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Abstract. Orbits of the quantum dressing transformation for SUq(N) acting on its
solvable dual are introduced. The case is considered when the corresponding classical
orbits coincide with Grassmann manifolds. Quantization of the Poisson bracket on a
Zariski open subset of the Grassmann manifold yields a *-algebra generated by the
quantum coordinate functions. The commutation relations are written in a compact
form with the help of the β-matrix. Finite-dimensional irreducible representations of
%£h($l(N) C)) are derived from the *-algebra structure.

1. Introduction

A method of orbits (geometric quantization) due to Kirillov-Kostant-Souriau revealed
a remarkable relationship between the geometry and the representation theory for
classical groups. Important sources of this method are induced representations and
the Borel-Weil theory. It is of interest to establish an analogous approach also for
quantum groups [1]. One of the most interesting among expected results would be a
production of examples of quantum manifolds. In this direction a serious progress has
been made. This is true first of all for the representation theory of quantum groups
[2-4]. Moreover, the method of induced representations is well developed [5] and
a deformation of Schubert cells has been described [6, 7]. To complete this picture
one has to recall an important notion of quantum dressing transformation. No doubt
that its role is crucial as it substitutes the classical coadjoint action. The dressing
transformation is of importance already for classical groups [8], has interesting
applications in physics [9] and is closely related to the notions of the generalized
Pontryagin dual and the Iwasawa decomposition [10]. A quantum generalization
was discussed in [11]. The quantum dual was also derived in the paper [12] where
knowledge of the representation theory for quantum compact groups was the starting
point. This is in some sense the opposite direction to that we are going to stress in
this paper. The geometry of the dressing orbit should be the primary object and a
construction of representations is expected to result from it.
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The presented paper follows the Faddeev-Reshetikhin-Takhtajan approach to
quantum groups [13]. It prolongs some ideas from the paper [14] where the quantum
dressing transformation was described for a solvable group acting on its compact dual.
Here the opposite case is considered when the group SU (N) acts on its solvable dual.
The leading idea is that all the rich structure presented in the classical case is now
concentrated in the non-commutative multiplication law. A special type of orbits
corresponding to integer multiples of fundamental weights are Grassmann manifolds.
Their quantization is done here by introducing quantum local coordinates. This
assumes a construction of a quantum "restriction" homomorphism from the solvable
group onto a "subset" of the dressing orbit (classically this is a Zariski open subset
of the Grassmann manifold). Its existence allows a straightforward construction of
the finite-dimensional irreducible %h(sl(N, C)) module. The general case of arbitrary
weight is also available for the corresponding irreducible module is a submodule in a
tensor product of N — 1 modules of the above special type. The obtained examples of
quantized Grassmann manifolds generalize the quantum sphere due to Podles' [15].
It should be pointed out that recently there were published also some other papers on
quantum flag manifolds, though based on different approaches. Namely, they insist
on quantization of the flag algebra and the Plϋcker relations [16, 17]. In the present
paper, the interpretation of elements of the obtained finite-dimensional module as
holomorphic sections in some quantum line bundle continues to be open. The special
case of quantum sphere S2 has been treated in [18].

The paper is organized as follows. Section 2 has a preliminary character. Some
basic notions are recalled, particularly those related to the quantum dressing trans-
formation of SUq(N) on its quantum dual ANq. The quantum dressing orbit is

defined as a factor algebra of ^%q(AN). The factorization means that generators

of the centre of ^q(AN) are replaced by some constant parameters specifying
the orbit. The main results are presented in the following two sections. Section 3
starts with the Poisson bracket on the classical Grassmann manifold explicitly ex-
pressed in conveniently chosen local holomorphic coordinates zuv. Quantization of
this bracket yields a *-algebra W generated by zuυ,z*t. The defining commuta-
tion relations are written in a compact form with the help of the Jί-matrix. The
quantum "local coordinates" are constructed in terms of a *-algebra morphism
ψ:^ξq(AN) —» W. The parameters characterizing the quantum dressing orbit are
calculated explicitly. Besides, a commutation relation is investigated between poly-
nomials quadratic in the generators of the algebra ^ (AN). It is shown to be

equivalent to the original defining relations for ^q(AN). Section 4 is devoted to

a construction of finite-dimensional irreducible representations of %h(&{(N, C)). Ow-
ing to the morphism ψ, the algebra & is a %h(si(N,C)) module. We note that
^ (AN) and %h($l(N, C)) are isomorphic as *-algebras. Afterwards the gener-
ators zuυ are factorized off and only the quantum "antiholomorphic" coordinate
functions z*t are retained. In this way we get a reduced module. This factoriza-
tion should be imagined as a quantum analogue to furnishing the classical or-
bit with a polarization which happens to be a complex structure. The cyclic sub-
module generated by the unit is investigated in detail. It is shown to be finite-
dimensional for a proper choice of the parameters characterizing the quantum dress-
ing orbit. The proof is based on some identity valid for the .R-matrix. The invari-
ant scalar product is introduced with the help of the vacuum-value functional on
W.
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2. Quantum Dressing Transformation

Let us first recall some basic definitions and notations (it coincides with that
having been used in [14]). In what follows we assume that the quantum parameter
q — e~h e (0, 1). The quantum integers are defined by [k] = (q~k -qk)/(q~l — q). As
already mentioned in the introduction we are going to restrict ourselves to the case of
the quantum group SUq(N). The corresponding fundamental (vector) representation
is denoted by U = (u k). The *-algebra of quantum functions ^q(SU(N)) is defined
by the relations [13]

RU{U2 = U2U1R , 17* - U~l , detg U = 1 .

