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Abstract: The algebra of monodromy matrices for sl(n) trigonometric K-matrix is
studied. It is shown that a generic finite-dimensional polynomial irreducible repres-
entation of this algebra is equivalent to a tensor product of L-operators. Cocom-
mutativity of representations is discussed and intertwiners for factorizable
representations are written through the Boltzmann weights of the sl(ή) chiral Potts
model.

Introduction

Let us consider an algebra generated by noncommutative entries of the matrix T(u)
satisfying the famous bilinear relation originated from the quantum inverse scatter-
ing method [13, 20]

R(λ - μ)T(λ)T(μ) = T(μ)T(λ)R(λ - μ) ,

where R(λ) is Λ-matrix - a solution of the Yang-Baxter equation. For historical
reasons this algebra is called the algebra of monodromy matrices. It possesses
a natural bialgebra structure with the coproduct (1.5). If g is a simple finite-
dimensional Lie algebra and R(λ) is a g-invariant K-matrix the algebra of mono-
dromy matrices after a proper specialization gives the Yangian 7(g) introduced by
Drinfeld [11]. If R(λ) is the corresponding trigonometric jR-matrix [2,14] (see (1.1)
for sl(n) case) this algebra is closely connected with C/β(g) and l/β(g) at zero level
[11,14,15, 22, 23]. In the last case it is convenient to use a new variable u = expA
rather than λ. If R(λ) is sl(2) elliptic .R-matrix [1, 5] the algebra of monodromy
matrices gives rise to Sklyanin's algebra [24].

In this paper we shall study algebras of monodromy matrices for sl{ή) trigo-
nometric i^-matrices [6, 19, 21]. In the framework of the quantum inverse scatter-
ing method finite-dimensional irreducible representations of these algebras which
depend polynomially on the spectral parameter u are of special interest. They
correspond to integrable models on a finite lattice. L-operators are irreducible
representations with linear dependence on the spectral parameter, and usually we
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get a polynomial representation as a tensor product of L-operators. The question is
to examine whether all finite-dimensional polynomial irreducible representations
can be obtained in this way. For the s/(2) case corresponding to the .R-matrix of the
six-vertex model the answer is known. If ω is generic then each wanted representa-
tion is equivalent to a tensor product of L-operators [27,28]. If ω is a root of 1 the
situation is more complicated. In this case only generic representations are equiva-
lent to tensor products of L-operators, but there also exist representations, which
are not of this form [28]. For generic ω in the sl(ή) case finite-dimensional
irreducible representations were described in [7,12], but to obtain all of them from
L-operators the notion of an L-operator should be generalized. Here we study the
sl(ή) case for ω being a root of 1 and obtain the same results as for the s/(2) case [28].

As is well known, the deformation parameter being a root of 1 is a peculiar case
for quantum groups [8]. It is the same for algebras of monodromy matrices under
consideration if ωN = 1. In this case a generic polynomial finite-dimensional
irreducible representation is cyclic (without highest and lowest vectors). Moreover,
as usual irreducible representations do not cocommute; their tensor products in
direct and inverse orders are not equivalent in contrast to what takes place for
generic ω. The whole set of irreducible representations exfoliate to varieties of
cocommuting representations. For a couple of cocommuting representations one
can define an intertwiner realizing an equivalence of two tensor products. Inter-
twiners give us solutions of the Yang-Baxter equation, representations playing
a role of spectral parameters. In the si (2) case an intertwiner for L-operators can be
written as a product of four factors and each of them can be expressed explicitly
through the Boltzmann weights of the chiral Potts model [4, 28]. A direct
generalization of this construction for the s/(n)^ase leads to the sl(ή) chiral Potts
model [3] and minimal representations of Uq(gl(ή)) [9]. Unfortunately, minimal
L-operators from [3] (which correspond to minimal representations of Uq(gϊ(n))
[9]) are not generic from the point of view of this paper. For a generic L-operator if
the necessary factorization exists it contains n factors instead of two factors for
a minimal one, so an intertwiner is a product of n2 factors. But explicit expressions
for these factors can be written through the same Boltzmann weight of the sl(ή)
chiral Potts model. Recently, another factorization for a generic L-operator was
obtained and the corresponding formula for an intertwiner was written by use of
the same Boltzmann weight [16].

The paper is organized as follows. In the first section we give definitions
and formulate results without proofs. The next two sections contain proofs of
Theorems 1,2. In the fourth section we introduce factorized L-operators and build
their intertwiners; the connection with the sl(ή) chiral Potts model is also discussed.
In the last sections we give technical details and necessary proofs. Some proofs
which can be done by explicit calculation are omitted.

1. The Algebra of Monodromy Matrices

Let us define an algebra of monodromy matrices for the sl(ή) trigonometric
^-matrix. Denote for short Jί = EndC". The .R-matrix R(u) is considered as an
element of Jt®2 and has the following nonzero entries:

R»(u) = 1 - uω ,

R%(u) = ωtJ(ί - u\ R%u) = u^{\-ω\ i*j, (1.1)
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where θy = < ' ., ω^ ω^ = ω1+δij and δij is the Kronecker symbol. We also

introduce a tensor ε such that ω^ = ωεij. This definition of R(u) differs slightly from
the original one [6, 21]. A variable u is called the spectral parameter. R(u) satisfies
the Yang-Baxter equation:

12 13 23 23 13 12

R (u) R (uv) R(v) = R (v) R (uv) R (u).

Here we use the standard matrix notations, the superscripts indicating the way of
embedding Jί a Jt%z as corresponding factors.

Definition 1.1. The algebra of monodromy matrices sJ is an associative algebra
defined by generators Tij(u\ Hu ij = 1,. . ., n and relations

R(u) T(uv) T{v) = T(v) T(uv)R(u), (1.2)

[ώ, ® Hh Γ(κ)] = 0, ώt = diag(l,. . . , ω,. . ., 1),
/-th

iHj = HjHi,
i

where T(μ) e Jί ® stf with entries T^u) e stf.

Here and later Π i — Π"=i a n c * the same convention is implied for sums. A more
explicit form of Eq. (1.3) is

-δ-. (1.4)

One can introduce the natural coproduct A: $4 -> J / Θ 2 :

A(T(u)) = TMT2{u) eJΪ® stf®1 ,

A{Hι) = Hι®Hι (1.5)

(subscripts indicate the way of embedding s/ a s/®2) and counit ε: J / -^ C:

making J / a bialgebra, hence a tensor product of ^/-modules is also j/-module.
The algebra si is closely connected with the algebra Uq(gl(n)), but does not exactly
coincide with it In Sect. 8 we shall discuss the structure of the algebra si in more
detail.

We are interested in a special class of representation of the algebra si. Often the
representation will be indicated by a superscript.

Definition 1.2. A representation π of the algebra si is called a polynomial repre-
sentation if d i m π < c c , Tπ(u) is polynomial on u and Tfj(O) = O for i<j.
degπ = deg Tπ = m a x ^ ^ -f deg Tβ) is called a degree of the representation π.

The algebra si has the well known element det4Γ(tί) which is called the
quantum determinant (the exact definition of det^ T(u) is given in Sect. 6). Hence-
forward we assume that all ε o are integer.

Lemma 1.1. Q(u) = dQtqT(u)Y[ilHilt is a central element.

Proof In Sect. 6. D
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Lemma 1.2. A(dQtqT(u)) = detqT(u) ® det€T(u).

Proof. In Sect. 7. D

For a polynomial representation π, deg π = M, Γ(w) = Tπ(u) we define

r ι φ ) = r f f ( - w ) M + ••• + τ?i9

Γy(ιι) = ( - u ^ ί Γ ^ ί - t t ) ^ - 1 + + Γ?j), i Φ j ,

δ(w) = β°°(-w) n M + + β 0 . (1.6)

Lemma 1.3. Let π be a polynomial representation, T(u) = Tπ{u\ Hi = Hf. Oper-
ators t? = T% - Π i ^ Γ 8 " and tf = Γg Π i ^ ί " commute with T{u)9 Hu...9Hn.

