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Abstract: A possibility to describe massive fields of spin s =% within general
relativity theory without auxiliary fields and subsidiary conditions is proposed.
Using the 2-component spinor calculus the Lagrangian is given for arbitrary s in an
uniform manner. The related Euler—Lagrange equations are the wave equations
studied by Buchdahl and Wiinsch. The results are specified for fields of integer and
half-integer spin: A suitable generalization of Proca’s equation and Lagrangian
leads to an equivalent tensor description of bosonic fields, whereas a generalization
of Dirac’s theory allows an equivalent description of fermionic fields by use of
bispinors. A U (1)-gauge invariance of the Lagrangian is obtained by coupling to an
electromagnetic potential. The current vector of the spin-s field is derived.

1. Introduction

Relativistic wave equations for particles of arbitrary spin were first considered by
P.AM. Dirac in 1936 [11]. In the notation of Penrose and Rindler [28], his
equations read

D . . .. .
OXo®DA, .. A%, .. X, F WA, . A, %X, ... %, =0,

04 dAy .. AZX, .. X = VPagh, .. AKX, . % =0, (1.1)

where n,k=0,1,2,... and the spinor fields ¢ and y are symmetric in their
dotted and undotted indices (corresponding to the irreducible representations
D((n + 1)/2, k/2) and D(n/2, (k + 1)/2) of the restricted Lorentz group SO (1, 3)).
The particles (quanta) of the field described by (1.1) have the mass m* = — 2uv
and the spin s =1 (n + k + 1).

The system (1.1) of differential equations allows an uniform description of fiee
fields of particles with arbitrary spin. Various other field equations can be com-
prehended as special cases of it. If we write the Dirac [10] and the Rarita-
Schwinger [31] equations in terms of 2-component spinors then we obtain (1.1)
with 4 = vand n = k. The equations of Proca [30] and Fierz [16] for bosonic fields
can also be derived from (1.1) (see also [2, 15, 24-26, 28, 32, 33] and Chapter 2). If
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m = 0, then the system (1.1) is “decoupled”; the first equation of (1.1) with u = 0 and
k = 0 is the field equation for a massless free field of spin %(n + 1), especially we
obtain Weyl’s (n = 0) and Maxwell’s (n = 1) equations (cf. [28, 29, 32]). Massless
fields will not be considered in this paper (see [23]).

Several difficulties arise with the generalization of (1.1) to interacting fields. The
inclusion of an electromagnetic field given by its vector potential A is affected by
the rule

0y > 0, — ieA, , (1.2)

where e is the charge of the particles. The generalization of (1.1) by (1.2) yields
algebraical subsidiary conditions between the electromagnetic spinor and the field
spinors ¢ and y if the spin is greater than a half [17]. The minimal coupling of the
equations (1.1) to a gravitational field, i.e.

flat —» curved space-time, 0, — V, (1.3)

yields algebraical supplementary conditions between the curvature spinors and the
field spinors if s > 1[5, 6]. This occurrence of additional algebraical constraints is
usually denoted by inconsistency [17].

There are various attempts to obtain consistent equations for “higher” spin (i.e.
s > 1). Fierz and Pauli [17] established a theory of interacting fields with arbitrary
spin which is based on an action principle. However, the technique is exceedingly
difficult even for free fields because it is necessary to introduce an increasing
number of auxiliary fields if the spin is greater than two ([33], see also [15] for the
massless case).

The extension of general relativity theory, e.g. to space-times with torsion
[1,27] or to complexified space-times [29], is another possibility to look for
consistent field equations. However, there result also consistency conditions which
restrict the “background geometry.” Supergravity theories seem to be unsuitable to
describe fields of arbitrary spin, too [26].

After some remarks on higher-spin fields in flat space-times, we present here
a possibility to describe massive fields of arbitrary spin s within the framework of
Einstein’s general relativity without any auxiliary fields and subsidiary conditions
in an uniform manner. This approach is based on irreducible representations of
type D(s,0) and D(s — %, %) instead of D(s/2, s/2) in the Fierz [16] and D(¢, t + %)
in the Rarita—Schwinger [31] theory, i.e. the field equations are of type (1.1) with
k =0 (cf. also [2, 12, 13, 24, 34]).

It was first pointed out by H.A. Buchdahl [7] that this type of field equations
can be generalized to an arbitrary (#, g). V. Wiinsch has shown in [37] that
Buchdahl’s equations can be simplified to

D
VX®pa, .. 4+ Mxa,...4,x=0,

Vita,. ayi—Voaa, . 4, =0. (14)

We emphasize that the main point in (1.4) is the symmetrization of the indices in the
second equation. In the sense of Buchdahl [7], (1.4) seems to be the “simplest
possible” pair of mutually compatible equations which reduces to (1.1) in flat
space-times and which allows the inclusion of an electromagnetic field by (1.2) [37].

Chapter 3 of this paper begins with some basic definitions and general proper-
ties of the differential operators contained in (1.4). Then we discuss a generalized
form of the field equations (1.4) and derive second-order equations for the fields
¢ and y. The second-order equation for ¢ is of normal hyperbolic type and can be
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comprehended as generalized Klein—-Gordon equation (cf. [7,21]). Using this
equation Cauchy’s problem for the system (1.4) can be solved. In this respect we
refer to the detailed analysis of V. Wiinsch [35, 37].

The action principle is fundamental in field theories [32]. In Sect. 3.3 we present
an uniform Lagrangian density L for all possible values of s = 3. However, to
construct L® in that general form, we need four independent spinor fields and we
obtain two systems of type (1.4) as Euler—Lagrange equations.

In Chapter 4 we specify the results of Sect. 3.3 for fields with integer and
half-integer spin. For bosonic fields of spin s, the field functions are complex
“bivectors and vector-bivectors of rank s” [22] and we obtain L by a suitable
generalization of the Lagrangian density of Proca fields. The Euler-Lagrange
equations can be splitted into a self dual and anti-self dual part and each of them is
related to a system of type (1.4). If the tensor fields are real, then the anti-self dual
part is the complex conjugate of the self dual. Consequently, we have only two
independent spinor fields and the Lagrangian density L® reduces to that of [19, 20].

For fermionic fields of spin ¢ + 3, the field functions are the tensor product of
a bivector of rank ¢ and a bispinor (cf. also [34]) and L“*#) can be obtained by
generalization of the Lagrangian density of Dirac fields. In the Weyl representa-
tion, the Euler-Lagrange equations are again two systems of type (1.4). In the case
of “lower” spin (i.e. s = § and s = 1), certain spinor fields coincide and we get the
well-known Lagrangians for Dirac and Proca fields (cf. e.g. [4, 8, 32]).

The complex character of the field functions allows the action of the gauge
group U(1). In Chapter 5 we show that the Lagrangian density L® becomes gauge
invariant if a gauge field is coupled by (1.2). From this generalized Lagrangian we
derive the current vector j of the spin-s field, which was given for flat space-times
(without knowledge of the Lagrangian density!) already by Fierz [16].

