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Abstract: We classify positive energy representations with finite degeneracies of the
Lie algebra Wl+00 and construct them in terms of representation theory of the Lie
algebra g/(oc, Rm) of infinites matrices with finite number of non-zero diagonals over
the algebra Rm = C[t]/(tm+1). The unitary ones are classified as well. Similar results
are obtained for the sin-algebras.

0. Introduction

(9.7. Recent progress in conformal field theory revealed some unusual mathematical
objects called the V^-algebras [Z]. These algebras turned out to be quantizations
of the second Gelfand-Dickey structure for Lax equations [FL]. The complicated
structure of these algebras is greatly simplified in the limit n = oo, the limiting

algebra being the Lie algebra &, the universal central extension of the Lie algebra of
differential operators on the circle [KP]. (Physicists denote this Lie algebra by W1+00

[PSR].) The possibility to get Wn from & has been studied in [R, RV]. A complete
picture for classical Wn was obtained in [KhZ].

The main goal of the present paper is to classify and describe the irreducible

quasifinite highest weight representation of the Lie algebra &. The basic technical

tool is the analytic completion <$® of & and a family of its homomorphisms onto

the central extension of the Lie algebra gl(oo, Rm) of infinite matrices with finitely
many non-zero diagonals over the ring Rm = C[t]/(tπι+l).

The Lie algebra & may be obtained via a general construction (explained in
Sect. 1) as a twisted Laurent polynomial algebra over the polynomial algebra C[w],
It is easy to see that the only other Lie algebras obtained by this construction from

C[w] are Lie algebras &q, the central extension of the Lie algebra of difference
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operators on the circle. It turns out, however, that a representation theory similar to

that of <$, may be developed for a larger Lie algebra, the central extension J^ of
the Lie algebra of pseudo-difference operators on the circle (see Sect. 6). The latter
Lie algebra has been studied recently by many authors (see [FFZ, GL] and references
there).

Being of a very general nature, our methods may be applied to many other exam-
ples of infinite-dimensional Lie algebras. Noting that ϋ$ (resp. 9Q is a quantization
of the Poisson Lie algebra of functions on the cylinder (resp. 2-dimensional tours),
one may expect that our approach could be extended to the quantizations of general
symplectic manifolds.

0.2. Let us give here the main definitions which will be used for various examples
throughout the paper.

Consider a Z-graded Lie algebra over C:

(We do not assume 0Z to be finite-dimensional.) We let

A subalgebra p of 0 is called parabolic if it contains g0 + g+ as a proper subalgebra.
A g-module V is called graded if

J

A graded g-module V is called quasifinite if

dim Vj < oo for all j .

Given λ £ g0, a highest weight module is a Z-graded g-module V(%, λ) =
0 V_j defined by the following properties:

(i) VQ = Cυχ, where vχ is a non-zero vector,
(ii) hvχ = X(h)vχ for h G #0,

(iii) Q+υχ = 0,
(iv)

Here and further %($) stands for the universal enveloping algebra of the Lie algebra s.
A non-zero vector υ £ VXg, λ) is called singular if Q+V = 0. The module V(g, λ)

is irreducible if and only if any of its singular vectors is a multiple of vχ.
The "largest" among the modules V(%, λ) with a given λ is the Verma module

, λ) defined by the property that the map

given by φ(u) = u(vx) is a vector space isomorphism.
Any highest weight module V($, λ) is a quotient of M(g, λ). The "smallest" among

the V($, λ) is the irreducible module L(g, λ) (which is a quotient of M(g, λ) by the
maximal graded submodule).
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We shall write M(λ) and L(λ) in place of M(0, λ) and L(0, λ) if no ambiguity
may arise.

0.3. It is useful to note that the Verma modules can be constructed as follows:

where Cλ is the 1 -dimensional 00 + 0+ -module given by h ι— > \(h) if h G 00, 0+ »— » 0,
and the action of $ is induced by the left multiplication in ^(0).

Now, let p = 0 pj be a parabolic subalgebra of 0, and let λ G 0Q be such that

λ |gon[p,p]= O Then the 00 + 0+-module Cλ extends to p by letting p^ ι— » 0 for j < 0,
and we may construct the highest weight module

It is called the generalized Verma module. It may be characterized by the property
that the map φ induces an isomorphism ^(0_)/^(p Π 0_) — > M(0, p, λ).

Note that if dim^ < oc for all j, the 0 -module L(λ) for any λ is quasifinite.
If however dim^ = oo, which is the case in all of our examples, the classification
of quasifinite irreducible highest weight modules becomes a non-trivial problem. The

answer to this problem for the Lie algebra iff is given by Theorem 4.2. Moreover,
we give an explicit construction of all these modules in terms of irreducible highest

weight modules over the Lie algebra gl(oo, Rm) (Theorems 4.5 and 4.6).

0.4. Recall that an anti-involution of a Lie algebra 0 over C is an additive map
ω 0 — » 0 such that

ω(\a) = λα, α;([α, b]) = [ω(δ),α;(α)], for λ G C, α, 6 G 0 .

Given a 0-module V", a Hermitian form ft, on V is called contravariant if for any
α e 0 the operators α and ω(ά) are (formally) adjoint operators on V with respect
to h.

Fix an anti-involution ω of the Lie algebra 0 such that ω(^ ) = 0_J . Let L(0, λ)
be an irreducible highest weight module over 0 such that λ(/ι) G R if ω(h) = h. For
v G L(0, λ) denote by (υ) the coefficient of Vχ in the decomposition of υ with respect
to the gradation of L(0, λ). Let

h(avχ, bυχ) = (ω(a)bvχ), α, b G ̂ (0) .

It is easy to show (see e.g. [K, Chapter 9]) that h is the unique contravariant form
on I/(0,λ) such that h(vx,vx) = 1; moreover, it is non-degenerate and

The 0-module L(0, λ) is called unitary (with respect to α;) if the contravariant
form h is positive definite (this is independent of the choice of vχ G L(0, λ)0).

The classification of unitary quasifinite (irreducible) highest weight modules over

& is given by Theorem 5.2.
Let us note in conclusion that the classification of irreducible quasifinite highest

weight ^-modules is expressed in terms of Bernoulli polynomials. Is it an indication
of a connection to the Riemann-Roch theorems?

0.5. One of the authors wishes to thank D. Lebedev and M. Golenishcheva-Kutuzova
for illuminating discussions on the sin Lie algebra.
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1. Twisted Laurent Polynomial Algebras and Associated Lie Algebras

1.1. Let A be an associative algebra over a field F and let σ be an automorphism of A.
Define the twisted Laurent polynomial algebra Aσ[z, z~l] over A in the indeterminate
z to be the vector space F[z, z~l] ®F A over F of finite sums of the form ]Γ z* <g) α ,

jez
α^ G A, with multiplication defined by the rule

(zk 0 α)(zm 0 6) - zk+rn ® σm(α)6, α,6 e A, fc,m G Z. (1.1.1)

Further on we shall often write zmα in place of zm ® α.

Remarks, (a) Replacing 2: by zα"1, where α is an invertible element of A, corresponds
to replacing σ by (Ada)σ, where Ada stands for the inner automoφhism:

(Ada)b — aba~l, 6 G A.

(b) Applying an automoφhism a to A replaces σ by a~lσa.

Thus, we obtain the following proposition.

Proposition. Twisted Laurent polynomial algebras over an associative algebra A are
parameterized by the conjugacy classes of the group Aut A/AdA. D

Two automoφhisms of A whose images lie irr the same conjugacy class of
Aut A/Ad A are called equivalent.