It is obvious that β 0 0 = [ j ^ Γ , δ° = Π i ^

Henceforth throughout the paper we take ω being a primitive iVth root of 1. In
this case the algebra si has an additional large set of central elements. To describe
them explicitly we introduce an operation <•> as follows: <0> (uN) = Πf=i $(wωfe).

Lemma 1.4. <7J<7 >(ί;)5 i ί^, . . ., Hn are central elements.

Proof. In Sect. 7. D

Define the element <Γ>(ι;) e ΛίT ® J * such that <Γ>y(ί;) = <TiJ >(ϋ).

Lemma 1.5. Λ(<Γ>(i>)) = <Γ1>(i;)<Γ2>(!;).

For any ^" e ^ let Aζ, 5 f , Cf be the following minors:

;4f is the principal minor generated by the first k rows and columns.
Bζ is generated by the first k rows and k + 1 columns (except the fcth column).
Cf is generated by the first k + 1 rows and fc columns (except the kih row).

Definition 1.3. 3~(υ) e Jί [v], deg^" = M is called an A-polynomial if it enjoys the
properties

(1)
(2) j

(3) For any k < n Aζ(v) has exactly kM nonzero simple zeros.
(4) IfAζ{vQ) = 0 then Bζ(υ0) + 0 and Cζ(υ0) Φ 0.

AJί \v\ denotes the set of all A-polynomials.

It is evident that degv4f = fcM, deg Bζ ^ feM, degCf <fcM and 4 f (0) Φ 0,
Λf (0) = 0.

Let YM be a variety of sets Σ = {F{υ) e AM\v\ Ά{u) e C[w], hh zf, zf}Ui
such that deg F = M and
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Lemma 1.6. YM is diffeomorphic to a dense open set in (£,n2M + 2n~1^

Proof. In Sect. 2. D

Definition 1.4. The polynomial representation π is called an Λ-representation if
(Tyπ(v) E AJί\υ~\ and deg(T}n = degπ. An irreducible A-representation of degree
1 is called an elementary representation (L-operator).

For any irreducible ^-representation π we put

Lemma 1.7. Σπ e YM, M = degπ.

Proof. In Sect. 7. D

Theorem 1. For any set Σ e YM there exists a unique irreducible A-representation
π such that Σπ = Σ. Moreover, degπ = M and dimπ = jv("~1)wM/2.

Remark. Minimal L-operators from [3] do not fall into the set of ^-representa-
tions. It is a posteriori obvious, since their dimension is equal to Nn~ί which is less
than it should be for irreducible ^-representations according to Theorem 1. But
one can also see a priori that in the case of a minimal L-operator the conditions (3)
and (4) of Definition 1.3, which have to be checked for the corresponding matrix
consisting of central elements, fail for k > 2 and k > 1 respectively.

Theorem 2. A generic irreducible A-representation of degree M ^ 1 is equivalent to
a tensor product of M elementary representations.

Remark. One can check if a representation π is equivalent to a tensor product of
elementary representations using only <Γ>π(ι?).

2. The Proof of Theorem 1. Uniqueness

In order to prove Theorem 1 we shall describe the construction of an irreducible
^-representation inspired by Drinfeld's new realization of Yangians [12] and the
ideas of the functional Bethe ansatz [26]. Let us introduce the special elements of
the algebra ^/-quantum minors of T(u); the exact definition and the calculation of
commutation relations for quantum minors is given in Sect. 6. The following
quantum minors will play an important role:

Ak(u) is a principal minor generated by the first k rows and columns;

Bk(u) is generated by the first k rows and k + 1 columns (except the feth column);

Ck(u) is generated by the first k + 1 rows and k columns (except the kth row);

Dk(u) is generated by the first fc + 1 rows and columns (except the kth row and column);

It is also convenient to introduce improved minors whose commutation relations
are simpler than for original ones:

Ak(u) = Ak(u)Hki Bk(u) = Bk(u)Hk,

CM = Ck(u)Hk, DM = DMHt

#fε" (2.1)
t = l I
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Main commutation relations read as follows:

lAt(u), B,(»)] = lAtiu), Cj(vn = IBM C » ] = 0, i * ,

= ίCi(u), C,(t>)] = 0 , (2.2)

= ω* + ' '- i"B l(u)fίj, H,Cι(u) = ω i «- a + ' IC f(u)Jί,,

*7ϋ = β £ , 7 + 1 + ε i + 1, j ~ " εij ~~ εi+ί,j+l 9 ( 2 - 3 )

(u - v)Ai(u)Bi(v) = (u- vω)Bi{v)Ai(u) - υ(ί - ω)Bi(u)Ai(v),

ω(u - v)Ai(u)Ci(v) = (uω - ^C^A^u) + u(l - ω)Cί(u)^i(ι;) , (2.4)

DtiiήAtiuω) - ωBiiiήdiuaήH® = Ai+1(uω)Ai-1(u), (2.5)

H^ = Y[Heiι'8i + uι

 9 (2.6)
I

where A0(u) = 1, >4Π(M) = Q(u). Note that

Let us also define improved minors of <Γ>(f):

Aί>{υ) = Aiτ>{v)m, Bγ(v)

CΫ = Ciτ\v)m , (2.7)

where minors A{τ^(v\ B{τ^(v\ Ciτy(v) were defined above.

Lemma 2.1. <^>(i;) = Aγ{υ\ <Bί>(t;) = Bγ{υ\ <Q>(f;) = CP(i;) .

/ In Sect. 7. D

Denote by si the subalgebra generated by {Ak(u\ Bk(u\ Ck(u\ Hk}lZ\. Certainly,
jjis also generated by {Ak(u\ Bk(u\ Ck{u\ Hk}

n

kZ\.
Now let us fix throughout this section in irreducible ^4-representation π of

degree M and take all elements of the algebra si in this representation. (The
explicit indication of π will be omitted.) Let {£y} be the set of all zeros of the
polynomial Aγ(υ). Because π is an ^-representation, all these zeros are nonzero
and simple. Introduce operators αfeJ , βkj, γkj as follows:

kλf

Ak{u) = Af Π fay - ")> *v = Zkj> A? = Π ^ ' ( 2 8 )
7 = 1 i = l

/?y = B f(αv), r o = Q ( α y ) . (2.9)

When substituting αy instead of the spectral parameter the ordering of non-
commuting factors has to be chosen. We prefer to put all α's to the right,
but one can choose another ordering and all the following remains correct.
Equations (2.2)-(2.6) and Lemma 2.1 lead to the following relations for these



Cyclic Monodromy Matrices for sl(ή) Trigonometric R-Matrices 465

operators:

i = ftj«yω-*"*•' ,

Hiβ}ι = afl,'+ι-i»βilΉι, HlyJl = a>fi"-t','*>yjlHi, (2.10)

ίβik, βn~] = ίβik, y}Λ = bik, y«] = o, i * ,

βikβfl = βj,βikω™, γikyβ = γβyikω-^ \i-j\>l, (2.11)

ωβikyikH
(i> = - /li+iίαakMi-^αflkω" 1 ),

yikβikH
(i)= - A^MMAi-Λ**), (2.12)

/?g = BP(Cyλ y{J = CP(Cy), (2.13)
kM k

^°ΓK; = Π^Γ1. (2.14)
7 = 1 ί = l

Since π is an ^4-representation jg^ and y^ are invertible (see (2.13)). For present the
definition (2.8) of operators α ί ; is formal. To make it sensible we introduce a vector
v - a common eigenvector of A^u), i = 1, . . . , n — 1 and the subspace V = π(«a/)v.

