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Abstract. We present a rigorous renormalization group construction of the two-
dimensional massless and massive quantum sine-Gordon models in finite volume
for the range 0 < β < 8π. We prove analyticity in the coupling constant ζ, which
implies the convergence of perturbation theory. The field correlation functions and
their generating functional are analyzed and shown to have the short distance
asymptotics of the free field theory. In the massive case the bounds are uniform in
volume and we also obtain uniform estimates on the long distance decay of
correlations.

1. Introduction

The Euclidean sine-Gordon field theory with mass m ̂  0 has an action of the
general form

and is defined by the measure

(1)

It is of interest as a quantum field theory with a non-polynomial interaction. Then
β is the field strength and z is the coupling constant. Moreover it is equivalent via
the exact sine-Gordon transformation to the classical statistical mechanics of a gas
at temperature β"1 and activity z/2 [Si, Ka, Mi]. The two-body potential is
a Coulomb potential for m = 0 or a Yukawa potential for m > 0.

In two dimensions the model is especially interesting. As β goes through the
values 0 < β < 4π, 4π ̂  β < 8π, β = 8π and 8π < j8, the ultraviolet perturbation
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theory is finite (if Wick ordered), superrenormalizable, strictly renormalizable, and
finally nonrenormalizable. Thus β plays a role like that of the dimension d in
φj models. It is known that for β < 4π the massive model is equivalent to the
massive Thirring-Schwinger model and so exhibits a boson-fermion equivalence
[Co, FSe]. It is conjectured that its scattering amplitudes are exactly soluble and
given by the closed form expressions which were derived by [Za] in the context of
integrable field theories, [STF] in the context of quantum inverse scattering, and
by [Ji, RS] in the context of quantum groups.

We are concerned here with the basic construction of the model for any β < 8π.
For a full treatment this means we should introduce short distance (UV) and long
distance (IR) cutoffs and attempt to find a limit as they are removed. In the main
portion of the present paper we will consider the UV problem for the massless
theory in a fixed unit volume. In Sect. 9, we extend our method to the massive
model, and prove bounds on the theory which are uniform in the volume.

The original results for the (sine-Gordon)2 model were proved only for β < 4π
and z small. In this regime the theory is finite, and no renormalization is needed.
The earliest constructive treatment of the massive model was given in [Fr] and the
most extensive results are in [FSe]. These include the complete construction of the
model (both the UV and IR limits), a proof of existence of single particle states, and
the construction of the scattering operator.

In a sequence of more recent papers on the massive model, UV-uniform bounds
have been obtained on a renormalized partition function for β = α2 < 8π [BGN,
NRS]. These authors were concerned with the nature of a sequence of thresholds of
renormalizability which occur at the values β = βn = 8π (1 — l/2n), n = 1, 2,3,... .
For a general discussion of their methods, which are quite different from ours, see
[Gal].

Let us begin with a heuristic discussion of the renormalization group method
(RG) for both the ultraviolet and infrared problems. It is based on studying
iterations of a RG transformation, which is a map from a measure (1) to a measure
exp( — <$/'(φ))dφ obtained by integrating out some short distance modes leaving
an effective measure for the larger length scales. The new measure has roughly the
same form, but with new parameters (/?', z'). The procedure is iterated and gives
a flow of the parameters (β, z). The conventional wisdom (e.g. [Zi]) is that the flow
diagram for the sine-Gordon/Coulomb-gas model for z small is as shown in Fig. 1.

For β > 8π and z = 0 there is a line of attracting fixed points. The flow dia-
gram in this neighbourhood was rigorously estabilished in [DH1]. (This is the

8π

Fig. 1.
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Kosterlitz-Thouless phase [KT]; for further results in this phase see [FSp, MKP].)
These fixed points govern the long distance (IR) behaviour of the theory; on the
other hand, the short distance (UV) behaviour is not illuminated by this flow.

Near the fixed point at β = 8π, z = 0 where the perturbation theory is strictly
renormalizable, one expects the more complicated flow indicated in Fig. 1. We
believe this flow can be established in a neighbourhood of β = 8π, z = 0 by the
methods of [DHl] and the present paper. For a perturbation theory treatment of
the UV problem see [NP].

For β < 8π and z = 0 one has a line of repelling fixed points. In this paper we
study the flow in a neighbourhood of this line, and we shall see these fixed points
govern the UV behaviour of the theory in this region. It turns out for β < 8π that
we do not need to track changes in β, so we really study the projection of the flow
onto the z-axis.

Let us first define the massless model more precisely. For any integer i let
A(ϊ) = (R/Z/Z)2 be the 2-tours with volume \A(ί)\ = L2ί, where L ^ 2 is an integer
scale factor we will fix later. For any N ^ i, let vitN be the inverse Laplace operator
on Λ(i), defined to be zero on constant functions, and with an ultraviolet cutoff at
momentum scale LN. The kernel of the operator is

where Λ(ί)* = (2πZΓ'Z)2 and where

VN(p) = P~2e~L P (1 "~ δp,o)

Let dμβυ.N be the Gaussian measure with this covariance. This measure can be
realized on the restricted Sobolev space

Λ(i)

of functions whose derivatives up to order s ^ 3 are in L2(Λ(Ϊ)\ The massless
model on the unit torus with UV cutoff LN is defined by the measure on ,

dvN(φ) = exp(zN J cos φ(x)dx)dμβυoN(φ) . (2)

The partition function is

The functional of the external field p = p(x\

generates the field correlation functions

9 (p,φ)= f pφ
Λ(0)

The massive model, which we discuss in detail in Sect. 9, is defined in a similar
way. We consider the theory with mass m > 0 on a finite torus Λ(M) of side LM

for any M ^ 0 (anticipating bounds which are uniform in M). For any integer
N ^ 0, let

p e Λ(M}*
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where

ΰN(p) = (p2 + m2Γie-L-4Np\

Then the model is defined by the measure

d$M(Φ) = exp(zN j" cos φ(x)dx)dμβVMN(φ) . (3)

This is a measure on the ordinary Sobolev space J4f(Λ(M)) without the restriction
J0 = 0.

Let us return to the massless model on Λ(0). It is convenient to scale the theory
up to a volume Λ(N) while taking the momentum cutoff down to L° = 1. This
gives an equivalent measure on jjf(Λ(N))9

dvN(φ) = exp^ J cos φ(x) dx)dμβVNQ(φ) ,

where ζN = zNL~2N. We have ZN = J dvN(φ) and

<φ(xj . . . φ(xn)yN = (Z*)-1 j Φ(L»xj . . . φ(LNxn)dvN(φ) .

We want to choose ZN or ζN so that SN and <0(xι) . . . </>(xn)>N have non-trivial
limits as N -» oo , i.e. we study the scaling limit.

It is here that the renormalization group enters. As we explain in detail in
Sects. 2, 3 each RG transformation replaces a measure on Λ(ί) by an effective
measure on Λ(i — 1). Starting on Λ(N) and applying the transformation N — i
times yields an effective measure dvf on j^(Λ(ι)) which turns out to have the form
(for ζN small)

dv?(φ) = const x [exp(C, J cos φ(x)dx) + 0(f ?)] dμβϋίo(φ) ,

where

This is a reflection of the fact that cos φ is the dominant relevant variable (besides
constants). Now ζt is potentially JV-dependent, but if we take

for some C0 (i e. ZN = LβN/4nζ0) we find

which is independent of N and small for all i (if /? < 8π and Co is small). This is the
key to obtaining bounds uniform in N and the N -> oo limit.

This precise choice we make is ζN = L~2N eβVNθ(0}/2ζ for some ζ in which case
ζi = L~2ίeβVί0/2ζ, see Sect. 3. Since t?ί0(0) - ΠogL/2π this is consistent with the
above discussion. Then ZN = eβVNθ(Q)/2ζ and so on /1(0),

ZN J cos φ(x)dx = ζe^o(θ)/2 J cos φ(x)dx

Thus renormalization is just Wick ordering, and ζ is the coupling constant for the
Wick interaction.