The underlying N2 x N2 ^-matrix fulfilling the Yang-Baxter equation is given by

Rjk,st = δjsδkt + (q-q

s^k-^δjtδks (1)

The indices on the LHS should not be confused with the leg indices; R = Rn. The
leg notation surely requires no clarification. Concerning the usual indices, throughout
the paper we assume the lexicographical ordering. With this assumption, R is lower-
triangular. Replacing q by q~l on the RHS of (1) we get .R"1. Furthermore,

Whenever a specification of the dimension is reasonable we shall write R[N] instead
of R', R[l] = q. The symbol P stands for a flip morphism permuting two factors
in a tensor product. Provided the product C^ 0 C^ is concerned, P k st = δ tδks.
Another very useful relation valid for the ^-matrix is

(q-1 - q)P = R2l

l - Rn = R~2

l - R2l . (2)

The generalized Pontryagin dual to SU(N) is the solvable group AN. Classically,
AN is formed by unimodular upper-triangular matrices with positive elements on
the diagonal. The fundamental representation of ANq is an upper-triangular matrix
A = (ajk) with entries from Λ>q(AN) fulfilling [14]

RΛ{Λ2 = Λ2Λ1R, Λ* R~1Λ2 = A2R~1A* (3)

-l (4)

An additional requirement a3 > 0 means that the elements α . are supposed to be
represented by positive matrices or, in a weakened and more preferable formulation,
by diagonalisable matrices with positive eigenvalues. Both ^q(SU(N)) and ̂  (AN)
can be turned into *-Hopf algebras in a standard manner.

The Chev alley generators of the deformed enveloping algebra %4h($l(N,C))
(sl(N,C)) = complexίfication of $u(N)) are denoted traditionally by Hj and Xf,
j = l , 2 , . . . , 7 V — 1. They obey the deformed commutation relations including the
Serre relations [1, 2]. An involution on %6h(sl(N,C)) is defined by H* = H^

(Xp)* = Xf. %h($l(N,C)) and ^q(SU(N)) are dual *-Hopf algebras provided
a pairing between them is chosen as

( H j \ U ) = E1}-Ej+^+l, (X+ U) = Ejιj+l, (X- U) = Ej+lιj. (5)
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Moreover, @4h($l(N, C)) and Λ>q(AN) are isomoφhic *-algebras. The isomorphism
is given by (j = 1, 2, . . . , N - 1)

exp(ΛίΓ,.) = a

(g-1 - q)XΓ = <Γ1/2(αjΛ.+1 ̂ Γ1/

This is why one can concentrate on representations of the algebra ^q(AN) instead

of ^h($ί(N,Q).
The classical dressing transformation is a Poisson action

3Bcl:ANxSU(N)->AN

induced by the Iwasawa decomposition

SL(N, C) - SU(N) x AN .

38cι(Λ, U) is the upper-triangular part A of the matrix ΛU = UΛ. It is a useful fact
that every unimodular positive matrix X can be decomposed as X = Λ*Λ, Λ G AN,
and this relation is one-to-one. The dressing transformation of positive matrices then
reads

Ήcl:Λ*Λ-*U*Λ*ΛU. (7)

The quantum case is formally similar. The quantum dressing transformation is a
coaction

defined by [14]

where Q G ^q(AN) (g) Λq(SU(N)) is the canonical element, ^* = ρ~l. This
definition is possible since ^q(AN) and Λq(SU(N)) are dual as vector spaces.
Let us simplify the notation by writing x instead of x ® 1 and α instead of 1 <8> α.
Then decomposing the matrix ΛU into the unitary and upper-triangular parts [14],
ΛU = UΛ, where entries of both U and Λ belong to ^q(AN) <g> Λq(SU(N)\ we

get ^g(yl) = .̂ It follows that

^(Λ*Λ) = ί/*Λ*Λ{7. (8)

It is also important to note that if the right coaction ̂  is combined with the pairing
(5) the algebra Λq(AN) becomes a left %h($l(N, C)) module. For ξ G %(sίW C)),
/ G ^q(AN\ we define

ξ f = (id®<£, ))^(/) G ̂ (AAΓ) . (9)

It holds

!•/ = /, ( 2̂) / = ίι (f2 /) )

and

' 9 ) (10)

where Δξ = Σ ζk ® ̂  A is the comultiplication.
k

The following proposition characterizes the centre of
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Proposition 2.1. An element c belongs to the centre of ^q(AN) if and only if