The field equations for the metric tensor result from the total Lagrangian,
obtained by adding the Einstein—Hilbert action to the “matter part” L® [32]. But
their derivation is rather complicated because L contains derivatives of g if s > 1
(cf. [20] for first results). Therefore, we postpone this problem to a forthcoming
paper. Likewise, the question of whether or not the Lagrangian L® contains ghost
modes is still open.

In the following, we assume that the (four-dimensional) space-time (.#, g) and
all spinor and tensor fields are of class C®. All considerations are purely local. We
denote by &, , (n,k=0,1,2,...) the set of all symmetric (“irreducible” [287)
spinor fields with n undotted and k dotted indices:

555@;,1«41’{/11“‘,4")&1...&=C(A1.‘.An)(X1.A,Xk)~

Moreover, we use the notations and conventions of Penrose and Rindler [28],
especially for the curvature spinors ¥ apep € %4, 0, Papxy € %2, 2,and A € % o. As
usual in the literature, the symbol ¥ is also used for bispinors (4-component or
Dirac spinors), but confusion with the Weyl spinor ¥ pcp is impossible because of
the explicit use of indices.

2. Some Remarks on Higher Spin Fields in Flat Space-Times

Before generalizing the system (1.1) to curved space-times we discuss some aspects
of theories on free fields with higher spin.
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Remark 2.1. The system (1.1) is of normal hyperbolic type. Every solution (¢, y) of
(1.1) is divergence-free

aDZ(/)DAl,.,AnZXZ_,,Xk=0 for k>0,
0" tpa,... 42%,...%,=0 forn>0 2.1)
and satisfies the Klein-Gordon equation

(0“0 +m*)Qan, .. ax, . %, =(0"0at+m*)pa, axx, . %=0. (22

The Cauchy problem for the system (1.1) is properly posed if the initial data satisfy
suitable constraints ([35], see also Sect. 3.2).

Remark 2.2. 1f the mass m and the spin s > $ of the field are fixed, then there are
various possibilities to realize the condition s = 3(n 4+ k + 1)in (1.1), namely n = 0,
k=2s—1;n=1k=2s—2;...;n=2s— 1, k= 0. Consequently, there are 2s
possibilities to formulate the system (1.1), but all of them can be converted into each
other in flat space-times [9, 16]. In a curved space-time, these transformations are
generally impossible for s > 1, because a “potential” of the field exists only in
particular cases [22].

Remark 2.3. Besides the system (1.1), there are other possibilities to formulate
equations for fields of higher spin (see e.g. [2]). Especially we should mention:

a) Bosonic fields: Fields with integer spin can be described by tensor fields. In the
theories of Proca ([30], s = 1) and Fierz ([16], s = 2) the “field functions” are
symmetric, traceless tensor fields of rank s. The field equations read (see also
[2,12,17, 25, 33])

(aaaa + mz)Um L ..as — 0> o Ua;az R 0. (23)

Because the spinor equivalent of U is an element of ¥, it follows from the
above-mentioned remarks that these equations can be considered in a sense as
special cases of (1.1) with n + 1 = k = 5. If s = 2 then it is impossible to construct
a Lagrangian that will yield (2.3) by using only U, but auxiliary fields are necessary
[15,17,33].

b) Fermionic fields: Fields with half-integer spin cannot be described by linear
equations for tensor fields [28]. In the theories of Dirac ([10], s =) and
Rarita—Schwinger ([31], s=1t¢+4, t = 1) the field equations read (see also
[2,17, 26,33, 34] and Sects. 4.3, 4.4)

(0 +mN)¥y, 5, =0, "Wy, 5 =0, (2.4)

where y* are the Dirac matrices and the “field function” ¥ is a tensor product of
a symmetric, traceless tensor of rank ¢ and a bispinor. If one considers only the
restricted Lorentz group SO (1, 3) the representation space splits into two invari-
ant subspaces [2]. Hence we have ¥ = ¥(*) @ ¥(7); the second equation of (2.4) is
then equivalent to ¥V € %41, Y7 € &, ,+1. Using the Weyl representation of
the Dirac matrices (see Sect. 4.3) the first (differential) equation of (2.4) yields just
the system (1.1) with n =k =t In curved space-times, the Rarita—Schwinger
equations are inconsistent unless this one is an Einstein space (f = 1) or has
constant curvature (t > 1) [5, 6, 35].
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Remark 2.4. 1t is easy to state systems of differential equations which are equiva-
lent to (1.1) in flat space-times. If one replaces the derivatives in both equations by
their symmetric parts and n > 0, k > 0, then the arising system is no longer of
hyperbolic type and does not lead to a wave equation of second order [17]. But
there is no loss in information if one replaces in one of the equations (1.1) the
derivative by its symmetric part. The reason for this is the fact that from each
equation the vanishing of the divergence of both spinor fields ¢ and y follows.

Remark 2.5. The facts mentioned in the Remarks 2.2 and 2.4 complicate the
generalization of the system (1.1) to curved space-times, because one does not
a priori know from which of the (in flat space-times) equivalent systems one has to
start (see also the discussion in [7]). In this connection, the knowledge of the
Lagrangian density should be helpful, because a generally covariant action (with-
out curvature terms) produces the Euler—Lagrange equations with “minimally
coupled” gravitational field (see [32] and Sect. 3.3).

3. Uniform Description of Arbitrary Spin Fields in Curved Space-Times

3.1. Definition of Suitable Differential Operators
Definition 3.1. Let Be ¥, 1 be a given spinor field and n, ke {0,1,2, ... }. We
define first-order differential operators M*): %, 1 = L, 1 by

Gan, . ax, x> MEILoa, . axx,  x:= &+ B&) 04, . aix,. . %
and N®: S, iy — Fnv1.u by
Ya, o oaxx, . x> NE 0 Daa, . ax, .. %
= (V£ BE) A, . apxx, %, -
In the case of B = 0 we write only M and N.
Remark 3.1. Complex conjugation maps &, , into < , and we have
M[p]=N[¢l NIx1=MI[7].

Proposition 3.1. Let ¢ € &, and y € &, 1 +1 be some spinor fields. If the metric
g undergoes a conformal transformation, i.e.

A 2 A AX AX A
Jab=€"gam, 6.7 =0,"", Ep=e"eyp
with a positive scalar function p (see [28]), then we have B, =B, and

M(i)[e(k+1)p(p] = ek”M(i)[(p], N(ifJ[e(nH)pX] - enpN(i)[X] . (3.

Proof. (cf. also [35]). The transformation law of the Christoffel symbols reads
[18, 28, 35]

AZb =To+206Vep — gauVep ,

I =T8+a BV, yp.
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Using these formulas one obtains for £ € S, , (cf. [28])

VB)'ffAl AKX XS VB)"éA‘ AKX X,
- rV(A,YpéAz...A,)BXl...X,
— tVpx, P4, .. aX,.. X)¥-

From this equation we get for r = n + 1, t = k after multiplication with £42 |

V'f"/fAAl AKX, X = e_p(VAY'éAA, cooAX, . X, — (k+ I)V(A)”Pf,«x,q1 AKX X))

Setting ¢ =e*"P?¢ one obtains M[e**V2 ] = e M[¢@]. Because B, = B,
implies B = e~ * BY%, the first equation of (3.1) is already proved. The proof of the
second equation is the same.