Our main results are the following. For the massless model with 0 < β < 8π, the
effective measures dv f, and the generating functional SN(p) for p small have limits
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as N -> oo, except that for 4π ̂  β < 8π there is an overall divergent constant in
rfvf. The partition function ZN has a limit for 0 ^ β < 4π. These results imply that
for all 0 < β < 8π the correlation functions <<£(xι). . . φ(xn)yN have (distributional)
limits as N -* oo. For the limits we have a short distance regularity result: for
n > 2, the truncated correlations <</>(xι) . . . φ(xn)yτ are bounded functions of (xj,
while for n = 2 they have the logarithmic singularity of the free theory (ζ = 0).
Finally all the above are analytic functions of ζ in a neighbourhood of the origin,
and so perturbation theory is convergent. These results are new for 4π ̂  β < 8π.

For the massive model on the torus Λ(M\ all of the above short distance
results hold. Moreover, we can prove long-distance decay of field correlations for
any power law (presumably the decay rate is exponential), uniformly in the volume
|Λ(M)|. We have not yet addressed the proof of the infinite volume limit.

Our renormalization group method is of course influenced by other authors.
The general philosophy is due to Wilson [Wi]. Early rigorous work can be
found in [BCGNOPS, Ba, GK1, GK2]. For reviews see [GK3, Gal]. Our
treatment of the UV problem is particularly influenced by [GK4] who treat
a hierarchial φ* model. Lesniewski [Le] treats (Yukawa)2 by similar methods.
Finally, the technical details of our method originate in a paper of Brydges and Yau
[BY] on the dipole gas.

A final remark: there is the question of the long distance behaviour of the m = 0
theory for β < 8π. Does the infinite volume limit exist? Do these theories generate
a mass dynamically? Formally we have z cos(β1/2φ) = z — l/2(βz)φ2 -f l/4\β2zφ4

+ . . . which suggests a mass (βz)1/2 for β sufficiently small. For β <^ 1, z <^ 1 this
phenomenon, known as Debye screening, has been rigorously established by
Brydges and Federbush [BF] and Yang [Ya]. It remains to be proven for all
β < 8π, z « 1.

2. Renormalization Group Transformations

We now describe the Brydges-Yau formulation of the RG transformation. Until
we reach Sect. 9 we consider only the massless sine-Gordon model. The RG
transformation ^ is a map which takes a measure of the form Zi(φ)dμβVίθ(φ)
on Jf?(Λ(i)) with Zt(φ) ~ 1 and yields a measure Z;_ ̂ dμ^ 0(φ) on tf(Λ(i - 1))
still with Zf-i ~ 1.

A key assumption is that the perturbation Zf(φ) has an expression as a polymer
gas. That is, it can be expressed as

Zt(Φ)= Σ l\Kt(Xj9φ). (4)
{Xj} J

The sum is over sets of disjoint polymers, where a polymer X is a union of closed
unit squares A with centres on Z2 n Λ(i). The polymer activity Kt(X, φ) is local in
that it depends on φ only on the set X, Kt(X, φ) = Kt(X, φ'\ if φ = φf on X. The
transformation J?, a priori a map of measures, becomes a map of polymer activities
Ki-^Ki-t.

Following [BY], Sect. 1, we use the "circle product" for polymer activities:

(κ°κ')(x)= Σ
7nZ = 0
7uZ = X
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which gives us a "circle exponential" representation for the polymer expansion (4):

X <= A(i)

= <fxp(Π + KtφMΛ®, φ) . (5)

The reader who prefers can replace circle exponentials by (4) throughout the paper.
The RG transformation $ consists of three parts:

• a fluctuation integral in which modes with wavelength < L are integrated
out,

• an extraction step in which a vacuum energy part is factored out, and
• a reblocking/rescaling step in which the theory is scaled down by a factor L.

To define the fluctuation step, we write the covariance vitQ as the sum of
a background covariance v* = vi>-1 and a fluctuation covariance Q = viι0 — v#

whose Fourier transform is given by

Ci(p) = p-2[e-p4-eLV][l-^,o]. (6)

Then Ci(x,y) decays exponentially on the scale \x — y\ ~ Φ(L\ Expressing
t;ί>0 as a sum leads to a factorization of the Gaussian measure dμβv.o. We write

Kt)(φ)

ίD + Kt)(φ + ιy)l (7)

and define K# = ̂ K{ so the bracketed expression is Exp(Π + K#). That is

As shown in [BY], Sect. 8, K* can be found by solving an integral equation:
K# = K(ί)9 where K(t) satisfies

j βci(x, y ) χ d y ( 8 )

Next we extract a constant Et(X) = E(Ki(X)) from K#, and an overall factor
from the measure. This vacuum energy renormalization removes the part of K#

which grows most under iteration of ̂  (i.e. the most relevant piece). For other
models additional extractions may be necessary: for example, quadratic extractions
were required in [BY, DH1, DH2, DH3]. We specify Ei(X) later: we always take
E{(X ) = 0 unless X is a "small" set. A set X is called small (X e £f ) if X is connected
and \X\ = (the number of unit squares in X) satisfies | X\ rg 4. The factor extracted
from the measure is exp(^xEi(X)) = exp(E£|yl(0|), where

is independent of the unit square Δ.
We define X* = E(K#) so that

<ίxp(Π + K#) = e£^(ίVxp(Π + K*) . (10)
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Our definition of δ adapts the arguments of [BY, Sect. 2] and [DH3, Sect. 5].
With E(X) = Ei(X\ let R(X) = eE(X} - 1 ( = 0, if X φ 9>\ and define J(X) by

J(X) = K#(X)- Σ Y\R(Xi). (11)

The sum above is defined to be empty if X is not connected, and to be over all
collections {Xt} of distinct polymers with (J^/ = X if X is connected. Then one
can prove that $K* defined by

satisfies (10). The sum above is over collections {Xt}, {Yj} such that
(\JXί) u ((J Yj) = X, the {Xι} are disjoint, the { Y j } are distinct elements of£f, each
YJ intersects some Xi9 and the overlap graph for {Xt}9 {Yj} is connected. (The
overlap graph on a collection of polymers {Zk} is all pairs (fe, k') such that
Zk n Zk, φ 0.)

Finally, we reblock the 1-polymers K* into L-polymers, and scale the theory
down by L to a theory in terms of 1-polymers again. We have

K*(φ)) = <fxp(D

where φL(x) = φ(Lx) and

Φ) (13)
{AΓjH+LX ί

The sum in (13) is over collections of disjoint polymers {Xt} such that (JtXi = LX
and the overlap graph on {Xt} is connected. (Xt denotes the smallest L-polymer
containing Xt.) In addition, υ# = vit-i scales to Vi-ίίQ.

Putting it all together, with Ki-\ = £fK*, we have

Kt)(φ) = <?*ΛW \dμβVi_ίϋ(φ)^p(Π + Xi-ι)(ψ) (14)

Thus Ki-1 = &Kt = ^S'^Ki, and the change in the measure is completely con-
tained in the action ^ on the polymer activities K.

Now we specialize to the sine-Gordon model. We begin on Λ(N) with

ζN J cosφ(x)dx .
Λ(N) J

This has a polymer expansion ZN = <fxp(Π + KN), where

Π^^(exP[^ί^cos(/>] - 1) if X is connected
Λ , .
0 otherwise

Note an essential characteristic of the model: KN is periodic in φ with period 2π.
Applying the RG transformation gives a sequence of polymer activities Kf on

Jf (Λ(0) defined by Kf_ t = #Kf . Thus Kf = &N-1KN. For the extraction we take

,
£f (JT) - E(K? (X)) = \ J " π . (16)

, v v l l ;; (0 if J f^^

One can easily check that the periodicity of K is preserved by .̂
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Going all the way down to Λ(0) (a single unit square) by iterating (14), we have
for the partition function:

Z» = $ dμ^ίxpiΠ + K«)

= Π eE' MOIJ dμβva^xp(0 + KN

0) , (17)
i = l

whereof = ^XsA\X\~^E?(X).

3. Leading Behaviour of RG

Before entering into details, let us outline the analysis of the RG transformations
&(K) on the polymer activities K. The acivities K = Kt(X9 φ) are taken to be in
a Banach space jΓf of functionals on polymers in Λ(ί) and functions in 3tf(Λ(ϊ)) (we
define Jfi in the next section). Then ̂  maps elements of J^ to Jf f_ x. In this setting
the discussion falls into two parts: (i) an analysis of the linearization
^ ΞΞ [d$/dK~\ \κ=o around the fixed point K = 0, and (ii) control over the remain-
der 0 g. 2 = $ - ^i when K is small.