Proof. The condition 3B(c) = c ® 1 means that ρ commutes with c01. This is clearly
true whenever c belongs to the centre. On the other hand, writing ρ = Σ xs ® Q>s

s

with {as} and {xs} being mutually dual bases, one observes that the equality
V XQC ® a=Y]cxQ® aQ implies that X Q C = ex,, for all s. D
/ -> 5 S f > S S Γ 5 S

It was proven in [13] that

where S designates the antipode on Λq(SU(N)). As U is unitary and S(U) = C7*
it follows that

Consequently,

where ^ = diagίg^"1^^"3, . . . , g"^4"1). But it is even known [13] that the
elements tr(@>(Λ*Λ)k), fc = 1,2, . . . , ΛΓ - 1, generate the centre of ^q(AN). This
means that the co action 3% admits factorization. It is natural to define the quantum
dressing orbit as the *-algebra ^£q(AN) factorized by the relations

(11)

with 7fe's being some positive constants.

3. Quantized Grassmann Manifold

We start our discussion from the classical dressing orbit which is a Poisson manifold.
According to (7), it is determined unambiguously by the set of eigenvalues (unordered
but including the multiplicities) of the matrix Λ*Λ. We are going to consider a special
case when Λ*Λ has exactly two different eigenvalues: Xl with the multiplicity n and
X2 with the multiplicity m, n + m = N. The orbit is then the Grassmann manifold
Gm whose points are ra-dimensional subspaces in CN, dimc Gm = ran. One can
write

where Q is a projector of rank ra and I stands for a unit matrix. A parameterization
of the orbit is given by the parameterization of the projector

(13)

where Z = (zjk) G Cm'n.
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Proposition 3.1. The Poίsson bracket on Gm is expressed in the above introduced
coordinates z^k as follows:

-Φ*t> zuv} =

47 S3 Z_-/

3 k

Λ2

Proof. It is worth recalling that both SU(N) and A7V are Poisson subgroups of
SL(N, C) and the Poisson bracket on SL(N, C) is given by

- k))tυjtuk ,

where T = (ίjfc) is the vector representation of SL(N, C).
Let us first evaluate the Poisson bracket on Gm at the point Z — 0. Expressing Λ.

from (12), (13) as a power series in the entries of Z and retaining the terms up to the
first order,

/ Λ I u-(A/Λ 2 , )η
\ u λμ y

and substituting Λ into (16) instead of T we get

To get the complete bracket one can employ the fact that JBcl is a Poisson action
and so

Regard the fundamental representation U as a matrix of functions living on SU(N)
and split it into the blocks

where A = (αjk) is an m x m matrix, f? = (^fc) is an m x n matrix, etc. It holds

JB^Z = (A + ZCΓ1 (B + ZD)

= A~1B + A"1ZD - A~lZCA~λB + O(Z2) .

Substitute zuυ for g and 2st respectively z*t for / in (17) and evaluate both sides at
the point (Z0, t/0), Z0 = 0 and

_ ( (l + zz*rl/2 z(\ + z*zrl/2 '
0 " I -z*d + ^*)~1/2 a + z*zrl/2
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Straightforward calculations then lead to (14), (15). Let us note only that if A~l =
(άjk) then

α . D

To quantize the Poisson bracket means to introduce a * -algebra W generated by
the elements zst, z*υ in such a way that the obligatory correspondence rule

[/,<?] - ih{f,g} + 0(h2)

is obeyed. Let us define W by the relations

r z -I _ / sgn(β-u) _ sgn(t-υK
L^sί' ^uv* W " '^ut^svi

- λ2) [z*t, 2U

- - l

l(q- q-l)λl

 Zu/Sj ***

fc

)λl + (9 - <

2) . . (20)

To support this definition we note that, first, the correspondence rule is actually
fulfilled. Second, it is not the most important though useful fact that the commutation
relations (19), (20) can be rewritten in a compact form with the help of the /^-matrix,

^ Zi^ ZΊ H -- ~ - ^2 ^(^1-^21 ~ ^2^1

(21)

12q — q

- -^—- Z.P^R^ - X2R
lg-l)ZΪ = 0 . (22)

But the third reason is decisive, especially in view of expected applications to
the representation theory. The commutation relations (21), (22) allow to introduce
quantum local coordinates on the dressing orbit in terms of a * -algebra morphism ψ.

