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Abstract. We prove that the spectral gap of the Kawasaki dynamics shrink at the
rate of l/L2 for cubes of size L provided that some mixing conditions are satisfied.
We also prove that the logarithmic Sobolev inequality for the Glauber dynamics in
standard cubes holds uniformly in the size of the cube if the Dobrushin-Shlosman
mixing condition holds for standard cubes.

Introduction

As the simplest model in statistical mechanics, Ising model has been studied
extensively. It is by far the most studied model in mathematical physics and its
phase structures were analyzed in great detail. The study of dynamical properties of
the Ising model, on the other hand, is in a much more primitive stage. Our main
concern is the hydrodynamical limit of the Ising model for which we shall provide
a basic estimate on the gap of Kawasaki dynamics. The hydrodynamical limit of
various models has been studied recently and several useful methods were developed,
see, e.g. [DP, S] for a review. A central assumption of these methods is the so-called
gradient condition. Roughly speaking, it means that the current of the dynamics is
by itself a gradient of some other quantity. For models with this property, a natural
summation by parts can be performed and the technical difficulty is greatly reduced.
The drawback of gradient models is that the diffusion coefficient, as given by the
Green-Kubo formula, is determined by the thermodynamical quantities rather than
depending on correlation functions as the nongradient model does. Therefore, it does
not manifest effects of fluctuations on the diffusion coefficient.

Another interesting aspect of the gradient condition is that, except in dimension
d = 1 or the infinite temperature case, no gradient model has been constructed for
any truly interacting, reversible models with discrete spin space. So a study of the
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nongradient model with discrete spin space is an essential step if any progress on the
hydrodynamical limit for the Ising model can be made. So far the only known result of
the nongradient system is Varadhan's work [V, see also KLO, Q] on Ginzburg-Landau
type dynamics with product invariant measure. One of the key estimates needed is a
bound on the spectral gap which in the special case of product measure can be proved
rather straightforwardly. In this paper we shall prove such a gap is true for Ising type
models under certain mixing assumptions on the Gibbs state. Let us sketch our results
briefly here.

Let A be a cube in Z d of size L and let μω denote a Gibbs state with boundary
condition ω. Since our dynamics conserves the total number of particles, it is natural
to introduce the "canonical Gibbs state" vω N with the total number of particles (or up
spins) fixed. Let A denote the standard Kawasaki dynamics (with Dirichlet form given
by (1.23) below) with reversible measure vω N. Our main result is that the spectral
gap of A cannot shrink faster than l/L2 if some mixing conditions are satisfied, see
assumptions A1-A3 in Sect. 1. An upper bound on the gap of the order l/L2 can
be easily obtained by considering a slowly varying test function. Thus this correctly
pins down the decay rate of the gap.

Our methods are based on the martingale approach. It also proves that there is
a positive spectral gap for the Glauber dynamics (with Dirichlet form given by
(1.21) below) uniformly with respect to the volume and boundary conditions if certain
mixing conditions are satisfied (see Assumption (A.I) in Sect. 1). With the method
almost unchanged, a logarithmic Sobolev inequality is also proved under the same
assumption. It should be emphasized that these results are general in the sense that
they applied to any models with finite range interactions (or summable interactions)
with discrete or continuous spins for which assumption A.I holds. If one is interested
only in ferromagnetic Ising models, a useful tool known as attractiveness becomes
available and stronger results can be obtained. Recently Martinelli and Olivieri [MO1]
have proved the important result that exponential convergence holds for ferromagnetic
Ising models up to the critical temperature. For general models, they also obtained
results similar to ours (Theorem 1 and 3) independently with different arguments
[MO2] (see also the next paragraph for a comparison with [SZ]). Although the mixing
conditions (A.I) assumed here are equivalent to theirs [O, OP], their proof has the
advantage of being directly based on mixing conditions for only one cube. For the
Kawasaki dynamics, we are not aware of any result except in the case of independent
random variables (with the global constraint that the total magnetizations is fixed) [F,
KLO, Q].