For the analysis of the linearization the issue is to find the eigenvectors of ̂ l

with eigenvalues larger than one. These correspond to the relevant variables under
iteration (not counting those that are taken out in the extraction step, i.e. the
constants).

The dominant term is the eigenvector of $± with the largest eigenvalue and is
given (in any Jf f) by

° i f W £ 2

The next proposition shows that this has the eigenvalue λt = L2e~βCi/2> where
Ci = Q(x, x). By an improvement of [DH1, lemma A. 3] we have

Thus λi is only weakly dependent on i and satisfies

λ f~L 2-" 4*.

In particular we have λi > 1 for β < 8π. (More generally if we replace §Δ cos φ by
\Δ cos nφ, n ̂  2 we get an eigenvector with eigenvalue L2 exp( — n2βcι/2) which is
greater than one for β < 8π/n2 : these terms play no special role in the present
problem.)

Lemma 3.1.

λiV. (18)

Proof. We have ̂  = ̂ i^i^i, where y± is the linearization of Sf at K = 0, etc.
The linearized fluctuation operator J^ K = μβc. * K can be evaluated explicitly by
using

>φ) = exp[ -
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With p a (5-function, p(x) = δ(x — x')9 we find

,φ) = -e-βCί/2$cosφ .

Also (^ V)(X ) = 0 if \X\ > 1 and thus Fis an eigenvector of ̂  with eigenvalue
exp( - βCi/2.)

The linearized extraction operator ^ leaves V unchanged, since V has no
vacuum energy part:

E(V(A)) = - (2π)~1 } cos ΦdΦ = 0 . (19)
— π

The linearized rescaling step ̂  applied to V gives

= — j cos φ(L~1x)dx
LA

and (̂  F)pί) = 0 if \X\ > 1. Thus Fis an eigenvector of ̂  with eigenvalue Zλ
Combining the above completes the proof. Π

For the remainder ^2( K) we start with a crude bound of the form
\\St(K)\\ ^θ(l}L2\\K\\ for || A: || sufficiently small. This leads to ||^^2(K)|| ^
(9(l)L2 \\K\\2, and it will follow that as long as || K \\ is small, the true flow will stay
close to the flow determined by ̂ .

Let us see how this works out for the specific activities Kf = $(N~ί}KN defined
in Sect. 2. The initial activity KN given by (15) is quite close to the eigenvector F of
!̂ : we have KN = ζN V + KN, where KN is second order in the small quantity ζN.

We will split each K f similarly into a piece proportional to F and a remainder by:

Since

we may take as the inductive definition of ζi9 Kf,

ζi-ι = Wι, (21)

XfL! = Λ! (£f) + Λ ^ 2& F + Xf) . (22)

Note that Kf-^is second order in ζ if K? is and so the term ζtV should be
dominant.

Now as explained in the introduction we renormalize by choosing

/ N

c*= EMί1
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for some ζ (the two expressions are equal since vN)0(LNx) = Xf=ιC/(Z/x)
+ ^0,0 W) Then we have

& = Γ π vΦ' ^c,
1 7 = 1 II 7=1

where each λ^1 < 1. For ζ small and non-zero, ζt is also small and non-zero
throughout the iteration.

4. Bounds on K and ^

In order to exhibit the renormalization cancellations which occur in the extraction
step, it is convenient to consider K as a functional of φ and dμφ rather than just φ.
Precisely, the activity K(X9 φ) will be replaced by a functional K(X9 ψ) of two
independent fields φ = (\l/09 ψltμ)9 μ= 1929 such that

K(X9 φφ) = K(X9 φ) ,

where ψφ = (φ,dμφ). We replace 31 acting on the K(X,φ)'s by a acting on
K(X9 ι/0's defined so that

(ΛK)(X9ψφ) = (aK)(X,φ). (23)

We define $ = &i&, where &,«,& each satisfy a condition like (23). For &,
δ9 we take the natural lift of if, $ (δ is defined by taking E(X) the same as before).
For &9 let &ό be the natural lift, i.e. define (&°K) (X) = K(t9 X)\t=ί, where

K(t) = Λ,C*K' + dsμ(t_s}βc βC(ξ, ξ ' ) 0 d ξ d ξ . (24)

Here ξ = x or (x9 μ) and define ^(x) = ^0W and ^(x, μ) = ι/Ί,μ(x). Furthermore
C(x, μ; xr, μ r) = dμd'μ>C(x, x') and we define

, I/O = $K(X9 φ0 + η,Ψι + Sη)dμβc(η) .

For Xφy we define (&rK)(X9\l/) = (&:0K)(X9\l/). For X e ^ we have
, φ) = μβc * K(X, ψ). Instead of this we first replace K by the equivalent

K'(X9 (Ao, ^i) = K(X9 ψ0(x)

where H = Hx denotes the operator

and x is a distinguished point in X. (Equivalent means equal when ψ = ψφ.)
Then for Xe^ define (&K)(X9 φ) = (^°Kf)(X, ψ} and so (^K)(X,φφ) =
(3FK)(X9 φ). The rationale for this definition on small sets is that K' is periodic in
the single variable ψQ(x) and can be Fourier analyzed. We will see that the non-zero
Fourier coefficients get small when convolved with μβc..

Throughout the remainder of the paper we use these new definitions of ̂ , K,
etc. For simplicity we henceforth drop the " Λ "s on these quantities.
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With our extended definition of ̂  the functional V = V(X9 I/O) is no longer an
eigenvector of J^. To recover this feature we further modify the definition and
define &' by

Λ'(K) = [£,-! V - CΛ F] + »(K) , (25)

where the bracketed term vanishes at ψ = ψφ. Now define again Kf_ι =^'(K* )
starting with Kfi = KN given by (15) with φ = ψ0 Also define K?-ι by
K? = ζt V + K? and then we have

X f L ^ Λ Λ K f t + Λ^XfO (26)

just as before. Although the actual flow is given by (25) it suffices to study (26).
We next define a norm of the functionals K(X9 φ). We assume that the

components of ψ0 and I/Ί = (ψμ) are elements of C(Λ\ the continuous complex-
valued functions on A with sup norm. We also assume that K(X9ψ) is analytic in
ψ on an open strip around the real subspace φ = ψφ9 φ e3Jf(Λ). (See Appendix
A for some basic facts about analytic functions on a complex Banach space.)

For n = (n0, n^) let Kn(X, φ) be the (Frechet) derivative of K(X, φ) of order
n with respect to ψ at φ = φφ. This is a continuous multilinear functional on
C(Λ9 R)n° x C(Λ, R2)"1, symmetric in each sector. We further assume that this
functional is given by integration with respect to a signed bounded Borel measure
on An = An° + nι x indices. Formally we might represent the measure by

Γ— \~
\δ!^o(ί?) - -

The basic locality assumption is that the measure Kn(X, φ, ξ) has support in
ξ in X" = Xn° + Hί x indices (there are no collars around X as there are in [BY]).

First define the norm of Kn(X, φ) to be the total variation norm

\\Ku(X9φ)\\= sup \Ku(X9φ 9 F ) \ 9

\\F\\ <1

where F eC(Xn). Actually we usually consider the restriction of the measure to
An = A0tίx . . . zίo.iio x^ 1,1 x ^ι,«ι with Δij^X and so consider

Dependence on the variable φ is dominated by a large field regulator
G = GL(X, φ) which will have the form

κΓ
L 1

GL(X, φ) = e x p κ Σ L2-2«||^||i + (Z*Γ W||| , (27)
\ L 1 ̂  | α | g s

where K and c are positive constants. We define

= Σ sup
AB

Dependence on the set X is controlled by a large set regulator Γ = Γ(X ), which
we will choose to be

= (28L)21XIΘ(X), (28)

(29)
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We will also have need of related regulators γΓ(X) = ylxlΓ(X) for constants y.
Here τ is a tree composed of bonds b connecting the centres of squares in X.
Lengths such as | b\ are measured in an / °° metric on R2. The function θ is defined so
that θ(s) = 1 for s = 0, 1 and

(30)

where {x} denotes the smallest integer greater than x. Note that Γ(A) = (28L)2.
The large set regulator satisfies

Γ(X) ^ 1

Γ(Xl u X 2 ) ^ Γ(Xl)Γ(X2)θ(d(Xl, X2)) ,

where d(Xl9 X2) is the length of the shortest bond from X± to X2. In addition the
scaling property

Xε^

holds, where as before X denotes the smallest L-polymer containing X and c = 216.
We define

l|K.lkr = sup Σ Γ(X)\\KΛ(X)\\G. (32)
A X => Δ

We assume translation invariance of K so that the norm does not depend on the
explicit pin at A and drop the supremum.

