w,
i=1  j=1

l
. k
hk = H l__[hl_—e“ .
i=1 1

It is easy to see that .y is a simple algebra isomorphic to End C¥®~ DnM/2 g it hag
a unique irreducible representation and any its representation is faithful. Before we
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have shown that an irreducible A-representation 7 generates the irreducible repres-
entation of the algebra M,x Now we would like to reverse a logic. Let B(u), C(u) be
defined by Eq. (2.15) and A(u), B(u), C(u) by Eq. (2.1). Define the homomorphlsm :
o — sfs on generators as follows: ¢(H;) = H; and ¢(T;;(u)) is given by the
recursive process described in the previous section. For the definition of ¢ to be
correct all the relations (1.1) have to be preserved by ¢. To verify this is to check
some polynomial identities on Y,. So they have to be checked only for generic
2 and it certainly will be done if an irreducible A-representation 7 such that X* =
will be shown. Though we return almost to the starting point of the consideration
we have a profit to solve the problem only for generic X. In this case the required
irreducible A-representation can be built from some simple primitives.

Later we shall treat C"-coordinate indices modulo n, excepting the cases when
they appear in inequalities. Introduce the algebra #~ generated by F;, G;, H;,
i=1,...,nand relations

FiFj=F;F;,, F;H;=H;F;, HH;=H;H;,
wijFi Gj = GjFiwi,j+1, H‘GJ = GjHia)‘si.J'*'l_‘sij s
@;;GiGj = G;Giw; 41,541, [[Hi=1. (3.1)
1

Let f; = F;[[,H;*,F =F,...F,,and G = G, . . . G,. Elements f;, F}, GY, H},
i=1,...,nand FG™ clearly generate the center of #". The mapping ¢: o — #":

Tij(u)i’ — uF;0; 4+ (— w*Gidiy 1,5,
¢
Hl —_—> Hl (3.2)
is a homomorphism of algebras. It is easy to calculate that

Q(u)l#(—u)"_lw(l_")"u((_1)"G ﬁ Wy — uF) ,

i=2
(Tyd ) —2s —vF Y, + (=05 GYos s, .

For any representation ¢ of the algebra %" the representation £ ¢ of the algebra
o/ will be called a simplest representation.

Let ¥ = End C" and X, Z € ¥~ be the following matrices: X;; = &;, j+1 (moa N)»
Z;; = 'é;;. Define naturally operators X;, Z; € ¥"®":

Xi — I®(i—1)®X®I®(n—i—1), Zi — I®(i—1)®Z®I®(n—i—l)

and introduce the subspace # = (CV)®" as the eigenspace Z®" = 1.

Lemma 3.1. Let a;, b;, ¢;, i =1,..., n be arbitrary numbers such that ni =1
and my, i, j=1,..., n be integers such that m; ;4 —my—my ;41 —m;=
&+1,1+1 — &u. The mapping &: W — End #:

‘—aHZEiI —le+1X II_[Z"'" Hi=CiZi

is a representation of the algebra #'.
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Now we have got a lot of simplest representations to extract the required
irreducible A-representation from a tensor product of simplest representations. Let
k;,i=1,...,nM be zeros of 2(u) (simple for generic case), and let us take nonzero
vectors ¥; € ker 7 (xY) which are unique up to scale factor due to (1.7). Define step
by step a sequence of simplest representations o; = &;© ¢ such that

Q% (k) =0, (TH™(k)¥u=0,

nM nM
H1®éj(ﬁ)=zl°°a n1®0'j(H{q)=h1,
J= J=

where Tli = T,‘, Ti+ 1,j = <T>0‘i('€;,V) qlij (3.3)
and take the representation @ = (g4, . . ., g, ) such that
T"(u) = (—u)(1~n)MTnM(u; o'nM)' et Tl(u; 0'1) b}
nM
Hf=T[%0iH), Tiu;0;)=TW). (3.4)
j=1

Lemma 3.2. {T)*v) =  (v).

Proof. Consider the ratio t(v) = (T)>™v)J ~!(v). This is a meromorphic function
having poles only at points xY. But Eq.(3.3), (3.4) show that for any
ires,=.~7(u) = 0. Hence, 7(v) does not depend on v. Taking limits v > 0and v - oo -
we see that 7(v) is both an upper triangular matrix with unit diagonal and a lower
triangular one. Then 7(v) is the unit matrix. O

One can easily check that the representation = is a polynomial A-representétion
of degree M and Q™(u) = 2(u), t{° = z{°. As a corollary of Lemma 3.2 we have got
nM

that (¢9)" = [] ®0;(GY-;) = (2?)N. According to Lemma 1.3 the representation
i=1
n can be restricted to a maximal common eigenspace of operators t{=

nM
l_[ ®£j<Gi_j]—[ H?“), i=1,...,n Itis obvious that we can choose this eigen-
ji=1 1

space #° such that t?| 0 = z?. So an irreducible component n° = 7|40 is an
irreducible A-representation such that: X* =%, [J