1.2. The algebra Aσ[z,z~l] has a canonical Z-gradation, called the principal grada-
tion:

(1.2.1)

• Let SP = 0^ be a parabolic subalgebra of Aσ[z,z l ] . It is clear that

^ΰ_l = z~ll, where / is a (two-sided) ideal of the algebra A. Hence & contains
the following minimal parabolic subalgebra &(ΐ) associated to /:

Remark. Given two ideals / and J of A, we have the following graded subalgebra
ofAσ[z,z-1]:

j>0

1.3. We denote ACΓ the algebra Aσ[z,z~l] viewed as a Lie algebra with respect toσ

the usual bracket:

Fix a trace on the algebra A, i.e., a linear map tr : A — > F, where V is a vector
space over F, such that tr(αδ) = tr(6α). Then we may construct a remarkable central

extension Aσti of Aσ by a central subalgebra F:
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as follows. It is straightforward to check that the formula

r(( l+σ + ... + σr-1)(<7-r(/)0)) if r = -s > 0,

0 i f r + 5 ^ 0 o r r = s = 0

defines a 2-cocycle on Aσ with values in V. Then Aσtr = A + V with V central and

the bracket of two elements f,geAc Aσ tt is given by the usual formula:

Remarks, (a) Replacing 2 by zα"1 corresponds to replacing ^σ tr by ^Ada)σ,tτ-
(b) Applying an automorphism a to A replaces ^σtr by tf^-i^troα.
(c) Since Φσίti(zr ', 2s) = tr(l)r<Sr _ s, the cocycle ^σ'tr is nontrivia'l if tr(l) ̂  0.
(d) Suppose that the map σ — 1 : A — > ^4 is surjective and that tr vanishes
on its kernel. Then we have an isomorphism σ — 1 : A/Ker(σ — 1) -̂  A, and
<£? : tro(l — σ)"1 : A — > V is a well-defined map. We have:

hence in this case the cocycle Φσ tr is trivial.
(e) Suppose that tr(σ(α)) = trα, α E A. Then tr extends to a trace of the algebra
Aσ[z, z~~l] by letting tr(zka) = δk0tra.

Example. Let A = Matn F; then any automorphism of A is equivalent to σ = 1 (by

Remark l(a)). Take the usual trace tr : A — > F, then Aσ >tr is isomoφhic to the usual
affine algebra #/n(F)Λ.

We have the corresponding to (1.2.1) Z-gradation:

Aτ,tr = 0 Λ ' where Λ = Z'A if ̂  °' and A) = A + ̂  - (! 3 2)
j

For each (two-sided) non-zero ideal / of A we have the associated parabolic

subalgebra of Aσ^9

1.4. We turn now to the main examples of the Lie algebras Aσ and Aσ, those
associated to the polynomial algebra A = C[w] in the indeterminate w. We show

that the Lie algebras Aσ are isomoφhic to the Lie algebras of all regular differential
(resp. difference) operators on the punctured complex plane Cx = C \ {0}, and that

the Lie algebras Aσ tr are their well known central extensions.

For q E Cx define the following operator on C[z, z~l]\

( f(qz) - f(z)
Dqf(z)=\ q-l l ^ '

(zdzf(z) if 9 = 1 .

Denote by J^α the associative algebra of all operators on C[z, z~l] of the form

E = ek(z)D* + ek_v(z)Dq~l H h eQ(z), where e^z) G C[z, z~l]

(the superscript α stand for "associative") and let ̂  denote the corresponding Lie
algebra.
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Now, any automorphism of C[w] is equivalent to σ , q £ C x , defined by

σq(w) = qw + 1 .

Note that
σ^(κ ) - <?n™ + [n] , (1.4.1)

where, as usual, for n £ Z:

gn - 1
[n] = - if g ^ 1 and = n if q = 1 .

9- 1

Proposition, (a) TTze /meαr map C[w]σ [z,z~l] — >• °̂ defined by zkf(w) H->

zkf(Dq) is an isomorphism of associative algebras.
(b) Let tr : C[w] -^ C be the evaluation map at w = 0. TTze/i f/ze 2-cocycle Ψσtτ

on ί/ze L/e algebra C[w]σ [z, z~l] induces, via the above isomorphism, the following

2-cocycle on the Lie algebra &q:

( Σ f({j])9([j + rn]) if m = -n > 0 ,
V(zmf(Dq),zng(Dq))=l -m<j<~ι (1.4.2)

I 0 if m + n 7^ 0 .

Proof. This is straightforward using (1.4.1). D

We shall denote by

^q = &q + CC

the central extension of J^ corresponding to the cocycle (1.4.2) so that the bracket
of two elements from the subspace is given by

1.5. Let &a = ̂ °, ® = ̂ , & = )tr, £) = £>!(= z9J. As we have seen ̂ α is
the associative algebra of all regular differential operators on the punctured complex
plane C x, i.e., operators of the form

E - ek(z)d% + e^CeOd*-1 + + eQ(z) , where e (^) G C[z, z'1] . (1.5.1)

It is not difficult to see that the cocycle ^ given by (1.4.2) is given by the following
formula:

=0 dz f^+l\z)g^(z) , (1.5.2),
(TTL ~τ~ Tl ~r~ i

where as usual /(n^ stands for 9J1/. This cocycle appeared (probably for the first
time) in [KP]. It has been shown independently by several authors ([Li] and [F]

among them) that j^ is the unique, up to isomorphism, non-trivial central extension
of the Lie algebra & by a one-dimensional algebra.

It is, however, more convenient to write the differential operators as linear
combinations of elements of the form zkf(D), where / is a polynomial in D, since
it is easier to compute their product [cf. (1.1.1)]:

(zmf(D))(zkg(D» = zm+kf(D + k)g(D) . (1.5.3)
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The bracket in &> is then given by

[ z r f ( D ) , zsq(D)] = zr+s(F(D + s)g(D) - f(D)g(D + r)

+ Φ(zrf(D),zsg(D)))C, (1.5.4)

where

f Σ ί (3)9(3 + r) if r = ~s > o
Ψ(zrf(D),zsg(D)) = I -r<s<-\ (1.5.5)

[ 0 i f r + s ^ O o r r ^ s - 0 .

1.6. Consider now the associative algebra ^g

α, the corresponding Lie algebra §£q and

its central extension ®q in the case q ̂  1 . Introduce the following basis of ̂ α :

Tm,n = q*(m+iynzm((q ~ l)Dq + 1)" , m € Z, n € Z+ .

Then we have

The cocycle (1.4.2) on the Lie algebra ̂  becomes:

^ sinh(fim(n + nQ)

where we let q = e2h. Consequently, the commutation relations of the Lie algebra ,
become:

[Γm.Λ/^] = 2sinh(/Km'n - mnO)Tm+m/>n+n,

t c smh(hm(n + n')) ~

Remarks, (a) Commutation relations (1.6.3) correspond to the automoφhism σ^ of
C[IL>] given by σq(w) = qw (which is equivalent to σς), and to the trace being
an evaluation map at w = 1. The evaluation map at w = 0 gives the cocycle
^0(Tm n, Tm, nf) = mδm _m/δn f, which is equivalent to Ψ due to the argument of
Remark 1.3(d).
(b) If we take A = C[w, w~l], σ(x) = qx, where q = e2h ̂  1, and tr (Σ a^1) = O>Q,

i
then in the basis T n = qirnnzrnwm (m, n G Z) we obtain the commutation relations
of the trigonometric Sin-Lie algebra:

[T T / /] = 2sinh(?ϊ(m/n — mnf))T
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2. Lie Algebras ̂  and

2.1. Let as before D = zdz and let

Ln = zkDn € ^r c JΓ (& G Z, n G Z+) .