Definition 3.2. For two spinor fields &, 3 of the same type we define the scalar product
(*,*) by .
LI (& 9)=Cu, g, x9N X

Proposition 3.2. The operator N7 (N')) is the adjoint of the operator M)
(M),

Proof. Let Q = # be a domain with a sufficiently smooth boundary and
© € Frtt.xs X € P k+1 With compact support in Q. Then one obtains by use of the
Gaussian theorem

é{(M‘“[q)], 1) — (@, N[} dv =
gj}VE‘r(q)AA, ok, M AKXy gy =0 (32)

In the same way one proves the statement for M (") and N‘*), We emphasize that
the scalar product (3.2) contains only the symmetric parts of the derivatives of
¢ and y.

Corollary. The iterated operator N'*) M) (M) N 7)) is the adjoint of the iterated
operator N“OM ) (MM N),

Proof. Put in (3.2) y = M) [$] and ¢ = NP[§], respectively.
Lemma 3.1. Let ¢ € %, 41, be some spinor field. Then we have
VAVEOEa, . ax,. X

=" (ViaVrixQea, . ax, ... %, + ViaVr)XPE4, .. 4%, ... %)

1
= — EV“V,;(PAA1 oA, X nYPE 4404, a)DEX, .. X,

+ k@, QEa, . aix,  xgr— 0+ DAQan,  ax, % (33)
Proof. Use the Ricci identities for spinor fields (cf. also [22, 35]). |

Using the relation (3.3) one can show that the iterated operators NM:
F 1= Snvr1pand MN: &, 41 = &, 1+ are generally not of normal hyper-
bolic type (because of the symmetrization). The case of k = 0 is an exception, as we
will see in the next section.
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3.2. The Field Equations. Using the differential operators M~ and N~ we can
establish the field equations (1.4) in the generalized form [21, 37]

Mol + =0
N[yl —ve=0 (34)

for spinor fields ¢ € %, 0 and x € &, ;. The purpose of adding the spinor field
B is its possible physical interpretation as electromagnetic potential (see (1.2) and
Chapter 5). The factors x and v are complex constants and connected with the mass
m of the field quanta by

m? = —2uv. (3.5)

We assume p # O in the whole paper.
We can formulate the system (3.4) with B =0 in an alternative manner (cf.
[37]). From the first equation of (3.4) and Lemma 3.1. we obtain for n >0,

(VCX - BCX)XCAZ,,.A,,X'
1 . .
= - ;(VCX — BX)(VE — BY)Quca, . 4,

1 .
= ;(wcmz A VXBR —(n— D)¥PEF 4 @4 4 pEF) - (3.6)

Using the identity

eaa, Vo4, aycz (3.7)

ve =V ; +
(AXA, ... A)Z AXA, ... AZ nrl

and (3.6) we obtain the system (3.4) with B = 0 in the form

VR@pa, a4t x4, ax=0,
n(n— 1)

= &
un+ 17N

These are the equations of Buchdahl [7]. The form (3.8) of the field equations
shows explicitly that the symmetrization in the second equation of (3.4) with B =0
can be omitted if n = 0, n = 1 or the space-time is conformally flat.

From the first-order system (3.4) we can deduce second-order equations for the
fields ¢ and x. Substituting

zZ .
Viaxa,.. 4,2 = Vv®Puaa, . . . 4, POEE @4, aypEF - (38)

1
1= —-M7[e] (3.9)
U

into the second equation of (3.4) we get
NOM @] + uve =0. (3.10)

Using Definition 3.1, Lemma 3.1 and (3.5) we obtain after multiplication by — 2
the following explicit form of (3.10) (cf. [21] as well as [7, 37] for B = 0)

ViV, 0 —2BV,0 + 690 =0, (3.11)
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where the linear operator €:%,., o — %, +1,0 has the coordinates
G B = (= PR 4+ 2V BRSY, + [B B,
+2(n + 3)A + m*]6565:)6% ... 6% (3.12)
On the right-hand side of (3.12) one has to symmetrize the indices 44, ... 4, and
BB, ... B,, respectively. The second-order equation (3.11) for the spinor field

@ € %, 41,018 linear and of normal hyperbolic type. With the help of it we can solve
Cauchy’s problem for the system (3.4) (see below).

Remark 3.2. Whereas the system (3.4) makes sense only for n > 0, i.e. for s = %, the
second-order equation (3.11) can be generalized to scalar fields, i.e. to s = 0, too. If
one replaces the operator & by its trace and puts formally n = — 1, then (3.11)
reduces to

R
VoV, — 2BV, ¢ + <B“B,, — VB, + ¢+ m2>(p =0.

This is just the Klein—-Gordon equation with a minimally coupled electromagnetic
field and a conformally coupled gravitational field [3]. Therefore, we can compre-
hend (3.11) as generalized Klein-Gordon equation. ]

The second-order equation for the field y
MONO[y]+ pvy=0

can be transformed with the help of the relation (3.7). We obtain

(V¥ — B?&)(sz; - B%)XA, o AZ T VXA, A X

n
n+1

(Via, % — B, x) (V% = B ya, . a2

Il

n
:———(DD) & 3.13
"t 1( [X])A,...A,,X ( )
Using Lemma 3.1 we get after multiplication by — 2
2
VeV,% — 2BV, + Dy = n—:—l—DD"’[x] : (3.14)

where the linear operator 9: &, | - &,  has the coordinates
P B = (— @ 4,157 + 2VRB50%:
+ [B°B, + 64 + m2]6§5ﬁ‘1)5ﬁ§ R (3.15)

If n > 0, then (3.14) is not of normal hyperbolic type because the right-hand side of
it contains second derivatives of y, too. But these can be eliminated with the help of
Eq. (3.6). Therefore, if the spinor field ¢ is already known by solving (3.11) (see
Proposition 3.3) then (3.14) is a normal hyperbolic equation for the spinor field y.
But it is generally inhomogen (in contrast to (3.11) for ¢). A wave equation which
contains the spinor field y alone follows from the system (3.4) for n > 0 only if
VZ(CBD)Z' =0 and (n e 1) TABCD =0.