Observe that the relations (3) imply that the matrix A2R^ commutes with Λ*Λl

and hence the same is true for the matrix JR2"1

1/L*^12^Ϊ21 Thus

Λ^Λ1R^1Λ^Λ2R^ = R~l

lΛ^Λ2R-2

lΛ^Λl . (23)

An equivalent equation is obtained provided the legs 1 and 2 are interchanged,

ΛfΛliςl

lΛ%Λ2R2l = RUΛ^Λ2R^2

1Λ^Λ1 . (24)

It is desirable to reverse this procedure. This is actually the case provided one can
assume that the following implication holds in the * -algebra generated by the entries
of the matrix Λ:

/ > 0 , f2g = q2σgf2 =» fg = qσgf , (25)

where σ £ M is arbitrary. Clearly, (25) is fulfilled for finite-dimensional representa-
tives.
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Proposition 3.2. Let A — (α fc) be an upper -triangular matrix with entries from some
* -algebra and with positive elements on the diagonal. Assume that the condition (25) is
fulfilled in the *-subalgebra generated by the entries of the matrix A. Then the relations
(3) and (24) are equivalent.

Proof. Let us begin the proof with a remark concerning the notation. To avoid indices
in the exponent we shall write, if necessary, 6(j, k) instead of 6jk. We have to prove
the implication only in one direction: (24) => (3). Decompose

A^A$ = XY, (26)

where the matrix X is lower-triangular and Ϋ is upper-triangular with units on the
diagonal. Since

σ<k

and A is upper-triangular, it holds

(A{R^A*)jktSt=0 for j>s,

(AΛ2lX W = g-ίϋ'%χfc -
Consequently,

•̂Mt = 9~ίU'%αXfc> (27)

Ϋjk,,t = δkt (28)

After the substitution of (26) and its adjoint into (24) we get

A* XΫΛ2R2l = R12Λ^Ϋ*X*Λ1 .

Comparing the decomposition of both sides into a product of the lower-triangular and
upper- triangular parts we conclude that there exists an invertible diagonal matrix Ω,
Ωjk,st = ωjkδjsδkt> SUch that

A*X = R12Λ%Ϋ*Ω, ΫA2R2l = Ω~lX*Λl .

Comparing these equations with their adjoints one finds that Ω is self-adjoint, ί2* = Ω
and hence ω*k — ω3k. So it is enough to consider only one equation written in the
form

X*ΛιR^1 = ΩΫΛ2. (29)

According to (27), (28) it holds

It follows that ωjk = q~2δ(j'k)akka
2

3Jakk. As ω*k = ωjk, we have α^ α^ = ^Lαjj
and owing to the assumption (25), OL^o.kk = akka^. Consequently there exists the
square root

42 = ί-̂ 'S, (30)

Set
/2, Y = Ω{/2Ϋ. (31)
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Then (26) and (29) mean that

ΛγR^Λ* = XY , X*Λliςl

l = YΛ2 . (32)

Further it holds

(X*Λ&^3kjt = q-2SMakta
2

3J , (ΫΛ2)jkJt = akt .

Employing once more the assumption (25) one gets

-δ(j,k) _ π~δ(j,t)
q &jj®kt — Q aktajj -

As an immediate consequence we have X — Λ* [cf. (27)]. Use now the substitution
Y = KΛl. K is again upper-triangular. The Eqs. (31) then read

A^Al = Λ*KΛ{ , (33)

2. (34)

Adjoint Eq. (33), interchange the legs 1 and 2 and compare with the original equation.
It follows that K = PK*P, i.e., KjkjSt = K^kj. Consequently,

Kjk,st=V for U',fc)XM) or (fc,j)<(M) (35)

Besides, owing to (28), (30) and (31) it holds

Kjk9Jt = Q'δ(jίk\t' (36)

As a final step we shall show that

Kjk,st = (q-l-q)δ3tδks for j<s, k>t. (37)

We proceed by induction in (5, ί). Equation (34) means that

k,σ,
a

σs^t = akias + (q~l- « s g n ( s- ί ))α f c s t . (38)

Suppose we are given a double index (s,ί) such that K k σv — (q~l - q)δjί/δkσ for
all couples (σ, z/), σ < 5, v < i and (σ, v) Φ (5, t) and whenever j < σ, k > v. This
assumption should be regarded as being fulfilled even if no such couple (σ, z/) exists.
Suppose further that j < 5, k > t. Owing to (35) and (36), K3k^σv is nonzero only if
j = σ, k = v or j < σ, k > v. Bearing in mind that Λ is upper-triangular we get

LHS of (38) = KjktStassatt + u(q~} - q) Σ <^A^At

where $ = 0 if (&, j) — (5, t) and ϋ = 1 otherwise,

Comparing both expressions we conclude that K k^si = 0 if ( k , j ) ^ (s,ί) and
Kt8,*t = V~l - <*•

The equalities (35), (36) and (37) altogether mean that K = R^1 . But then (33)
and (34) immediately give (3). D
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Let ψ(Λ) be the upper-triangular matrix with entries from the algebra W such that

ψ(Λ* Λ) = ψ(Λ)* ψ(Λ)

= A 1I + ( A 2 - A 1 ) ( VWl + ZZ*)-1^)- (39)

The inversion (I + ZZ*)~l should be considered as a formal power series.

Proposition 3.3. The matrix ψ(Λ) obeys the relation (23).