Lemma 2.2.
1. V is spanned by common eigenvectors of A^u) with different eigenvalues.
2. αi<7 , /Ji , y y can be well defined on V as operators satisfying relations (2.10)-(2.14).
3. d i m F = JV(/J-1)MM/2.

Proof. Evidently we can define a y and v claiming v to be its eigenvector with the
appropriate eigenvalue. Then the subspace V can be set up step by step starting
from v by use of βkϊ and γkl. At every step the definition of α ί ; can be naturally
extended to fulfill relations (2.10). It is easy to check that this construction can be
realized selfconsistently giving the subspace V of the required dimension and
operators α y , βij9 y y on it satisfying the relations (2.10)-(2.14). And for the oper-
ators Bk(u) and Ck(u) we have the interpolating formulae:

kM M

Bk(u) = u x βkΛi'PUu), CM = Σ ykiPkάu),

k M I, _ d

where Pki(u) = Π (2.15)
j=χ OCki — U*kj

7 Φ i

D

Remark. By the definition of α's one can retell the first point saying that V is
spanned by common eigenvectors of α's with different eigenvalues.

One can also see that for v' - another common eigenvector of A^u) V and
V = π(s/)\' are isomorphic as π(j/)-orbits.

To complete this part of the proof of Theorem 1 it is enough to show that V is
invariant with respect to π(s/). To have more compact notations we shall show
that π(stf) a π(stf) using αl7, βtj, y^. The way of doing this is the following recursive
process. The first step is trivial:
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(see (2.1), (2.6)). T22(u) can be tested by means of the relation

A2(uω) = T22(uω)T11(u) - ω21T2i(uω)T12(u) .

To pass to the 3 by 3 principal submatrix one has to use relations

B2(uω) = ω21(ω^ίT23(uω)T11(u) - T21(uω)T13(u)),

C2(uω) = ω3!(ω2i T32(uω)7\t(u) - T31 (uω)7\2(u)). (2.16)

Substituting here w = a 1 { we obtain the interpolating formulae for T13(u\ T3ί(u):

T13(u) = - uω2-ί

1Hί £ yrfB&uaήvrfPuiu),
ί = l

T31(u) = - ω^H, f C2{auω)βu1Pu{u).

Now T23(u), T32(u) e π{J) due to (2.16) and to test T33(u) we recall that

Λ3(uω) = T33(uω)Λ2(u) + known terms .

For further steps we have to introduce additional quantum minors:

Bkι(u) is generated by the first k rows and k — 1 columns together with (k + /)th

column;
Ckι(u) is generated by the first k — 1 rows and k columns together with (k + /) t h

row;
Dki(u) is generated by the first fc — 1 rows and columns together with (fc + ϊ)th

row and (k + l) t h column;
Dki(u) is generated by the first fc — 1 rows and columns together with (fc + l ) t h

row and (fc + l)th column;

We also define the corresponding improved minors:

Bkι(u) = Bu{u)Hk9 Dζt(u) = DiMH^Yl HΓβ k + 1 i

z

cH(«) = άίWίί-c, DS(«) = $&(«)£*-! Π ^rεt+'••

i

(cf. (2.1)) and use the relations

ΌB

kι(u)Ak{uω) - ωBkl(u)Ck(uω)HW =

Dc

kl(u)Ak(uω) - ωBk(u)Ckl(uω)H^ = ^ ^ ^ Ck+uι.1(uω)Ak.1(u), (2.17)

which look similar to (2.5). To check Ti4(u) e n(J\ i = 1, 2, 3, the following
formulae have to be written:

2 M

H™B22(u) =-u

B22(uω) = ω2ί

ί = l

v^41 -* 24

Hi B3(a

(uω)Ttl

M
1 y v"1

ί = l

Γ 2 i (ιιω)Γ1 4

'JαΓ/Pϋ

H(«) »

(«)),

(2.18)

(2.19)

(2.20)
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Equations (2.18), (2.20) are obtained from the first of Eq. (2.17) for fc = 2 and
Eq. (2.19) respectively after the following substitutions: u = α 2 i ω ~ 1 and u = α^.
Now T24(u) e π(J) due to (2.19) and to test T34{u) we use

ω41ω42B3(uω) = ω31ω32T34(uω)A2(u) 4- known terms .

In the same manner we can show that T4i(u) e %(stf\ i = 1, 2, 3. In order to test
744(u) and thus to complete this step of the process we look to

A4(uω) = T44(uω)A3(u) + known terms .

It is quite evident how to do the next steps by means of relations (2.17) and
interpolating formulae. As a result of this recursive process we can express all Tkl(u)
through operators α y , j80 , yo . Justifying this formal calculations like in Lemma 2.2
we convince ourselves that π(^)V a V.

Proof of Lemma 1.6. The recursive process described above certainly has the
"classical limit" - a very similar one for usual matrix polynomials. It shows that the
variety YM can be parametrized by Ά(u\ minors Af(v)9 Bf(v), Cf(v), i = 1,. . . ,
n — 1 and hh zf, zf9 i = 1,. . ., n. Now it is very easy to find independent
parameters in which the identity mapping is the required diίfeomorphism. D

3. The Proof of Theorem 1. Existence

Let a set Σ e YMbQ given. We have to find an irreducible ^4-representation π such
that Σ = Σπ. Define the algebra $iΣ by generators {aik, βik, yik9 H^fL^uίi and
relations (cf.(2.7)-(2.14)):

[αίfc, α,,] = [α Λ , H,] = [H«, H{\ = 0 ,

aacβfi = βflOLijω*"**1, OLikyn = y^a}'*"*" ,

Htβfl = ω^^βflHi, Hi7jl = ω*«-δV"γflHt,

[ft*, fti] = ίβtk, yjil = [yΛ, y«] = 0, i Φ j ,

ij, \ί-j\>i,

yikβikH
(i) = -

kM

k kM

π *r Π K -

ί = l I

It is easy to see that J/Σ is a simple algebra isomorphic to End C N ( "~ 1 ) n M / 2 so it has
a unique irreducible representation and any its representation is faithful. Before we
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have shown that an irreducible ^-representation π generates the irreducible repres-
entation of the algebra $iΣ*. Now we would like to reverse a logic. Let B(u), C(u) be
defined by Eq. (2.15) and A(u\ B{ύ), C(u) by Eq. (2.1). Define the homomorphism φ:
$4 -> s/Σ on generators as follows: φ(Hi) = Hi and φ(Γ i J (w)) is given by the
recursive process described in the previous section. For the definition of φ to be
correct all the relations (1.1) have to be preserved by φ. To verify this is to check
some polynomial identities on ΓM. So they have to be checked only for generic
Σ and it certainly will be done if an irreducible ^-representation π such that Σπ = Σ
will be shown. Though we return almost to the starting point of the consideration
we have a profit to solve the problem only for generic Σ. In this case the required
irreducible ^4-representation can be built from some simple primitives.

Later we shall treat C"-coordinate indices modulo n, excepting the cases when
they appear in inequalities. Introduce the algebra Ψ* generated by Fi9 Gu Hh

i = 1,. . . , n and relations

FiFj = FjFh FiHj = HjFh titHj = HjHt,

ωtJFt Gj = GjFiCOij+u HtGj = Gjff£aA>+1-*> ,

ωijGiGj = GjGiωi + 1 , j + u Π ^ = l (3.1)
i

Let /, = FiΠ/tf f ε ι\ F = Fx. . . Fn, and G = G±. . . Gn. Elements fi9 F?9 G?, iff,
ί = 1,. . ., n and FG x clearly generate the center oίW. The mapping φ: stf -> ΊV\

Hi — H i (3.2)

is a homomorphism of algebras. It is easy to calculate that

< Γ y > ( ι ; ) - ^ -vFfδij + {-v)Θ«G?δt+1J .