Proof of Theorem 2. This theorem simply follows from formula (3.11) and The-
orem 1. Let ©, be an irreducible A-representation, X = 2™ and the representation
7 =m(oy,..., 0. is built as described above. One can see that operators t are

(k+1)n

organized as products of commuting factors t;, = n® ¢ j<Gi_ ;ITH f"). Let s#°*
j=kn+1 1

be a maximal common eigenspace of t,i=1,...,nand @Q;_, #* = #°. Taking

7* as an irreducible component of 7(Gyp+1, - - - » G+ 1)n)| 4+ it is €asy to see that z*
is an elementary representation. The representation

=r"®... @ (3.5)

is an A-representation of degree M, dim 7° = N®~V"M/2 and ¥ = ¥, Therefore it
should be irreducible, equivalent to 7, and (3.5) is its decomposition to a tensor
product of elementary representations. [
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4. Cocommuting Representations and Intertwiners

Definitiond.1. Representations mny, n, of the algebra </ are called cocommuting
representations if the representations m, ® n, and n,@mn, are equivalent. A linear
invertible operator R such that

R7; @ m2(4(0)) = 7, @ 71 (4(0))R (4.1)
for any O € o is called their intertwiner.

Lemma 4.1. Let ny, m, be cocommuting representations and all central elements are
represented in m; ® m, by scalars. Then

KTH™ (), <T>™(v)]1 =0. (4.2)
Proof. The statement follows from Lemmas 1.4, 1.5. [

Lemma 4.2. Let n,, n, be irreducible A-representations and both n, ® m, and
7, ® 7, be A-representations. Then ny and n, cocommute if and only if Eq.(4.2) is
satisfied and their intertwiner is unique modulo a scalar factor.

Proof. Due to Theorem 1 both 7; ® n, and 7, ® 7, are irreducible A-representa-
tions because of their dimensions. So the part “only if” follows from the previous
lemma. On the other hand if Eq. (4.2) is satisfied it follows from Eq. (1.5), (1.6) and
Lemmas 1.2, 1.5 that X™®™ = y™®m_ Hence returning to Theorem 1 we obtain
that they are equivalent irreducible representations. O

So we reduce the problem to consideration of matrix 4-polynomials instead of
irreducible A-representations. For  (v) € A [v] let 4 +[v] = . [v] be spanned
by v*7 '(v), k,1 = 0.

Lemma 4.3. Let #(v), 7 (v) € AM [v] and [P(v), T (v)] = 0. Then for generic T (v)
P(v) € Mq[v].

Lemma 44. Let T (v) e AM[v] and T,(v) = T (v) — ALl. Then for generic T (v)
corank J;(v) < 1 for all 1, u.

Proof. If Ay, vo such that corank 7 (vo) > 1 exist then 4, is a common zero of
det T, (vo), A7~ 1 (vo) and B2, (vo) as polynomials on A. Therefore, v, is a common
zero of three their mutual resultants as polynomials on v. But it is impossible for
generic J (v). O

Proof of Lemma 4.3. Let us recall that if y € .# has a “simple” spectrum in a sense
that corank (Z — AI) < 1 for all A then the set {2 *} ;2§ is a basis of its commutant.
A generic J(v) has a “simple” spectrum for all v, so 2(v) = Z;;é P, ()T *(v).
Treating this equality as a system of linear equations for functions P, (v) we see that
it has a unique solution for any finite v. Taking into account Cramer’s formulae one
can see that P,(v) must be whole rational functions, i.e. polynomials. The same idea
applied to the highest order terms (infinite v) gives the equality for degrees:
deg ? = max;(deg Py, kdeg 7). 0O

Certainly, if 2,(v), 2,(v) € M #[v] then [P(v), #,(v)] = 0. And vice versa, one
can say that if [2,(v), 2,(v)] = 0 then generically 2, (v), 2,(v) € M, [v] for some
T (v).

Later we shall use the following trivial idea: A nonzero meromorphic function is
not zero at a generic point.
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Lemma 4.5. For a generic A-polynomial 2 (v) its power P™(v) is also an A-
polynomial.

Corollary. For generic I (v) € AM [v] and Pi(v), P,(v) € Ms[v] P (v), P,(v)
€ AM [v].

Now let us return to the intertwiners. Due to Theorem 1 the space of irreducible
A-representations of degree M is Y3, and all of them can be realized in the same
space VM = CN"~DmMI2 Define A, as a set of irreducible representations n such
that {(T>™v) € #5[v]. We want to treat an intertwiner as a function of the
intertwining representations and it can be done. According to Lemmas 4.3, 4.5
intertwiners for commuting irreducible A-representations of degrees M, M’ define
modulo a scalar factor a locally holomorphic Hom (V*, V™’)-valued function on
U 7 R5% 0 (Yy x Yyr). Moreover this function evidently is a nearly meromorphic
function, only a common scalar factor can be multivalued. Later we imply an
intertwiner to be considered as a function of representations in the sense described
above.

Lemma 4.6. Let R(n,, 7,) be an intertwiner for cocommuting irreducible representa-
tions my, m,. Then generally trR(ny, m,) * 0.