Let us pause to comment on some history of the spectral gap and logarithmic
Sobolev inequality for the Gibbs states. The importance of the logarithmic Sobolev
inequality and its connection to the hypercontractivity (for general measures) was first
proved by L. Gross in his 1976 paper [L]. (See e.g. [DGS] for a review.) Since then
it has been used as an important tool to understand the exponential convergence to
equilibrium. For Glauber dynamics, there are extensive literatures on this subject since
the late seventies by, e.g., Holley, Liggett, Stroock et al. Most of these results are one
dimensional or concern some general properties (e.g. [CS]). A higher dimensional
result was obtained by Aizenman and Holley [AH] which states that the spectral gap
for the infinite volume Glauber dynamics is strictly positive if the Dobrushin-Shlosman
uniqueness condition is satisfied. Later on Zegarlinski [Z2] proved the logarithmic
Sobolev inequality under the Dobrushin uniqueness condition. Recently Stroock and
Zegarlinski [SZ] proved that the logarithmic Sobolev inequality is equivalent to the
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"Dobrushin-Shlosman mixing conditions" (see also [S, Z3] for a review), which are
closely related to the mixing conditions considered in this paper. The alert reader
may have found the above mixing or uniqueness conditions confusing. Unfortunately,
a closer examination of the literature can only add to the confusion. We shall not
discuss the relations among these and other equivalent conditions in this paper except
the following remark concerning the comparison between our results in the Glauber
dynamics case and that of [SZ]. The interested reader is referred to the recent papers
by Martinelli and Olivieri [MO1, MO2] and references therein for a thorough study
and clear review of these mixing conditions.

Apart from the fact that we are using a different approach, our result differs from
[SZ] in the following way: In [SZ] the DS mixing condition is assumed for all
domains in Zd and the logarithmic Sobolev inequality is proved for all domains in ΊLd

while we assume mixing conditions for standard cubes and prove that the logarithmic
Sobolev inequality holds uniformly for all standard cubes. (If one is interested in
infinite volume Gibbs states rather than finite volume Gibbs states, the approach of
[SZ] also requires only the DS mixing conditions for cubes [Zl].) It was emphasized
in [MO1, MO2] that the DS mixing condition for general domains is not expected to
hold in low temperature with magnetic field. For example, a two dimensional "cube"
in R3 in low temperature with two boundaries consisting of translates of the two
dimensional "cube" will not satisfy the DS condition if the two boundary conditions,
say, take value plus one while the magnetic field is minus two so that the effect of
magnetic field is completely cancelled by the boundary condition. On the other hand,
we do not require the mixing condition for domains other than standard cubes of size
L x L x x L. The mixing conditions for cubes rather than for arbitrary domains
was emphasized by Olivieri [O] and Olivieri-Picco [OP] in their study of cluster
expansion for spin systems. We thank Martinelli and Olivieri for informing us of the
importance of assuming mixing conditions only for cubes, the previous comparison
between the mixing conditions of [SZ] and ours, and for providing us the previous
example.

Unfortunately, so far we are not able to prove the logarithmic Sobolev inequality
for the Kawasaki dynamics for the Ising model except for d = 1. If one replaces the
Ising model by Ginzburg-Landau models then the corresponding logarithmic Sobolev
inequality can be proved. It is interesting to note that for the hydrodynamical limit
the Ising model is by far the hardest. We shall delay the proof of the logarithmic
Sobolev inequality for Ginzburg-Landau models in a forthcoming paper in the hope
that the difficulty with the Ising model can be resolved.