Finally, for h = (Λ0, /u), hn - hn°h\* and n! = n±\n2\ we define

For each G, Γ, h the space of all functionals K = K(X, ψ) with \\K ||G>Γ>h < oo is
denoted «5fG,r,h This is a Banach space [DH1]. We always work in the closed
subspace of functionals which have period 2π in ψQ.

To illustrate the norm, we bound the initial activity KN(X, ψ) defined by (15).
We have KN = ζN V + KN, where

KN(X, ψ) = X connected, \X\>1
0 otherwise

Lemma 4.1. KN, V, KN are analytic functionals ofψ0 e C(Λ(N)). For any G ^ 1 and
Γ(A)eh°\ζN\ sufficiently small, they are in Jf GjΓ)h and

1- \\V\\G,r,
2. \\KN\\G,Γ,h

3. \\KN\\G,Γ,

Proof. The analyticity of ψ\-^KN(X, ψ) follows from the continuity of the func-
tional and the analyticity on C of the function λt-^KN(X, ψ + λχ) for any
\l/,χeC(Λ(N)); see Appendix A.

1. If sufficies to prove the bound with G = 1. We calculate the derivatives of
V(A, ψo) at ΨQ = φ and find

V^A, φi F) = f



Construction of Two-Dimensional sine-Gordon Model 559

Therefore, \\Vno(Δ, φ)\\ ^ 1. This leads to \\V(Δ)\\GM ^ eh° and ||F||G;Γ,h ̂
Γ(Δ)eho.

2. For X = Δ we have

For any connected set X with \X\ > 1,

\\1?N(Y\\\ < FT \\ oitiv(A) 1 1 1
11^ V-Λ l l G . h ^ 11 I I e - " - l l G . h :

A c X

Thus

i Σ Γ(X)\\KN(X)\\OΛ^ΰ(l)(Γ(Δ)\ζN\eh°)2,

where the last estimate follows as in ([DH1], Proposition 3.4).
3. Follows from 1 and 2. Π

We are now ready to state our main results for the activities K, K. We fix
0 < β < 8π and 0 < ε < 1/2. Let L be sufficiently large (depending on β, ε) and
choose G = GL(X, φ) as in (27) with K sufficiently small (independent of β, L). Take
Γ as above and take

where Λ 0 j 0 = c00L, /^ = c :L with constants c00, <?ι to be specified, and where

5Λ = (ε/2)(2-0/4π)logL.

(Λ0l must grow in i: we could arrange that it is bounded as in [DH1], but for Sect. 7
we need the linear growth. Note that ehotζi stays bounded in any case.) Let
JtTt = ^G,r)hί with norm || - \\t = \\ ||GjΓ)hί.

The next two results form the technical core of the method.

Proposition 4.2. ̂  maps jΓf to 3C{-\ ana

II^KII^^iμjKllί. (33)

The extraction E(K) satisfies

£ \\K\\t.

The next result gives analyticity in K and a crude bound which is satisfied even
with no extraction operation <f.

Proposition 4.3. ̂  is an analytic functional ofK e tfΊfor \\K \\ { sufficiently small and
for such K,

We prove these two propositions in the next section. Taken together, they
control the iteration of ̂ . This is the content _of the following theorem which gives
N-uniform bounds on the remainder term, Kf .
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Theorem 4.4. For m = 0, 0</?<8π, 0 < ε < 1/2, and L'1, \ζ\ sufficiently small:

IIKfll^KiΓ8, (34)

i£fi ̂  ιc, rε , (35)
for allQ^i^N.

Proof of Theorem 4.4. The proof is by induction. For i = N, Lemma 4.1 and
eh°"\ζN\el2 ^ <9(l)e/1<">|Colε/2 imply

provided |ζ0| ~ 0(1) |£| is sufficiently small. The quantity

occurs frequently in what follows.
Now, to prove the inductive step i -* i — 1 we use the formula (26). By Lemma

4.1,
\\ζ,V\\, ^ Γ(A)\ζi\eh« ί &(l)D\ζ,\1-*/2 . (36)

By the inductive hypothesis, \\K*\\t 5Ξ |C ; |
2~ε which is smaller still, so we have

HKni. ^CWIίiΓ*7 2. (37)

Now use the analyticity and write

where the integral is over the circle |s| = ICi l^ 2 " 1 (which is greater than 1). Then
\\sK? | |i ^ Φ(ί)D is small for |C| small and by Proposition 4.3 ,

which gives

ii&(l)L2D< 1/2.
By Proposition 4.2,

for L large enough, which gives the result | |Kf_ι | | / _ ι ^ I C i - i l 2 " 8 .
Now consider

£f - £(Kf ) = E(K?)

(E(V) = 0 by (19)). Then by Proposition 4.2,

^lCfl2-8. D
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5. Proof of Propositions 4.2 and 4.3

In this section we analyze in detail the maps 3F> $, £f and their linearizations. We
introduce the following intermediate regulators:

(38)

(39)

h* = (Λ 0 , i- i5 L~lhι) . (40)

For the fluctuation map ^, the main technical result is due to Brydges and
Yau. To state it we introduce the norm on covariances

|| Cβ|| = sup £ C(Δ19 Δ2)θ(d(Δl9 A 2 ) ) , (41)

Δ2) = *up\C(ξl9ξ2)\.
ξ^Δi

For the covariances Q in the present paper we always have || Cθ \\ = Φ(La) for
some α > 1.

Lemma 5.1. Consider the one parameter family of Gaussian measures μtβc>® = t ^ 1,
with C(x,y) of the form (6) and the large field regulators

Then for K sufficiently small:

1. For all 0 ̂  s ̂  t ^ 1

2. For any h and any functional K(X) on a set X,

II I* - s}βc *K(X) \\g(t),h ^ II K(X) II ,(s),h . (42)

3. Let h = (/z0, hi), h' = (/ιό, h'ι) be any regulators such that h r < h and let
K satisfy

Ao ~ %)2, (Λi - h\)2} (43)

for some universal δ. Then there is a solution K(t) of the flow equation (24), and

ITOI

In particular at t = 1 we have

The original proof ([BY], Theorem B) was for G's which were not strictly
localized and for hQ = /z l 5 h'Q = hΊ . The extension to strictly localized G's was given
in ([DH3], Appendix). The extension to /ι0 φ hl9 h'0 Φ h\ is given in Appendix B of
the present paper.

The analysis of $ is somewhat special, and is contained in the proofs which
follow. The main result for the rescaling map Of is
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Lemma 5.2. For any K wzί/i || K \\ G*,r*,h* sufficiently small, the reblocked and rescaled
functional ^K is bounded by

Proof. This follows from [DH3], Propositions 4 and 5, where £f is split into
separate scaling and reblocking steps. Nevertheless we sketch the proof. From the
definition (13) one can show

\\yκ(X)\\G^_^ Σ Π l l *(**)!! c*,h .
{X*} «

The sum over sets {Xt} is done using their connectivity. We also use

Γ(L-^X) ^ c2~4]xlΓ(X) =

which follows from (31) and then

II^KIkr,^ ^ sup Σ.
Δ { X i } : ( j i X i r> LΔ

rgsup X_ γ
Δ {X,}:\J,X,^LΛ i

ί X (4 32(log2)-1cJL
2||K*||G.,r,,h.)