Proof. Let us retain the notation (13) also in the quantum case. It holds again Q2 = Q,
Q* = Q. Rewrite Eq. (23) as

R2lψ(Λ*Λl)R2l

lψ(Λ*Λ2) = φ^Λ^R^ψ^Λ^R^ , (40)

and substitute (39) to get

XlR2lQlR2l + (λ2 - Xl)R2lQlR2l Q2

= \1R-2

1Q1RU + (λ2 - \1)Q2R-2

1Q1R12 . (41)

Set

sl2 = (q~l - qΓl (^Ru - Wi1) - (42)
The relation (2) combined with (42) yields

(A! - \2}R12 = (q-1 - q)(Sn + λ2F) ,

(λ, - \2)R2l

l = (q~l - q) (Su + XλP) .

Using this substitution in (41) we get after some straightforward manipulations an
equivalent form of (40),

S21Q1S12Q2 = Q2S21QVS12 .

Set
~

In view of the form of the matrix Q (13) one easily finds that it is enough to verify
the equality

V2S2,Q,SnW2 = Q.

This equation if expressed in terms of the matrix Z and provided the relation (21) is
employed amounts to two equations:

-(S[™] - X l P Z l Z f ) ( l + Z l Z f Γ l R 2 i Z 2 4- ̂ f^ Z2Q + Z ι Z f Γ l = 0,

a + zlzfrlRϊl

lz2 + (Z2s™z* - \2P) a + z{zfrl = o .

But again after some straightforward manipulations both of these two equations can
be shown to follow from (22). D

Denote by ^q(AN) the *-algebra determined by the relations (3) but with the
conditon (4) being temporarily abandoned. Propositions 3.2 and 3.3 guarantee the
existence of a * -algebra morphism

ψ:Jlq(AN)-+ W .
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It plays the role of the desired quantum local coordinates on the dressing orbit. It
remains to determine the constants 7^ in (11) in order to specify the orbit.

Proposition 3.4. It holds

(\ - X2)tr(^ψ(Λ*Λ)k) = [ri]X*(q-mXl - qm\2) + [m]λ^(gnλ1 - q~n\2) . (43)

Proof. First note that

Let α, b G R be some parameters. Then

The expression tr(^(αl + (b — α)Q)) is linear in α and 6. The coefficient standing at
α is

n n

~~ . . . — -- ι + £*£)-i) fc fc< (44)

Next we are going to simplify this expression. Equation (22) can be rewritten with
the help of (2) as

(\ \ \ P ^1 ~ ^2 7 D-l ry*
\/»9 /Λ1 )-ί ^ ^9-1X1-7 î

g-'-g

Further manipulations based on the relations (21) and (2) yield

A, - A2

Comparing the matrix elements of both sides with the indices (si, ts) we get

σ>t

= qZts((l + Z*ZΓlZ*)βt -(q~l-q

- (q-1 - q) (λt - λ2Γ> ((λ2I + λ1Z*Z)(I + Z*ZΓl)ss (45)

Regard s as being fixed, t as varying from 1 to m and ((I -f Z*Z)-1Z*)stZts as an
unknown which is to be obtained from (45). More precisely, we are interested only
in the sum ]Γ((I + ZZΓlZ*)stZts. As

t

q (q-q-l) (q - q~l) .

^ q (q-q~l)

0 0 0
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we get

π-2m _ ι

((I + Z*Z)~lZ*Z)aβ = - ^ — ((A2I + \,Z*Z) (I + Z*Z)-\aA! — Λ2

Now we consider the element xv = ]Γ q~2j+iZjJ/((l + Z*Z)~lZ*)l,3 as an unknown
3

and are again interested only in the sum ]Γ xv The result is

kk

With this identity one easily finds that (44) is equal to

The coefficient standing at b can be obtained similarly. D

4. Construction of Representations

In the classical case, the vector space of functions living on the orbit of the coadjoint
action becomes naturally an SU(N) module. But this structure is too rough to
construct irreducible representations. One has to employ the symplectic structure or
the descent Poisson structure, impose the quantization condition and pass to the vector
space of holomorphic (or antiholomorphic) sections in a line-bundle based on the orbit.
In the quantum case, the Poisson bracket is already concealed in the non-commutative
multiplication law. As we shall see, the relations (21), (22) allow a straightforward
construction of irreducible representations. Nevertheless, it is of interest to express
in local coordinates also the quantum dressing transformation which replaces the
classical coadjoint action.

Denote by Wah the subalgebra of W generated by the "antiholomorphic" quantum
coordinate functions z*t. Hence the defining relation for Wah is

The quantum dressing transformation 3% (8) if expressed in the local coordinates reads

/ TD^f I JΓ)^ r7^\ ( A~^~ I /~Ί% r7^ \— 1 (ΛrΊ\
— \-D ~T LJ /j ) (A +O ΔJ ) , (^ I)

where we assume that the fundamental representation U of SUq(N) splits into blocks
as in (18). According to the property (10) it is enough to specify the action only
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on the generators z%t. Recalling the pairing (5) we arrive after some straightforward
calculations at the formulas

H zki = (δk-δk,+ι)zki for j = l, . . . ,^-1,

+ ^-m+ι)4 3 = rn + 1, . . . , N - 1 ,

for .7 = 1, . . . , m - l ,

- <Γr/24*4 > T - 1 - «„ + δkrn j = m, (48)

= -Q~lδl,j-mzk,J-rn+l j = Ttt + 1, . . . , TV - 1 ,

*7'4 = 5fcj4H,i for .7 = 1, . . . , m - l ,

= -<ll/2δkmδι\ J = ™,

= -qδιi3-m+\zk,j-m j = ra + 1, . . . , TV - 1 .