Before solving Cauchy’s problem for the system (3.4) some investigations on the
geometry on the initial hypersurface & are necessary. In this respect we refer to the
detailed analysis in [35, 37] and present only the main ideas here.
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Let a spacelike hypersurface # of class C* with parametric representation
x*=x(t*) (a=1,2,3) (3.16)

be given. Let n® denote the future-directed unit normal vector on # and
V.= n®,. For an arbitrary spinor field ¢ let {7 arise from & by substituting (3.16)
into the coordinates of £. We denote the spinor fields constructed in this manner
from &, , by &, 4=

Cauchy’s problem: Let a spacelike hypersurface # and initial data ¢ € %+, 0|7
and y € &,1|# be given. Find a solution of (3.4) with ¢ € &+ 0, x €, and
OlF =0, 1|7 =1-

In general the Cauchy data ¢ and ¥ cannot be prescribed arbitrarily. If
a solution (¢, x) of Cauchy’s problem does exist then the differential equations (3.4)
have to be satisfied on &, too. From the first equation of (3.4) we obtain

Va@ud,  ajz=250VE =B Opa, a4+ 1ta,  axls, (17

where the differential operator Ve =V, ¥ — nyx V, is just the tangential part of
V 4x with respect to the hypersurface & [35, 37]. Therefore, the right-hand side of
(3.17) is uniquely determined by the initial data. The symmetry of the solution
¢ implies V@ € ,+1,0|#, consequently, the right-hand side of (3.17) must be
symmetrical with respect to the undotted indices and we obtain for n = 1 the
following constraints for the Cauchy data [35, 37]:

nAX[(VE — BR) @4, . 4+ iia,. ax]jg=0. (3.18)

Remark 3.3. The constraints (3.18) mean that the spinor field enclosed in the
square bracket has to be spatial. They do not express an essential restriction of the
Cauchy data. For example, if one chooses &% and ¢ arbitrarily, then (3.18) yields
only an algebraic condition on j. This can be satisfied easily because of u =+ 0.

Proposition 3.3. If the Cauchy data ¢ and § satisfy the constraints (3.18) then there
exists a neighbourhood of & in which Cauchy’s problem has a unique solution.

Sketch of a proof. (cf. [21]). From the initial data we can calculate the normal
derivative Vy$|# according to formula (3.17). Since the constraints (3.18) are
satisfied we have V,,p € &, +1,0/#- Now we have a Cauchy problem for the
generalized Klein—-Gordon equation (3.11) with initial data ¢ and V, ¢ which has
a unique solution ¢ € %, o (see e.g. [18]). Then we define the spinor field
1€ %1 by (39).

The construction of ¢ implies ¢| 7 = @, Vi @|# = V. ®; consequently we have
by (3.17) x# = % The pair (¢, x) obviously satisfies the first equation of (3.4).
Further we obtain

1
NI —ve = N“’[ ~%M"’[¢]} —vp = —;(N“’M“’[qo] + wep) =0,

because ¢ is a solution of (3.10). Hence, (¢, x) is a solution of (3.4).

To prove the uniqueness we note that V,, ¢ # is uniquely determined by ¢ and
% according to (3.17). Because the spinor field ¢ of every solution (¢, ) of (3.4) has
to satisfy Eq. (3.11), the uniqueness of ¢ follows from the uniqueness of the solution
of Cauchy’s problem for second-order hyperbolic equations (see [ 18]). The unique-
ness of y is then obvious.
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Remark 3.4. The above discussion of the field equations (3.4) shows that the
condition u # 0 is an essential supposition for their consistency if n > 1. On the
contrary, v =0 is possible. This gives rise to consider N[y] =0, y€ %, ;, as
possible equations for massless fields with arbitrary spin. These field equations are
studied in [23]. The main results are:

i) Let { € %,+1.0 be given, then the equations N[x] = { for y € &, ; are consis-
tent on a generally curved space-time for all n = 0.
ii) The Cauchy problem is properly posed for these equations [22].
iii) The equations N [x] = 0 are conformally invariant (cf. Proposition 3.1).
iv) The field y is gauge invariant in the following sense: Let w € &, _ , be given,
then there exists a solution of N[y] = { with
V¢, a7 =04, . 4, -

n n

A Lagrangian that produces the field equations N [y] = 0 is still unknown (except
for n = 0, which is just the Weyl equation).

3.3. The Lagrangian Density. We start with some general remarks on the Lagran-
gian formalism for field theories (cf. [32]). Consider a physical system which is
described by spinor fields ¢V, ..., E™), Let Q = . be a domain with sufficiently
smooth boundary. With a Lagrangian density L we define the action S of the
system in Q by the integral

S=[Lav.
Q

Because we are especially interested in the field equations we consider only the
matter part of the Lagrangian density.
The mathematical form of the Hamilton principle leads to the variational
problem
oS -
WZO’ jge=0 (r=1,...,N). (3.19)

Suppose the Lagrangian density L contains at most first derivatives of the field
spinors. One obtains by use of the Gaussian theorem the following Euler-Lagrange
equations of the variational problem (3.19):

oL oL
———Vppm———-=o-=0
0c® TP 3(VgyED)
Now we consider the problem of whether or not there exists a Lagrangian
density L in such a manner that the field equations (3.4) are just the Euler—
Lagrange equations (3.20). We begin with the case of B = 0. The coupling to an
electromagnetic field will be discussed in Chapter 5.

(r=1,...,N). (3.20)

Theorem 1. Let n be a nonnegative integer and ¢ € $pi1.0, 1 € Fn1, E € Foon+1>
S e &, .. If the Lagrangian density reads

LU = a{(M[91.9) + (1. MLED)} + b{(p, N[8]) + (N1, &)}
+a{(N[31,9) + (7 NLED)} + b{(@, M[9]) + (M[7], &)}
+ @+ b {u®) — v B} + @+ b {aE 9 — 73,8} (321)
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with a = const., b = const., a + b £ 0, then the Euler—Lagrange equations are
MLol+pux=0, N[x]—-ve=0, (322
N[E]+ a98=0, M[3]—-v¢=0. (3.23)

Proof. Using Definitions 3.1 and 3.2 one obtains the following functional derivat-
ives of L with respect to the spinor field ¢ € &, ;1 o (note: The fields ¢ and @ have
to be regarded as independent [32]):

oL

5 =bV(A1X‘;§A,A..A")X__(a+b)vf‘AA,mAn
AA, ... A,

0L

[ e (A|B|§A,4.‘A,‘)Y
= aeg .
a(vBY(PAA,A..A,,)

Hence, the Euler-Lagrange equation (3.20) reads
bV(A[X@A, ...A,,)X —(a+ b)ngA, A, aVBy.e(A|B| g4 LAY
=(a+ b){(VwX@A, o An)X — yEAAL Ay 2

If this relation is divided by @ + b =+ 0 then we obtain the last equation of (3.23) by
complex conjugation (note Remark 3.1). The other equations of (3.22) and (3.23)
arise in the same manner by variation of the fields y, £ and 3, respectively.

Remark 3.5. For bosonic fields, we can state a Lagrangian density using only two
fields ¢ and y [19]. This possibility is contained in Theorem 1 as the special case
¢ = ¢ and 3 = 7 and appears if the related tensor fields are real (see [20] and Sects.
4.1, 4.2).

Remark 3.6. By Proposition 3.2, the differences (M[¢], 3) — (¢, N[8]) and
(6 M[E]) — (N[x], &) yield a total differential. Adding a total differential to the
Lagrangian density does not change the field equations [32]. Of course, the field
equations are also unaltered if one multiplies L by a constant factor. Therefore, the
constants a and b in (3.21) can be replaced by arbitrary other constants a; and b, so
far as the condition a; + b; =+ 0 is satisfied.

Theorem 1 shows that four independent fields are needed to construct the
Lagrangian density in the general case. The system of differential equations (3.23) is
of the same type as (3.22); it is just the complex-conjugate system. Therefore, the
Lagrangian formalism produces the field equations (3.4) twice, namely for the pairs
(o, x) and (&, 3). Why this is the case and how former theories are related to it will
be dealt with in the next chapter.