Proof. 1t is sufficient to take n; = n®' and n, = n®™ for some irreducible A-
representation © and integers [, m. Generally n®2 is also an irreducible A-repre-
sentation and R(x, x) is proportional to the permutation operator. Now one can
give the explicit expression for the intertwiner R(m;,7,) and show that
trR(n;, m,) oc N¥, where k is the maximal common factor of [ and m. O

This lemma shows that tr R(n;, 7,) = 1 is a good normalization condition making
an intertwiner a pure meromorphic function.

Lemma 4.7. Let n, € R5,a =1, 2, 3 be irreducible A-representations such that all
7, Q@ my, (a + b) are A-representations. Then intertwiners R(n,, 7,) satisfy the Yang—
Baxter equation

Ris(mq, m2)Rys3(my, m3)Ro3(m2, m3) = Ras(mz, m3)Rys(my, m3)Ryp(my, 5) .

Proof. We consider both sides of this equality as functions on () #%>. Put
T

R = (Ry3(72, m3)Ry3(my, m3)R 5 (7y, ﬂz))_lRu(ﬂu 73)R13(m1, m3)Ry3(m, m3) .

R commutes with all operators of the representation n; ® n, ® n3 which is
generically an A-representation, hence ‘R is a scalar. Moreover, from

Riz(my, m2)Ryz(my, m3)Ras(ma, m3)Rys(my, m5) " = RRy;(,, n3)Ri3(my, 73)

we see that tr(Ry3(my, n3)Ry3(ms, m3)) = Rir(Ry3(na, m3)Rys(my, 73)).  So
R=1 0O

Proof of Lemma 4.5. 1t is enough for any degree | and power m to give an example
of a polynomial #(v), deg 2 = [ satisfying items 1, 2 of Definition 1.3 such that
AY"(v) has simple zeros and to give an example of a similar polynomial S(v),
deg & = Isuch that A7 ™(v) and B{ ™ (v) have no common zeros. We shall take 2(v)
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as follows:
'@ii(v)=(v—wi)l, Wi#:Wj lfl=|=]

i=1,...,k
Pik+ 10 =0, Priq,ilv)=¢
Pyw=1 i=k+1,...,n P;(v)=0 otherwise.

One can calculate that for ¢ —» 0,

m—2

AL (v) = ﬁ (v —w)™ +ev i ﬁ w—w)™ > (v—w)+ o)

j s=0

e
-

Pt

so A7"(v) have simple zeros for small enough .
We shall seek for a polynomial & (v) of the following type:

a(v) vb 0
Fo)=| 0 (w—v) 0 ,
0 0 (w—0)I

where a(v) is a k by k block, b is a k-column and I is the (n — k — 1) dimensional
unit matrix. Let a(v) be a k-dimensional 4-polynomial of degree [, deta(v) has
simple zeros, deta(w) # 0 and the principal (k — 1)™ minor of a(v) is not zero at
zeros of det a(v). One can build such a matrix a(v) in a way similar to the formulae
(3.3), (3.4). Let us also take b¢ im a(v) at zeros of det a(v). The technical exercise is to
show that BY ™(v) is not zero at zeros of A7 (v). O

5. sl(n) Chiral Potts Model

Unfortunately, no reasonable explicit expression for intertwiners of generic A-
representations can be obtained directly, even for the sl(2) case. The way to obtain
such an expression in this case is to use the factorization of A-representations to
simplest representations. As a result formulae for intertwiners through the
Boltzmann weights of the chiral Potts model can be got [4, 28]. The first generaliz-
ation of the chiral Potts model to the sl(n) case was proposed in [3,9] and
corresponding formulae for intertwiners of minimal cyclic representations were
written.

In this section we will introduce a special class of elementary A-representations
— factorizable representations. For intertwiners of cocommuting factorizable repre-
sentations explicit formulae will be given. Although minimal representations are
not A-representations the same factors as in Boltzmann weights of the si(n) chiral
Potts model [3,9] happen to be employed here (cf. [16]).

Let us take a two-dimensional subspace IT = €*" and introduce a couple
(', @), where I is a variety:

r={peC”<Kpyei},

_far ... ay 3 ay ... a¥
p—<b1 bn>’ <p>_<b’f b,’f)’
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_ 0(al, b))
0@y, b))
is a Jacobian calculated on the subspace II. Always later we shall refer only to

I implying the couple (I', ®). Let # be the quotient of the algebra #~ modulo
relations FG ™! = 1,

F¥=1, GN=ow, 07!, HY=1, i=1,...,n

and @ is an n by n matrix such that Y& Here the right-hand side

and Z be the center of # . We shall retain the same notations for generators in case
of W keeping in mind new extra relations. One can see that & is generated by

=F][[,H " i=1,.
Define the 31mplest L operator Lu,p)e 4 ® W as follows:
Lij(u, p) = P ' (—uaiFidy; + (—u)’75;G;0i4 1, 5) - (5.1