For any representation ξ of the algebra W the representation ξ ° φ of the algebra
si will be called a simplest representation.

Let f = E n d C N and X, Z e iT be the following matrices: X o = ^.j+KmodN)'
Z o = ω^ij. Define naturally operators Xi9 Zt e f ®":

and introduce the subspace Jίf a (<EN)®n as the eigenspace Z®n = 1.
Lemma 3.1. Let ai9 bi9 cu i = 1,. . . , n be arbitrary numbers such that Y[. c{ = 1

and niij, i, 7 = 1 , . . . , n be integers such that m i > ί + 1 — ntu — m^i+1 — m ί f =

— εii- The mapping ξ: i ^

ΠZf", Gi = biXi+1XΓ1UzϊHι> Hi = dzi
i i

is a representation of the algebra W.
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Now we have got a lot of simplest representations to extract the required
irreducible ^-representation from a tensor product of simplest representations. Let
κu i = 1,. . ., nM be zeros of J(w) (simple for generic case), and let us take nonzero
vectors Ψt e ker ̂ ~(κf) which are unique up to scale factor due to (1.7). Define step
by step a sequence of simplest representations σ{ = ξi°φ such that

j = l J = l

where ψu = Ψh Ψi+1J = <7T< (*?)!?„ (3.3)

and take the representation π = π(σ l 5 . . ., σnM) such that

Γπ(u) = (-uf~n)MTnM(u; σnMy . . . 7\(u; σx),

Hf = Π β σ/fl,), r,(u; σ,) = Γ?f(u) . (3.4)

Lemma 3.2. < T)π(v) = f(v).

Proof. Consider the ratio τ(v) = (Tyπ(v)^~ ~1(v). This is a meromorphic function
having poles only at points jcf. But Eq. (3.3), (3.4) show that for any
i resw=κn(w) = 0. Hence, τ(v) does not depend on v. Taking limits v -* 0 and v -» oo
we see that τ(ι ) is both an upper triangular matrix with unit diagonal and a lower
triangular one. Then τ(v) is the unit matrix. D

One can easily check that the representation π is a polynomial ^-representation
of degree M and Qπ(u) = £{u\ tf = zf. As a corollary of Lemma 3.2 we have got

nM

that (tf)N = f ] ®σJ (Gf_J ) = {zf)N. According to Lemma 1.3 the representation

π can be restricted to a maximal common eigenspace of operators tf =
nM / \
Y\ ® ξji Gi-jY[Hfli I, i = 1, . . . , n. It is obvious that we can choose this eigen-

j=i \ i J

space J^° such that ί?|.^o = z?. So an irreducible component π° cz n\^o is an
irreducible ^4-representation such that: Σπ° =Σ. D
Proof of Theorem 2. This theorem simply follows from formula (3.11) and The-
orem 1. Let π 0 be an irreducible ^-representation, Σ = Σπo and the representation
π = π(σu . . . , σπM) is built as described above. One can see that operators tf are

(*+l) / \
π M ) p f

(*+l)n / \
organized as products of commuting factors tik = f |® ξλ Gi-j\\H\l1 I. Let

j = kn+l \ I )

be a maximal common eigenspace of tik, ί = 1, . . . , n and ®l=1 Jff*k <= Jtif0. Taking
πk as an irreducible component of π(σkn + ί9 . . . , σik+ί)n)\^ it is easy to see that πfc

is an elementary representation. The representation

n° = πM (x) . . . ® π 1 (3.5)

is an ̂ [-representation of degree M, dimπ 0 = jv ( n" 1 ) n M / 2 and Γπ° = I1. Therefore it
should be irreducible, equivalent to π 0 and (3.5) is its decomposition to a tensor
product of elementary representations. D
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4. Cocommuting Representations and Intertwiners

Definitional. Representations π l 5 π 2 of the algebra stf are called cocommuting
representations if the representations πί ®π2 and π2®πx are equivalent. A linear
invertible operator R such that

Rπ, ® π2(A(Θ)) = π2® π1(J(ίP))R (4.1)

for any Θ e srf is called their intertwiner.

Lemma 4.1. Let πί9 π2 be cocommuting representations and all central elements are
represented in π1 ® π 2 by scalars. Then

[<Γ>*>fa), <Ty2(vΏ = 0 . (4.2)

Proof The statement follows from Lemmas 1.4, 1.5. D

Lemma 4.2. Let π 1 ? π 2 be irreducible Λ-representations and both π1®π2 and
n2®π1 be Λ-representations. Then π x and π2 cocommute if and only if Eq. (4.2) is
satisfied and their intertwiner is unique modulo a scalar factor.

Proof. Due to Theorem 1 both πx ® π2 and π 2 ® π1 are irreducible ^-representa-
tions because of their dimensions. So the part "only if" follows from the previous
lemma. On the other hand if Eq. (4.2) is satisfied it follows from Eq. (1.5), (1.6) and
Lemmas 1.2, 1.5 that Σπi®π2 = Σπ2®πi. Hence returning to Theorem 1 we obtain
that they are equivalent irreducible representations. D

So we reduce the problem to consideration of matrix ,4-polynomials instead of
irreducible ^-representations. For 3Γ(υ) e AJi\v\ let Jiar\v\ a Ji\v\ be spanned
by vk3rl{υ\ kJ^O.

Lemma 4.3. Let 0>(v\ 3Γ{v) e AJί\v\ and \_&{v\ ^ » ] = 0. Then for generic

Lemma 4.4. Let 3Γ{υ) e AM\υ\ and 3~λ{υ) = 3Γ{v) - λl. Then for generic
corank 2Γλ(v) ̂  1 for all λ, u.

Proof If λ0, v0 such that corank ^"Άo^o) > 1 exist then λ0 is a common zero of
d e t ^ ( ί o), Aζ^xiυo) and Bζ^.1(v0) as polynomials on λ. Therefore, v0 is a common
zero of three their mutual resultants as polynomials on v. But it is impossible for
generic 3~{υ). D

Proof of Lemma 4.3. Let us recall that if χ e Jί has a "simple" spectrum in a sense
that corank (βC — λl) g 1 for all λ then the set {8£k}k=o *s a basis of its commutant.
A generic ^(v) has a "simple" spectrum for all v, so 0>(v) = Σί^o-P*^)^"*^)-
Treating this equality as a system of linear equations for functions Pk(υ) we see that
it has a unique solution for any finite υ. Taking into account Cramer's formulae one
can see that Pk(ύ) must be whole rational functions, i.e. polynomials. The same idea
applied to the highest order terms (infinite v) gives the equality for degrees:
deg& = maxk(degPk, k deg <T). D

Certainly, if ^ι(v), SP2{v) e Jίrlυ] then [^i(u), ^2fa)] = 0. And vice versa, one
can say that if [^ifa), ^ 2 fa)] = 0 then generically ^ f a ) , ^ 2 fa) e Jίr\v\ for some

Later we shall use the following trivial idea: A nonzero meromorphic function is
not zero at a generic point.
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Lemma 4.5. For a generic A-polynomial ^(v) its power &m(v) is also an A-
polynomial.

Corollary. For generic f(v)eAJf[υ] and &γip\ 0>2(v) e Jίτ\υ\ »^{p\ 0>2(v)

Now let us return to the intertwiners. Due to Theorem 1 the space of irreducible
^-representations of degree M is YM and all of them can be realized in the same
space VM = (EN(n~i)nMi2

t Define 0ίg- as a set of irreducible representations π such
that (Tyπ(υ) e Jicr\v\ We want to treat an intertwiner as a function of the
intertwining representations and it can be done. According to Lemmas 4.3, 4.5
intertwiners for commuting irreducible ^-representations of degrees M, M' define
modulo a scalar factor a locally holomorphic H o m ( F M , FM')-valued function on
\)*r$Ϋ n (YM x YM>). Moreover this function evidently is a nearly meromorphic
function, only a common scalar factor can be multivalued. Later we imply an
intertwiner to be considered as a function of representations in the sense described
above.