Λ'.
N ^ 1

This gives the result. In the last step we sum over the {X J by picking a tree on the
index set and summing over {X{} such that {Xj has the connectivity of the tree. If
δi are the incidence numbers for the tree we have

Then one sums over trees. For details, see [BY] or [DH3]. Π

Proof of Proposition 4.2. We have ̂  K = ̂  Kf , where Kf = ft ̂  K. We will show

if

Then, as in the proof of Lemma 5.2, we have for the linearized rescaling step

Σ

to which we apply the bounds (44). We kill the bad factor L2 by using Γ(L 1 X )
< 2-4mL~2Γ(X) when Xφ&> (from (31)):

H ^ / C ί l h - i g L 2

sup
Δ

which proves the first part of Proposition 4.2.
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Thus we need to show (44). For Xφ&9 we have Kf(X) = (&Ί
= μβCt*K(X), (E(X) = 0 for Xφ&). In this case the bound follows from (42),

which gives

followed by \\K(X)\\Gtk. £ \\K(X)\\G^ since h* < h,.
Now consider Xe^. We study first K f ( X ) = (^K)(X) = μβCi*K'(X). First

expand K'(X, ψ) = K(X, φ0(x) + Hψί9 I/Ί) in a Fourier series in ψ0(x),

qeZ

Convolution with μβCι yields

qeZ

k*(X, q, i/M = J «'«<«' fc(X, ή[, I/Ί + dη)dμβCl(η)

Then we have K f ( X ) = ̂ Kf(X) = K*(X) - E(X\ where

E(X) = (2πΓί K * (X, Φ, 0)rfΦ = k *(X, 0, 0) .
— π

Thus finally for Xe £f,

This is estimated by
qeZ

(45)
ί Φ 0

where k# = 2(X, ^) = ^c#(^, 0, ι
have used the result \\eιq*o(x)\\G =

- k#(X, 0, 0). For the q Φ 0 terms above we

^ e
lqlh° (see [DH1, Lemma 4.2]).

We use a bound which shows the beneficial effect of extracting a constant from
the q = 0 term,

ll*#(^θ)||G^ = Λ ι . (46)
This follows from [BY], Lemma 4.3 and needs (κh^2)~l g 0(1).

Bounds on k# are proved in [DH1, Sect. 6] and say for any

^

= Φ(l)\ The Fourier components k(X9 q, ψi) exhibit decay for \q\ large, as
shown in [DH1, Lemma 4.1]. This says there is a constant B so that if hQ > Bhί9

|| k(X, q) || Gthl ̂ | K(X)\\ G,h . (48)
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Combining (46), (47), (48) gives the required bound for the q = 0 term of (45),

\\k# *2(X)\\G*,h ^ (9(l)L~22^\\K(X)\\Gίhί .

By (47) and (48), the q Φ 0 terms of (45) are bounded by

X 2'*>exp[ - (101 - ί/2)βCi - | 4 f | ( A 0 , i - hξ - B(hf + β\8C\ J)]

X

Since fcf + β\dC\* = 0(1) £ h, and fc0 t > ^o and e ~ β C ί / 2 = L~2λί = β(L~βl4π)9

the sum over q is also bounded by ( 9 ( l ) 2 l x { L ~ 2 λt \\ K(X) \\ G>h| if L is large. Thus (44)
is proved,

For the bound on the energy extraction note that

\E(X)\ = |/c#(X, 0,0)| £ \\k^(X9Q)\\G.9hl^2^\\K(X)\\GA. (49)

Since 21*1 ̂  Γ(X) the bound \E(K)\ ^ \\K\\ t follows. Π

Proof of Proposition 4.3. Let K* = ^^K. Then by Lemma 5.2,

To bound K* we need a bound on || «/ 1| G*,yr*,h*j where y(X) = 2 | X |. Since
- 0 for X^^ and J^ - ̂  for small sets we may write for J(X)9

(^KX if
( }

where R(X) = eE(X) - 1 and

R + (X)= Σ
^ 2 sets

For the case X φ tf we have (J^K) (X) = (J^0^) (X) and we use the bound from
Lemma 5.1,

Λ h , . (50)

Here 1̂  is the characteristic function of [X: X φ &*}. Note that h j — h* =
(δh, /ιx(l — L"1)) and so the condition (43) will be satisfied for \\K\\t sufficiently
small.

For X E <f, we have from (44):

For the remaining terms we need

Lemma 5.3. For || K || G> 7*r, h sufficiently small and \E(X)\ ^ 2 | X | | |K(Z)||G j h ,

1.
l | e ± £ - l | | 1 , r ,o^2 | |K | | G ; y Λ h . (51)

2.

3.

IIKΊl i .Γ .o^HKIky 'Γ . i , . (52)
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Proof. The first two are immediate. For (52), we note

l l*Ίlι,r .o = sup X Γ(X)\R+(X)\
X 3̂ Δ

Σ U2^x^(γΓ)(Xi)\R(Xi)\.
Δ {Xj .ViXt^Δ ί

The sum over sets is done as in Lemma 5.2 and together with (51) yields the bound

A

which gives the required bound for K small. D

Then, from all of the above and y3Γ* = Γ,

tΓthί. (53)

This bound and the bound (51) for e~E - 1 are used in formula (12) for g<FK.
Then as in the proof of [DH3, Proposition 3] we find

\\K*
^4 32\ ] V + M"1

<^ X ' I I

(54)

This completes the bound in Proposition 4.3.
The analyticity of the function 01 follows from the analyticity of λ ι— >

&(K0 + A K i ) and local boundedness; see Appendix B. Both these properties can
be established using our estimate on ̂ . D

6. The N-> oo Limit

We write Kt = Hm^ooKf as a telescoping sum

Kt = K\+ £ ( K f + 1 - K f ) (55)
JV = t

which we must show converges. The increments 3K? = K?+1 — K? =
K? + 1 - K? give the change in the activity at scale i if the UV cutoff is changed
from N to N + 1. They satisfy the recurrence relation

δ X f L i =Λ 1 <5Xf Γ + < 5 Λ έ 2 , (56)

<5%2 = [ ̂ 2(KΓ +1) - %2(^f) ] . (57)

We can express the second term as a double contour integral:

t ( f- !)!»(,-!)

where the contours are circles of radius greater than 1.

- ***** - » - ^(5(Xf + tδK^ ' (58)
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Lemma 6.1. Under the hypotheses of Theorem 4.4,

Proof of Lemma 6.1. The proof is by induction on ϊ, very much in parallel with the
proof of Theorem 4.4. For i — N, we have by Theorem 4.4,

\\δκ%\\N g l l xΓΊlN + \\KS\\N ^
as required.

Now we bound the inductive step (56). We use the bound (37) for \\K? \\h and
the inductive bound for \\δK^ \\t and find

\\K? + tδK?\\i£Θ(l)D\ζi\
ί-'i2

for any value t with \t\ ̂  ICi | 1 / 2 l (NΓ 1 / 2 As in Theorem 4.4, we assume that
D = Γ(A)eh™\ζQ\ε/2 is sufficiently small.

We choose the circles \s\ = |ζi |β / 2~Mί| = l ί ; l 1 / 2 iCjvΓ 1 / 2 as the contour for (58).
Then on this contour, by Proposition 4.3,

and so

By Proposition 4.2,

which yields the desired bound for H^Xf-! !!;_!. D

This propostion leads immediately to the main result:

Theorem 6.2. 1. For m = 0, 0 < β < 8π, and L~ *, |ζ| sufficiently small, the following
limits exist and are analytic in ζ:

Kt = lim Kf , (59)
Aϊ-»oo

Et = lim £f . (60)
JV->oo

2. For β < 4π, the partition function has a limit:

Z = lim ZN ,
JV->oo

which is analytic in ζ.

Proof.

1. The sum (55) defining Kt converges in J^ by the bound on \\δK? | | f. Each
Kf and δKf is analytic in C by an inductive argument using the analyticity
of ̂  and the analyticity of Kt follows. The same argument shows £f has an
analytic limit since \δE?\ ^ \\δK?\\i
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2. The partition function from (17) can be written

ZN = exp Γ £ EJVίOll ί dμβυ^(ί + K%(A)) . (61)
Li=l J

For the first factor we note:

\E?I \Λ(ΐ)\ ^ \ζι\2~ΛL2i £ $(l)|ζ|2-^(2-ε)(/?/4π-2) + 2].

This is summable for β < 4π and ε close enough to zero (depending on β).
Thus the first factor has a limit as N -> oo by dominated convergence. For
the second factor we use \K$(Δ9 φ)\ ̂  G(φ)Γ(AΓ1\\K^\\0 and dominated
convergence to obtain the limit. Z is given by (61) with N = oo.

Remarks. The bound on the partition function for β < 4π says that the free energy
per unit volume for the Coulomb gas is finite. If the model is regarded as a quantum
field theory, it says that the vacuum energy density is finite.