Define the order and the weight by

o r d L ™ = n , wtL£ = fc, ordC = wtC = 0.

It is clear from (1.5.4) and (1.6.1) that the order defines a filtration of &\

ifi C JΓ1 C J^ C ••• , (2.1.1)

and the weight defines the principal Z-gradation of &\

(2-1.2)

Note that we have:

(2.1.3)

(2.1.4)

i f r > 0 . (2.1.5)r, s 2

It follows that J °̂ is isomorphic to the oscillator Lie algebra:

r T 0 7"0l C /^Ί /O 1 /C\[Lr, Ls\ = Or^_srL . (2.1.6)

Furthermore, ̂ ! contains a 1-parameter family of Virasoro algebras Vir(/?), /? G C,

("complementary" to ̂ Γ°) defined by

so that
Γ3 _ r

where
(2.1.9)

Remark. zn+sd™ = zsD(D - 1) - - - (D - n + 1).

2.2. Let ̂  be the algebra of all holomorphic functions on C with topology of uniform
convergence on compact sets. We define a completion &aά of the (associative)
algebra of differential operators on Cx by considering differential operators of infinite
order of the form zk/CD), where / G &. The usual product of differential operators
extends to^α^:

(zrf(D))(z*g(D)) = zr+sf(D + s)g(D), (2.2.1)

where by f(D + s) we mean the power series expansion in D. The principal gradation
extends as well: ̂ α^ - 0 &k

a<?9 where ®«& = { z k f ( D ) \ f ( w } G }̂. Identifying
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<£)£® with & and ̂ a(5} with the direct sum of ̂ ^ as topological vector spaces,

we make ̂ aθ a topological associative algebra. It is a completion of the subalgebra

^α.We denote by ^^' the corresponding (topological) Lie algebra. Then the cocycle
Ψ extends by continuity from ̂  to a 2-cocycle on ̂ β; by formula (1.5.5). We let

be the corresponding central extension. Note that for elements zreXD

(r G Z, λ G C) the commutator in <2$ό is especially simple:

λs
p-Xr _ p-μs

_ C. (2.2.2)

Remarks, (a) One may consider zkeXD as a generating series for the L% and derive
(1.5.4) and (1.5.5) by taking derivatives of (2.2.2).

(b) Of course, ̂  is isomorphic to d^, and <gϊ® to ^1)tr.

(c) Consider the following traces on @\

, where α> &> ^ C>

t4m] f(w) = /(m)(s), where s e C, m G N .

Here and further /(m) stands for the mth derivative of f(w). We denote the
corresponding cocycles by Ψa ̂ b := ^σi) tΓαb and ̂ m) := Ψσ ^m]. On ̂ ^ these

cocycles are nontrivial (in continuous cohomology). But, due to Remark 1.3(d) when
restricted to & they become trivial. Since

XW __ 1

(σι - 1}7^T = ̂ W (2 2>3)

using Remark 1.3(d), we obtain the following explicit formulas for these trivial
cocycles on 0$\

zrg(D» - δkt_rΛajb([zkf(D), z~kg(D)}) , (2.2.4)

, zrg(D)) = δk_rΛ™([zkf(D), z-kg(D)]) , (2.2.5)

where Λ b and Λ[™] are the linear functions on C[w] defined by the following
generating series in x\

pax _ pbx

(2.2.6)

2.3. The following theorem describes closed ideals of <2$θ (resp.

Theorem, (a) The center Z of &)βί consists of elements of the form f(D), where

f(w) G & is a \-periodίc function (i.e., f(w + 1) = f ( w ) ) . The center of J^ is

z = z®cc.
(b) Let I be an ideal of & which is invariant under the translation w \—> w+l, and let

I' = {/(£»-/(£>+ !)!/(«,) e /} (resp. Ί> = {f(D)-f(D + l) + f(0)C\f(w) € /}).
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Let Y be a subspace of Z (resp. Z). Let I(k} = zkl C ̂  for k φ 0 and let
/(O) = j/ + Y (resp = // + r) τhen

is a closed ideal of ̂  (resp J

(c) Every closed ideal of ^^ (resp. of &^) is one of the J(/, Y).

Proof. The statements (a) and (b) are clear. We shall prove (c) for <$^\ the proof

for §2® being the same. Let J be a closed ideal of the Lie algebra S$ό. Since J is
ad D-stable, it follows that J is graded ideal:

k T
1k •>

where Ik is a closed subspace of 0. We have

[D2, z k f ( D ) ] = 2kzkDf(D) + k2zkf(D).

It follows that wR C A if k ̂  0, i.e., that /. for k ̂  0 is an ideal of &. Furthermore,
AC K I 7 7 K I

we let for k G Z and an ideal / of < :̂

= {/ G ̂  I f(w + fe) G /} .

We claim that

/J±l] + 4 c/Λ±1 if fc 7^0 and k ± 1 ^ 0 . (2.3. 1

Indeed, since

we see that if f ( w ) e /fc then /(iί;) — /(tί; ± 1) G Ik±\ Since 7fc and Ik±l are ideals,

^/(^) ^ 4 and ^/(^) ~ (̂  ± !)/(^ ̂  !) e 4±ι Thus' /(^)' /(^ i !) € 4±i'
completing the proof of (2.3. 1)±. We conclude, in particular, that

Il=I2 = ... and 1^ = I_2 = - - . (2.3.2)

Next, we prove that

Ik = Ik[n] for all n e Z, provided that k ^ 0. (2.3.3)

Indeed, due to (2.3.2) we may assume that |fc| > 2, so that both numbers k + 1 or
k - 1 are non-zero. Applying (2.3.1)+ to Ik and (2.3.1)_ to Ik_l9 we get

/fc[l] + / f cC/ f c + 1 and /fc+1[-l] + / f c + 1C/ f c .

It follows that Ik = (/Jl])[-l] C /fc+1[-l] C 4, and Ik = ( I k [ - l ] ) [ l ] C I k [ l ] C
Ik+l = Ik. Hence Ik = /fc[=bl] proving (2.3.3), which means that each Ik is invariant
under the translation w \-> w + 1.

In order to complete the proof of the theorem, it remains to show that

/ ι=/- ι , (2-3.4)

/o D I1, (2.3.5)

I 0 C / 7 + Z. (2.3.6)
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First, we prove that I_l C Iγ\ the reverse inclusion is proved similarly. Let
f(w) G I_γ\ we have:

[z, [z, z ~ l f ( D ) ] ] = z ( f ( D ) - 2f(D + 1) + f(D + 2)).

Hence f ( w ) - 2f(w + 1) + f(w + 2) G Iλ. Considering wf(w) G /_1 ? we conclude
that f(w + 2) — f(w -f 1) G /} and f(w + 1) — f(w) G /j. Considering wf(w) once
more, we conclude that /(w) G /j, proving (2.3.4).

The inclusion (2.3.5) follows from the inclusions [z,/_J C /0 and [ z ~ l ^ I l ] C 70.