Lemma 4.6. Let R(πl9π2)bean intertwiner for cocommuting irreducible representa-
tions πl9π2. Then generally t r R ( π l 5 π 2 ) + 0.

Proof. It is sufficient to take πγ = π Θ / and π 2 = π Θ m for some irreducible A-
representation π and integers /, m. Generally π®2 is also an irreducible ^-repre-
sentation and R(π, π) is proportional to the permutation operator. Now one can
give the explicit expression for the intertwiner R ( π l 9 π 2 ) and show that
t rR(π 1 ? π 2 ) oc JVfc, where k is the maximal common factor of / and m. D

This lemma shows that t r R ( π l 5 π 2 ) = 1 is a good normalization condition making
an intertwiner a pure meromorphic function.

Lemma 4.7. Let πa e 0tp, a = 1, 2, 3 be irreducible A-representations such that all
πa®Kb iβ + b) are A-representations. Then intertwiners R(πΛ, πb) satisfy the Yang-
Baxter equation

Ri2fai, π 2 ) R i 3 ( π 1 , π 3 ) R 2 3 ( π 2 , π 3 ) = R 2 3 ( π 2 ? π 3 ) R 1 3 ( π 1 ? π 3 ) R 1 2 ( π l 5 π 2 ) .

Proof We consider both sides of this equality as functions on \^0ΐγ. Put

9Ϊ = (R 2 3(π 2, π 3 )R 1 3 (π 1 ? π 3 )R 1 2 (π ! , π 2 ))~ 1 Ri 2 (πi, π 2 )R 1 3 (π 1 ? π 3 )R 2 3 (π 2 , π 3 ) .

5R commutes with all operators of the representation π x ® π 2 ® π 3 which is
generically an ^4-representation, hence 9ί is a scalar. Moreover, from

R 1 2 ( π l 5 π 2 ) R 1 3 ( π 1 ? π 3 ) R 2 3 ( π 2 , π 3 ) R 1 2 ( π l 9 π 2 ) " x = 9ΪR 2 3 (π 2 , π 3 ) R 1 3 ( π l 5 π 3 )

we see that t r ( R 1 3 ( π 1 ? π 3 ) R 2 3 ( π 2 , π3)) = 9?tr(R 2 3(π 2, π 3 ) R 1 3 ( π 1 ? π3)). So
91 = 1. D

Proof of Lemma 4.5. It is enough for any degree / and power m to give an example
of a polynomial ^(υ\ d e g ^ = / satisfying items 1, 2 of Definition 1.3 such that
Aζm{υ) has simple zeros and to give an example of a similar polynomial S(v\
deg 9* = / such that Aζm(v) and Bζm(v) have no common zeros. We shall take έ?(v)



472 V. Tarasov

as follows:

0>u{v) = (v - Wi)1 , Wi + wj if i φ 7
i = 1, . . . , fc

&i,k + i(v) = υ9 ^ k + i fi(r) = ε

0>..(t?) = 1, i = fe + 1,. . . , n, 0>ij{v) = 0 otherwise .

One can calculate that for ε -> 0,

AΓiv) = Π ( » - ™i)lm + £ V Σ Π (« - ^ " Σ
i = l i = l j = l s=0

so ^4f m(t;) have simple zeros for small enough ε.
We shall seek for a polynomial £f(υ) of the following type:

' a(t?) vb 0

(t?) = I 0 (w-υ)1 0

0 0 (w -1?)1/

where a(ι>) is a fe by fe block, b is a fe-column and I is the (n — k — 1) dimensional
unit matrix. Let a(v) be a fe-dimensional yl-polynomial of degree /, deta(f) has
simple zeros, deta(ω) φ 0 and the principal (fe — l) t h minor of a(u) is not zero at
zeros of deta(f). One can build such a matrix a(v) in a way similar to the formulae
(3.3), (3.4). Let us also take b φ im a(ι?) at zeros of det a(ι ). The technical exercise is to
show that Bζm(υ) is not zero at zeros of Aζm(υ\ D

5. sl(n) Chiral Potts Model

Unfortunately, no reasonable explicit expression for intertwiners of generic Λ-
representations can be obtained directly, even for the sl(2) case. The way to obtain
such an expression in this case is to use the factorization of ^-representations to
simplest representations. As a result formulae for intertwiners through the
Boltzmann weights of the chiral Potts model can be got [4, 28]. The first generaliz-
ation of the chiral Potts model to the sl(ή) case was proposed in [3,9] and
corresponding formulae for intertwiners of minimal cyclic representations were
written.

In this section we will introduce a special class of elementary ^-representations
- factorizable representations. For intertwiners of cocommuting factorizable repre-
sentations explicit formulae will be given. Although minimal representations are
not ^-representations the same factors as in Boltzmann weights of the sl(ή) chiral
Potts model [3,9] happen to be employed here (cf. [16]).

Let us take a two-dimensional subspace i 7 c C 2 " and introduce a couple
(Γ, Φ), where Γ is a variety:

aΛ [a? ... aξ

J < > W.-. J
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and Φ is an n by n matrix such that ΦfjΦΰN = ι

N' JN . Here the right-hand side
o(ab )

is a Jacobian calculated on the subspace Π. Always later we shall refer only to
Γ implying the couple (Γ, Φ). Let if be the quotient of the algebra if modulo
relations F G " 1 = 1,

F f = l , G? = ω l ίωΓΛ Hf = 1, i = 1, . . . , n

and 2£ be the center of if. We shall retain the same notations for generators in case
of iff keeping in mind new extra relations. One can see that & is generated by
fi = Fiϊ\ιHf«\i=l9...9n.

Define the simplest L-operator L(w, p) e Jt ® if as follows:

L 0 (W,p) = Φ ί ' ί - ^ F ^ y + (-uf^biGiSt+u). (5.1)

Try to find a solution of the "skew intertwining" relation

S(p, p)L2{u, p^L^Uy p) = L2(w, pι)Lx{u, p)S{py p),

[S(p,p),fί ί®fί i] = 0, (5.2)

where 5 ( p , p ) e # ® 2 ,

t . . . an-1 an

j 9 P b 2 . . . fow ft,

and subscripts indicate the way of embedding if a ψ*®2 as corresponding factor.
Introduce elements

such that Jf = Xf = ( - I f " 1 and define the subalgebra <Tm c # ® m generated by

®J i (χ)l
/c = 1,. . .,m - 1

Define also the subalgebra Jfm c= # ® w generated by ^® m and

/c = 1,. . ., m — 1

Lemma 5.1. Let p, p belong to the same variety Γ and <p> φ <(p). Tftβn ί/iere exists
generically a unique modulo Jf2 solution S(p, p) of Eq. (5.2):

S(P,P) = Σ ^pp(s)ωSlS«Πω(1~Si)Si/2^i1 J«n , (5.3)

^ ( s ) = { b u ^ - a ^ y ^ 0 ^ s i rf1—
Si- i^Si , i = 1,. . ., n, So = sM(mod N) . (5.4)

(Cf. (0.5), (0.6) from [3].)