Finally, we comment on the difference between the Kawasaki and Glauber
dynamics. In Glauber dynamics, the convergence to equilibrium is exponentially fast
and the influence of both the dynamics and the Ising measure itself exponentially
decays with the distance. The Kawasaki dynamics, however, does not converge to
equilibrium with exponential rate. Furthermore, due to the global condition that
the total number of particles is conserved, the canonical Gibbs state is negatively
correlated, in the sense that (ηx;ηy) ~ -l/Ld for \x — y\ ~ L in a cube of size
L. (To see this, consider the special case that the canonical Gibbs state degenerates
into independent random variables with the constraint Σ ηx = const. Clearly one has

X

= 0 which implies that
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While l/Ld is very small for L large, these negative correlations sum up to order one
and in some sense are responsible for the l/L2 decay of the spectral gap. In other
words, long range negative correlations play a very significant role in the Kawasaki
dynamics while exponential decay dominates in Glauber dynamics. One can easily
understand this by considering the infinite temperature case, i.e., the product measure
case. While the spectral gap is trivial for the Glauber dynamics, it already requires
nontrivial arguments for the Kawasaki dynamics [F, KLO, Q] especially when more
than one particle is allowed per lattice site [KLO].

This paper is organized as follows: Chapter 1 is the statement of main results;
in Chapter 2 we prove the spectral gap for Glauber dynamics; Chapters 3 and 4
contain the main technical estimates of the paper and the spectral gap of the Kawasaki
dynamics is proved in Chapter 4; Chapter 5 provides some details on the equivalence
of ensembles needed in Chapters 3 and 4; finally we prove the logarithmic Sobolev
inequality for Glauber dynamics in Chapter 6. For readers interested only in Glauber
dynamics, Chapters 3 to 5 can be omitted.

I. Statement of Main Results

Let A be a domain in Έd and let dA denote its boundary

dA = {yeΈd\A\άisi(y,A)=\}, (1.1)

where the distance function is defined by

άist(y,Λ) = inf \x - y\,

x-y\ = max \xa-ya\. (1.2)
a=l,...,d

Let ω be a configuration on dA where ωx belongs to some state space X for all
x e dA. For simplicity, we shall restrict the state space to be Z 2 = {0,1}. All results
in this paper hold if one replaces Z 2 by

Z p = {0, l , 2 , . . . , p - l } , 2<P£N. (1.3)

We shall consider the spectral gap problem in a class of domains which we shall
call generalized cubes. Recall the standard cube in Zd is characterized by its size L
with

ΛL = {x = (x\...,xd)\xi eZd, 1 < £ * < £ } . (1.4)

By definition, a simple cube is a translation of the standard cube. The boundary dAL

of a simple cube is a union of faces which are cubes in Έd~1. Denote the faces by
dιAL, 02AL,..., d2dΛL. We now define the notion of generalized cubes. Choose a
lexicographic order in Z α . Let Fι c dιΛL be a subset of dιAL defined by

Fi^{xe diΛL \x>xie dlAL in Zd~1}, (1.5)

where xi is some fixed point in dιAL. A generalized cube of size L + 1 is the union
ΛL U Fι U U F2d. We shall call a generalized cube simply a cube.

The Hamiltonian we are interested in is the class consisting of translationally
invariant, finite range interactions. For simplicity of notation, we shall restrict
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ourselves to nearest neighbor interactions. Thus a Hamiltonian is characterized by
an interaction J(τjx,ηy) with

HA =
χ,yeA

\x-y\ = l

More generally,

" " %,ω) + λV?]τ. (1.6)
, x<EA, xβΛ

\χ-y\=l \χ-y\=l

The standard Gibbs state with chemical potential λ and boundary condition ω is
characterized by the density

dμΛ^χ(v) = exp[-H(η)]/ZΛωλ . (1.7)

Here the partition function ZΛ λ is the normalization factor to make dμAωλ into a
probability density. We shall denote by EμΛ'ω>λ or EAωλ or ( )Λiω>χ the expectation
with respect to dμΛ ω λ . Recall the pressure defined by

PΛ,ωW=\Λ\-ιlogZΛtω>;. (1.8)

The infinite volume limit of pΛ^ω(λ) exists and is independent of ω, i.e.
lim pΛω(\)=p(\).