4. Specification for Bosonic and Fermionic Fields

4.1. Proca Fields. In the theory of complex spin 1-fields; the “field functions” are
a complex vector field U and a complex antisymmetric tensor field H (a “bivector”).
The Lagrangian density reads

1 - _
L= —3H,H" +m*U,U* @.1)
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and the field equations are
H,=V,U,—V,U,, VH,—m*U,=0 4.2)

(cf. [2, 4, 8, 20, 30]). We will show that Theorem 1 with n = 1 yields just (4.1) and
(4.2) if the spinor fields ¢, x, £ and 3 are related to the tensor fields H and U in
a suitable manner. We are going to explain this in some detail because this
approach will be generalized to higher spins in the next section.

The spinor equivalents of the tensors U and H have the form [28]

Usogax, Hawo @apexy+ Cxveas (4.3)
with ¢ € % 0, £ € S, ,. We define differential operators d and § by
(dU)ap:=VuUpy, (0H)u:= VH, 44

and obtain after a simple calculation using (4.3) and Definition 3.1 ,
1
(@U)a > = AN [x]apextv + M1 x veas),

(OH)o> — {M[plax + N[E1ax} - 4.5)

From (4.3) and (4.5) we obtain the scalar products (see Definition 3.2, note
Remark 3.1)

(H,dU)= — (¢, M[x]) — (& N[xD) .
(0H,U)= —(N[¢1, 1) — (M[E1.0),
(H H)=2(,8)+(9,2) (U, U)=(L1)- (4.6)

From the first and second equation of (4.6) and Proposition 3.2 it follows that the
operator ¢ is the adjoint of d. Of course, one can derive this assertion directly from
4.4).

After these preliminaries we notice that we obtained only three spinor fields y,
¢ and ¢ for s =1 instead of four in the general case of Theorem 1. However,
suggested by &, 1 = ., In the special case of n = 1, we can identify the fields
¥ and 3 and obtain

Proposition4.1. Letn= 1,y = 3,aeR,be R, u=4m?* v= — 1 and the connec-
tion between the spinor and tensor fields be given by (4.3). Then the Lagrangian
density (3.21) reads

LY = —a{(6H,U) + (5H, U)} — b{(H, dU) + (H,dU)}
+ (a + b){%(H, H) + m*(U, U)} 4.7)

and the field equations (3.22), (3.23) are
H=2dU, 6H—-m*U=0. 4.8)

Proof. Using the relations (4.3), (4.5) and (4.6) one easily shows that the Lagrangian
density (4.7) is equivalent to (3.21) with n = 1 if the constants are specified in the
given manner. By (4.3) and (4.5) the spinor equivalent of the first equation of (4.8) is

Qapexy+ Cxveap = — N[xlagexy — M[xlxvean
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which splits into

N[yl1+¢=0 M[x]+£=0. (4.9)
The spinor equivalent of the second equation of (4.8) reads
M[p]+ N[E]+m?*y=0. (4.10)

Because we have the identity
MN{[n]= NM[n]

for arbitrary n € & ; [23] we obtain from (4.9) N[&] = M[¢]. Whence (4.10)
splits into
2 2

Mmq+%mzq NK]+%¢=O. @.11)

If y = 3 and the constants are specified as mentioned above the four equations (4.9),
(4.11) are identical with (3.22), (3.23) and the proposition is proved.

Corollary. Using the field equations (4.8) the Lagrangian density (4.7) can be sim-
plified to

LW =(b—a)<—%(ﬁ,H)+ m*(U, U)>, @7y

which is just a multiple of (4.1) (cf. Remark 3.6).

The second-order equations for U and H can be obtained either by iteration of (4.8)
or as Euler-Lagrange equations from (4.7) by substituting H = 2dU and varying
U as well as substituting U = m~28H and varying H, respectively. The equation
for the field U

2

m
0dU ——U=0
2
reads in coordinate form
Vv ,U,—V, VU, + R, U. +m?*U,=0 4.12)

(cf. e.g. [8]) and is of normal hyperbolic type because it implies VU, = 0. Equation
(4.12) is just the tensor equivalent of (3.14) (note B, = 0 and DD '[y] =0ifn =1
by (3.13) and (3.6)). The second-order equation of H

2
%H—%H=0

reads in coordinate form
V.V‘H,. — V,V°H,.,— m?H,, =0 .
Using the relation V. H,,; = 0, the Ricci identities and the decomposition of the

curvature tensor [28] this equation can be converted into

R
VV.Hy — Cop“H g + <§ + m2>Ha,, =0. (4.13)

The anti-self-dual part of this equation gives just the generalized Klein—-Gordon
equation (3.11).
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4.2. Bosonic Fields with Higher Spin. In this section we consider bosonic fields
whose spins are at least equal to two. As far as possible we will follow the
considerations of the preceding section.

For simplicity we put n + 1 = 2s and set

8A1...Azs:= 8A1A28A3A4' . '8A25—1A25' (414)
With ¢ € %550, £ € F, 25 £ € Fas—1.1 and 3 € & 55— we define complex tensor
fields H and U by
Hal...aZSH(pAl LU AREX X, + éX'l X584, Ay s
Ubay ... a XAy .. 4, BYEX, . X,y + 9%, X, vBEA, ... 4, (4.15)

The tensor fields H and U are called bivector of rank s and vector-bivector of rank
s (see [22]). For example, the conformal curvature tensor in complexified space-
times is a bivector of rank 2 (cf. [29]). We can give the following characterization of
the tensor fields defined by (4.15) [22]:

Lemma 4.1. a) A tensor H of rank 2s is a bivector of rank s iff it has the following
symmetries:

1) Hﬂl B PO (P TS0 I PPN P 0 ’

11) Hax ce e Qay-203,-102500y 41 - - App-203y—1A2yA2p4q - - - Ao = Ha1 RN
forallv,pe{l,... s},

N — 1 bib2 biba —

111) Hal P P 4ea1a2 ! ea3a4 Hb1b2b3b4a5 ... as T Ha1 ... azs o

: ajasz aza __ 4143 ,a * _
1V)gl3924Ha1.,.a25—gl3g2a4Ha1...a23—0~

b) A tensor U of rank 2s — 1 is a vector-bivector of rank s iff it satisfies the relations
i), . .., iv) with respect to the last 2s — 2 indices and

V) gbasUba3. .. azs = gbaaU;ka3. .. azs = O .
There was shown in [9, 24, 36] that the conditions iii) and iv) can be replaced by

lll)l galaaI—I(z1 oGy 0,
b /
V) Higasastas . . . azs = 0.

