
Commun. Math. Phys. 158, 315-325 (1993) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1993

Internal Lifschitz Singularities
for One Dimensional Schrodinger Operators

G. A. Mezincescu*

Institut fur Mathematik, Ruhr-Universitat Bochum, Germany

Received: 19 June 1992/in revised form: 6 May 1993

Abstract. The integrated density of states of the periodic plus random one-di-
mensional Schrodinger operator Hω = — Δ + Vp&τ + Σ Qi(ω)f(° ~ ϊ)\ f > 0>

ί
Qi(ω) > 0, has Lifschitz singularities at the edges of the gaps in Sp(Hω). We use
Dirichlet-Neumann bracketing based on a specifically one-dimensional construction
of bracketing operators without eigenvalues in a given gap of the periodic ones.

1. Introduction

In this paper we will consider the behavior of the integrated density of states (IDS)
for the one-dimensional random Schrodinger operator.

= T + gVω, (1.1)

where
Vper(z + 1) - V^(x) (1.2)

is a periodic, piecewise continuous function, g > 0,

(ω)f(x-n), (1.3)

with piecewise continuous / > 0, supp/ c ( - ^, |), and qn(ω) are independent,

identically distributed (iid) random variables. Their distribution function μ is assumed
to have compact support

supp μc [0,1] (1.4)
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and
= *-

for some δ_, ί+ > 0.
The integrated density of states is defined by

σ(E, HJ = σ(E) = lim -±- #(HbJc

Λ - E), (1.6)
L|oo \ΛL\ ' L

where ΛL = (—L, L), # '̂̂  is some restriction defined by boundary conditions (b.c.)

of Hω to L2(ΛL) and #(ίf) is the number of eigenvalues of the operator H which are
< 0. The limit in Eq. (1.6) exists under much weaker assumptions on the stochastic
potential Vω implied by than those in Eq. (3)-(5) [15].

An intuitive physical argument led I. M. Lifschitz to predict that the density of
states, ρ(E) = dσ/dE, has an universal type asymptotic behavior

_d
\nρ(E)~-const\E-Ec\

 2 , (1.7)

for E G SpHω near the fluctuative spectral edges Ec of Hω (here d is the space
dimension; d — 1 in this paper). There are many rigorous proofs of somewhat weaker
statements,

lim *! i F £ \ - ~o > (L8)
υ)3E-^Ec \n\E — Ec\ 2

or

with Φc having sometimes a weak singularity (~ In \E — Ec\) at Ec [1, 3, 5, 7, 9-14,
17-19]. But nearly all have dealt only with the lowest spectral edges of Hω.

For the finite-difference analogue of Hω, a theorem of type Eq. (1.9) was proven
[11] for all spectral edges, while a simpler proof of Eq. (1.8) may be found in [18].
Kirsch and Nitzschner [6] have considered a disordered one-dimensional Kronig-
Penney model (with point interactions) which has an infinite number of gaps in its
spectrum [4]. The upper spectral edges (lowest edges of the gaps) in this model

are nonfluctuative and lim — ——-— = -. Near one-half of the
sP(Hω)3E-^Ec In \E - EcI 2

fluctuative spectral edges they have proven that

«~ suptoto\σ(E)-σ(Ec)\\^ 1
\n\E-Ec ~ 2' ^'"'

The model considered in [6] has an infinite number of gaps for any (positive) value
of the coupling constant g due to the zero-range potential. In our case, since for g — 0
the one-dimensional Schrodinger operator with periodic potential T has generically
an infinite number of gaps, it seems reasonable to assume that, for sufficiently small
<?, Hω will have the same property. Indeed, Kirsch and Martinelli [4] have proved:

Theorem 1. Let Hω be given by Eqs. (l)-(5) and

(x-n). (1.11)
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Then, the set

{x G R\x φ SpT(0) U SpT(g), σ(x; Γ(0)) - σ(x; T(g))} G Res(ffJ . (1.12)

Proof. By ergodicity SpHω(g) is a.s. nonrandom and if x G Sp(Hω) then x is a
growth point for σ(x; Hω). But

(1.13)

so that
σ(E; T(0)) < σ(E\ Hω(g)) < σ(E\ Γ(0)) . D (1.14)

Remark!. If suppμ = [0, 1], then Eq. (1.12) yields all the gaps in Sp(Hω) [4].
Since the spectral edges of T(g) are, for small enough g, analytic functions of g, it

is obvious that for small enough #, g < gc

n, the nth gap 1 of Γ = T(0) is not closed.
In the following we shall assume that g < g^ for the particular gap we are studying
and, by redefining gc

nf — /, we may assume g < 1.