Finally, in order to prove (2.3.6), note that the map φ := (adz)2 : z~ll_l —> zlλ is

surjective (this follows from the proof of (2.3.4)). Let now / G /0 and let g G z~ll_λ

be a pre-image of [z, f ( D ) ] under the map φ. Then [z, #] G /' and [/ - [z, g ] , z ] = 0,
hence / — [ z , g ] G Z, proving (2.3.6). D

We have the following corollary of the proof:

Corollary. The Lie algebra &/C is simple.

2.4. Consider a parabolic subalgebra p of &:

p = ̂ ^ pj, where p^ = i$3 for j > 0 and pJ ^ 0 for some j < 0.

For each positive integer k we have: p_ f c = z~kl_k, where I_k is a subspace of
A = C[w]. Since

z-fcpGD)] = z~k(f(D -k)- f(D))P(D),

we see that /_ fc is an ideal of the polynomial algebra A. It is clear that I_k ^ 0 for
all A; = 1,2, . . . . Let bk(w) be the monic (i.e., with the leading coefficient equal to
1) polynomial which is a generator of the ideal I_k. Thus, to a parabolic subalgebra
p we have associated a sequence of monic polynomials bl = bλ(w)9 b2 = b2(w), . . . .
The polynomials fefc, k = 1,2, . . . are called the characteristic polynomials of p.

Lemma. Let {bk}k^ be the sequence of characteristic polynomials of a parabolic

subalgebra p of the Lie algebra &. Then

(a) bk(w) divides bk+l(w) and bk+l(w + I) for all k G N.
(b) bk+l(w) divides bk(w - l)bt(w)for all k, I G N.

Proof. Since [z,z^k~lbk+l(D)} = z~k(bk+l(D) - bk+l(D + 1)), wee see that bk(w)

divides bk+l(w) - bk+l(w + 1). Since [2, z~k-lDbk+l(D)] = z~k(Dbk+l(D) - (D +
l)bk+l(D + 1)), we see that bk(w) divides w(bk+l(w) - bk+l(w + 1)) + bk+l(w + 1),
proving (a).

The proof of (b) is similar by computing the commutators [z~kbk(D), z~lbl(D)]
and [z~kbk(D\ z^Db^D)}. D

Given a monic polynomial b(w), we let

b^(w) = b(w)b(w - 1) .. . b(w - k + 1),

b^ax(w) = lcm{b(w), b(w - 1), . . . , b(w - k + 1)} .

It is easy to see that there exist (unique) parabolic subalgebras, which we denote
by pmm(fr) and pmax(fr), for which the characteristic polynomials are {b™m(w)} and
{b™x(w)} respectively. We clearly have

(2.4.1)
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Lemma 2.4 implies the following.

Proposition. Let b be a monic polynomial and let p be a parabolic subalgebra such
thatbλ(w} = b. Then

pmin(6) C p C pmax(fc) .

In particular, if the difference of any two distinct roots ofb is not an integer, then

P = Pmi» = PmaxW Π

Remark. pmin(6) = p((6)) (cf. (1.3.3)).

2.5. Given a monic polynomial b = b(w), consider the following subspace of J^:

J^ - {b(D)g(D} - b(D + l)g(D + 1) + b(0)g(0)C\g(w) G C[w]} .

In order to study modules over & induced from its parabolic subalgebras, we need
the following proposition.

Proposition. Let p be a parabolic subalgebra of ̂  and let b = b(w) be its first
characteristic polynomial. Then

In particular,
dimp/[p,p] = dimp0/[p,p]0 = degb(w) . (2.5.1)

Proof. Note that [p,p]0 = [p^p.J and that [ z f ( D + 1), z~lb(D)g(D)]
= b(D)f(D)g(D) - b(D + 1)/(D + l)g(D + 1) + 6(0)/(0)p(0)C. The rest is straight-
forward. D

2.6. Let Q be a finite-dimensional semi simple Lie algebra over C and let & =
a

be its root space decomposition with respect to a Cartan subalgebra 00. An embedding

0 C ̂  is called graded if 0α C ̂ Q) for all α.

Proposition, (a) TTze graded embedding s in ̂  of the Lie algebra sl2(C) with the
standard basis E, H, F are parameterized by k G Z\ {0} αwύ? fry k-periodίc functions
/, ̂  G & as follows:

(b) 7%e owfy gra^J embeddings ofsl2(C) in & are as follows (k G Z\{0}, λ, μ, G C):

H=^D + X, E = zkx(D), F = z~ky(D) ,
fc

w/Y/z the following four possibilities for x(D) and y(D):

(i) xφ) = D2 + (λ + 1)Z? + μ,
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(ii) x(D) = ̂ D-μ, y(D) = ~D - λ - μ - 1;

(iii) and (iv) are obtained from (i) and (ii) by the substitution x'(D} = y(D — k),

y'(D) = x(D + fc)

(c) A semi simple Lie algebra of rank > 2 has no graded embeddings in &^.

Proof. Note that the equation

[h(D), zkx(D)] = \zkx(D}

implies that
h(D + k) - h(D) = λ.

All solutions of the latter equation are ft(0) = -D + f ( D ) 9 where f(D + fe) = f(D).
k

Now (a) easily follows, (b) follows from (a). If rank g > 2, we always can find an
element h G 00 such that a(h)/β(h) is an irrational number for two distinct roots α
and β. Hence (a) implies (c). D

Remarks, (a) Let Ln denote the subalgebra of operators of <£)® leaving invariant the
n

subspace Σ Czk of C[z, z~l], and let In denote the ideal of Ln of operators acting

on this subspace trivially. By Jacobson's density theorem we have an exact sequence
of associative algebras:

Proposition 2.6(b) shows that this is a non-split exact sequence.
(b) It follows from the proof of the proposition that ad^f is not diagonalizable

on &^'.

3. Interplay between & and gl(oo)[m]

3.1. Let R be an associative algebra over C. Denote by R°° a free /^-module with a
fixed basis {^}:/eZ. As usual, define the operators E^ by

E^vk^δΊkvτ. (3.1.1)

Denote by M(oo, R) the associative subalgebra of End R°° consisting of all operators
5 whose matrices (α )^ GZ have a finite number of non-zero diagonals.v>

Letting deg E13 — j — i defines the principal Z-gradation:

M(OD,Λ) = ffi)M(oo,R)Ί . (3.2.1)

Fix 5 G C and a nilpotent element t G jR. Consider the free ^-module ^[z,^"1]^5

and identify it with R°° by choosing the basis Vj = z~i+s', j G Z. By associating

to an element zkf(D) G ̂ α the operator zkf(D + t) on ^[z,^"1]^5, we obtain

an embedding φs^t : J °̂ c-^ M(oo,Λ) of associative algebras over C, which is
compatible with the principal gradations. Explicitly:

φ8tt(zkf(D)) = Σ f(~J + s
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The homomorphism ψst : ̂ ° —» M(oo, K) extends via (3.1.3) to a homomoφhism

3.2. Given a non-negative integer m, consider the algebra of truncated polynomials

Rm = C[ί]/(£m+1), and let M(oo)[m] = M(oo, Rm). We denote the homomoφhism

ψsi : ̂ α^ —> M(oo)[m] given by (3.1.3) by φl™\ By Taylor's formula we have:

™ f«)(_7 + 5) .
φW(zkf(D)) = V V J .. V f f - fc, - (3.2.1)

* X -V / ^/ Λ | J "ΊJ

Let

/^ = {/ E ^|/w(n + s) = 0 for all n E Z and all z = 0, . . . , m} ,

and let Jtm] - 0 z fe/tm] G ̂ a6. We clearly have:

Ker^m] = Jlm]. (3.2.2)

Fix now s = (s1? . . . , SN) G C^ such that si — s^ ^ 1^ if ί y^ j, and fix
~ M _

m = (m^ . . . ,m N ) G Z^. Let M(oo)[rn] = 0M(oo)[mJ. Consider the
i=l

homomoφhism

Proposition. Wi? /zαv^ α« ^Λ αcί sequence of Z- graded associative algebras:

0 -> J^1 -. ^α^ -̂  M(oo)[rr?] -> 0,

where jf} = f| J^].