Remark. The first ratio in the r.h.s. of Eq. (5.4) actually does not depend on i.
Inequalities there describe a convenient choice of the representative for s.
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Lemma 5.2. S(p, p) satisfies the inversion relation

and the skew Yang-Baxter equation:

(S(p, p) ® 1)(1 ® Sip1, P'MSip, p) ® 1)

= Q(P, P, P)(l ® S(p9 p))(S(p\ p1) ® 1)(1 ® S(fc p))

where ρ(p, p, p) is a nonzero scalar and

) M
This lemma corresponds to Theorem 4.1 from [10] and the inversion relation (0.8)
from [3] or (A.I) from [17]. (It should be noted that for p e Γ we suppose that
p1 eΓ1 with Φδ = Φ,,.,+ 1.)

Introducing the products Lm(u, p) and S(p, p):

Lm(u, p) = LJμ, pZ) • • • • • Li(«, p\) e M ®

S(P.P) = Π Π
i j = i+l

(i is increasing and j is decreasing from left to right in this product), we get usual
intertwining relation

S(Pi, p2)Ln

2(u, p 2 )M( W , P l ) = M(ιι, pJLSίn, p 2 )S(p 1 ? p 2 ) , (5.5)

where subscripts indicate embeddings # ® M c # Θ " ® # ® " .

Lemma 5.3. S(pi, p2) satisfies the Yang-Baxter equation

(S(p2, p 3) ® 1)(1 ® S(p l 5 p3))(S(p1 ? p2) ® 1)

= (S(Pi, p 2) ® 1)(1 ® S ( P l , p3))(S(p2, p3) ® 1)

where 1 = 1®".

To prove the announced lemmas we have to study some extra subalgebras.

Lemma 5.4. Let us consider the subalgebra £f citf generated by F[+\Gi,
i = 1,. . ., n. Then £f' -the commutant of9* is generated by FfίGh i = 1, . . ., n
and 2£.

Proof. Commutation relations in ik are homogeneous, so modulo factors belong-
ing to % we have to test only monomials oϊH/s and G/s. But E = [ ] Hΐ'GJ1 e 9"
if and only if μi+1 - μ i = J^v/βy - β j + l i 7 ) , so E e Π , ( f Γ ' G i Γ ^ •

Lemma 5.5. The commutant of the subalgebra 5£°m(=.Ψ'®m generated by
{Hf>m,Ff{m-k)(g)Gi-1®. . .®Gi-k}Uik=i is equal to Jfm.

Proof Denote the commutant of 2°m by $£'m. One can check that Jfm cz S£'m.
Obviously, l ® ( m " 1 } ® FΓΛ^t e ^ m so &'m c ψ°®{m-ι) ® 5?'. This imply that
JS?i, is generated by J^7^- ± ® 1 and l®(m ~2 ) ® Jf2. Step by step we can reduce the
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problem to m = 1 and show that <£'m is generated by Se\ ®\®^-V) a n c } j ^ m > But
&l = # and Se\ = &. D

Lemma 5.6. Let jSfm(p) c # ® m be ίfze subalgebra generated by Hfm, i = 1, . . . , n
α/Z entries ofLm(u, p). 77*β commutant of=^m(p) is egwα/ to ^ίmfor generic p.

Proo/ One can check that JΓm commute with «%(p). So it is enough to prove the
statement only for one variety Γ and one point p e Γxm . We shall use the trick of

the "trigonometric limit" [10]. Let us take Γ containing p° = ( ' ' ' I and tend

Pi-+p°, i= I,. . . , m one after another. In this limit J^(p) goes to 5£°m which
commutant is equal to Xm according to the previous lemma. D

Proof of Lemma 5.1. Substituting the expressions (5.3) into Eq. (5.2) we get
identities

and equations

Φi+li+l

ti Ψi+li+l

which together with commutation relations

JtJj = JjJiω''*1"-'1"*1, Ji(Fj+1® Gj) = (Fj+1

lead to functional equations for Wp~p(s):

Wpp{s) Φi+lιl+1(ωbiaι- atliap

Wp p(s-et) Φu(ωbi+1ai+1 - ai+1bi+1ω
s'^-s'+1)'

e i = ( 0 , . . . , 1 0 ) .
jth

The formula (5.4) gives a solution jof these equations. Clearly S(p, p) = 1 ® 1 so
S(p, p) is generically invertible. If S(p, p) is another solution of Eq. (5.2) then the
ratio S~1(p,p)S{p,p) commutes with JSf2((P» P)) a n d 5 hence, generically belongs
to Jf2 - •

Lemma 5.7. 77ιe intersection 3Γm n J ί ^ is generated by scalars.

Proof. It is easy to see that Fm n Jfm cz J^®m, but it is also clear that <Tm n J^®m is
generated by scalars. D

Proof of Lemma 5.2. 3(P?P) commutes with £?2{v>P\ so generically 3(p, p)
e 3Γ2ncf2 and hence is a scalar. Therefore S~1(p,p)e^2 and we see that ρ(p, p, ̂ )
commutes with J£3(p,p,p) which follows to g(p,p,p) e«f3 n J ί 3 . The explicit
formula for 3(p, p) can be obtained in the same way as the inversion relation (A.I)
from [17]. D

Proof of Lemma 5.3. Consider the ratio

u P2, Pa) = ((S(p2, Pa) ® 1)(1 ® S ( P l , p 3 ))(S( P l , p 2) ® I ) ) " 1

i, p 2) ® 1)(1 ® S ( P l > p3))(S(p2> p 3) ® 1).
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Similar to the previous proof $R(pi, p 2 , P3) e &$m n Jf3m and is a scalar. So it is
represented by the same scalar in any representation of ik ®3w. Let σ be a nonzero
representation of ik. Taking the representation σ®3m of #"® 3 m and computing
detσ® 3 m (^(p l 5 p 2 ,P3)) = 1 we see that 9ΐ(p1? p 2 , P3) is a root of 1. Hence it is
constant. In conclusion, it is clear that 9ϊ(p,p, p) = 1 if p = (p,. . . ,/?). D

Similar to (3.2) the mapping </>w(p): s/

Γ(M) — ( - M)1 -mLm(u, p),

is a homomorphism of algebras. Let # ° be the quotient of algebra ik over
relations f = 1, ΐ = 1,. . . , n and i: # -• τjΓ° be the canonical projection. One can
check that # ° i s a simple algebra isomorphic to (EndC*)®*""1*. Let σ° be the
irreducible representation of W°, σ = σ°°ί and consider the representation
π«(p) = σ®m o φm(p) of the algebra Λ/.

Lemma 5.8. πm(p) is completely reducible for generic p.

Proof. It is clear that any irreducible representation of IVΌ can be obtained from
the construction of the Lemma 3.1 by proper choosing of parameters. In particular
it means that all generators of ΊV° are represented in σ° by unitary operators and
the same is the fact for generators of S£°m in the representation σ®m modulo scalar
factors. Hence σ®m is completely reducible with respect to 3?°m and generically with
respect to JS?m(p). (Use "trigonometric limit.") Since im</>w(p) = Jίfm(p) the state-
ment is proved. D

Lemma 5.9. Invariant subspaces o/πm(p) are invariant with respect to σ®m{^m).

Proof It suffices to prove the statement only for generic p, where πm(p) is com-
pletely reducible. Moreover, we can look to only irreducible subspaces. Let P be
projector onto such subspace along all others. As (σ°)®m is the faithful irreducible
representation of (W °)®m we can write P = σ®m(Θ) with some Θ belonging to the
commutant of JSfTO(p) which is equal to Jfm for generic p. Therefore 0 commute with
3Γm and imP, ker P are invariant with respect to a®m{^m). D

Corollary. Invariant subspaces of πm(p) do not generically depend on p.

Proof Let the subalgebra Jίf J, c # ® m be generated by JS?° and Fm. Clearly for
any p «SfOT(p) c JίfJ,. Together with the lemma it means that invariant subspaces of
σ®m with respect to JSPJ, are also invariant subspaces of πm(p) for generic p and vice
versa. D

Lemma 5.10. Irreducible parts of πn(p) are irreducible A-representations for
generic p.