We need the concept of canonical Gibbs states. Let TV be a fixed positive integer.
Then a canonical Gibbs state with total number of particles N and the boundary
condition ω is characterized by the density

dvA^N = d^Λ,ω \η=N (L 9)

Here ή = Σ Vx- Note that the right side of (1.9) is independent of λ since η is fixed.
xeA

Define the canonical partition function

(1.10)

where HΛ ω = HΛ ω λ = 0 . We shall follow the convention to omit the subindex in case
it is zero, understood, or unimportant. Recall the free energy

fΛ,ω,N = -\Λ\-]logZc

Λ>ωN. (1.11)

The infinite volume limit of / exists if N/\Λ\ —> ρ in the limit. Furthermore it is
related to the pressure by the Legendre transform

(1.12)
λ

For any function g of the configuration space, define two operators

<rx9(v) = g(σxv) - g(v), (i i3)
Tχyg(η) = g(Txyη) - g(η). (1.14)
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Here σxη and Txyη are defined by

<.*xΦy = (Vx)y = δxy{\ - ηy) + (1 - δxy)ηy , (1.15)

(TXyVh = (ηxy)z = Kz% + δyzVx + Q-δxz- δyz)ηz . (1.16)

To state our main result, we need the following assumptions. Define first the set

Aωίtω2 = i x e dA\ωx(x) ί ω2(x)}.

Assumption Al. Let g be a function depending only on the configuration of a subset
U in a cube A. Then

< const. [ρ(l - £ ) ] 1 / 2 | Λ ^ 2 I 1̂ 1 exp[-const. dist(AWl|W2, U)] IML . (1.17)

Here EA^ω^x denote the expectation with respect to dμΛ λ and the constants are
independent of A and ω%.

Assumption A2. There exists a summable function t(s) < const. s~d so that for
any local functions f and g with f (g resp.) depending only on configurations in U
(V resp.) we have

\U\U\ (1.18)

where C(ρ) —> 0 as ρ —» 0. Here A is a cube of size L.

Assumption A3. Let f = \A\~ι £ / x , g = \Λ\~ιΣgx and h = hy with fx, gx and
X X

hy being bounded local functions at x and y. Then

E»Λ,H+,[f.g. κ\ < const.i-^ll/lloolblLllftlloo. (1.19)

Here (f g; h) = ((/ - (f))(g - (g))(h - (h))), \\f\\,, = supH/JU and A is a cube
of size L. x

Note that in principle the volumes of the supports of / x , gx and h should appear in
(1.19) as in (1.17) and (1.18). We neglect them because all local functions considered
in this paper depend only on configurations in cubes of uniformly bounded volumes.
We shall adopt the convention that, by "local functions," we mean functions depending
only on configurations on a cube of size less than 4dR + 1 with R denoting the range
of the interactions in the Hamiltonian. In particular R = 1 for the Ising model.

We shall assume that the domain A in Assumption A2 is of the form

Λ = Ω\Γ

with Ω and Γ being generalized cubes and that \Γ\ < \Ω\ε for some ε > 0, say
ε = 1/100. We have assumed Assumption Al for all cubes. In fact, it can be proved
that if (1.17) holds for a fixed cube then it holds for all cubes, [O, OP]. Furthermore,
the exponential decay assumption for that fixed cube can be considerably weakened
[O, OP]. In any event, we do not exponential decay for Theorem 1 or 3. A power
law decay faster than summable will be enough, for example.

Assumption A. 1 is a standard assumption in the study of Glauber dynamics and has
been studied and reviewed extensively [MO1, St, SZ]. Assumptions A.2 and A.3 are
not as familiar and we are not aware of any results in the literature, though in principle
they should follow easily from the high temperature expansion. In a forthcoming paper
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we shall prove that Assumptions A.2 and A.3 follow from Assumption A.I and some
other very mild assumptions.

Theorem 1. Suppose Assumption Al holds. Let Θ(L) be defined by

Θ(L) = sup (/; f)ΛtωjX/®ΛtωiX(f), (1-20)
f,Λ,ω

Λ,ω,X

Here ( )Aωχ = EAωλ, (u; v) = (uv) — (u)(v) and A is any generalized cube of size
less than or equal to L. Then there is a constant k independent of A, ω and X such
that Θ(L) < kρ(\ - ρ) with ρ denoting the density of the Gibbs state μA ωX, namely

Theorem 2. Suppose that Assumptions A2 and A3 hold and that Assumption Al holds
for all Λ. Let

w(L) = L~2 sup (f J)AωN/DAωN(f\ (1.22)
f Λ N

\χ-y\ = l / Λ,ω,N

Here ( )AωN = EA ω N. Then there exists a constant k independent of A, ω, and N
such that w(L) < k.