Now we are going to generalize the differential operators (4.4) to fields of higher
spin. We define d and § by

1 s
(dU)an s aZs: 2— Z V [az,—y Uazv]ax con by . ay

VW F U oo (416)
(5H)ba3 L azs = VCHbcag ... axs s (417)

where the hatted indices are to be omitted (cf. [22], note the modified factors). By
Lemma 4.1, the operator d maps vector-bivector fields into bivector fields of rank s,
whereas J acts reversed. Moreover, one obtains the following spinor equivalents of
the tensor fields dU and 6H [22]:

1
(dU)a1 ast_E{N[X]A1 A2S8X1..4X23 + M[SJXI...XzssAl . Azs} 5

(6H)ba3 ast - {M[(p:‘fb Aszi’ng . A.XZS
+ N[EIx, . X, VBEas ... aze) - (4.18)
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Lemma 4.2. The operator 0 is the adjoint of the operator d and we have the following
scalar products:

(H,dU)= — 271 {(¢, M[8]) + (& N[2])} .
OH U)= -2 "{(N[¢] 9+ (M[E], »)}
(H H)=2{(¢,6) + (0,0},
(U, 0)=2"H7@ 9+ 60} - (4.19)

Proof. From (4.15) and (4.18) one obtains immediately the scalar products (4.19).
Then the operators d and ¢ are adjoined to each other by Proposition 3.2. MW

Now we are able to specify Theorem 1 for bosonic fields with higher spin:

Proposition 4.2. Letn=2s — 1,acR,be R, p=m? v = — 1 and the connection
between the spinor and tensor fields be given by (4.15). Then the Lagrangian density
(3.21) reads

LY = — 21'S<a{(5ﬁ, U)+ (6H,U)} + b{(H,dU) + (H,dU)}

—(a+ b){%(H, H) + m*(U, U)}) , (4.20)

and the field equations (3.22), (3.23) are
H=2dU, 6H-m*U=0. 4.21)

Proof. By Lemma 4.2, the Lagrangian density (4.20) is equivalent to (3.21) with
n = 2s — 1 if the constants are specified in the given manner. (Note: The scalar
product (-,*) is symmetrical for bosonic fields.) By (4.18) and (4.15), the anti-
self-dual part of the equations (4.21) gives just (3.22), whereas the self-dual part
gives (3.23). Therefore, the proposition is already proved.

Corollary. Using the field equations (4.21) the Lagrangian density (4.20) can be
simplified to

L = 21—s(b _ a)< _ ~(H H) + m? U U)) (4.20Y

Remark 4.1. Define the operator d for vector-bivector fields by
(@U)sy ... 0= Vi Ussiay . an, (422)
Then, by (4.15), we obtain
(H,dU)= — 27 {(@, M[8]) + (& N[1])} = (H.dV).

Consequently, we can replace dU by dU in the Lagrangian density; the scalar
product “singles out” the correct symmetries. But from that we cannot derive the
wrong field equations 2dU = H. The differential operator d is the correct one
because it maps U into a bivector of rank s.

Remark 4.2. If the field tensors are real, then { = ¢, 3 = 7 and the Lagrangian
densities (4.20), (4.7) reduce to those considered in [19, 20]. In this case, the field
equations (3.22) and (3.23) are identical (apart from complex conjugation).
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Remark 4.3. The first equation of the pairs (4.8) and (4.21), namely H = 2dU, is
known in connection with massless fields, too. Examples are the relations between
the Maxwell field tensor and the electromagnetic potential (s = 1) or the conformal
curvature tensor and the Lanczos potential (s = 2, cf. [22]). Therefore, one might
comprehend U as potential for the field H. n

The above statements show that the tensor form of the field equations is exceed-
ingly difficult for s = 2 in comparison with that of spin-1 fields. (There are at least
two mathematical reasons for it: Firstly, the Poincaré lemma in the form

V[aHbc] =0 = Hy= V[bUc]

is generally not true if there are further free indices on U and H [on the contrary to
flat space-times [97]]. Secondly, the divergence of U vanishes for s > 1 only if the
space-time is conformally flat [see (3.6)]). Therefore, we present the field equations
in an alternative manner without the two-sided dual (4.16) by use of the formula

[32]
Capcae™ = — 2458545131 . (4.23)

We give all the explicit formulas only for s = 2, because this case is of particular
interest.

Lemma 4.3. Let G be a tensor of rank 4 with the symmetries
Gabea = G[ab][cd] = Gear, 9%9 b Gapea =0,
and let G be defined by
Gac:= gbd Gabcd .
Then we have
*Gh = — Gy + 400G (4.24)

Proof. If the tensor G satisfies the assumptions of Lemma 4.3 then the tensor G is
symmetric and tracefree. Using (4.23) one obtains formula (4.24) after a straightfor-
ward calculation.

Corollary. The tensor Gp.g — *G* ey is trace-free in all pairs of indices.

Example. We can give a simple application of Lemma 4.3. The curvature tensor
satisfies the assumptions of this lemma if the scalar curvature vanishes. Then one
obtains by (4.24),

1
Cabcd = E(Rabcd - *R;kbcd) . u
After these preliminaries we are able to deal with the differential operator d defined
by (4.16). We put
1
Gabea = Z(V @Usiea + VieUaap)

~

1
Gac = - ZVeU(ac)e .
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By Lemma 4.1, the assumptions of Lemma 4.3 are satisfied. Consequently, by (4.16)
and (4.24), we obtain the field equations (4.21) for s = 2 in the equivalent form

Hapea =V iaUpea + VieUga
1
+ E(gacv eU(bd)e =+ gdeeU(ac)e

- gadveU(bc)e - gcheU(ad)e) B (425)
VeH,ppe —m* Uy, =0, (4.26)

As for spin-1 fields, there are different possibilities to obtain the second-order
equations. We will give the explicit form of

2d6H — m*H =0

only because it is of normal hyperbolic type as has been shown in Sect. 3.2. By (3.11)
and (3.12) we can obtain the desired equation by “translation” of

VV,0apcp — 6% 48" @cpyer + (124 + m*) @ 4pcp = 0 (4.27)

into tensor form. Before we can do this we must transform the term containing the
Weyl spinor. We obtain

¥ a8 Ocpyer = 'Z'(YIABEF(PCDEF + ¥ 0" ¢ aper)

- E(SACSBD + &.apesc) ¥ % pprox -
Now we define the anti-self-dual part of H by
1 :
H abea = E(Habcd + iHpea) -

Consequently, by (4.15),
Habea > PABCDEABECD -
Using
Ca ef«?ﬁdef > 2'PABEF<PCDEF8488 CcD >
Celok Hop g 4 PEFGK PDEFGK >
29 aearp + 1€abeat (€4cEpp + €4pEBC)EABECD >

we obtain the following tensor equivalent of (4.27):

3
% eve =yﬁabcd - i(cabef'yft“def + Ccd el%bef)

1 R
+ Z(Zga[cgd,b + i€apea) CT* H i + (5 + mz)x’abcd =0. (4.28)

One can deduce an analogous equation for the self-dual part of H.
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4.3. Dirac Fields. In the Dirac theory [10], the “field functions” are 4-component
spinor fields ¥ (“bispinors”, indices suppressed). If we denote the Dirac matrices by
7%, the differential operator V- by

V¥ =iy, ¥ (4.29)

and the conjugated bispinor by ¥ *, then the Lagrangian density for massive spin-%
fields reads

1 1 = o
L‘7)=§(‘P+/V/‘I’—‘I’+V/‘P)+m‘l’+’lf, (4.30)
and the field equations for ¥ and ¥ * are
VY +m¥P=0, (4.31)
PV —mPt =0, (4.32)

respectively (cf. [2, 4, 26, 32, 35]). To compare (4.30) . . . (4.32) with (3.21) . . . (3.23)
we have to “translate” the given equations into the 2-component spinor calculus
using the Weyl representation (see [12, 13, 32], cf. also Remark 2.3.b).