Let lf(#), ζ = eiθ G [7(1) be the quasiperiodic restriction of T(#) to L2(0, 1),

^(if) - {y> G C![0, l]|y>" G L2, φ(l) = ζφ(0), φ'(l) = ζφ'(0)}. Let λn(θ,g) =

Xn[T^(g)] be its nth eigenvalue (in nondecreasing order).
Define

En-ι = λn«™ - l)τr,0) ^~ = λn(nπ, 1) , n = 1, 2, . . . . (1.15)

By Theorem (1.1) and Theorem XIII.90 of [16] the set

^={^o+> U {^ή.^cSptfΓJ, (1.16)
n=l

is a set of finite spectral edges of Hω, and, by the previous Remark, if suppμ = [0, 1]
there are no other (finite) edges.

Now we can state our main result:

Theorem 2. Let Hω be given by Eqs. (!.!)-( 1.3) with μ satisfying (1.4) and (1.5) Then,
for any edge Ec G &:

ln|ln|σ(ff)-σ(£ c)| |=^

)3E-+Ec \n\E- Ec\ 2

Remark 2. Inspection of the proof will show that the result may be extended to / with
larger support than [0, 1] but with / > 0. In particular the result of Kirsch and Simon
[7] for E+: the limit in Eq. (1.18) is equal to -l/min(α,2), if / = O(\x\-a~l\
a > 0, as \x\ — > oo, extends to all &.

Thus, the result known for the lowest edge [7] is valid for all the other edges. We
will prove Theorem 2 by a combination of standard techniques: Dirichlet-Neumann
bracketing and large deviation estimates [5, 6, 10-12, 17-19].

The bracketing operators for an arbitrary partition have eigenvalues inside the gaps
of Sp(Hω). The one-dimensional case discussed in this paper is distinguished by
the fact that the bracketing restrictions of the periodic operators T(g) to an interval
have exactly one eigenvalue in each of the gaps of Sp[T(g)]. This is the content

1 Generically Sp(T(g)) has an infinite number of gaps. Only for some rather special Vper (elliptic

functions) there is a finite number
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of Theorems in the next section,2 which also contains some known facts on one-
dimensional Schrodinger operators with various boundary conditions on an interval.
In Sect. 3 we will show that, by an adequate choice of the partition, the eigenvalues
of the bracketing operators in a given gap may be pushed to a predetermined edge.
Using these operators, the proof of Theorem 2 becomes a rather standard undertaking
and will be sketched in the last section.

2. Some Facts on — A + V on an Interval

Let the real function V be piece wise continuous one some finite interval J = [α, b]
and define the operator Tj by

(Tb c /)0r) = -^ + V(x)f(x) (2.1)

on L2(J) with

^(Tb c ) = {/ G Cl(J)\f" e L2(J), / satisfies boundary conditions}.

We will consider the following types of boundary conditions which lead to selfadjoint
operators bounded from below and having compact resolvents:
a) N - Neumann: /'(α) = /'(&) = 0;
b) D - Dirichlet: /(α) = f(b) = 0;
c) C - quasiperiodic: /'(&) - ζ/(α), /'(6) - ζf'(a)9 ζ € £7(1).

Whenever it is unambiguous we will write Tb c for Γb c . The following proposi-
tion summarizes known facts on the eigenvalues and eigenfunctions of Tb c [2,16].

Proposition 1. Let Tb c< be defined as above, ε%, £%> ε

n(CX n=l,2,...,be their
eigenvalues arranged in a nondecreasing sequence and ub c - the corresponding
eigenfunctions. Then
1) e£, ε£ and εn(0, C2 + 1 are simple,

εn(0 = £n(C1^ (2.2)
£2m-\(V < £2mW >

ε2m(-l)<ε2m+1(-l), m = l , 2 , . . . . (2.3)

2) wj"1 and u^, ζ2 Φ 1, have no zeros on J u^ and u^ have exactly n — 1 zeros in

(α, b); υ,2m and u^+i nave exactly 2m zeros and u^-i have exactly 2m — 1 zeros
in [α,6] regarded as a cricle, if the respective eigenvalues are nondegenerate. In the
case of degeneracy, the statement remains true if the functions are chosen to be real.
3) εn(C) we analytic in a neighborhood of(§?= £7(1)\{—1,1} and continuous at
ζ = ±1; //εn(C0), Co — 1 ̂  nondegenerate, then εn is analytic at £0. When ζ goes
from — 1 to +1 on the unit circle (— l)nεn(0 increases monotonically.