Try to find a solution of the “skew intertwining” relation
S(p, p) L2 (u, ﬁl)Ll(ur p) = Lz(u: pl)Ll(u9 p)S(p, ﬁ) »
[S(p,P), Hi® H;]1=0, (5.2)
where S(p, p) € ¥ ®2,

1_ a, ... a1 ay ~1 &1 &',,_1 dn
P=\b,... b, b)) P T\B,... B, B
and subscripts indicate the way of embedding # = #" ®2 as corresponding factor.
Introduce elements
Ji=F1G,®G;'F;, K;=(Hi®H)J
such that J¥ = K¥ = (—1)¥ ! and define the subalgebra 7,, = # ®™ generated by

i=1,...,n
k=1,....m—1"

Define also the subalgebra #,, = % ®™ generated by 2 ®" and

i=1,...,n
k=1,....m—1"

Ji(k) = 10k~ 1)®Ji® 1®m—k-1)

Ki(k) — 1®(k—1)®Ki® 1®m—k-1)

Lemma 5.1. Let p, p belong to the same variety I' and {p) + {p). Then there exists
generically a unique modulo X, solution S(p, p) of Eq. (5.2):

Spp) = ¥ Woplom [t %213 Ty, (53)

seZy

where

N n— i Si— ~ T i
Wo(s) = ( 3 )S o T hidio — aibie’
pp\>) N~N NTN II “ >
bi a; — a; bi ¢ii

i j=1
S;-1=s;, i=1,...,n sy=s,(mod N). 5.4)
(Ct. (0.5), (0.6) from [3].)

Remark. The first ratio in the r.h.s. of Eq. (5.4) actually does not depend on i.
Inequalities there describe a convenient choice of the representative for s.
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Lemma 5.2. S(p, p) satisfies the inversion relation

S(p, P)S(P, p) = 3(p, P)
and the skew Yang—Baxter equation:
S(FH DA S(P', 1))S(P, D) ® 1)
= o(p, B, Y1 ® S(p, P))S(p*, p*) ® 1)(1 ® S(5, p))
where o(p, P, p) is a nonzero scalar and
bid; —ab,  [[,pYal — [, aVb¥
~ ~=N,,+1 i%i li.lll Ui Vi
S D =N oy sy b= b

This lemma corresponds to Theorem 4.1 from [10] and the inversion relation (0.8)
from [3] or (A.1) from [17]. (It should be noted that for p € I' we suppose that
pl € Fl Wlth ¢,'11 = ¢i,j+1')

Introducing the products L™(u, p) and S(p, p):

L™u, p) = L,(u, p™) ... Li(u,pl)e MR W™,

p:'(pl"'pm)erxm P
i+n
Sd) =[] Il S(pipi=i)ew

i j=i+1

(i is increasing and j is decreasing from left to right in this product), we get usual
intertwining relation

S(p1, P2)L2(w, p2)Li(u, p1) = L1(u, p1)L5(u, p2)S(P1, P2) » (5.5)
where subscripts indicate embeddings WO = Ay On Q) A O,
Lemma 5.3. S(p,, p») satisfies the Yang—Baxter equation
(S(p2, p3) ® DA @ S(p1, p3))(S(p1, p2) ® 1)
=(S(p1, P2) @ (1 ® S(p1, P3))(S(p2, p3) ® 1)
where 1.= 1%,
To prove the announced lemmas we have to study some extra subalgebras.

Lemma 54. Let us consider the subalgebra & — v generated by Fi ' G,
i=1,...,n Then &’ — the commutant of & is generated by F{7'G;,i=1,...,n
and &. :

Proof. Commutation relations in W are homogeneous, so modulo factors belong-
ing to & we have to test only monomials of H;s and G;’s. But E = [ [ H¥G}' € &’
if and only if ;4 — w; = zjvj(s,-j — &4, )0 Ee[[,(F7'GyZ. O

Lemma 5.5. The commutant of the subalgebra ¥, c o om generated by
{HE" FE" V@ Gi; ®...® Gi_}I=1k=1 is equal to A,,.

Proof. Denote the commutant of #;, by %,,. Qne can check that &, < Z,..
Obviously, 1°™ "V ® F141 G, e #5 so L, W ®"-V® %' This imply that
. is generated by £, ; ® 1 and 1°™ -2 ® . Step by step we can reduce the
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problem to m = 1 and show that %, is generated by ¢} ® 1°™~ Y and #,,. But
Ll=Wand ¥ =% O

Lemma 5.6. Let &,,(p) = W ®™ be the subalgebra generated by H®™,i=1,...,n
and all entries of L™(u, p). The commutant of %,,(p) is equal to A, for generic p.