/. It is clear from (3.2.2) that K e r < ] = The surjectivity of y?
follows from the following well-known fact: for every discrete sequence of points in
C and a non-negative integer m there exists f(w) G & having prescribed values of
its first m derivatives at these points.

3.3. We denote by gl(oo)[m] the Z-graded Lie algebra over C corresponding to the

associative algebra M(oo)[ra] viewed as an algebra over C. Consider the following

2-cocycle on <^(oo)[ra] with values in R^:

(3.3.1)

where J — Σ Eiit and denote by gl(oo)[m] = gl(oo)[m] + Rm the corresponding
i<0

central extension. The Z-gradation of this Lie algebra extends from gl(oo)[m] by
letting wtRm = 0.
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The homomoφhism φ^ of the associative algebras defines a homomoφhism of the
corresponding Lie algebras, which we denote by the same letter:

φ[m] . ̂  _^ gl(oo)[m] and φ[™} : ®® -> gl(oo)[m].

Denote by ̂ m] the restriction of the cocycle C given by (2.5.1) to (fi™\!$®\ This
gives us the following R^-valued cocycle on &^:

m j

? (3>3>2)

where the cocycle Φ is given by (1.5.5) and the cocycles \PsQ and \P(

S

3} are defined in
Remark 2.2(c). Using (2.2.4-6), we thus obtain the following proposition.

Proposition. The C-linear map φ[™] : & —» gl(oo)[m] defined by

if j 7^0, (3.3.3)

^m](C) = 1 6 ̂ m (3.3.4)

is a homomorphism of Lie algebras over C.

3.4. Define an automoφhism v of the algebra M(oo, C) by letting

)̂ = *WH

Let V9S = ^Sj0 ^α^ -» M(oo, C) (see Sect. 3.1). Then we have

φa+l(zkf(D)) = vφs(zkf(D}) . (3.4.1)

Definition. A monodromic loop is a map / : C — > M(oo, C) such that

(i) / is holomoφhic on C, i.e., f ( w ) = ΣflJ(w)ElJ, where f^ e ̂ ,

(ii) /(ti; + 1) = z//(u;), i.e., / t(^ + 1) ^f+^w).

We let J^M(oo) denote the associative algebra of all monodromic loops. It clearly

inherits from M(oo,C) the principal gradation.

Define a linear map φ : &α^ — > J^,M(oo) by letting

(3.4.2)

This is a homomoφhism of associative algebras. The inverse homomoφhism φ~l is

constructed as follows. Given f ( w ) = Σfj(w)Ejj+k G =^M(oo) (a monodromic
j

loop concentrated on the &th diagonal), we let

φ-l(f(w)) = zkfΌ(D). (3.4.3)

Thus we obtain the following result.
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Proposition. The map φ is an isomorphism of 'L-graded associative algebras

Remark. Monodromic loops are sections of the vector bundle on the cylinder C/Z

with fiber M(oo,C) and transition function v in a small neighbourhood of the line
Rew = 1. _
Denote by J^g/ίoo) the Lie algebra obtained from S§vM(vs) by taking the usual
bracket. For each 5 G C define a 2-cocycle Cs on this Lie algebra by

Cs(f(w), g(w)) = C(f(s), g(s)), where f ( w ) , g(w) G ̂ gl(oo). (3.4.4)

It is easy to see that under the isomorphism

φ\&® ^ gl(oo)

given by Proposition 2.4, the cocycle Cs induces the following cocycle on &^:

{ Σ f(j H~ s)g(j -\~k-\-s) if k = —m > 0 ,

0 if k + m φ 0 .

Denote by ^^/(cχo)Λ the central extension of ^gl(oo) corresponding to the

cocycle C0. Then the isomorphism φ : <$® ^ ^gl(oo) lifts to the isomorphism

4. Quasifinite Highest Weight Modules over ̂

4.1. Let b be a monic polynomial and let λ G J^* be such that \\^> — 0 (see

Sect. 2.5). Consider the parabolic subalgebra p whose first characteristic polynomial

is b and denote by M(λ; 6) the generalized Verma module M(J^, p, λ).

Definition. A Verma module M(λ) over H$ is called highly degenerate if there exists
a singular vector in M ( X ) _ { .

The following proposition follows from Propositions 2.4 and 2.5 and formula (2.4.1).

Proposition. The following conditions on X G ̂ * are equivalent:

(i) M(λ) w highly degenerate;
(ii) L(λ) zs quasifinite\

(iii) L(λ) w β quotient of a generalized Verma module M(λ; b) for some monic
polynomial b. D
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Let L(λ) be a quasifinite irreducible highest weight module over J?. According to
Proposition 4.1, (z~lb(D))υχ = 0 for some monic polynomial b(w). Such monic
polynomial of minimal degree is called the characteristic polynomial of L(λ). Note
that L(λ) is a quotient of M(λ; 6), where b is the characteristic polynomial of L(X).

42. We shall characterize λ e ̂ * by its labels Δn = -X(Dn) and the central charge
c = λ(C). Introduce the generating series

n=0

Recall that a quasipolynomial is a linear combination of functions of the form p(x)eax,
where p(x) is a polynomial and α G C. Recall the following well-known fact.

Lemma. A formal power series is a quasipolynomial if and only if it satisfies a non-
trivial linear differential equation with constant coefficients.

Theorem. A &) -module L(X) is quasifinite if and only if

where φ(x) is a quasipolynomial such that 0(0) = 0.

Proof. It follows from Propositions 4. 1 and 2.5 that L(X) is quasifinite if and only if
there exists a monic polynomial

such that for all 5 = 0, 1, . . . we have:

\(Dsb(D) - (D + \)sb(D + 1) + 6(0)δβ>0c) - 0 .

This condition can be rewritten as follows:

N

^n+s=0 for all s = 0 , l , . . . , (4.2.1)
n=0

where

Introducing the generating series

""' <n^
(4.2.2)

n=0

we may rewrite (4.2.1) in the form

( Σ -M — ) IF^ = °' (4.2.3)

Thus, by Lemma 4.2, L(λ) is quasifinite if and only if F(x) is a quasipolynomial.
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But (4.2.2) can be rewritten in terms of generating series as follows:

c - F(x) = (ex - l)Δx(x). (4.2.4)

The theorem follows. D

From the proof of the theorem we obtain the following.

Corollary. Let L(X) be a quasifinite irreducible highest weight module over ^, and
let b(w) be its characteristic polynomial. By Theorem 42, F(x) = (1 — ex)Δx(x) -f- c
is a quasipolynomial. Let F(7V) + /7V_1F

(7V~1) + + /0 = 0 be the minimal
order linear differential equation "with constant coefficients satisfied by F(x). Then

4.3. In this section we show that any quasifinite J?-module V may be extended "by

continuity" at lest to all the ̂ ^ for k ̂  0.
We shall need the following fact.