In the Weyl representation, the Dirac matrices have the explicit form

0 O.aAX
a2

n= — ﬁe"”“‘vamcvd (4.34)

Il

Ya

and the matrix # defined by

(One often finds the notation y5 for # in the literature) reads

7 0
= . 4.35
n (0 1 > (4.35)
The chiral parts of the Dirac spinor are
PE =11+ Y 4.36)

and may be regarded as 2-component spinors of first and second kind, respectively.

Thus, by (4.35), we have
Y e , .
e X

where ¢ € ¥ o and y € %, and

—(0 1
T+='PT<1] 0> (7467) - (4.38)

Using (4.29), (4.33), (4.37), (4.38) and Definition 3.1 we eventually obtain

VAX VAX ] N[X]A
VTH1J<VYB 0 )(XX>_ l\/—<VBY<0 ) ﬁ( - M[<P]Y'> » 4.39)

¥+ Voi/2(— N[¢ls M[iT%). (4.40)
By (4.38) and Remark 3.1, the bispinor — ¥ * V- is just the conjugated of VY.
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After these considerations we notice that only two independent spinor fields
¢ and y are needed for s = § instead of four in (3.21). However, for n = 0, we have
Fnr1.0 = SL1pand F 41 = S, 1 therefore we can identify the fields ¢ and 9 as
well as y and &

Proposition4.3. Letn =0, = 9,y =&, a=b= —i/2/4 u=v=im//2and the
connection between the bispinor ¥ and the spinors ¢ € &) o and y € S, 1 be given by
(4.37). Then the Lagrangian density L®) of Theorem 1 is equivalent to (4.30) and the
field equations (4.31), (4.32) are identically with (3.22) and (3.23).

Proof. By use of (4.37) ... (4.40) the Lagrangian density (4.30) reads

b _ /2 7
L® = ’—5\[((;?, N[xD + (@, MLp]) + (NL[o1, ) + (M ], 1))

whereas the field equations (4.31), (4.32) are

i\/EN[x]+m<p=0, —iﬁM[(p]-#—szO,
— i /2N[¢]—mi=0, i\/2M[7]—mp=0.

These formulas are just those of Theorem 1 for n = 0 if the constants are specified
in the given manner. (Note that the scalar product (+,) is antisymmetric for
fermionic fields.) Thus the proposition is already proved and we see by Remark 3.1,
that the second pair of the field equations is the complex conjugate of the first for

s=13.

4.4. Fermionic Fields with Higher Spin. If one compares the theories of Fierz and
Rarita—Schwinger (see Remark 2.3), then one obtains — roughly speaking — the field
function of the fermionic field with spin s=t+ % (t=1,2,...) as the tensor
product of a bosonic field of spin ¢ and a bispinor, restricted by the second equation
of (2.4). We will do here the same: The “field functions” ¥,, . ,,, are the tensor
product of a bivector field of rank ¢ (the bosonic field tensor in the sense of Remark
4.3) and a bispinor satisfying the condition

Py, a=0 (4.41)

(cf. also [12, 34] for flat space-times).
Splitting ¥ into 2-component spinors ¥{*) we obtain by (4.15) and (4.37) ,

g (+)
qjal . azc(—)< fl_)' o
Wal .« e

aze

B, . . . . B
1 <¢A1...A2t ex, . X, %, . ¥, 8A14..A2t>
b

7

where the spinors ¢ and y are symmetrical with respect to the indices 4; . .. 4,,,
whereas 3 and ¢ are symmetrical with respect to X; ... X,,. By (4.33), the
condition (4.41) yields

s . . o 4.42)
XAy ... A XEX, . Xy T CX, X, X84y ... A

B _ X . .
©Bay ... 45 =0, ¢ Xz...Xz,X'_Oa
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therefore we obtain @ € %5,41,0, 3 € i, 215 X € Pasr, 1, & € P, 20+1- The conjugated
field ¥ * reads by (4.38) ,
Yo

az
1 3 . . a7 s .
—\/5(64, A2 ABX, . X, T XX, X484y ... An
q Y, . . =, .Y
Suy . dn BX, Xy T PR, Xy B4y .. Az) (4.43)

The differential operator-V for bivector-bispinor fields is defined by generalization
of (4.39):

vy, m—»i( NOda o anex, %, + N[EDx,  x,%4 . aa ) ’
= M[olay ... apevEx, . %o — MISTx, .. %, 784: . . . 4
(4.44)
whereas ¥ * ¥ is the conjugated of — V¥ accordant with (4.40).

Lemma 4.4. We have the following scalar products:

—

Yo e VP = 22N (E N D) + (7 N D)
+ (9 M[p]) + (¢, M[9])),  (445)
Wi P = i 227 N(N[G], 9) + (N[9], 9)
+(M[71,6)+ (M[EL,7),  (446)
Yo P =2 o)+ (19— (50— (3.9). (4.47)

Proof. The relations (4.45) . . . (4.47) follow immediately from (4.42) . . . (4.44) and
Definition 3.2.

Corollary. Because of the antisymmetry of the scalar product (- ,*) for fermionic fields
and Remark 3.1 we have

PP = Yty pry=ypty, (4.48)

Proposition 44. Letn=2t,a=b= — i\/§/4, p=v= im/\/i and the connection
between the bivector-bispinor field and the (2-component) spinor fields given by (4.42).
Then the Lagrangian density L) of Theorem 1 is equivalent to

LED =27 3Py VP
X NP ) Pt

and the field equations (3.22), (3.23) are
VVar o atm¥u =0, (4.50)

Proof. The proof follows immediately from Lemma 4.4 and (4.44).

. aze

per e (4.49)

. a2t

Remark 4.4. In the Lagrangian density (4.49) one can replace the differential
operator V- by iy“°V, because the scalar product singles out the correct symmetries
(cf. Remark 4.1). But the field equations iy*V, ¥ + m¥ = 0 are not correct for t > 0
because the field y*V, ¥ does not satisfy (4.41).
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We can define the differential operator-V-and the field equations (4.50) without
any use of 2-component spinor fields. But we give all explicit formulas only for
t =1 (i.e. for s = 3/2) because this case is of particular interest.

At the beginning we quote three formulas for Dirac matrices (cf. [12, 32]):

P+ 90y =29"1, (4.51)
Via¥et = — MY Ve (4.52)
VeVtaVer + 2V s = — i e€we’ ;s - (4.53)
Lemma 4.5. The condition (4.41) is for t = 1 equivalent to
YU (P +inPh)=0. 4.54)

Proof. Contracting (4.53) by some tensor-bispinor ¥ * we obtain the identity
ey Yy = — 207" Praey — i’Wfokfe]) . (4.55)

The assertion follows immediately from this relation. (Note: The matrices # and y*
anticommute.)