Let us now proceed to the construction of irreducible representations. Denote by

& the left ideal in W generated by the elements zst. Then ^/^ is a left ,Aq(AN)

module. The factor morphism W — » W j& if restricted to the subalgebra Wah becomes
a linear isomorphism and so one can identify W l& with Wah. Denote by ^M the cyclic
submodule in W l& with the cyclic vector 1.

Proposition 4.1. ^M is spanned by 1 and by entries of the matrices (R = P^,
r = l , 2 , . . J

Z\ Z2 . . . Zr (qnXlR2ιR3ι . . . Rrl — q nX2Ri2 RH - R\r )

x (qn\lR32 ...Rr2- q~nλ2

R23 - - - ̂ r1)

x ... x (qnλlRΓjr_l - <ΓnA2#r~Λ,r) x fenλι - <Γnλ2) (49)

Proof. The submodule ,̂  is spanned by 1 and by entries of the matricies
QιQ2 Qr l Q can be written in a block-like form

(I + ZZ*Γl Z(I+Z*ZΓl

Denote by i?7* the subspace in W l& spanned by 1 and by entries of the matrices (49).
We have to show that, first, ̂  is Q-invariant, second, 9^ C ,sM. The verification will
be done in several steps.

(i) The solution to the system of algebraic equations (R — R^)

1 _ (^1(^1^12 ~~ ^2^21 ^2^st,uv — FSt,uv

with the unknown quantities XsuYtv = (XlY2)st uv is

x v - 1-ΛsuYtv - (λ, -A 2 )(g n A 1 -g-«A 2 )

x

To see this note that XsuYtv = (q"1 - q) (λ1 - Λ2)~1Fsέ^uv for u ̂  t. For u = t,
we fix s and v and solve the system of algebraic equations with the vector of unknown
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quantities (X8lYlv, X^v , XsnYnv^ with the RHS CFβl,hA,2t,> , ^n,™)

and with the matrix M,

-q) for j = k,

M can be inverted,

j\/r — s/ i —. for Ί — Jc
ϊk / \ \ \ / n \ n \ \ 1 «^ '

The result easily follows.

(ii) It holds
(I + ZZ*)-1 - 1 = (λj - ^~2nλ2) (A! - λ^"1! . (50)

To see (50) note that the relation (22) implies

1 = X2P .

According to (i), we can solve the last equation to get

~
-n+2t-\

The result easily follows.

(iii) It holds

. . . Rrl

-q nX2R{2Ri3 '-'Rιr}Rr\ . ..β31-R21 . (51)

As an immediate consequence one finds that, first, y is Z*(I + ZZ*)"1 -invariant,
second, W C .J&.

To check (51) note that from (22) one can derive

^Ψ 73—1 ry ^/T | ^7 7 \—^ f?— /'/^y—^ /^^ ^\ \ \— \ ^7^ D—1 D
— Z/9 -^Ί9 1 \ ~ι 1 1 y -^^91 V.Ί y/ \ 1 ^*9/ ^1 9 -^19

Proceeding by induction one can prove that

ry^f ry^f ry^f T)—lτp—1 7-)—1/j , ry Γ7^~\—ID—1 D — I D — 1- z2 ^3 . . . Lr κn H13 . . . κlr (i + z^j nrl ... H3l H2l

Λ Λ ^2 ^3 ^T^Yl
λl - λ2

x (Rrl . . . R3l R2l — Rlr . . . R^

Now it is enough to apply (50).
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(iv) 9T is (I + ZZ*Γl -invariant.

This assertion is a consequence of (iii) and of the following relation:

~~
* ' ' ^31 R2l (aR32R42 Rr2 ~~ ^^23 ^24 ' ' ' R2r

= (aR32R42 . . . Rr2 - bR^Rri - . R^rΊ x . . . x

x β r̂ . . . Ήf3 flj^ R2l R3[ . . . Λ~j ,

which can be proven by applying repeatedly the Yang-Baxter equation.

(v) It holds

Z.Q + ZfZ.Γ1 'Z%Z*...Z?71 ^1

λ7^τ2

\ / V I Λ ^-nΛ x- fe+lp
Λ W Λ - <1 λ>2 / V W /M — </ A2/ Γ\k

k

~,n \ D—1 /-Y—^ \ D \ ^7^ ^^ 'Z5^
^ ΛΛ -ίti2 — ί/ ^7 2 1 / 2 ' ' ' fc ' ' ' r

D—1 (nn \ J3 7?