Proof It is sufficient to consider only one variety Γ. Let us take it such that
α,. . ., N

. G Γ for any α, 6. One can easily reduce the problem to the following

,, J
one: To prove that generically W(v) = (-v)-1Y\kU

(k)(v)eAJt[v~], where
l/$ } = — vδij + ( — v)θiibkδi+1J. Computing °ll{v) explicitly we can see that
%j(v) = ( 4 - v)δij + (-ι;)β"d, fa< + l i j 5 where Y\k(bk -v) = Σ M ' 1 . Taking d l 5

dn-u dnή=0 and dz = 0 otherwise we obtain that A^v) = dn — v, B1(v) = — vd1 if
/ = 0 and Aι+1 = (dn - v)ι + 1 + vld[dn-u Bι+ί = - υd^d, - v)\ C l + 1 =
vι ~x dzfx 4 _ i (t? - dn) if / > 0. Therefore generically ^ (1;) e AM \v\ D
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Definition 5.1. Irreducible parts o/πw(p) are called factorizable representations.

Finally, we have got the following picture. Let V be an irreducible subspace of
σ®" with respect to JS?J and π(p, V) = π n (p) | κ . One can see that dim v=Nn(n~1)/2.
The subspace V suffices to collect all factorizable representations because for any
p and irreducible subspace V one can find p' such that π(p, V) = π(p', V\
p, p ' e Γ x " . Let P be the permutation operator corresponding to σ®n (x) σ®n. Then
by virtue of (5.5) the representations πn(p) and πn(p') are cocommuting if p, p' are in
the same variety Γxn and R(p, p') = PσΘ 2"(S(p, p')) is their intertwiner in the sense
of Eq. (4.1). R(p, p) can be restricted to V® V giving the intertwiner for cocom-
muting factorizable representations π(p, V), π(p', V). So we have got an explicit
formula for an intertwiner of special elementary representations - factorizable
representations. Unfortunately, counting of parameters shows that factorizable
representations do not cover the total set of elementary representations. On the
other hand it is not surprising because we can see from Lemma 4.3 that a generic
variety of cocommuting elementary representations is 3-dimensional but a variety
of cocommuting factorizable representations is at least (n + l)-dimensional, which
is larger for n > 2.

Remark. It is well known that any solution of the Yang-Baxter equation can be
considered as a matrix of Boltzmann weights (maybe complex) for some solvable
lattice vertex model with states on edges. In particular, S(p, p) and R(p, p) also
define some sl(n) generalizations of the chiral Potts model with N"2 and jv("~1)n/2

local states per edge respectively. The first obtained model is reducible and
contains the second one as an irreducible part. The second model is equivalent to
the model considered in [16]. A discussion of these models in more details will be
done in the forthcoming paper.

6. Quantum Minors and Quantum Determinant

Now we want to discuss some technical problems skipped before. In this section it
is not necessary to suppose that εu are integers and ω is a root of 1. Only the
condition ω^ ω^ = ω1+δίj is assumed. It is more convenient to study a little bit
more general situation. We introduce a new i^-matrix R(u) replacing in Eq. (1.1)
a tensor ε by a similar tensor ε and change the definition of the algebra stf substitut-
ing R(u) instead of JR(M) in the left-hand side of the relation (1.2):

R(u) T{uv) T(v) - T(v) T(uυ)R{u) . (6.1)

Let V ~ CM and eu . . . , en be the canonical basis of V. Later we regard mono-
dromy matrices as matrices over jaf, naturally acting in the j/-bimodule
Vyj = s$ (x)c V. We assume the embedding 1 ® id: V-+ V^ taking place. Let us
introduce the ^-bimodules V®m = Vs, ® ^ . . . ®y/ V^ =<& ®c V®m and their

submodules VJ)m = srf ®<cVAm, V Am being spanned by completely antisymmetric
tensors. Define bm e End V®m as follows:

m Z - l

bmeii ® ® eίm — 0 Π ωikheίί ® • ' ' ® eim
1=1k=l
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bm is defined by the similar formula with ώ^ = ωεiJ. One can check that

( m - l fc,fc+l\ _ / m - 1 kjc+l

Q kerΛ(ω)J = fcMf Q
As usual the definition of quantum minors is based on the fusion procedure [18].
By virtue of the relation

(wω1"fc) T (uω~k) = T {uω-k)T{uω1-k)R{ω) (6.2)

following from (6.1) V£m is an invariant submodule for T®qm(u):

T®«m(u) = bmT(u)' . •• f(uωι-m)b-χ .

Definition 6.1. TΛm{u) = Γ®«m(w)|K j Γ, detqT{u) = TΛn(u). Entries of TΛm(u) are
called quantum minors and detqT(u) is called the quantum determinant.

Proof of Lemma 1.2. Equation (1.5) gives the correct coproduct only in the original
case: R(u) — R{u\ bm = bm. In this case it is obvious from the definition that
A(TA m(u)) = TCm{u)T£m{u). D

Proof of Lemma 1.1. For a moment we have to indicate explicitly .R-matrices
taking part in the relations defining the algebra of monodromy matrices. Three
such algebras are necessary: st = ^RR, S$RR and S$RR. The Yang-Baxter equation
shows that jR-matrices R(u% R(u) generate some representations χ, χ of the algebras
£#RR> ^RR in Cw respectively. Taking the mth tensor power of Eq. (6.1) and using the
definition of the quantum determinant we have got

detqT(u)β(u/υ)T(v) = T(v)p(u/v)detqT(u) ,

where p(u) =f(u)(detqTRRy(u\ β(u) =/(u)(detβ TMγ(u), (6.3)

and f(u) is an arbitrary scalar factor. The easiest way to calculate p(u\ p(u)
explicitly is to use different expressions for det^ T(u) for calculating different entries
of p, p. For each entry the most convenient expression has only one nonzero term.
As a result the matrices p, p can be written as follows:

and using Eq. (1.4) in case of R(u) = R(u) completes the proof. D

Corollary. [detβΓ(κ), det9Γ(ι?)] = 0.

Proof It follows from (6.3) since detp = detp. D

Let us identify Fwith K Λ ( m " 1 ) and F Λ 2 with F Λ ( w " 2 ) as follows:

ei<r+(—ΐ)n~iei A . . . A ei-ί A ei+1 A . . . A en

e{ A ej<-^(—l)i+je1 A . . . Λ ^ _ I Λ ei + 1 A . . . Λ e^-χ A ej+1 Λ . . . Λ eπ

i<j (6.4)

and take the elements written above as standard basic elements for these spaces.
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Lemma 6.1.

Γ(u)<T 1 (Γ A ( "- 1 ) ( t toΓ 1 )J ί J = άctqT(u), (6.5)

1(dA2)~1(TΛi"-2){uω-2)ydΛ2ί = det,Γ(u),

I k = l I k = l

ίet A βj = (ύijβi A βj, Iβi A βj = ώijβi A βj, ί, I e End F Λ 2 . (6.6)

Pr oof One has the natural embeddings V£n ^V^®^V^{n~γ) c F ® m and
V$n c V£2 ®^ V£(n~2) cz V®m, so det^ T(u) can be calculated in two steps. At first
T®qm{u) is restricted to the tensor product V^ ® ^ V£in~1} or VJ}2 ® ^ V£in~2) and
then to F £ n . Taking into account relations (6.4) in this calculation we obtain the
statement. D

Corollary.