The following Theorem 3 concerns the logarithmic Sobolev inequality for the
Glauber dynamics (1.21). We first recall the definition of entropy. Let a and β be
two probability measures. Then the entropy S(a/β) of a relative to β is defined by

S(a/β) = J \log ί^\\ da. (1.24)

In the case we are interested in, (1.24) is well defined since both a and β will be
discrete. In general one can define entropy by a variational principle.

Theorem 3. Suppose Assumption (A.I) holds. Let u(L) be defined by

u(L) = sup S(fμΛιωtX/μΛiωιX)/®ΛiωiX(Sf),

where the sup is taken over all cubes with size less than or equal to L and all probability
density (with respect to μAωλ) f. Then there is a constant k independent of A, ω and
λ such that u(L) < k.

II. Proof of Theorem 1.

We shall prove Theorem 1 only for d — 2. The general case follows from similar
arguments.

Step 1. Let A be the union of a generalized cube ΩL with its translation τ ( 0 _L\Ω,
namely
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Define an order x — (xι,x2) < y = (yι,y2) if x2 < y2 or x2 = y2 and xι < yι. Let
x0 = (0,0), xx = (0,1) etc. and let η- = ηx . For any j nonnegative define

Here J ^ is the σ-algebra generated by 77 , 77 + 1 , . . . . Then one has the identity

E[f; /] = (/;/} =
j=0

Here (/;/) = ( / 2 } - ( / ) 2 and

Note that the summation in (2.2) has only a finite number of terms.

Step 2. By definition f3 is the expectation of / with respect to the Gibbs measure

with boundary condition ω and η^ηJ+ι .... Let μ ( j ) denote such a measure. Let z/j)

denote the modified measure with boundary condition the same as μ^ except 77̂  is

set to be 0. Let
dμ(j)/dιs(j) = h{j). (2.4)

Then (ft =

f3 =

Hence
; f3)3 + 2E[(f; h)l(j) \ β~j+ιl (2.6)

Step 3. Given the σ-field ^ + 1 , ^ is distributed according to some Bernoulli measure.
Let p be the probability of having η3-; = 1. Hence

Uj'J3)j=Vtt - P)(fJ(VJ = 1) - £fy. = 0))2. (2.7)

It is straightforward to compute

Clearly, there is a constant u so that 0 < u~ι < (p/ρ) + (l —p)/(l—Q) < u < oo with
ρ denoting the density defined in Theorem 1 and with u depending on the Hamiltonian
but independent of λ. Together with (2.7) we have

<uρ(l-ρ)Ell(σjf)
2duJ

< const. ρ(l-ρ)E[(σjf)
2]. (2.8)
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Here we have used the fact that h = /z(j) in (2.4) is bounded by a constant independent
of λ.

Step 4. Let £ be a fixed large number and let Ba be the cube (with j fixed and
α = 0, 1,2,...)

d ) < Γ } , (2.10)

where Xj is the j t h site according to our ordering in Step 1. Let 2^ be the σ-algebra

generated by {ηx\x^Ba} and let S? = gξ Π&j. Define ft^ by

Hence

< const. Σ(f: ^ ~ O £ ω ( α + D2 < 2 - 1 2 >

Note that by definition Ev^ [h^ - h^+ι \ 5?a+ι] = 0. Hence

(2.13)

Since h^ is a local function at xj9 by Definition (2.11) and Assumption (Al) for any
two configurations η and ζ

\h{ί\η) - Λ^ίOI < const. ̂ e x p t - C H , (2-14)

we have that

< const. ^ Eμ(j)Eμ[f; f \ S?a+ι] exp[-Cίa](a + l)2£a. (2.15)

Here we have used the fact that \dis{j)/dμij)\ < const, with the constant independent
of Λ.