*• 2~^^k /r-4-1 " " " ~^kτ ' ~^τk ' ' ' ~^^k I 1 k 1 '

where Γ — diag(g~2n+1, q~2n+3^ . . . ? g
-1) #fld ̂  ^^ indicates that the correspond-

ing factor is omitted.

The relation (52) can be proven by induction. The equality (22) implies

_ -

λ2P(I

Afterwards the result stated in (i) should be applied.

(vi) It holds

(aR32 . . . Rk2 . . . Rr2 - bR23 . . . R2k . . . R2r )

X ... X (αflfc+1>fc . . . Rrk

::bRk^[ . Rkr) X - X (aRr,r-l ~ bRr\^

x (aRrk . . . Rkk ...R2k- bRkJ; . . . Rkk . . . R^R2k Rk-ι,k

= Rk2 . . . R

k,k-[(aR32R42 ' ' ' Rr2 ~ ^R23 R24 ' R2r )

x . . . x(aRrtr_l-bR-llίr). (53)

This identitiy can be proven by induction in r. Let us sketch the induction step

k2R2k

(aRrk . . . Rkk ...R2k- bRkr . . . Rkk . . .

= (aRrk . . . Rkk ...R3k- bRk^ . . . Rk

r - 1 -> r. Owing to (2) we have Rk2R2k = I + (q~l - (ί}R^2P2k and so
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After this substitution we get the LHS of (53) written as a sum of two summands. The
induction hypothesis is applicable to the first summand and afterwards the identities
are used following from the Yang-Baxter equation

— &k2 Rk3 ' ' ' -ftfc,fc- 1-^32 ' ' Rr2 J

p— 1 ϊ?~~l 7?~1 £?~~1 7?~1
^23 ' ^2k ' ' ' ^Ίr Λfc3 ' ' ' ^k.k-l

_ p— 1 p— 1 E>~1 Ώ~^ f?~l Ώ Γ?~~l f?~l
- Hk2 Hk3 ' ' Hk,k-lH23 H2,k-lHk2H2,k+l ' ' ' U2r '

To deal with the second summand note that the Yang-Baxter equation implies

(aR32 . Rk2 - - Rr2 ~ bR23 . . . R2k . . . R2r )
32 . k2 - - r2 ~ 23 . . . 2k

x ... x

R^2 . . . R^k . . . Rkr P2k(aR43 . . . Rk3 . . . Rr3

- bR34

l . . . R3k

l . . . R3r

l) x ... x34 . . . 3k . . . 3r

rk . . . Rkk . . . ̂ 3^ - kr . . . kk . . . k3x (aRrk . . . Rkk . . . ̂ 3^ - bRkr . . . Rkk . . . Rk

Using this identity we get the second summand written in a form which allows
the induction hypothesis to be applied and after that both summands can be again
recombined to yield the RHS of (53).

(vii) 9T is Z(l + Z*Z}~1-invariant.

First apply to (52) the identity

. . -Rkr)Rrk - - -
x (aR32 ...Rr2- bR23

l . . . R2r

l) x . . .

- (aR32 ...Rr2- bR23

l . . . R2r

l) x ... x

' ' - Λ f c + 1 f c - bR£ . . . Λ f c + 1 ) , (54)

which follows from the repeatedly used Yang-Baxter equation. The result is then
obtained with the help of the equality (53).

(viii) ?/ is Z*Z(I + Z* Z)~l -invariant.

Multiply the equality (52) by Zf from the left and notice that Z*Plk = P[k

Zk
and

7* 7* /7* /7* p-1 _ p-1 p-1 ry* y* π*
Zjk/J2 " ' ^k - - ^r nk,k-l — U2k ' ' ' nk-l,k^2 A3 ...Λr .

Applying again the identity (54) we get the result. D

Next an identity is presented valid for the ^-matrix (1).

Proposition 4.2. For R = R[rn], r > mσ, σ = 0, 1, 2, . . ., it holds

(q'σR2lR3l . . . Rrl - qσRΰlRΰl . . - ^Γr1) ( '̂̂ 32 - - Rr2 ~ <f K£ - - ̂ )

x ... x (ςf"σβr>r_1 - qσRrlιr) (^"σ - <Π = 0 . (55)
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Proof. We shall prove the adjoint equality rather than (55). Let us denote by
{e1?e2, . . . , em} the standard basis in Cm. We are going to verify the following
assertion (σ = 0, 1, 2, . . .):

(q~σ ~ qσ) (q'σR

r-^r ' ̂ r-i) x - - x (<Γσ R^r - Rn ~ <f Rrt ' ' ^i1)
x ej(1) <g> . . . ® ej(r) = 0 , (56)

whenever there are (σ + 1) mutually equal indices among j l 5 j2, . . . , jr.
First note that the relation (1) means

Consequently one finds that

R\τ ' ' R\3Rnej(l} ® ej(2) ® ' ® ej(r)