Proof. One can check that ,, commute with %, (p). So it is enough to prove the
statement only for one variety I' and one point p € I'*" . We shall use the trick of

Do . 1...1
the “trigonometric limit” [10]. Let us take I" containing p° = < 0 0) and tend

pi—p° i=1,..., m one after another. In this limit %,(p) goes to ¥, which
commutant is equal to J,, according to the previous lemma. [J

Proof of Lemma 5.1. Substituting the expressions (5.3) into Eq. (5.2) we get
identities
[S(p, D), Gi+1 @ Gi]1 =[S(p, P), Hi® H;] =

and equations

S(p7 ) i+1 ® G (
a; b biy18i44
= F; G; Ji+ ——)S(p, P
i ® < (pu + (pi+1i+1 (p p)
which together with commutation relations
JiJj=JJiwbi om0t J(Fi ® Gy) = (Fjey ® Gj)Jyw®iv1-%

lead to functional equations for W,;(s):

bal o ai+15i+1>
¢u ¢i+1i+1

Wos(s) — D+ 1,i+1(0bid; — aigiws" Tsio1)

~ — b
Wypls —€)  Py(wbir18i41 — Giv1bivi0 7571

e=0,...,1,...,0).

ith

The formula (5.4) gives a solution of these equations. Clearly S(p,p) =1® 1 so
S(p, p) is generically invertible. If S(p, p) is another solution of Eq. (5.2) then the
ratio S ~(p, §)S(p, p) commutes with Z((p, §)) and, hence, generically belongs
toA,. O

Lemma 5.7. The intersection 7,, " A, is generated by scalars.

Proof. 1t is easy to see that 7,, N A, = 2 ®" but it is also clear that F,, n Z®™ is
generated by scalars. O

Proof of Lemma 5.2. J3(p, p) commutes with %,(p, p), so generically J(p, p)
€ I, N A, and hence is a scalar. Therefore S ~(p, p) € 7, and we see that o(p, p, p)
commutes with Z;(p, p, p) which follows to o(p, p, p) € I3 n HA3. The explicit
formula for J(p, p) can be obtained in the same way as the inversion relation (A.1)
from [17]. O

Proof of Lemma 5.3. Consider the ratio
R(p1> P2, P3) = ((S(P2, P3) ® DA @ S(p1, P3))(S(p1, P2) ® 1)
X(S(p1, P2) @ DA R S(p1, P3))(S(p2, p3) @ 1) .
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Similar to the previous proof R(pi, P2, P3) € T3m N K- am and is a scalar. So it is
represented by the same scalar in any representation of #~ ®*". Let ¢ be a nonzero
representation of #". Taking the representation o ®*™ of #” ®" and computing
deta®3™(Z(p1, p2, P3)) = 1 we see that R(py, p,, p3) is a root of 1. Hence it is
constant. In conclusion, it is clear that R(p,p,p)=1ifp=(p,...,p) O

Similar to (3.2) the mapping ¢,.(p): & — W o
Tw) — (—w)!' ™L™(u,p), H,—»>HE"

is a homomorphism of algebras. Let #"° be the quotient of algebra W over
relationsf; = 1,i=1,...,nand1: # - # ° be the canonical projection. One can
check that ¥ ° is a simple algebra isomorphic to (End CV)®® -1, Let ¢° be the
irreducible representation of #°°, ¢ =¢°c1 and consider the representation
Tw(p) = 6®™ o ¢,(p) of the algebra of.

Lemma 5.8. 7,(p) is completely reducible for generic p.

Proof. 1t is clear that any irreducible representation of #°° can be obtained from
the construction of the Lemma 3.1 by proper choosing of parameters. In particular
it means that all generators of #"° are represented in ¢° by unitary operators and
the same is the fact for generators of #;, in the representation ¢®™ modulo scalar
factors. Hence 6®™ is completely reducible with respect to .Z5, and generically with
respect to Z,(p). (Use “trigonometric limit.”) Since im ¢,,(p) = Z,.(p) the state-
ment is proved. O

Lemma 5.9. Invariant subspaces of m,,(p) are invariant with respect to ¢®™(7,,).

Proof. 1t suffices to prove the statement only for generic p, where 7,,(p) is com-
pletely reducible. Moreover, we can look to only irreducible subspaces. Let P be
projector onto such subspace along all others. As (6°)®™ is the faithful irreducible
representation of (# °)®™ we can write P = ¢®™(0) with some ¢ belonging to the
commutant of .%,,(p) which is equal to J,, for generic p. Therefore ® commute with
T, and im P, ker P are invariant with respect to ¢®™(7,,). O

Corollary. Invariant subspaces of ,,(p) do not generically depend on p.

Proof. Let the subalgebra £}, W @ be generated by ¥5, and Z,,. Clearly for
any p Z,,(p) = &},. Together with the lemma it means that invariant subspaces of
a®™ with respect to £}, are also invariant subspaces of r,,(p) for generic p and vice
versa. [l

Lemma 5.10. Irreducible parts of m,(p) are irreducible A-representations for
generic p.

Proof. 1t is sufficient to consider only one variety I'. Let us take it such that

b DY e Ffor any a, b. One can easily reduce the problem to the following

b,..., b
one: To prove that generically % (v)=(—v)"'[[,U®(v) e A [v], where
U = —vé; + (—v)bd;+1,;. Computing %(v) explicitly we can see that

Uij(v) = (dn — v)6;; + (—0)*9d;1 611, j, where [, (b —v) =) "' Taking d,,
d,—1,d, + 0 and d; = 0 otherwise we obtain that 4,(v) =d, — v, B;(v) = — vd, if
I=0 and Ay =(d,—v)'*"' +ddid,~y, Biyi=—vd(d,—v), C1=
v tdi'd, (v — d,) if | > 0. Therefore generically % (v) € A [v]. O
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Definition 5.1. Irreducible parts of m,(p) are called factorizable representations.