Step 5. Let a{ > a0 be chosen so that exp[-C£ α i ] < L~5d and α^ α ° exp[-C£α°]
< ε for some ε small to be chosen later. Note that ίaλ < const, log L. Divide the
summation in (2.15) into three regions: aγ > a > a0, a < a0 and a > ax. In the
first region we use induction to have

For the second region, since a0 is just a fixed constant, there is a C(a0) such that

^ Eβ[f. f\S?J< C{ao)ρ(l - ρ)E^ί ^ (σjf\.

c<a0 l\x-x}\<e°Ό J



408 S. Lu and H.-T. Yau

In the last region, one simply uses the trivial bound that Eμ(j)Eμ[f;f

Eμij)[f; / ] . Hence we can bound (/; ftω)*ω by

< 6>(const. log L/ Σ \ Σ K
\aι>ot>a0

\x-Xj\<£a0

+ L - 4 d ( / ; / ) μ ω . (2.17)

Step 6. By induction,

< Θ(L)E \
[[x<x0

We now collect (2.2), (2.6), (2.8), (2.17) and choose ε small to have

χ<χo

C(ao)ρ(l - _

+ L~2d(f;f)Λ. (2.19)

Since we have a similar inequality if one reverses the order in Step 1 by reflection,
we have the averaged inequality

+ L-2d(f;f)Λ. (2.20)

A > 7. Let A — A U τ ( _ L 0)Λ be a cube of size 2L x 2L. Repeat the above procedure
once more; we then conclude that

2 1
Θ(2L) < -Θ(L) H #(const. log L) + constant ρ(l - ρ)

3 100

< -Θ(L) + constant ρ(l - ρ).
4

The above inequality implies that Θ(L) is bounded for all L and concludes Theo-
rem 1. D

III. Proof of Theorem 2, Part I

Our basic procedure for proving Theorem 2 is similar to that for proving Theorem 1.
There are additional complications due to the conservation law and the slow decay
of correlation functions (i.e., the \/Ld term in Assumption A2). In this section, we
shall bound (fά(ηά = 1) - fj{ηJ = 0))2 (see (2.1) for definition of fά) by Dirichlet
forms and co variances (cf. Steps 2 and 3 for Theorem 1). In the next section, we shall
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bound the covariance by Dirichlet forms again (cf. Step 4 for Theorem 1) and thus
conclude Theorem 2.

Let vN be a canonical Gibbs state on A with some fixed boundary condition and
total number of particles N. For each x G A define

Fx = (\- ηx)cxp{-H(σxη) + H(η)}. (3.1)

Here H is the Hamiltonian for vN. Also define

ι Y x . (3.2)
xeλ

By particle-hole duality, we can assume without loss of generality that the density
ρN = N/\Λ\ is bounded by

QN < 2/3 . (3.3)

Assumption (3.3) will be enforced throughout the rest of this paper without further
explanation.

Most results in this section hold trivially in the case of continuous dynamics, e.g.
Ginzburg-Landau dynamics. Without going into the details of the Ginzburg-Landau
dynamics, let us remark that the two basic operators σx (1.13) and Txy (1.14) for the
discrete dynamics will be replaced by

σj = df/dηx,

Txyf = df/dηx - df/θηy,

in the Ginzburg-Landau dynamics. Certainly in this case ηx is a continuous variable.
As can be easily checked, the following Lemmas 3.1, 3.2, 3.4 and 3.5 are just
simple consequences of chain rules for differentiation if it were the Ginzburg-Landau
dynamics.

The reader should bear in mind that the discrete dynamics has to be treated carefully
when the density ρN = Af/|τl| becomes very close to one or very close to zero. One
certainly does not expect new phenomena occurred in this case; it nevertheless requires
careful arguments to treat the discrete nature of our dynamics. More significantly,
there are nontrivial differences between these two dynamics as we shall explain more
carefully in Lemma 3.6.