= Σ °(kl i *2> , kr ) e/e(l) ® ek(2]

where c(k1^ k2, - , &r) is nonzero only in the following two cases:

(a) (fc 1 ? fc2, . . . , fcr) = OΊ, J2» » Λ ) then c(^ι^2^ - > M = ^ with

equal to the number of indices among J 2 , J 3 , 3 jr coinciding with j j .
(b) There exist indices 1 < Z2 < < ls < r, s>2, such that j{ < j/(2)

< < J^(s) and (/c1 ? /c2, . . . , /cr) = Oz( s)j 5 ̂ i? ? ^/(2)' ' ^Z(s— i)' ' ' ''' 1<e'
(k L , k 2 , . - , fcr) is obtained from (j\, J2' > Λ ) ^y ^e CYCUC permutation of the
indices j l 5 j/(2), . . . , j/(s), and all remaining indices keep their position.

An analogous discussion can be done also for R~^ . . . R 2 \ Z j ( \ ) ® - ® ej(ry Now
to prove the above assertion we proceed by induction in r. For r = 1, the assertion
is clearly valid. To perform the induction step r - 1 — > r we distinguish two cases:
(I) The assumed subcollection of (σ + 1) equal indices is contained in (j2, . . . , jr).
Then the identity following from the Yang-Baxter equation,

(Q~σRr-l,r ~ ̂ r^r-l) * X (<*"' fyr " ' R23 ~ <f && ' ' ' R32^

x(q-σRir...Rl2-qσR-l

l...R2l

l)

= (q-"Rn...Rlr-q«R-ΐ...R-ϊ)

X (V~σRr-l,r ~ qσRr'r-lϊ X ' " X (<1~° &2r ' ' ' R23 ~ ̂  Rr2 ' ' - R32^ ?

combined with the induction hypothesis implies (56).
(II) The index jl belongs to the subcollection of (σ+ 1) equal indices. Then according
to the above discussion,

"fed) < # • • • < & > efc(r) ,

and there are (σ + 1) mutually equal indices among /c2,/c3, . . . , kr whenever the
coefficient c'(k^ . . . , kr) is nonzero. In this case the induction hypothesis again
implies (56).

To complete the proof it is enough to observe that if r > mσ then there are at
least (σ H- 1) equal indices among j l 7 J2, . . . , jr. D
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Combining Propositions 4.1 and 4.2 with a result due to Rosso [3] according to
which every finite-dimensional representation of ί^(sl(JV, C)) is completely reducible
we get

Corollary 4.3. For

Xl = q»-n~σ , λ2 - qμ+n+σ , μ = n + σ(n - m)/N, (57)

σ = 0,1,2,3, . . . , Λ£ — Λ&σ is a finite-dimensional irreducible ^q(AN) (and hence

%h($l(N, C))) module. The unit is the lowest weight vector in yMσ,

εxp(hH3) - 1 = 1 for j φ m

= qσ for j = m. (58)

This formula assumes that the condition (4) is again restored. But Y[ a3 lies in the

centre of ̂  (AN) and with the choice (57), f] α - 1 = 1. Thus f j α acts on ̂
as the unit operator.

According to another result stated in [3], the vectors Xk(i) - -^-k(r) ' 1 sPan ̂ e

module ^M. As a consequence one easily derives that provided there exists an invariant
scalar product { | ) on Λ&, i.e.

(ξ'vl\ V2) = (Vl £* ' V2)

for all ξ e %6h(sl(N,C))9 vl,v2 G ̂ , then it is determined unambiguously up
to a positive factor. But the existence of the Haar measure for SUq(N) implies
that every finite-dimensional representation of %h($l(N, C)) can be turned into a
*-representation [19]. The invariant scalar product on ̂ σ can be introduced as
follows. The vacuum-value functional ε0 on the algebra ^ corresponds to the normal
ordering when the elements z*t stand to the left and the elements zuυ stand to the
right, ε0(l) = 1. Set

(c I d) = ε0(e*ίf). (59)

The number (c \ d) depends only on the images of c and d in the fact space
and it holds

( c \ f d ) = (fc\d).

We can proceed to the general case and describe the module ̂ σ^ σ(N-i)

the lowest weight (σ1? . . . , O'N_]) G N^~l. In the notation below the superscript (m)
refers to the type of the Grassmann manifold Gm. Denote by

Δk \^ (AN) —> ̂  (AN) 0 ... 0 *s&a(AN) (k copies)

the iterated comultiplication in ,^q(AN). The moφhism ψ\(ψ(l}®.. .®ψ(N~l})oΔN_{

enables one to define a tensor product of modules ̂ ^ 0... ® ̂ ^Γ-V ̂ e cyc^c

submodule ̂ σ(i) σ(N-i) g^n^ated by the lowest weight vector υ — 1 ® . . . Θ 1 is
irreducible,

exp(ftίL) - v - qσ(j)v , j - 1,2, . . . , TV - 1. (60)

Acknowledgements. The author is indebted to the reviewer for his comments.
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