We refer the reader to Eastham [3], where the proof of most of the assertions may
be found.

Theorem3. (Bracketing of Neumann and Dirichlet eigenvalues). Let Tb>c' = Tj ̂

and ε^(D\ εn(ζ), n = 1,2,.. . be respectively the eigenvalues of TN(D"> and T^

2 I am indebted to the anonymous referee of this paper who suggested the straightforward proof of
Theorem 3 which is given here
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respectively, ordered in increasing sequence (if necessary by continuity for ζ2 — » 1).
Then:

and all the bounds are attainable.

Proof. Let us first show that neither the Dirichlet nor the Neumann eigenvalues can
coincide with any εn(ζ)» C2 Φ 1> i e that the Dirichlet/Neumann eigenvalues are either
in the gaps or at the band edges.

Assuming the contrary, let ε = εn(Q, for some n G N, C2 Φ 1, be a Neumann

eigenvalue. By Proposition 1, ε = εn(ζ~1), so that u^ and u^ are linearly
independent (and complex conjugate) solutions of the equation:

u = £U. (2.5).
dx2

Let
uζ

n(x) = M(x)eίφ(x} , (2.6)

with M > 0 by Proposition 1. By adding a suitable constant phase to φ, the (real)
Neumann eigenf unction may be written as:

UN(X) = M(x) cos(</?Cr)) , (2.7)

while the boundary conditions satisfied by M and φ are

- M (0) , M'(l) - M'(0) ,

= φ(0) + arg(C) + 2kπ , φ'(l) - y>'(0) ,

for some integer k. By assumption, it^ satisfies the Neumann conditions, which yield
for M and φ:

M'(0) cos(y>(0)) - (/(O)M(O) sin(<χθ)) - 0 ,

= 0 .

The compatibility condition of Eqs. (2.8) and (2.9) is

tan(p(0)) - tan(p(0)) + arg(O) ,

which implies ζ"2 = 1, contradicting the assumption.
The reasoning in the Dirichlet case is quite similar.
If V = 0, then

εn(0 = t(n - l)π + (-l)n+1| arg(C)|]2 ,

εf - (nπ)2 , ε^ - [(n - l)π)2 , n - 1,2, . . . .

The Dirichlet and Neumann eigenvalues satisfy Eq. (2.4) with all the < signs replaced
by=.

Now, for piecewise continuous V , Tb<c + gV is an entire analytic family (see e.g.
[16]). Since all the eigenvalues of the Dirichlet, Neumann and (for ζ2 = 1) ζ-operators

are nondegenerate and for all real g, εk ' (g) ̂  εk(ζ, #), ζ2 ^ 1, we have

£n(9Ϊ < MC,P), n = 1,2, . . . ,

wherefrom Eq. (2.4) follows by the monotonicity in ζ (Proposition 1, 3).
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It remains to show the attainability of the bounds in Eq. (3.1). Let Vper be the
continuation of V to R by periodicity and define Vy on (α, 6) by

Vy(x) = V^(x + y) , x e (α, 6) . (2. 10)

Let Ty c (y) = -Δb c + Fy and ε°n

c'(y) - its eigenvalues. T^ is unitarily equivalent

to T^ = TQ by the cyclic translation operator. Since the eigenfunctions of T±l are

real and C1, there are points y™^ at which — u^l(y^^) — 0. Remember that u^1

is (anti) periodic for any n G N. With the exception of u\l the eigenfunctions also

have zeros: y ^ . Thus, the (n + l)st eigenvalue of T^ attains the lower bound

(3.1) for y = y^a~^ anc* me upper one for y = yn+]~a The Dirichlet case is
similar. D

Let us now consider Tjo'z/p 2 < L € N, with a periodic potential, V(x+ 1) — V(x).