Lemma 3.1. With the above notation, for any function f

ΓxE^[f- FN]. (3.4)

In particular, if f is a local function and (3.3) holds then

\[EUN+I _ EUN][f]\ < const.I^Γ1, (3.5)

provided that Assumption A2 holds. Here σx is defined in (1.13).
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Proof By definition,

"N+l

= (N

For each x fixed, change the variable η —> σxη. Thus

Fx(η)f(η)

= CNE^[FN; f] + C

The constant CN can be determined easily by putting / = 1:

\ = CNE"»[FN].

This proves (3.4). Using (3.4), Assumption A2 and (3.8) (to be proved in Lemma
3.3) we have (3.5) immediately. D

Lemma 3.2 Let u0 = vNωQ and vx — vNωχ be two canonical Gibbs states with
boundary condition ω0 and ωλ for which the only difference is that (UJQ)Z = 0 while
(ω0z = 1 for s o m e z ^ ®Λ. Then for any function f

where h = di^/dvQ. In particular if f is a local function at x then

< const. [L~d + t(x - z)} II/IL (3.6)

provided that Assumption A2 holds. Furthermore if f — γ-r, Σ fx w ^ fx being a
local function at x then I I x

const.i-d| (3.7)

Proof The identity before (3.6) is simply the definition of h. Inequality (3.6) follows
from this identity and Assumption A2. Finally (3.7) follows from (3.6) and the fact
t is summable. D
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Lemma 3.3. For any x E A one has the bounds

const. ρN < EUN[ηx] < const. ρN = const. N/\Λ\, (3.8)

1 - const. (1 - ρN) < E"N[ηx] < 1 - const. (1 - ρN). (3.9)

Furthermore, for any set {xγ,..., xk} C A with x% φ x3 whenever i φ j one has

(const. ρN)k < E"»[ηxι . . . ηxj < (const. ρN)k, (3.10)

[1 - const. (1 - ρN)]k < E""[ηXl . . . ηxj < [1 - const. (1 - ρN)]k. (3.11)

Also for FN defined in (3.2) one has

const. < E"N[FN] < const. (3.12)

with the constant depending only on the Hamίltonian.

Proof. First of all let us assume that (3.8) holds. Clearly by particle-hole duality one
has that

const. (1 - ρN) < EUN[\ - ηx] < const. (1 - ρN).

It is elementary to check that this inequality is nothing but (3.9). Next we prove (3.10)
for k = 2 assuming (3.8). The general case follows by induction.

^NlVXlVX2] = E"»[ηXι]E"»[ηX2 \ ηXχ = 1]

< const. ρN const. (TV - 1)(\Λ\ - I ) " 1

< (const. 2

Similarly, one can prove (3.11) based on (3.9). So it remains to prove (3.8). For this
purpose, it suffices to prove that for any two sites x and y,

EUn[ηx]< const.EUN[ηy}.

This is because one can average (3.13) with respect to y to obtain (3.8). But this is
a simple consequence of the fact that exchanging spins at x and y affects the Gibbs
factor by at most some bounded factor. We have thus concluded Lemma 3.3. D

Let z be a point in A and denote configurations in A by η = (ηz,ξ) Let

Denote by i/0 the canonical Gibbs state with Hamiltonian Ho and number of particles
N. Let H' be the difference

and let gz be defined by

gz = txp[-H/(ηz,ξ)]/E^[Qxp[-Hf(ηz,O] I ηz] = dvN \ηχ /dv0 \ηχ . (3.13)
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Lemma 3.4. Recall the definition of σx and Txy in Sect. 1. Then with the above
notations,

z]}2 < 4E"°[f;gz | ηz = O]2 + 4Eu»[f;gz | ηz = I ] 2

+ const. E^[f\FN__x I ηz =• I ] 2 . (3.14)

Note that the left side of (3.14) is independent ofηz.

Remark. By definition E[- \ ηz]
2 = {E[ \ rjz]}2. We shall follow this convention for

the rest of this paper.