Finally, we have got the following picture. Let V' be an irreducible subspace of
a®" with respect to £} and n(p, V) = n,(p)|y. One can see that dim V' = N~ D/2,
The subspace V suffices to collect all factorizable representations because for any
p and irreducible subspace V' one can find p’ such that =n(p, V') = =n(p, V),
p,p € *". Let P be the permutation operator corresponding to 6®” ® ¢®". Then
by virtue of (5.5) the representations #,(p) and n,(p’) are cocommuting if p, p’ are in
the same variety I' *" and R(p, p') = Pa®?"(S(p, p')) is their intertwiner in the sense
of Eq. (4.1). R(p, p’) can be restricted to V' ® V giving the intertwiner for cocom-
muting factorizable representations n(p, V'), n(p’, V). So we have got an explicit
formula for an intertwiner of special elementary representations — factorizable
representations. Unfortunately, counting of parameters shows that factorizable
representations do not cover the total set of elementary representations. On the
other hand it is not surprising because we can see from Lemma 4.3 that a generic
variety of cocommuting elementary representations is 3-dimensional but a variety
of cocommuting factorizable representations is at least (n + 1)-dimensional, which
is larger for n > 2.

Remark. It is well known that any solution of the Yang—Baxter equation can be
considered as a matrix of Boltzmann weights (maybe complex) for some solvable
lattice vertex model with states on edges. In particular, S(p, p’) and R(p, p’) also
define some sl(n) generalizations of the chiral Potts model with N"* and N~ 1)/2
local states per edge respectively. The first obtained model is reducible and
contains the second one as an irreducible part. The second model is equivalent to
the model considered in [16]. A discussion of these models in more details will be
done in the forthcoming paper.

6. Quantum Minors and Quantum Determinant

Now we want to discuss some technical problems skipped before. In this section it
is not necessary to suppose that ¢; are integers and w is a root of 1. Only the
condition w;;m;; = w'*% is assumed. It is more convenient to study a little bit
more general situation. We introduce a new R-matrix R(u) replacing in Eq. (1.1)
a tensor ¢ by a similar tensor & and change the definition of the algebra .«Z substitut-
ing R(u) instead of R(u) in the left-hand side of the relation (1.2):

_ 1 2

R T(wo) T() = T(0) Ts)R(w) | (6.1)

Let V=C" and e, . .., e, be the canonical basis of V. Later we regard mono-

dromy matrices as matrices over ./, naturally acting in the .7-bimodule

V,=.9 ®¢V. We assume the embedding 1 ® id: V' — V,, taking place. Let us

introduce the /-bimodules V"=V, ®,...®,V, =% ®cV®n and their
\—W—J

submodules V™ = of @¢ V"™, V "™ being spa"ﬁned by completely antisymmetric

tensors. Define b,, € End V®™ as follows:

m l—1

bne, @ ... Qe =[] [] olive,®...®e, .

irin
I=1k=1
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b, is defined by the similar formula with @;; = »®/. One can check that
m—1 k,k+1 _ m-—1 I&k+1
pam = bm< N kerR(w)) = b,,,( N kerR(a))> .
k=1 k=1

As usual the definition of quantum minors is based on the fusion procedure [18].
By virtue of the relation

k+1 g

il k—1 k-1 k k,k+1
R@)Tuw'™ ) T wo™ )= T (uo %) T(uw' *)R(w) 6.2)
following from (6.1) ¥ ;™ is an invariant submodule for T ®a™(y):
— 1 m
T®™wu) = b, Tu):... Tuw'~"™)b,*.

Definition 6.1. 7™ (u) = T®"(u)|y sn, det, T(u) = T""(u). Entries of T"™(u) are
called quantum minors and det, T (u) is called the quantum determinant.

Proof of Lemma 1.2. Equation (1.5) gives the correct coproduct only in the original
case: R(u) = R(u), b,, = b,,. In this case it is obvious from the definition that
AT "w) =T{"wT7"(w. O

Proof of Lemma 1.1. For a moment we have to indicate explicitly R-matrices
taking part in the relations defining the algebra of monodromy matrices. Three
such algebras are necessary: .o/ = g, ¥rr and Zgz. The Yang—Baxter equation
shows that R-matrices R(u), R(u) generate some representations ¥, ¥ of the algebras
rr, #/zg in C" respectively. Taking the m™ tensor power of Eq. (6.1) and using the
definition of the quantum determinant we have got

det, T'(u) p(u/v) T(v) = T(v)p(u/v)det, T(u) ,
where p(u) = f (u)(det,TrrY (), p() = f(u)(det, Trz)*(u) , (6.3)