It is obvious that the eigenvalues of T^ L) may be obtained from those of T(Q ^. By

Theorem 3 we may also locate L — 1 eigenvalues of 7|0 ̂  in each of the bands of
T and bracket the remaining one eigenvalue per gap of T. Thus:

Proposition 2. Let T£ c = I^'L)' m^ ^ having unit period. Let εk(ζ), u*k(x) be the

eigenvalues and eigenfunctions ofT\ and εk(ζ, L) and uk(x, L) those for T^, L G N,
arranged in nondecreasing order. Then

D ^-i)L+m(C,£) = MC^'fc)), m = l , 2 , . . . , L , fc=l,2,..., 2.11

where C^'fc) βr^ ̂  -̂  rooί^ o/ί/ze equation

ηL = ζ. (2.12)

2) Γ/ze eigenvalues of T satisfy

JV / r \ _ // ι \ f e + l _ i m π / L \
(k-l)L+m+i(L) ~ £k((~[) e )ι (213)

ek((-D) < εL(L) , ε%L+l(L) < εfc+1((-l)fc+1) ,

where m= 1,2, . . . ,L - 1, fc = 1,2, . . ..

Remark4. Let Tper = -Z\ + l/per on L2(E). Then, (see e.g. [1])

εn(C) = (J [αn, &n] , (2.14)

where αn - ε((-lΓ+1) < 6n = εn((-l)n).
We have shown that for any n G N,

(2.15)

The periodic functions ε^+l(y) and ε%(y) oscillate in the interval (2.15) attaining its
edges at least once in each period. If the nth gap is closed, bn = αn+1, they are pinned
(constant).
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3. Bracketing Operators without Eigenvalues in a Gap

As we have seen the Dirichlet and Neumann operators on an interval have generically
eigenvalues in the gaps of the ζ (quasiperiodic) operators. Nevertheless we may use
the method of proof of Theorem 3 to construct approximating operators bracketing
Hω which have no eigenvalues in a given gap of Sp(Hω). By using these we will
achieve the proof of Theorem 2 in the next section.

By Dirichlet-Neumann bracketing ([5, 7, 10, 12], σ is bracketed by the expectation
values of the integrated density of states for the restrictions of Hω,

°L - E)} < σ(E) < L~1E{#(H"L - E)} , (3.1)

for any L G N. As we have seen, for T£(g\ L — 1 eigenvalues per band are in
Sp(T(g)) and, generically, there is one eigenvalue in each gap of SpT(g). But

Lemma 1. Let Hω be bounded from above (below) by

m<EZ

L G N, y G ( — 2 ' 2] ' wnere Hω'C(a 6) is ^e restriction of Hω to L2(α, 6) with boundary
conditions b.c. = £)(b.c. = N). Let (E~,E+) be the nth gap of Hω. Then, one may
choose y = y°(y%) such that the IDS ofHb

ω

c (L, yb

n

c )

σ(E;L,y) = σ(E) = n, VE G (E',E^) . (3.3)

Proof. By Proposition 1 there are L — 1 eigenvalues of Tα α+z/sO °f T(g) in each
band of Sp(T(g)). By Theorem 3 and Remark 4 the eigenvalues that lie generically
in the gap are periodic functions of α, attaining the spectral edges at least once per
period.

Let us consider b.c. = TV and choose a y = y^ G ( - ̂ , |] for which the (n + l)st

eigenfunction of T^"^ (0) has zero derivative. Then, the (nL + l)st eigenvalue of

λnL+1[T^5^+L)(0)] = εn+1((-l)Λ) = Έ% . (3.4)

By Proposition 2, foτg=l

λnL[T(Jv^+L)(l)] - en((-\Te^ , 1) < εn((-l)n, D = ̂ ή - (3-5)

Since

we obtain
E- (3.7)

and

En ' (3 8)

For the Dirichlet case we choose y = y® G ( - |, |] for which the nth eigenfunction

of T^(l) has a zero. Then, the nLth eigenvalue of Γ(̂ D yD+l}(^

λnL[Γf^ n+LJ = εn((-!Γ, 1) = JΘ- , (3.9)
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and using Eq. (3.6) with N replaced by D, we obtain

< E- , (3.10)

^ (3.11)

It remains to note that Eqs. (3.7), (3.8) and (3.10), (3.11) remain obviously valid if
we add an integer to y. D

4. Proof of Theorem 2

In the previous section we have proven Lemma 1 which gives us bracketing operators
for Sp(Hω). Now we can return to our primary task. We will proceed by Dirichlet-
Neumann bounding taking a single upper/lower operator for both spectral edges
bordering a given gap - the one defined in Lemma 2. For the sake of simpler notations,
having set on proving the theorem near the edges E~ , E+ of a given gap, we will omit
the n, y, L dependence of the bracketing operators, writing H% for H^ D D+ and

H% in the Neumann case.