Lemma. The map φ : & —> @ given by

( 00 \ 00
v—r „ „ \ v—>
Σ/^n =Σ
n=0 / n=0

is continuous.

Proof. Given f=Σ fnz
n e &, where fn = \fn\eiθn and θn G R e C, we let

n=0

n=Q n=0

Let BR — {z e C| \z\ < R} denote the disk of radius R and let CR be its
boundary. Note that f°(z) is holomorphic in each Bl_ε for 0 < ε < 1 and that

_ε \f°(z)\ < -.

We need to estimate |/*(z)| on each disk BR. Take R\ > R and note that for \w\ <
we have:

From (4.3.1) we see that

max |/*(w)| < max \f(z)\ - max
B

\z\=Rλ

\z

(4.3.1)

<- ^77^max|/(z)|. D
R{

Proposition. L^ί V be α quasifinite & -module. Then the action of&onV naturally

extends to the action of ̂  on V for any k Φ 0.

Proof. Let V = Q)Vp be the Z-gradation of V, dim Vp < oo for all p. Consider the
space P

p,q



Quasifinite Highest Weight Modules 447

with the topology of direct sum of finite dimensional spaces Rom(Vp, Vq). We can
assume that the Vp are normed spaces, and spaces Hom(Vp, Vq) have induced norms

I I ' \\p,q' ^

We will show that map &k —> Hom(V, V) fork^O is continuous. To do this we
have to estimate the norm of the operator zkDn in the space Hom(V^, Vp+k) for fixed
k and p and for arbitrary n. We have:

zkDn = __^(ad£)2 _ k2y k ^ (4.3.2)

(2/c)-V

The operator B = aάD2 - k2 : Hom(V^,l^+fc) -» Hom(T^,^+fc) acts between
finite-dimensional normed spaces, hence we obtain from (4.3.2):

\\zkDn\\pp+k < A - αn, where ^=(1^(1, α=\\B/2k\\. (4.3.3)

It follows that

V^ f ^k τ^n
/_-/
n>0

fnz
kD - / . Jn

I f
\Jnkfc/Φ)ll,

n>0

Thus, by Lemma 4.3, the map J^ — > Hom(T/", F) is continuous for fc 7^ 0. Hence this

map may be extended to the completion: ̂  -+ Hom(y, V) (the completion of C[w]
in topology of uniform convergence on compact sets is &). D

4.4. We return now to the Z-graded complex Lie algebra 0[m] := ^/(oo)[m] =

<7/(oo, βm) -f -Rm introduced in Sect. 3.3. Recall that it is a central extension of

the Lie algebra gl(oo, Rm) over C by the m + 1-dimensional space

[)An element λ G (g[)m])* is usually given by its labels

and central charges

Let
fc e Z, j = 0, . . . , m . (4.4.1)

As usual, we have the irreducible highest weight g[m]-module L(g[m],λ) associated
to λ. The proof of the following proposition is standard:

Proposition. The Q[m]-module L(g[m],λ) is quasifinite if and only if for each j =

0,1, . . . , m all but finitely many of the hk are zero.

—>^ N

4.5. Given m = (m1} . . . , mN) G Z^, we let g [ m ] = #/(oo)[ra] = 0g[mJ. By
ι=l

Proposition 3.3, we have a surjective homomorphism of Lie algebras over C:
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Choose a quasifinite X(i) G (0omi3) and let L(g[rnί\ X(i)) be the corresponding

irreducible 0[m*]-module. Then

l=\

is an irreducible $m ]-module. Using the homomorphism (4.5.1), we make L($ m \ λ)

a J^-module, which we shall denote by Llm](λ).
We can prove now the following important Theorem.

Theorem. Consider the embedding < l̂m ] : iff —> gl(oo)[m] (recall that sf — Sj £ Z if

i φ j) and let V be a quasifinite gl(oo)[m]-module. Then any ̂ -submodule ofV is a

gl(oo)[m]-submodule as well. In particular, the ^-modules I/Lm ](λ) are irreducible.

Proof. Let U be a (Z-graded) J^- submodule of V. U is a quasifinite &-module

as well, hence, by Proposition 4.3, it can be extended to ^^ for any k Φ 0. But

by Proposition 3.2, the map <^m] : ̂  —> gl(oo)[m]k is surjective for any k ̂  0.

Thus £/ is invariant with respect to all members of the principal gradation gl(oo)[m]k

with k 7^ 0. Since ^/(oo)[?τι] coincides with its derived algebra, this proves the
theorem. D

4.8. By Proposition 4.4 and Theorem 4.5, the ^-modules I/Lm](λ) are irreducible
quasifinite highest weight modules. Using formulas (3.2.1) and (3.3.4), it is easy to
calculate the generating series Λ__^ _ -.(x) = Σ Δnx

n/nl of the highest weight and
m's'λ n>0

the central charge c of the ^-module LLm](λ). We have

_ xyVj'O^6 + ^—j (4 6 ι;)

j=ozez

c = c0 (4.6.2)

and

Introduce the polynomials (see (4.4.1)):

m

gk(x) = Y^ h(^xj/jl (k G Z). (4.6.4)

Then (4.6.1) can be rewritten as follows:

A^Ato - ̂  e..! (4 6 5)
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Using these formulas, it is not difficult to see that any irreducible quasifinite highest

weight module L(^, λ) can be obtained in as above an essentially unique way. More
precisely, we have the following.

Theorem. Let L — L(& , λ) be an irreducible quasifinite highest weight module with
central charge c and Ax(x) = φ(x)/(ex — 1), where φ(x) is a quasipolynomial such
that 0(0) — 0 (see Theorem 42). We write φ(x) + c = Σ Ps(x)esx , where ps(x)

sec
are polynomials. We decompose the set {s <G C\ps(x) ^ 0} in a disjoint union of
congruence classes modZ. Let S = {s,s + klr s -f /c2, . . .} be such a congruence

class, let m = maxdego- and let hψ = f — - ) p _ , k (0). We associate to S the
ses s kr \dxj ^s+kr^

gl(oo)[m]-module L^m\Xs) with the central charges

> , (4.6.6)

and labels _
\«> = £ <> , (4.6.7)

kr>l

where hf! = hf! — Cjδk^. Then the ̂  -module L is isomorphic to the tensor product

of all the modules L[™\\s).

Proof. The tensor product L1 of all the modules L^m](λ5) is irreducible due to
Theorem 4.5. It remains to show that L' has the same highest weight as L does.
This is done by exploiting the observation (used already before) that —A(x) is the
value of the highest weight of L' on exD, and using the formulas (4.6.2-5). D

Remark. Changing the representative s in 5 amounts to the shift vi of gl(oo)[m].

Up to these shifts the above construction of L via the embedding & — > gl(oo)[m] is
unique.

5. Unitary Quasifinite Highest Weight Modules over ̂

5.1. It is easy to see that any anti-involution ω of the associative algebra ^α, such
that ω(^a) = §S^3 and ω(D) — D, by a rescaling of z can be brought to the following
form:

ω(zkf(D)) = J(D)z~k = z-kf(D - k) , (5.1.1)

where for /(£>) = Σ /,£>* we let J(D) = Σ /^X/j e C). The involution ω given
i i

by (5.1.1) extends to the whole algebra @}aθ .
Note that

Φ(ω(A),ω(B)) = Ψ(B,A), A,B e ̂  . (5.1.2)

Hence the anti-involution ω of the Lie algebras & and ̂ ό lifts to an anti-involution

of their central extensions J? and <2$a , such that ω(C) = C, which we again denote
by ω.