If 4π ̂  β < 8π, the argument breaks down and the energy density is infinite. In
[BGN] this is interpreted as a collapse of dipoles to zero radius. Furthermore, they
find a sequence of thresholds at β = 8π(l — l/2n), n = 2, 3,4, . . . at which values
the vacuum renormalization is taken to the next higher order in ζ. They identify
these thresholds as the collapse of higher multipoles. This phenomenon does not
affect the correlation functions which we study next.

7. The Generating Functional

To control the field correlation functions, we follow [DH3] and extend our
analysis to the unnormalized generating functional

Z"(p) = f *'<

where p = p(x) is an external field. The measure is on the unit box Λ(0); after
scaling up to A(N) we have

= f *'<>'•*> Λφ(D + KN(φ))dμβvN^(φ) ,

where pN(x) = L~2Np(L-Nx).
The renormalization group transformations will leave us with similar expres-

sions on A(i):

ZN(p) = exp ( Σ -β/2(p\ Ckp
k) + E%\Λk\\

\fc = ί+l /

x [f *'<'•*> Λφ(D + K?(φ, pl))dμβΌlιQ(φ) ] . (62)

The activity K? = K?(X, φ9 p) will depend on p, but will reduce to the previous
activity K?(X9 φ) at p = 0.

We now explain the RG step i -> i — 1, modified to account for the p-depen-
dence. First the presence of the ei(pl'φ] alters the fluctuation integral. After a contour
shift η -> η -h iβCip in this integral, which is permissible for p not too large, we find

f e'O ̂ ΛφίD + K^p^dμ^φ)

= e -fMr'.c,,') j e.(P'.*)ixp(D +κ*(φ, p^dμpΛΦ) (63)
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Here K# (X, φ9 p
l ) = (^Γ^K^}(X,φ, p1), where & is as before and where

is the operation which introduces the p dependence.
For the extraction step we only extract the energy at p = 0. Thus just as before

we take out £f = E(K? ) and £K is again given by (11), (12) with this E. This gives
for (63),

i '<P'.*) K*(φ, pl)

Finally we again reblock and rescale defining Kf_! = £fK*, where

(<?K)(X,φL,L2pL)= Σ l[K(Xi9φ9p).

Then we obtain (62) for i - 1, with K?-1 = ̂ ex^f and ̂ ex =
As before we replace the functional K(X, φ, p) with K(X, ψ, p) which have the

proper restriction to ψ = ψφ. If ̂ ° is the natural lift defined by (24) we define the
extended ̂  by

9 ψ9 p) = (P(K( , , 0)))(X, <A) + [( °̂K)(*, Ψ, P) ~ (&°K)(X9 ψ, 0)] ,

where on the right, 3F has already been defined for p — 0 in Sect. 4. We define 2Γ as
the natural lift:

(PK)(X9 ψ, p) = K(X9 ψ0 + ίβCtP, Ψi + iβddp9 p) .

£f and δ have natural lifts as before and thus ^ex has an extended definition.
It still preserves the periodicity of K in \l/0. Also we have (<%eκK)(X9 ψ, 0) =

Finally we define K^1 = ̂ ;

ex(Kf), where

The bracketed term vanishes for ψ = \l/φ and this reduces to (25) at p = 0. If we
define Xf by Kf = ζtV + Kf, then we have the recursion:

£f-l = Λex.l(CiΠ - «l(ίlΠ + *cz,l«Γ + ^ex,^2(^f) (64)

All the activities K are analytic in \I/Q e C(yl), φ1 G C(yd, K2) in a strip as before,
and now are required to be analytic in p in a ball around p = 0 in C'(Λ\ the
bounded Borel measures on A. The derivatives are

KA

^and are assumed to be given by functions x ι-> K^P(X, φ; ξ, x) from x e Ap to
measures on An.

Let «^G,r>h,M be the Banach space of all functionals K(X, ψ, p) of this form with
,M < °° where the norms are now

= =>

"'" G>Γ '
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For p φ 0,
δx), (67)

where <SX = (J;<5X. and δx is the semi-open unit square containing x selected from
a disjoint covering of A.

For 0 < β < 8π, 0 < ε < 1/2, we pick L large and G, Γ, h as before (see Sect. 4).
Now we also take

u^(β\\Cθ\\Γlnήn{δh/292h1/L}9

where we recall δh = (fi/2)(2 - β/4π)logL and /^ = 0(1)L. Let Jί^α = ̂ Gtr9hl9u
with norm || lk«

Now we can state the extension of Propositions 4.2 and 4.3 to p-dependent
activities. We split any K into Kp=0 (the value at p = 0) and Kp>0 (the remainder).

Proposition 7.1. ^eχ, i = [<^W^K]|κ = o is 0 linear map from JfJ> M ίo J^-ι,M

Proposition 7.2. ̂ ex is an analytic functional o f K e J f i ί U f o r | |X | | ί > M sufficiently
small, and for such K

These lead to our main technical result which gives JV-uniform bounds on K?,
generalizing Theorem 4.4, and the N -> oo limit, generalizing Theorem 6.2.

Theorem 7.3. Under the above hypotheses, for \ζ\ sufficiently small

for all 0 ̂  i ̂  N. Furthermore Kt = lim^-^ Kf exists in JfίfU for all i.

Proof. The bound for i = N is the same as for p = 0. We proceed by induction,
assuming the bound for i, and using (64) to prove it for i — 1. The first term of (64) is

P>o> and so by Proposition 7.1 and (36),

For the second term of (64), Proposition 7.1 and Theorem 4.4 give

For the third term we use Proposition 7.2 and (36) to obtain

Using the analyticity in K as in the proof of Theorem 4.4, say with |s| = |(iΓ1

this gives

to complete the bound
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For the N -> oo limit we prove δK? = K? + 1 - K? = Kf + 1 - Kf satisfies

The proof is again by induction. We have

The latter term is estimated by an integral like (58). For \t\ ̂  |Ci| 1 / 2 |CjvΓ 1 / 2,

HKΐ + tδKΐ
So for |s| g IC I2*'1, by Proposition 7.2

||Λ

and hence

The other term is bounded by Proposition 7.1 and Lemma 6.1,

llί-i.. ̂  0(iμ«μκ£p = 0||ι + 0(1)11 AKfΊlί . ,

^ &(ί)λt\ζί\
3/2-e\ζN\ί'2

to complete the proof of Theorem 7.3. D

Proof of Proposition 7.7. The first bound is just a restatement of Proposition 4.2.
For the second we have ($e*,ιK)p>o = <&Ί(K*,P>o) where K*,P>Q =

(S>

1^'^'ΐK)p>0 = (^^K)P>Q. As in the ̂ proof of Proposition 4.2, but now for p > 0
and any K:

l lG,r^^- n ι supXΓ(^x) Σ \\Kntp(X',Lx)\\G.
x X X':X' = LX

£ L-n^ sup Σ Γ(L- *X'9 L- 1 x') \\Kntp(X'9 x') || G*
x / x'

^ cL'rtl sup X Γ*(A", x') llX^pίX', x') || G*

(Note that no factor L2 arises, since the sum on X in the norm has no pin for p > 0.)
It follows that

The mapping 5̂  was analyzed in [DH2, Proposition 2] and satisfies:
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where we use our bound on u and define

h = (h0i - δh/2, 2hλ/L) .

Note that ίi < h, . It is the growth in h in this step which forces our choice of h f .
For the last step we break ^K into (JΓ

1K)P>0 = (^iK)p>0 and (^K)p=0.
For the p = 0 part we write

and use the bounds (44), (49); the p > 0 part is bounded using a version of
Lemma 5.1 again. Thus,

. u , (68)

which completes the proof of Proposition 7.1.
D

Proof of Proposition 7.2. We follow the proof of Proposition 4.3. Extending
Lemma 5.2 to the p-dependent case, we have

if K* = ^^Γ^K is sufficiently small (See Propositions 4 and 5 in [DH3] for
details.)