and f(u) is an arbitrary scalar factor. The easiest way to calculate p(u), p(u)
explicitly is to use different expressions for det, 7'(u) for calculating different entries
of p, p. For each entry the most convenient expression has only one nonzero term.
As a result the matrices p, p can be written as follows:

p) =T[df, pw)=][df,
k,1 k,l
and using Eq. (1.4) in case of R(u) = R(u) completes the proof. [
Corollary. [det, T(u), det,T(v)] = 0.
Proof. 1t follows from (6.3) since detp = detp. O
Let us identify ¥ with V™~ 1 and V2 with V*™~2 a5 follows:

e (=1l e AL NG AL AL A e,
eneo (=1 Te, AL A A I AL NG A AL Ay
i<j 6.4)

and take the elements written above as standard basic elements for these spaces.
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Lemma 6.1.
Twd (T Yuw ))d = det, T'(u) , (6.5)

T 2wy Hd ) YT " Duw~2))d" >/ = det, T(u) ,
-1 _ -1 _
d=TT o a=T1T] or.
1 k=1 1 k=1
/e,-/\ej=a)ije,~/\ej, Zei/\ej=(l_)ijei/\€j, /,ZE End V2. (6.6)

Proof. One has the natural embeddings V)"< V, ®,V," V< V®™ and
Vot e V2 @4, Ve ? < VO™, so det, T(u) can be calculated in two steps. At first
T ®a™(u) is restricted to the tensor product V,, ® , V™ Yor V> ®, V" 2 and
then to V;". Taking into account relations (6.4) in this calculation we obtain the
statement. [J

Corollary.
R T~ D(un) 720~ D(1) = 720~ 9(0) T~ () R(w) ,
RW)=(p®@ DRWII®p) ", R =(@RNRWYII®pH™". (67

Proof. One can transform Eq.(6.1) to this formulae using Lemma 1.1 and
Eq. (6.5). O

Let us also introduce 7(u) as follows:
~ 2 2 1 2_ _
T(w) = ¢byp™ (T Duo™ ) (T"" D)y ;bz_lf_l .

Equation (6.7) shows that V% is an invariant submodule for T'(u) and one can put
T(u) = T(uw)ly;>. Using Egs. (6.3)-(6.6) one can show that

(T(w)y = det, Tw)T" " D(uw~1) . (6.8)

Due to the structure of the R-matrices (see Eq.(1.1)) we can consider sub-
matrices of T(u) as monodromy matrices of smaller size: commutation relations
inside a submatrix are also described by the relation (6.1) if one substitutes there for
the original matrices submatrices of T'(u), R(u), R(u) corresponding each others.
And quantum minors of 7'(u) are quantum determinants of its submatrices treated
as smaller monodromy matrices. This is the important thing permitting us to
compute commutation relations of quantum minors step by step by means of
Eq. (6.5), (6.7), (6.8).

Lemma 6.2. Let T;;, Ty be quantum minors and one of them includes another. Then
T(u) TuW) = Taw) Tyw) ¥ Vit

lFik = n H @i, 'le = I—[]_—[a)jl ’
iei kek jej lel
where bold letters are multi-indices.
Proof. If the smaller minor is an entry of T'(u) the statement follows from the proof

of Lemma 1.1 because the larger minor can be considered as a quantum determi-
nant. The general case can be got simply by multiplications. [J
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Now we can prove relations (2.2)—(2.5), (2.17) for quantum minors. Some of
Eq. (2.2) and (2.3) are evident and others follow from Lemma 6.2. Equation (2.4)
can be obtained from the relation (6.7) applied to the principal submatrix generated
by the first (i + 1) rows and columns (its quantum determinant is the quantum
minor A;, ;(u)). The relation (6.8) applied to the same submatrix leads to Eq. (2 5).
And the same relation applied to the submatrices generating quantum minors
Bu(u) and Cy(u) gives Eq. (2.17).

7. Comultiplication of Central Elements

The fusion procedure is also very helpful in handling of central elements. Now we
again require o to be a primitive N'® root of 1 but ;; can still be complex. Let W™
be the kernel of the complete symmetrizing projector in V'®™ It is clear that

k,k+1
ker R (w)c< b, W™ if k < m. Define

(ﬁ Jﬂlﬁ(aﬂ ')>

j=1i=

both indices growing from right to left. R™ will be considered as function of ;.

Let V< < V®¥ be the subspace spanned by the elements P = ¢, ® ... R e;,
i=1,...,nand V§ = o R VC.
Lemma 7 1 Generically kerRY = WN @ VO,

k,k+1

Proof. Using the Yang—Baxter equation (1.2) one can move any factor R(w) in the
product for R” to the very right and show that W < ker R". It is also clear that
1

Ru)|y¢e, =1 — uw. Evidently W¥ AV =0. So WN@® V¥ < kerRY and it re-

mains to prove that generically dimker RY = dim W" + dim V. Here the right-
hand side does not depend on w;; at all and it is enough to calculate the left-hand
side only for one special case. Let us test the limit w;; —» 0 for i < j. In this limit

Ruwe;®e;=(1 —uw)e;@e;,
R(u)e,- ® e;= (1 — (,O)ej® e; + 0(1)
R(u)e; ® e; = wy;((1 — we;®e; + o(1)),

i<j.