Remark, (a) The Virasoro subalgebra Vir(/3) [defined by (2.1.7)] is ω-stable if and

\only if β - \
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(b) Under the homomorphism φs = φs 0 : &a^ —> M(oo, C) we have

(φa(zkf(D))}* = φ-s(ω(zif(D))} .

Here A* stands for the complex conjugate transpose of the matrix A G M(oo, C).

(c) (see e.g. [K]) For the involution ω of g/(oo, C) defined by ω(A) = tA, ω(l) = 1, a

highest weight #/(oo, C)-module with highest weight λ and central charge c is unitary

if and only if the numbers hf) (see (4.4.1)) are non-negative integers and c = Σ hf\
i

5.2. In this section we shall classify all unitary (irreducible) quasifinite highest weight

modules over the Lie algebra ̂  with respect to the anti-involution ω.

Lemma. Let V be α unitary quasifinite highest weight module over & and let b(w)
be its characteristic polynomial. Then b(w) has only simple real roots.

Proof. Let υχ be a highest weight vector of V and let Λ = -X(Dj) G R be the

labels of λ. Consider the element 5 = -\(D2 - Δ2 - 1) G .̂ It is easy to check
that for any j G Z+ we have:

Sj(z~lvx) = (z~lDj)υx . (5.2.1)

By definition of the characteristic polynomial we have:

(z-lb(D))vx=0, (5.2.2)

{(z~lD3)vx\0 <j<n} is a basis of V_γ, (5.2.3)

where n = degb(w). It follows from (5.2.1) and (5.2.2) that

6(S)(^-X) = 0, (5.2.4)

and it follows from (5.2.3) that

{Sj(z~lvx)\Q <j<n} is a basis of V_λ. (5.2.5)

We conclude from (5.2.4) and (5.2.5) that b(w) is the characteristic polynomial of the
operator S on V_l. Operator S is selfadjoint, hence roots of b(w) are real.
Let μ be a root of b(w) of multiplicity m, so that b(w) = c(w)(w — μ)m, c(w) G C[w].
Then

υ:=(S-μ)m-lc(S)(z-lυ)

is a non-zero vector in V_ l 5 but

h(υ, v) = h(c(S)(z~lv), (S - μ)2rn-2c(S)(z-lv)) = 0 if m > 2,

by (5.2.4). Hence the unitarity forces m = 1. D
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Theorem, (a) A quasifinite irreducible highest weight module L(^,λ) is unitary if
and only if

(5.2.6)

for some positive integers ni and real numbers si , such that

(b) Any unitary quasifinite J? -module is obtained by taking tensor product ofN unitary

irreducible quasifinite highest weight modules over #/(oc, C) and restricting to i$ via
an embedding φ^\ where s = (sl,...,sN)isa real vector and sί — s^ qLTLif i ^ j.

Proof. By Proposition 4.6, being a quasifinite irreducible highest weight ^-module,

V is isomorphic to one of the modules I/ίm^(λ). It follows from Lemma 5.2 and

Corollary 4.6 that m = 0. Now the claim (b) follows from Remarks 5.1(b) and (c).
The claim (a) follows from (b) and (4.6.1 and 2). D

Corollary. Suppose that only finitely many labels Δn of X are non-zero. Then the &-
module L(X) is unitary if and only if

c = ΔQ e Z+ and Δj = 0 for j > 0 . (5.2.8)

Proof. By the hypothesis, Δx(x) is a polynomial of degree TV, where TV =
max{n\Δn ^ 0}. By Corollary 4.2, it follows that the characteristic polynomial
of L(λ) is wN+l. Hence, by Lemma 5.2, N = 0, i.e., Δj = 0 for j > 0. The rest of
(5.2.8) follows from Theorem 5.2. D

Remark. The ^-modules of Corollary 5.2 are obtained by taking the embedding

ffi : & — » #/(oo, C) and composing it with the irreducible highest weight #/(oo, C)-
module with a non-negative integral central charge and zero labels.

Example. Consider the following parabolic subalgebra of the Lie algebra Q =

#/(oc,C):

P = ίKAjec + CC %• = 0 if x > 0 > j}

and let F0 = E10. Given c G C, denote by Mc the generalized Verma module
M(g,p,λ0), where λ0 is the highest weight such that X^E^) = 0 for all j and
λ0(C) = c. Then we have

L(0, λ0) = Mc/^(0)(F0

c+Xo) if c G Z+ .

Consider the homomorphism φQ : J? —> g given by:

" 7 _w,^ 0(C f)=l

When restricted to J^, the module L(g, λ0) remains an irreducible quasifinite highest
weight module with zero labels and central charge c. The singular vector F^+lvx
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of the g-module Mc remains singular for the ^-module Mc. It is a multiple of the
following vector:

/ \ c+l

)2-52)] υx .' I λo

6. Quasifinite Highest Weight Modules
over Quantum Pseudo-Differential Operators

6.1. The g-analogue of the algebra &a is the algebra ^α of all regular difference

operators on Cx (see Sect. 1.4). However, a more important algebra is the algebra of
quantum pseudo-differential operators ^q

a (which contains J °̂ as a subalgebra). This
associative algebra is obtained by the construction explained in Sect. 1.1 by taking
the algebra A = C[w,w~l] and its automorphism σ defined by σ(w) = qw, where

Explicitly, let Tq denote the following operator on C[z,z~l], where q 6 C x:

T q f ( z ) = f ( q z ) .

Then S^a is the associative algebra of all operators on C[z, z~l] of the form

E = ek(z)T where ek(z) 6 C[z,z~l] and sum is finite.

As before, we write such an operator as a linear combination of operators of the form

Φzkf(T), where / is a Laurent polynomial in T . Then the product is given by

(zmf(Tq))(zkg(Tq)} = zm+kf(qkTq)g(Tq). (6.1.1)

Let ̂  denote the Lie algebra obtained from °̂ by taking the usual bracket. Let
3% = [^,S^]. We have:

5^ = ̂  0 CTq (direct sum of ideals).

Thus, representation theory ofS^ reduces to that of 5^'.

Taking the trace form tr0 (Σcjw^ ~ cθ' we °btain by the general construction of

Sect. 1.3 the following 2-cocycle on 3^\

V(zmf(Tq), zkg(Tq)) = mδ^_k tr0 f(q~rnw)q(w). (6.1.2)

The associated central extension of 5^ is denoted by ̂ q = ̂  + CC. As we have
mentioned in Remark 1.6(b), this is a well-known Lie algebra studied by many authors.

We will show that the representation theory of the Lie algebra ̂  with \q\ ̂  I is quite

similar to that of &. Details of most of the proofs will be omitted, being similar as
well.
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6.2. Let & denote (in this section) the algebra of all holomorphic functions in
Cx = C \ {0}. We define a completion 5^^' of the algebra S^q

a by considering

operators of the form zkf(Tq), where / e 0. We extend the product (6.1.1) to 5%a&

and denote by J^α^the corresponding Lie algebra. The cocycle (6.1.2) extends

and we let 5^ = 3^' + CC be the corresponding central extension.

Consider the associative algebra Rm = C[t]/(tm+l) and let s € C. Then we have the
following embedding φs t : S^a — >• M(oo, Λm) of Z-graded associative algebras over
C (cf. [GL]):

φ[

s

m](zkf(Tq)) = f(sq-^)E3_^ . (6.2.1)

It extends to a homomorphism φ^ : 3^^ —> M(oo, /£).