To bound the extracted activity K* = S2Γ3FK we note that since the extracted
parts are p-independent, the p derivatives of J are given by

X, ψ, x) if p > 0

if p = 0 '

Now by [DH3, Proposition 2] and an adaptation of Lemma 5.1 ([DH3],
Proposition 1) we have for | |-K| | j , u sufficiently small,

(see (50) for the last step). On the other hand, since J^ = J î for small sets,

by the bound (68) in Proposition 7.1.
Combining these bounds with our previous bound on J(X, ψ, 0) in (53) we find

Then it follows by an adaptation of (54) that for ||ίC||i;U small

G*. /••.!,•,,,
(for a proof see [DH3], Proposition 3). This completes our proof. D
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8. Correlation Functions

Now we are ready to remove the ultraviolet cutoff in the correlation functions.
After iterating the RG transformation N times we have

ZN(p) = expf £ (-β/2(p\ Ckp
k) + E»\Λk\)

\k=l

x [J *'<"•*> Λφ(D + K»(φ, p))dμβvoo(φ)l , (69)

where the last integral is over functions on A (0) = A (a unit square). We perform
one last fluctuation and complex translation step (with C0 = t>o,o) Then there are
no fields left to integrate and the bracketed expression above is

[•••] = exp(-/?/2(Λt>0.oP))Λφ(Π + K» *)(A9p)

= exp(-β/2(p9v0top))(l + K»>*(Δ, p)) ,
where

(K» *)(A9 p) = (ΓPK»)(A9 p) = j K»(A, η + ί/to0.oP, p)dμβvQQ(η) . (70)

We reassemble the fluctuation covariances in (69)
N

Σ (p\ Ckp
k) + (p,t?0 fop) = (p,Vo,Np)

k=l
to obtain

This shows the leading behaviour exp(—β/2(p,vQ,Np)) valid for the free field
theory with ζ = 0, with corrections for ζ Φ 0 contained in E" and K%'# (A, p). The
normalized generating functional is given by:

SN(p) = ZN(p)/(ZN(Q)

K N

0 > * ( A ) V ) Γ 1 ( l + K N

0 > * ( A , p ) ) . (71)

The expression (p, v0iNp) may not have a limit as N -> oo, but this will be true if
we impose the additional regularity condition on p:

00

(p,ι?o,oop)= Σ \p(p}\2p~2 < °°
pφ 0

The n-point correlation function is given by

" sN ( SiPi)\a=0 .
OS i . . . OSn

We also consider

log^(p) = -β/2(p9υQ.Np) + log(l + K»>#(A,p)) - log(l + KN

0>*(A,0)) (72)

and the truncated correlation functions

OS1 . . . OSn

If n > 2, the term —β/2(p, v0>Np) in log SN makes no contribution and we can drop
the condition (p,ι; 0,00 P) < °o.
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Theorem 8.1. For m = 0, 0 < β < 8π and ζ sufficiently small:

1. If p 6 C'(Λ(ϋ)\ ||p || < u and (p,v0ί00p) < oo, then the generating functional
has a limit:

S(p) = lim SN(p) .

2. // pi e C'(/L(0)) and ( p > v Q ί 0 0 P i ) < °°> ^^ ̂  correlation functions have
a limit:

„)> = lim

3. //Pi e C'(yl(0)) and n > 2 £/zen the truncated correlation functions have a limit:

<ψ(pι) - Φ(pn)>τ = lim <ψ(Pl) . . . φ(p,)>" τ .
N-+OQ

4. All the above are analytic in ζ in a neighbourhood of the origin.

Proof. Ry Theorem 7.3, K% (A, p) is analytic in p e C'(A) for || p || < u with bounds
uniform in N and the limit as JV -> oo exists. The same is true for K^*(Δ, p): use
(70) and the bound

for dominated convergence. The convergence of X Q ' # an<^ (P>VO,NP) give the
convergence of SN(p).

The convergence of the correlation functions for || pf || < u follows from conver-
gence and uniform bounds for SN(ρ), the analyticity of st H^ SN(^jsipi) and the
representation

Here the integral is taken over the circles with radius | s/ | = ^(n\\pί\\)~1u. Since the
correlation functions are linear the condition || pf || < u may be dropped.

The convergence of the truncated correlation functions follows similarly (use
the smallness of K" # (A, p) in (72) to get the analyticity of st h-> log SN(Σ Sipi)).

Analyticity in ζ follows from the analyticity for N < oo and bounds in ζ uni-
form in JV. D

Remarks, (a) The condition (pf, ι?0> ̂  p f) < oo in (1), (2) does not allow (5-functions,
but they are allowed in (3). Thus the truncated n-point functions <φ(xι) . . . φ(xn)yτ

exist as bounded functions. This means the only short distance singularity in the
theory is the logarithmic singularity of the two-point function (φ(x)φ(y)y ~
^0,00 (x,y) at x = y.
(b) We might also consider the Wick ordered field

Then
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and we have a limit for all p e C'(Λ(0)) with ||p|| < u\ ^-functions are allowed.
Similarly

< . β WPO . . βiΨ<,2> . >» = exp( _β(pt VoNp2)} ^ + # P ] (73)

will have a limit for || pi || < w/2.
In the Coulomb gas model the introduction of : eiφ(p) : corresponds to adding an

external charge density p in the Gibbs measure (with a self-energy subtraction).
Equation (73) above measures the correlations between two such charges. Our
condition || p \\ < u <^ 1 means these are fractional charges. The behaviour for
integral charges may be quite different.
(c) The analyticity of the correlation functions in ζ means perturbation expansions
around ζ = 0 converge. One can compute for example

S(P) = <

This formula leads to first order expressions for the correlation functions.

9. Volume-Uniform Estimates for the Massive Model

In this final section, we dicuss in more detail the massive model formulated in the
introduction. For convenience, we take m = 1 (this may be achieved by an a priori
rescaling of the model). We begin with the measure dv^φ) of Eq. (3) on the torus
Λ(M) for M ^ 0. (In the following, we often omit M labels.) After a rescaling up to
a volume Λ(M + N) one has an equivalent measure on jjf(Λ(M + N))

dvN(φ) = Qxp(ζN J cos φ(x)dx)dμβΌM+Nι0(φ)

= <ίxp(D + KN)(φ)dμβVM+Nίθ(φ] ,
where

Just as for the massless model, the coupling constants are given the following
JV-dependence:

ζN = L~2NzN = L-

We first note that we can reproduce the results previously obtained for m = 0,
M = 0. Starting with the renormalized generating functional,

S»(p) = \ e'<' *>Λφ(D + KN)(φ)dμβvN+MJlp = 0] ,

(still with pN(x) = L~2N ρ(L~Nx)) we apply renormalization group transformations
to obtain expressions on A(M 4- ϊ) in terms of polymer activities K f and fluctu-
ation covariances

Ci(p) = (P

2+L-2iΓί(e-p4-e-L4»*).

After N steps we have on Λ(M)

SN(p) = exp( -ββ Σ (/, Ckp
k)) I «'<"•*> Λφ(D + K»)(φ, pW^Jlp = 0] .

k=l

We make one last fluctuation and complex translation step with VM, 0 instead of C0 .
This removes all the φ dependence and gives

SN(p) = exp(-j8/2(p,ι>MfWp))Λφ(D + KN

Q'#)(A(M\ p ) / l p = 0] .
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The analysis of these transformations goes more or less as before. We obtain the
same bounds uniform in N and the N -> oo limit provided \ζ\ is sufficiently small.

Now we look to obtain bounds which are uniform in M as well as N. These then
hold in the N -> oo limit which we just proved, and would hold in the M -> oo limit
oince that is obtained.

The above analysis is all uniform in M except possibly the last step. However
since the covariance vMf0 has unit mass, it has exponential decay and so the
essential bound ||(I>M,O)Θ|| ^ $(1) holds uniformly in M. This makes it possible to
apply Propositions 1 and 2 from [DH3] to obtain

O y- Γ,"

^ \\KO \\G,r,h0,u

^ I C o l 1 " 6 -
Hereafter we shorten the notation to K# = KQ'#.

To analyze the correlation functions we apply a polymer expansion to obtain:

where Ck denotes the set of connected k- tuples X = (Xl9 . . . , Xk) in Λ(M). The
index is n(X) = ΣG( — 1)/(G), where G is a connected graph on X and /(G) = number
of lines in G. (See for example [GJ], Theorem 20.2.1.)

We conclude

Now we are in a position to prove our main result of this section. Define

Γ'(xl9 . . . , * „ ) = inf (y

Thorem 9.1. For m = 1, 0 < β < 8π, and \ζ\ sufficiently small:

. . . φ(xn)yτ\ ^ Θ(l)nlu-n2n\ζ0\^εΓ'(x^ . . . , xn)~\ n>2,

uniformly in all cutoffs.