Corollary. Ifthe bivector-bispinor ¥ satisfies the condition (4.41), then its conjugate
Yt satisfies

(PhH+i(P)*ny*=0. (4.56)
The formulas (4.54) and (4.56) contain the essential information how the differential
operator -V has to be defined.

Proposition 4.5. Let ¥, be a bivector-bispinor satisfying (4.41). Then we have
. 2.
V=1V ¥ — g(l”}’ [anlP|d[b] -y [anW|d|b]*) . (4.57)

Proof. We give two independent possibilities to prove this proposition. The first
uses the splitting (4.42) into 2-component spinors, whereas the second does not
need such a splitting.

1. By (4.33) and (4.42) we obtain

AX | R AX g . .,

V% krxekr +V 5KLX8KL>
. B, .. . ..B ’

Veyoxi eki + Veydki exe

and further, by Definition 3.1 and (3.7) ,

7V, lPkt“’(

2 .
N[x1*keexi + N[E1* kiexr + 39V iy czEkr
VCVC 'Ple

2 .
- MIp)keieki — MI9]kivexe + 387k V €29}y 7cexe

(4.58)
From (4.33) and (4.42) it follows after some calculations
) 1| (V& n+ VAP sk exs + 0 &V Puycoexs
YV Flanes 5 b o ,
—(V&S)py + Vyook)ekr + e vk V™91 zcexe
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and by use of (4.35),

(4.59)

o s [0&Y Panczere
oV Pan — vV ¥y i

ey V4 9;)zcexL

From (4.58) and (4.59) we obtain (4.57).
2. By virtue of (4.56) we have

(P )WV Plappy + 17wV Plapy*) = 0.

Therefore, by Remark 4.4, the proposition is proved if the right-hand side of (4.57)
satisfies the condition (4.41).
By (4.52) we obtain

PV P = = 7V Py
and by use of (4.51),
P @V s — 17V a1 ®) = 200 1@V Plappy = — 619V Wy,
(4.60)
Further we obtain by (4.51)
PV = — 4PV, (4.61)

since ¥, satisfies the condition (4.41). From (4.61) and (4.60) it follows that the
right-hand side of (4.57) satisfies the condition (4.41). Thus the proposition is
proved.

5. The Electromagnetic Field as Gauge Field

The complex character of the fields considered in the preceding chapter allows the
action of the gauge group U (1) on the “field functions.” By (4.15) and (4.42), a gauge
transformation

H — H =exp(iet)H, U - U =exp(ietr)U
for bosonic fields and

Y > ¥ =expliet)¥

for fermionic fields (e: electric charge) gives rise to a gauge transformation of the
related spinor fields according to

@ — @' =exp(iet)p, 94— § =exp(ier) 9,
1=y =exp(iet)y, &— & =exp(ier)é. (5.1)

Therefore, using the spinor description of Sect. 3.3, we can deal with all fields of
spin s = } in an uniform manner.

Obviously, the Lagrangian density (3.21) is invariant under a transformation
(5.1)if t € R, T = const. (global symmetry). If we have a local gauge transformation
(5.1) with a real function 7 = 7(x) we must replace

Vax = Vyx —iedx, (5.2)
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where the gauge field 4, may be considered as electromagnetic potential [14]. We
can state the following:

Theorem 2. Let B,y = ied® 43 A, with A, = A,, Fa, = 2V (4Ay), and the spinor fields
@, 1, & 9 be as in Theorem 1. The Lagrangian density

L83 = af{(MO 01, 9) + (6 MDTED] + b{(@, NOIF]) + (N O[], )
+a{(NO[EL9) + (7 NOLED) + {6, MO + (ML, 6)
+ @+ b){u(x 9) — v(e, &)}
@+ B (A %) — 55, O)} — 3 F uF (53)

is invariant under a local gauge transformation (5.1) if the gauge field A, is trans-
formed according to

A, — A=A, — V,t. (5.4)

The Euler—Lagrange equations of the related variational problems are

MLl 4+ pux=0, NO[xJ—-ve=0, (5:5)
NO[ET+ a9=0, MO[9]—7=0, (5.6)
VO(Vyda — Vady) =Ja s (5.7)

where the current vector j is given by
jAX= le{(a.‘r b)((pAAl.-.A,,gAl"'AHX-FXAI...A,,XEAAIH.A")
— @+ b)(@xx, . %95 fax, xS} (58)

Proof. Consider the first term of the Lagrangian density (5.3). If the spinor fields
¢ and 9 undergo a gauge transformation (5.1) we obtain by Definition 3.1,

4 .44 QA ... AX
(Vx —ieAx)@'aa, .. 4,9

=(V§— ieA%){exp(iet) pa4, .. 4 }exp(— ier) 3™ cAX

= (V3 —ie[A} — Vit @aa, 4 9% 4K
For the second term we obtain
an ax(VAX 4 iedAX)E A A
= expliet) ya, . ax (VX +ieA?){exp(— ier), A A}
= 14, ax(VAY 4 ie[AAX —vAK ])e Ao A

In the same manner one calculates all summands of (5.3). Therefore the gauge
invariance of the Lagrangian density (5.3) is already proved. We remark that
M) &7 is just the complex conjugate of N7'[¢] (cf. Remark 3.1).

The derivation of the field equations (5.5) and (5.6) is carried out as in Sect. 3.3
by variation of the fields 3, &, @ and j, respectively.
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The “interaction part” of the Lagrangian density (5.3) reads by Definition 3.1

(ﬂ_'tl) A _ i s
L2 =a(—Bxoaa, . a9% "%+ x4 axB¥EA M)

+ b(Qua,. 4 BAXGA Ay — BXy, g g &)
+aBygxx, . 0,9 F—qax,  x BEET X
oA S o o
+b(—pxx,  xBXY KXoy BYjax,  x, XXy (59

From (5.9) we obtain
oL

04°

with j, given by (5.8). Consequently, Eq. (5.7) is the Euler-Lagrange equation
related to the vector field 4, and the theorem is proved.

= Ja

Remark 5.1. Equations (5.7) are of normal hyperbolic type if A, satisfies the
Lorentz gauge condition.

In flat space-times, the current vector j of spin-s fields is known since the paper
by Fierz [ 16]. Using the results of Chapter 4 we can give it in an alternative manner
by “translation” of (5.8) into tensor and bispinor form, respectively. Because the
calculation is straightforward we give only the results: The current vector for
bosonic fields with spin s = 1 reads

ja = ie(a + b)zlvs(ﬁabm ... azs Uba3 oo s Haba3 . azsUba3 o azs) (510)

(a and b are real constants, see Propositions 4.1 and 4.2) and that for fermionic
fields with spin t + 4 (t = 0) is

Ja=e27'W S Y PO A (5.11)
One obtains the same result, if one generalizes the Lagrangian densities (4.20) and

(4.49) as in Theorem 2. The current vector j satisfies the continuity equation for all
values of s if the (tensor or spinor) fields satisfy the field equations.

- a2t
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