From these equalities one can see that RY = lim,,; o RY is finite and imRY is
spanned by {e;, ® ...®e;,: i; = ... Z iy, iy * iy}. Hence dimker RY = dim W~
+dim V. But generically dim ker RY < dimkerRY, so the statement is
proved. O

Lemma 7.2. Let K € #®" be a projector such that W < kerK and V¢ < imK.
Then KT ®«N(u)|w,, = 0 and KT®N(u)|y, = (T (u).

Proof. By virtue of Eq. (6.2) W is an invariant submodule for T7®<"(u). Due to Eq.
(6.1) one has the relation

R" T9m(u) = Fuw' ™). . .- Tw)R™,
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which shows that of @ckerR" is also an invariant submodule for T®<¥(u).
Therefore according to Lemma 7.1 W, @ V is its invariant submodule too and
the statment follows from the straightforward computation. O

Proof of Lemma 1.5. This lemma is a corollary of the definition (1.5) of the
coproduct and the previous lemma. [

Proof. of Lemma 1.4. Let y,x be the representations of the algebras /g,
o 7x generated by R-matrices R(u), R(u) in C". Equation (6.1) and Lemma 7.2
together give

RO ()T Vo) T(w) = T(u) T o) R (v) ,
RO@) = (TH (), RO(v) = (TH(v).

R€(v), R©(v) can be calculated easily and are equal to (1 — v)I ® I if all ¢; are
integers. [

Proof of Lemma 2.1. Since all entries of { T) (v) mutually commute its minors can
be defined as usual. The slightly more general statment will be proved.

Let T;;(u) be a quantum minor of T(u) and { T );(v) be the corresponding minor of
{T>(v). Then

<Tij>(v) = <T>ij(v) H Tik H Tl »

i,kei J,lej
i>k ji>1
Ty =(— )7 V% gy = (= )N~ D, (7.1)

As before we treat quantum minors of T(u) as quantum determinants of its
submatrices. So we have to prove this formula only for the quantum determinant
supposing that it is proved yet for all proper quantum minors. The complete set of
formulas for all quantum minors can be obtained by induction with respect to the
minor’s size. The base of the induction is the case when a minor is simply an entry;
in this case the formula (7.1) is tautological. In order to prove the formula (7.1) for
the quantum determinant let us take the N'! tensor power of Eq. (6.5). Using the
commutation relations (6.3) to carry det, T'(u) through T(v) we come to

T®N () T®N () = (det, T) (u") ,
f@.,N(u) — bN(d®N)—1 H®[§(N—i)(71v-'/‘("_1)(u))t' . _(%A(u-l)(ua)N—l))t

x []®,‘§iJ®NEgI . (7.2)

Let K be the same projector as in Lemma 7.2. By the straightforward computation
taking into account Eq. (7.1) for proper minors one can check that

i1
KT® ™)y, =<TH>* " D[] TT 7% -

i j=1

Now Eq. (7.2) multiplied by K from the left side gives the required formula

Hﬁ 17 <det, TH(0) = (TH (0)<TH* "~ D(v) = det{TH(v).  (7.3)
i j=1
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Proof of Lemma 1.7. The only nontrivial property to be checked is
det{TH™(v) = <Q"> () [[ hi* = <det, T>"(v) .
il

But it was already proved above (cf. Lemma 1.1 and Eq. (7.3)). O

8. Algebra of Monodromy Matrices and U,(§!/(n))

Let us make two remarks about the structure of the algebra .o7. At first there exists
an algebra isomorphism between /g and gz if &; = ¢;; + 5;; — s;; for some
integers s;;. It looks as follows:

Az Tij(u) > [[HF Tyj(w) [ H7* € rr
; 1

H(—?Hl.

This mapping does not preserve the coproduct so it is not a bialgebra isomorphism.

Now let us take a polynomial representation n of degree M such that
0=t =1i=1,...,n Weput T(u) = T™(u), H, = HT and introduce operators
E,F;,G,i=1,...,n as follows:

Ei=(Tg _IT?+1,i: Fi=(Tfio)—1 hitl s
Gi=(T7) ' TR y,ien = [[H 0t oreer),
l

For n > 2 they satisfy commutation relations
HE; = EHyo® %+ HF, = F,Ho®* "% []H =1,
1
[E;, F;]= (o — D)Gi(H;+, — Hy)dy;,
E.E; = E;E,0", F,F;=F;F,o"™, |i—j/>1,
0"E}E; — (w + 1)E;E;E; + ®"E;E} =0
o"iF}F; — (0 + 1)F,F;F; + oY F;F} =0’
which look similar to the commutation relations for Uq(g/fl(n)). More precisely, for

. N+1
o =1, N being odd, &; = —;—(I + ;) and g = @™ *V/2 the operators

li—jl=1

E; F;
(@—q7') (1—- o)
satisfy the commutation relations for Uq(?]\l(n)) at level 0.

N+1)/2
kl=H£ i , €=

fi=
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