Remarks. This proves polynomial tree decay for correlations at a rate which
depends on the initial choice (67), (28) of large set regulator Γ. It turns out that
Γ may be chosen with any polynomial rate. The natural result, namely an exponen-
tial decay rate, does not follow from our analysis in its present form.

Proof. The required quantities are given by

— . . . —
dp(xi) dp(xn)

The repeated Leibniz rule gives

'= Σ Σ
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where ^k(n) denotes the ordered partitions of the set {1, . . . , n} into k (possibly
empty) subsets. By a standard estimate

n(X) ^ Σ 1
τ: trees on (1, . . . , k)

Introduction of coordination numbers {d, }£=ι, dt ^ 1, for the trees τ gives

where now τ has the specified coordination numbers, and the connectedness of X is
to be compatible with τ. Now Γ'(xί9 . . . , xn) ^ Hi(y~2Γ)(Xh xπ.). Thus

r(xι,...9χH)\ι\£ Σ A ~ Σ Yl(y~2n(Xi^ni)\κ^πίl(χhχπi)\.
k,πJ,τK' Xe~*W i

In the usual way (see the proof of Lemma 5.2 or the proof of Lemma 3 in [DH 3]),
we sum over Xfs in the order given by the tree, leaving till last an Xio chosen with
πίo nonempty. We obtain

Using Cayley's theorem, Yιτ ^Y[.(dt- 1)1 ^(k — 2)\4k 1 (and also dio\ ^
(fc-l)(d ί o-l)!),

11 l l ^ l π z l l i y - i Γ

M * V ι υ δ 7 /
Now

II f ^ II <"" ~P«f II ί̂  ̂  II <*" < * '
| | /v_ | |y~ 1 Γ' — W p! | | iV H y " 1 / " M — ^

and

Thus we have the required bound

ι l - ε

A. Analytic Functions on a Banach Space

We collect some facts about analytic functions on a Banach space (see [HP]). Let
£, F be complex Banach spaces and U an open set in E. A function f:U-+Fis
Gateaux-analytic or G-analytic if for each u e U, x e £ the function λ ι-> /(u + λx)
is analytic on a neighourhood of the origin in C. Equivalently, / restricted to
C7n£° is analytic for any finite dimensional subspace £° of E (by Hartog's
theorem).

If / is G-analytic then we define
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For each u e U the function x H-» fn(u; x) from £ to F is a homogeneous polynomial
of degree n, i.e. the restriction to the diagonal of a symmetric multilinear functional
/„: En -> F. We have the expansion

fill -I- Y^ — 7 1 lv\ t /* f f Λ * Y^j {u T Λ; — / ,̂ L/n.jn\u, Λ-;

for all x in a neighbourhood of zero. We also have the Cauchy bound for u e U,

\\fn(ύ)\\ = jjSu^ | |/ n (w;x)H ^|l^sup^ ||/(ι;)|| ,

provided B(u, R) a U.
The function /: U -> F is defined to be analytic if one of the following equiva-

lent conditions are satisfied:

1. / is G-analytic and continuous.
2. / is G-analytic and locally bounded.
3. / is Frechet-diίferentiable on U.
4. For each u e U there are homogeneous polynomials pw(u); E -> F such that

f(u + x) = X^°=0P«(w; x) with uniform convergence for x in a neighbour-
hood of zero. In this case pn(u; x) = l/n\fn(u; x).

The composition of two analytic functions is again analytic.

B. Proof of Lemma 5.1

Lemma 5.1 says that a solution K(t) of (24) satisfies

if 0 < /z'o < Λ O ? 0 < feΊ < /2ι and for some constant δ

where
zl(h, h') = min(Λ0 - Λ Ό , ΛI - ftΊ) .

This is proved in [BY] with the assumption h0 = /ι l 5 h
f

0 = h\. We explain here the
modifications needed for the general case h0 Φ hl.

As in [BY] one shows that fc(ί, h) = \\K(t)\\g^Γ^ is dominated by the solution
u(t, h) of the Hamilton-Jacobi equation (c = β\\Cθ\\):

w(0, h) - fc(h) = k(Q9 h) .

We must show that solutions exist, are analytic, and that u(t, h') ̂  /c(h) when

The Hamilton-Jacobi equation can be solved by the method of characteristics
and one finds

u(t, ξ) = -φ z)ί -h k(ξ + 2ctz) ,
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where z = z(£, ξ) is the solution of

z - (Vk)(ξ + 2ctz) = 0 .

If the last equation has a unique solution, analytic in ξ and it will give a (unique)
analytic solution u(t, ξ). Furthermore, z and u will be real if ξ is real.

We will find a solution for |ξ0 | < h'Q9 \ξ^\ < h\ in the region |z| < zl(h, h')/4c.
First note that h' + 2cί|z| < h' + zl(h, h')/2 and this is at least zl(h, h')/2 from the
boundary of the polydisc of radius h around 0. Furthermore the maximum value of
k on this polydisc is fe(h). Thus by the Cauchy bounds for the analytic function fe(h)

Now we use a version of the analytic implicit function theorem due to
Gallavotti [Ga2] which says that z — g(z) = 0 has a unique solution in the region
|z| < p if |g(z)| < y~lp for all |z| < p, where γ is a (large) universal constant. Here
we have p = A(h, h')/4c and g(z) = (Vk)(ξ + 2cίz). Using our bound |g(z)| g
(cp)~ 1fc(h) from above and our hypothesis fe(h) ̂  16(Scp2 we have |g(z)| ^ 16<5p <
y~ xp if we take δ < (16y)~ *. Thus z = z(ί, ξ) exists, can be shown to be analytic in
ξ, and gives the solution.

Finally, then u(t, h') £Ξ k(hf + 2cίz) g fc(h) as required.

C. Erratum to [DH1]

We take this opportunity to correct some errors in the companion paper [DH1].
These are due to an insufficiently careful choice of the analyticity parameters h and
the large field regulators Gκ. One mistake, pointed out to us by Dr. D.H.U.
Marchetti, was that (4.4) in [DH1] only holds when h0 — Bhv > 0, but was applied
when h0 = h1 and so h0 — Bhl < 0. A second mistake was that the application of
Lemma 4.3 of [BY] in Lemma 7.1 of [DH1] needed ( κ 0 h f 2 ) ~ l ^ 0(1) and
(Ko/i*2)"1 g 0(1) independent of L. But KQ was forced to be (9(L~2) by the
requirement that the homotopy property hold and we chose /i* = Θ(L~ ) and
h\ = @(L~2\ Thus we have incompatible conditions for L large.

Both errors can be corrected by taking Gj, G# = G* as in the present paper
(allowing K O = 0(1)) and making the choices

h# =hj+ί(aL,L/2,L2/2),

' , 1),

with a > B so hj

0 - Bh{ > 0.
The proof proceeds as before with the following modifications. In Proposi-

tion l(i) we must use the bound on the fluctuation transformation 3F of the present
paper (see Appendix B). This allows unequal components in h. Proposition 1 (ii)
should read for q φ 0,

l | f c # f o ) l l G * , r < , h * ^ exp(-(M - l/2)j8* - [Λ'0 - B(Λ* + \ d f L K \ q \ ) δ j -

For Proposition 2 we have the same bound as above for \\i(q)\\G*,r*,fc and
estimate exp(B(ΛJ + 13/JJ ^ 0(1) so the bound is 0(l)exp(-(|g| ~ 1/2) β* -
hj

Q\q\). This combined with | |exp(ϊ^0M)llι,Λ; ^ e χp(^okl) an(i ^o < ^o bounds
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the q =t= 0 terms in /. For q = 0 we have by Lemma 4.3 of [BY] and a separate
bound on F - R that \\i(Q)\\G*,r*,h* ^ ( D ( l ) L ~ 3 δ j . Altogether this yields

in Lemma 7.1. The bound \\K*\\g*)Γ*)h* gΞ δj+ί follows as before.
With these changes the main results of the paper still hold.

Acknowledgements. We wish to express our thanks to Dr. D.H.U. Marchetti for his comments on
our work, and also to Prof. G. Gallavotti for general discussions on the sine-Gordon model.
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