= f
= (p (x) I)(R(u)y(I(S)p) \ R(u) = (p®I)(R(u)y(I (x) p) x . (6.7)

/! One can transform Eq. (6.1) to this formulae using Lemma 1.1 and
Eq. (6.5). D

Let us also introduce f(u) as follows:

f(u) = /6 2 p~ 1 (Γ Λ ( n " 1 ) ( t ίω" 1 )) ί ( f Λ ( n ~ 1 ) (M)) ί -b^ί'1 .
P

Equation (6.7) shows that V£ 2 is an invariant submodule for T(u) and one can put
f(u) = f{u)\v«2. Using Eqs. (6.3)-(6.6) one can show that

(f(u)y = det4Γ(M)ΓΛ ( M-2 )(wω-1) . (6.8)

Due to the structure of the ^-matrices (see Eq. (1.1)) we can consider sub-
matrices of T(u) as monodromy matrices of smaller size: commutation relations
inside a submatrix are also described by the relation (6.1) if one substitutes there for
the original matrices submatrices of T(μ\ R(u), R(u) corresponding each others.
And quantum minors of T(u) are quantum determinants of its submatrices treated
as smaller monodromy matrices. This is the important thing permitting us to
compute commutation relations of quantum minors step by step by means of
Eq. (6.5), (6.7), (6.8).

Lemma 6.2. Let T{^ Tkl be quantum minors and one of them includes another. Then

Tii(u)Tίl(u)=Tkl(u)Tii(u)ΨilΨίk

ί,

iei fcek jej le\

where bold letters are multi-indices.

Proof. If the smaller minor is an entry of T(u) the statement follows from the proof
of Lemma 1.1 because the larger minor can be considered as a quantum determi-
nant. The general case can be got simply by multiplications. D
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Now we can prove relations (2.2)-(2.5), (2.17) for quantum minors. Some of
Eq. (2.2) and (2.3) are evident and others follow from Lemma 6.2. Equation (2.4)
can be obtained from the relation (6.7) applied to the principal submatrix generated
by the first (i + 1) rows and columns (its quantum determinant is the quantum
minor Λi + 1(u)). The relation (6.8) applied to the same submatrix leads to Eq. (2.5).
And the same relation applied to the submatrices generating quantum minors
Bkι(u) and Chl(u) gives Eq. (2.17).

7. Comultiplication of Central Elements

The fusion procedure is also very helpful in handling of central elements. Now we
again require ω to be a primitive Nth root of 1 but ε^ can still be complex. Let Wm

be the kernel of the complete symmetrizing projector in V®m. It is clear that
k,k+l

ker R (ω) c bm Wm if k < m. Define

/ m j-1 ij

both indices growing from right to left. Rm will be considered as function of co^.
Let V° a V®N be the subspace spanned by the elements efN = et ® . . . ® eu

i = l , . . . , n a n d K § = rf ® c V°.
Lemma 7.1. Generically kerR* = WN ® V°.

k,k+ί

Proof Using the Yang-Baxter equation (1.2) one can move any factor .R(ω) in the
product for RN to the very right and show that WN c ker RN. It is also clear that

R(u)\vo = l-uω. Evidently WNnV° = 0. So WN 0 V° c kerRN and it re-

mains to prove that generically dim ker RN = dim WN + dim V°. Here the right-

hand side does not depend on ωtj at all and it is enough to calculate the left-hand

side only for one special case. Let us test the limit co^ -+ 0 for i < j . In this limit

R(u)ei®ei = (l-uω)>

o(ί))9

From these equalities one can see that RQ = lim^.^oR^ is finite and imRo is
spanned by {eh ® . . . ®eiN: ix ^ . . . ^ iN, i1 Φ ίN}. Hence dim ker RQ = dim WN

• f d i m F 0 . But generically dim ker RN ^ dim ker RQ, SO the statement is
proved. D

Lemma 7.2. Let KeJί®N be a projector such that W a kerK and V° c imX.
Then KT®«N(u)\Ws, = 0 and KT®«N(u)\v<> = (T}(uN).

Proof. By virtue of Eq. (6.2) W% is an invariant submodule for T®qN(u). Due to Eq.
(6.1) one has the relation

R m T®qm^ = f(uωl -my . J ( w ) R m ?
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which shows that j / ® c k e r R N is also an invariant submodule for T®qN(u).
Therefore according to Lemma 7.1 W^ © V$ is its invariant submodule too and
the statment follows from the straightforward computation. D

Proof of Lemma 7.5. This lemma is a corollary of the definition (1.5) of the
coproduct and the previous lemma. D

Proof of Lemma 1.4. Let χ, χ be the representations of the algebras stfRR,
^R"R generated by i^-matrices R{u), R(u) in <C". Equation (6.1) and Lemma 7.2
together give

R°(v)(T)(uNv)T(u)==T(u)<T>(uNv)R°(v),

R<y(v\ R<}(v) can be calculated easily and are equal to (1 — v)I (x) / if all ε^ are
integers. D

Proof of Lemma 2.1. Since all entries of < Γ> (υ) mutually commute its minors can
be defined as usual. The slightly more general statment will be proved.
Let TV}(u) be a quantum minor of T(u) and (T\(υ) be the corresponding minor of
(T)(v). Then

ί,fcei j,lei
i>k j>l

ϊ t t = ( - l ) ( " - 1 ) l f t , τjl = (-iy-1>">. (7.1)

As before we treat quantum minors of T(u) as quantum determinants of its
submatrices. So we have to prove this formula only for the quantum determinant
supposing that it is proved yet for all proper quantum minors. The complete set of
formulas for all quantum minors can be obtained by induction with respect to the
minor's size. The base of the induction is the case when a minor is simply an entry;
in this case the formula (7.1) is tautological. In order to prove the formula (7.1) for
the quantum determinant let us take the ΛΓth tensor power of Eq. (6.5). Using the
commutation relations (6.3) to carry detqT(u) through T(v) we come to

N(u) = <detqT)(uN),

i

xY\®pίd®Nb^ί . (7.2)
i

Let K be the same projector as in Lemma 7.2. By the straightforward computation
taking into account Eq. (7.1) for proper minors one can check that

x f ® N(tt)lκ<> = < Γ > Λ ( " - 1 V ) Π Π τ v f y
i 7 = 1

Now Eq. (7.2) multiplied by K from the left side gives the required formula

ΠU^ij<^tqτy(υ) = (τy(v)(τy^n-1\v) = dct(τy(v). (7.3)
i 7 = 1

D



482 V. Tarasov

Proof of Lemma 1.7. The only nontrivial property to be checked is

det<7T(ι;) = <

But it was already proved above (cf. Lemma 1.1 and Eq. (7.3)). D

8. Algebra of Monodromy Matrices and Uq(gl(n))

Let us make two remarks about the structure of the algebra sJ. At first there exists
an algebra isomorphism between stfRR and S/RR if ltj = εl7 + stj — sβ for some
integers sί7 . It looks as follows:

τiM) Π Hι~Sii e S*RR
I

This mapping does not preserve the coproduct so it is not a bialgebra isomorphism.
Now let us take a polynomial representation π of degree M such that

tf = tf = i9 i = 1,. . . 9 n. We put T(u) = Tπ(u\ Ht = H? and introduce operators
Ei9 Fh Gi9 i = 1,. . . , n as follows:

G, = (7ST 1 7 ? + l f f + 1 =
i

For ft > 2 they satisfy commutation relations

EiEj = EjEia>™, FiFj = FjFiω^\ \i - j \ > 1 ,

^EfEj - (ω + !)£,£/£, + ω^EjE? = 0

iJF}Fj - (ω + 1 ) ^ ^ . ^ . + ω'fiFjF? = 0' '' ~ j l "

which look similar to the commutation relations for Uq0(n)). More precisely, for
JV -h 1

ωN = 1, N being odd, ε^ = — - — ( 1 + δij) and q = ω{N+1)/2 the operators

h _ V(N+1)I2 ^ ^
"~ / -1\» Ji ~ M \

(q-q x) (1 -ω)
satisfy the commutation relations for Uq(gl(n)) at level 0.
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