Definition 1. Let X± (D\ω, L, C), C > 0, be the events

Γ / C CJ HN(D) has an eigenvalue in the interval ί E± - -^ , E± + -̂

The proof becomes a simple exercise given the following:

Lemma 2. For sufficiently large L and C"1 there are L-independent constants
A, B > 0 such that

< -ALlnL, (4.1)

"f (o,L,C)] > -BLlnL, (4.2)

if in Eq. (1.5) δ± > 0. For ί± = 0 the logarithms should be dropped from the r.h.s. of
Eqs. (1-2). Here ¥[X] is the probability of the event X.

Indeed, H^(D) has no eigenvalues in (E~,E+). For sufficiently small C > 0, let

3E = E±±. (4.3)

Taking into account Eqs. (3.7)-(3.1 1), only λn may be in [E1, J5~], respectively only

\L+I e [E+, E]. Thus, by Eq. (4.1), σ(E) - σ(E+) is bracketed by fD(E), fN(E),
with

)] , (4.4)

L(E) = C\E - ^+|~1/2 and a similar pair for σ(E~) - σ(E). Taking the limit
E-+E± yields Eq. (1.17). D

Before proceeding further we will state a generalization by Kirsch and Nitzschner
[6] of Temple's inequality, which may be proven in the same way as Theorem XIII.5
of [16].

Lemma 3. Let H be self adjoint, semibounded and with compact resolvent. Let
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Lemma 3. Let H be self adjoint, semibounded and with compact resolvent. Let

\n(H) < vn < 0 < vn+l < \n+l(H) , (4.5)

and φ e &(H), \\φ\\ = 1, (φ, Hφ) = 0. Then:

(4.6)

Proof of Lemma 2. Let us start with Eq. (1) for En . For —1 < i < L+ I and some
ξ G [0,1] define

r 1 - ξ, if all qΛώ) > 1 - ξ, -1 < j < L + 1,
(4.7)

0, otherwise.

Obviously,
H"<HZ, (4.8)

so that X*(ωN, L, C) => X^(ω, L, C). But

iC=r"(l-0, (4.9)

in the first case in Eq. (7) and HωN = TN(Q) in the second. In the latter case there

( C \
E~ — —j,E~ } for sufficiently small CL~2. In the former,

^ /
by Proposition 2 and Theorem 3 for g = 1 — ξ,

XnL(TN(l - 0) - en(e™(n-L~l\ 1 - ξ). (4.10)

Since εn((— l)n,g) is not degenerate for g in some neighborhood of 1, it will be
analytic in ζ near ζ0 = (—l)n and also analytic in g near 0=1. For sufficiently small
L-1 and C,

Ϊ7Γ O> OE (εn((-l)"eT,i-θ = en((-l)",l)-.£L-ξ^ . . . . (4.11)

Taking ξ = -pr, noting that — V* > 0, and using Eq. (1.5), we see that, if δ_ > 0,
L2 dg

Eq. (1.1) is valid while for 6_ = 0 there is no InL term.
To prove (4.2) near E~, let us redefine again q^ω) by

•
for some ξ G [0, 1], -1 < i < L -f 1. Since

rjΌ ^ rrDnωD S nω ,

then XB(ω, L, C) =» XΞ(ωD, L, C). Now,

- g,(α;D)] /(o - i) . (4.13)
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Let

φ= ~ru(~l} , \\φ\\ = 1, (4.14)
L

where u(~l^n is the normalized nth eigenfunction of T®(\) continued periodically and
restricted to our interval:

TD(l)φ = XnL[TD(l)]φ . (4.15)

Since the sum in Eq. (5.13) is nonnegative,

λnL-ιt#c?D] < εn((-Dn)e^, 1) < E- - -̂  , (4.16)

for L sufficient large, where we used Proposition 2. Now

AT h . f i
(4.17)

1

where N+ is the number of q^D) which are = 1 — ζ", h{ = J /(x) \u^~^ (x)\2dx > 0
and we set ζ = βL~2. Defining °

H = H°D-F, (4.18)

and choosing β < aj.hλ we may apply Lemma 4 to obtain an upper bound to

"nL^^ωn — -^n 7-3 ' r3 AT k /? / Γ ' v 1 "-^/D L* Lό a-N+hιβ/L

1

Here h\ = J/2(x) w^"1^ (x)\2dx. Now by standard large derivation arguments (see
o

e.g. Sect. 4 of [11]) we may establish Eq. (4.2) for E~. The case of E+ is essentially
the same.
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