Lemma. 77z£ homomorphism φ^ is surjective provided that \q\ ̂  1.

Let <ps - φ[°] : ̂  -> M; (oo, C). We have (cf. Sect. 3.4):

Ψqβ(*kf(Tq» = vψs(zkf(Tq» (6-2.2)

We define a quantum monodromic loop to be a holomorphic map / : Cx —> M(oo, C)

such that /(guO = vf(w). Denote by J^}Z/M(oo) the associative algebra of all
quantum monodromic loops. Then we have an isomorphism

φ : ̂  ̂  ^,,M(oc) (6.2.3)

defined by the same formula as (3.4.2). Note that the quantum monodromic loops are
sections of the vector bundle on the tours Cx /{qn n £ Z} (with modular parameter

(log q)/(2πi)) with fiber M(oo, C) and transition function z/ in a small neighbourhood
of the circle w\ = \q\.

Denote by ^q^gl(oo) the Lie algebra obtained from =5^M(oo) by taking the usual
bracket. Considering the Laurent expansion at 0:

we obtain C-valued 2-cocycles Cn on this Lie algebra. Denote by <5?q^gl(oo)Λ the

corresponding to CQ central extension. Then the isomorphism φ : 5^ ^ 5§q ^gl(oc)

lifts to the isomorphism φ : ,^ ^ ̂ q

6.3. Let p = φ p^ be a parabolic subalgebra of the Lie algebra 5*q (i.e., p^ =

for j > 0 and (^)3 ^ 0 for some j < 0). Then for each positive integer k we have

p_ f c = z~kl_k, where I_k is a non-zero ideal of C[w, w~1]. Let bk(w) be the monic
polynomial with 6fc(0) ^ 0 which is a generator of the ideal I_k. The polynomials
6fc, fc = 1,2, . . . are called the characteristic polynomials of p.
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Given a monic polynomial b(w) with 6(0) φ 0, we let

b™ n(w) = b(w)b(q~lw) - - b(q~k+lw),

There exist unique parabolic subalgebras of .9%, which we denote by pmin(&) and

pmax(6), for which the characteristic polynomials are {b™m(w}} and {b™ax(w)}
respectively. We have

dim(Sq)_k/pmin(b)_k = kdegb(w),

and an analogue of Proposition 2.4 holds verbatim.
Also, we have for a parabolic subalgebra p with the first characteristic polynomial
b(w):

where

- b(qTq)g(gTq) + (tr0 b(w)g(w))C \ g(w) e C[w, w~1]} .

6.4. All the results of Sect. 4.1 hold for the Lie algebra 5*q verbatim. However, the
generating series Δχ(x) is defined differently.

We shall characterize λ G (̂ )Q by labels Δn = λ(Tg

n) (n φ 0) and central charge
c = λ(C). Introduce the generating series

Theorem, (a) An irreducible highest weight module L(Sq, λ) is quαsifinite if and only
if one of the following equivalent conditions holds:

(i) There exists a non-zero polynomial b(x) such that

b(x)(Δx(x) - Δx(q~lx) + c) = 0. (6.4.1)

(ii) There exists a quasipolynomial P(x) such that

(1 - qn)Δn = P(n) for n φ 0 and c = P(0) .

(b) The monic polynomial of minimal degree satisfying (6.4.1) is the characteristic

polynomial of a quasifinite module L(^ λ).

Proof. According to Sect. 6.3, £(̂ , λ) is quasifinite if and only if there exists a
non-zero polynomial b(w) such that

X(g(Tq)b(Tq) - g(qTq)b(qTq)) + ctr0(g(w)b(w)) = 0



Quasifinite Highest Weight Modules 455

for each g(w) £ C[w, w~1]. Taking g(w) — wn, and letting b(w) = Σ fjw^ this can

3

be rewritten as follows:

]Γ fjΔn+j(l - qn+j) + f_nc = 0 for all n G Z .
3

Multiplying both sides of this equality by x~n and summing over n <E Z, we obtain
(6.4.1).
The equivalence of (i) and (ii), as well as (b) are clear. D

6.5. Choose a branch of logq. Let r = (log q)/(2πi). Then any s £ C is uniquely

written as s = qa, a G C/r^Z. The homomorphism φ^ : 5^q — > gl(oo)[m] defined

by (6.2.1) lifts to a homomorphism J^ — > gl(oo)[m] of central extensions, denoted

by $™\ by

0) ,rr

j=0

We have results similar to Theorems 4.5, 4.6, and 5.2:

Theorem. Assume that \q\ ̂  I. Consider the embedding φ^171^ : 5*q —> gl(oo)[m],

where ai — a ^ Z + τ-1Z ifi φ j. Denote the quasifinite gl(oo)[m]-module L[ m ](λ),

viewed as a .^-module via this embedding, by I/Lm ](λ).

(a) If V is a quasifinite gl(oo)[nϊ]-module , then any submodule of the module V ,

m ]

1

viewed as a 5^-module via the embedding v?ίm], is a gl(oo)[m] submodule as well.

In particular, the 5^-modules L^1 (λ) are irreducible.

(b) Any irreducible quasifinite highest weight module over J^ is isomorphic to one of

the modules L[J^](\).

(c) Let q G M, and let ω be the anti-involution of^q defined by

Then a quasifinite highest weight module over j/^ is unitary with respect to ω if and
only if

^ nΊq
aJn

Δn — y ^ — - — (finite sum) for all n ̂  0 ,

3

where the n^ are positive integers and the a are real numbers. (In particular , unitarity

implies that c=Σnj ^ ^+J Any unitary quasifinite ^-module is obtained by taking
3

the tensor product of N unitary irreducible quasifinite highest weight modules over

gl(oo, C) and restricting to & via an embedding φ^\ a G R^.
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Remarks, (a) The labels and the central charge of the ^-module L^\X) are given
by the following formulas (see (4.6.4)):

-<ln), n ̂  0; c = c0.

(b) A vertex operator construction of unitary quasifinite highest weight modules over

yq with c = 1 is given in [GL].

7. Matrix Case

Let us consider the Lie algebras Mn<2$ = Matn(^) and Mn,9^. They are twisted
Laurent polynomial algebras with A = Matn[w], σ(w) = w + 1 and A =
Matn[w,w~l], σ(w) — qw respectively.

The canonical central extension MnJ^ is defined via (1.3.1) with respect to the trace

functional tr0 : Matn[w,w~l] —> C defined by

*o

Restriction of tr0 to Matn[w] gives rise to the canonical central extension Mn&
Λ.

The isomorphism Cn[z,z~l] ^ C[z,z~l] defined by

e^ -^ z>n+l

defines the isomorphism Matn(M(oo))^M(oo). Combined with isomoφhism

>^gl(oo)Λ and 5?®^>S% ^gl(oo)^ it gives Lie algebra isomoφhisms:

The representation theory of the Lie algebras Mn^
Λ and Mn5^Λ is similar to that

of ̂  and ̂ . All irreducible quasifinite highest weight modules over MnJ^Λ and

Mn^
Λ are constructed by embedding in gl(oo)[m] and restricting an irreducible

quasifinite highest weight module over the latter.
An anti-involution of an algebra B combined with the matrix transposition defines
an anti-involution of Matn(B). All quasifinite unitary highest weight modules over

Mn^
Λ and MnJ^Λ are modules over g£(oo)[0]Λ. In particular, unitary modules over

Mn^
Λ and MnS^Λ have positive integer central charge.
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