Proof. By definition of gz and vQ,

E"»[f I ηz] = E^[fgz I ηz] = E^[f;gz \ ηz] + E**[f \ ηzl

So by the Schwartz inequality

{σzE"»[f I ηz]}2 = {E^[f;gz \ηz=G\- E»°[f;gz \ηz = X\

= 0 ] 2

2

< 4E"°[f;gz I ηz = 0] 2 + 4E"°[f;9z \ ηz = I] 2

X

+ 2{σxE"°[f\ηz]}2.

Note that u0 depends on ηz only through the constraint ξ = N - ηz. So we can apply
Lemma 3.1 to σzE

u°[f \ ηz]. Therefore,

»°[{Txzf)ηx{\ - ηz) \ ηz = 0]2

+ 2Evo[FN_ι I ηz = \Γ2E^[f;FN_x \ ηz = I ] 2 .

Note that we have changed σx to Txz since the total number of particles is fixed. By
(3.12), E^[FN_X I ηz = 1] > const. This concludes Lemma 3.4.

Lemma 3.5. With the same notation as in Lemma 3.4,

E"»[E"»[f I ηz];E"»[f I ηz]] < 4E»"{E»°[f;gz | ηz]
2}

-'E^lη^l - ηz)TzJ]2

+ cσBst.E''N{ηzE'*[f;FN_ί\ηz}, (3.15)

provided that (3.3) holds.

Proof Let p denote EUN {ηz = 1} = EVN[ηz]. Since the marginal of vN on ηz is
just a Bernoulli measure, we have

= p(\ - p){Ev"[f \ηz = ϊ\- Ev»[f I ηz = 0]} 2 . (3.16)
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By Lemma 3.4,

E"»[Ev»[f\ηz]; E"»[f\η,]]

= 4p(l-p)Eι/»E»°[f;gz\ηz=0]2

+ 4p(l-p)E»"Eι'°[f;gz I ηz = I]2

+ Λp{\ - p)N~ι Σ E""E»°[ηxTzJ I ηz = 0]2

+ const.p{\ -p)E^E^[f;FN_ι \ ηz = I]2

<4E^{E»°[f;gz\ηz]
2}

v°[ηχTzJ \ ηz = 0]2}

''»{VzE
v°[f;FN_l \ηz]

2}. (3.17)

By definition of conditional expectation and (3.3)

E"°[ηχTzJ I ηz = 0] = E^[ηx(l - ηz)TzJ]{E»°tt ~ ηz]}~1

< const. E^[ηχ{\-ηz)TzJ].

Hence the middle term of (3.17) is bounded by

const. J2N~llE1/°Vx(l - %)Tzxff.

This concludes Lemma 3.5. •

Lemma 3.6. Let vN be a canonical Gibbs state with total number of particles N in
a cube A. Let 7 be a path from x to z with x,z G A and with ηλ = x and Ί\Ί\+\ = z

For i = 1,..., |7|, let bi = (72,7 Ϊ + 1) be the bound connecting /yι and 7 i + 1 and let

(TbJ)(η) = Γ 7 t i 7 i + ] f(η) = f{TΊiΠι+ιη) - f(η). (3.18)

Then there is a constant C depending only on the Hamiltonian such that

I M \
{(f(Tzxη) - f(η))ηx(l - ηz))lN < C\-γ\( ^{TbJ)2 \ , (3.19)

provided that the density of particle ρ = A^/|τl| is strictly bounded away from one, say
ρ satisfies (3.3).

Remark. If one considers continuous spins with continuous dynamics (e.g. Ginzburg-
Landau models), the bound (3.19) is just a simple consequence of the Schwartz
inequality. The difficulty in Lemma 3.6 is completely due to the discrete nature of the
dynamics. Should more than one species of particles per site be allowed (e.g., each
site may have one black particle and one white particle), Lemma 3.6 still holds with
only a slight modification of the arguments required.

Proof. Step 1. For any configuration η with ηx = \ and ηz = 0 define a path

θ(η) = {Θ2(η)}^jo connecting η to Tzxη as follows.
Let A(η) be the set of zeros for η, i.e. A(η) = {1 < i < |7J + 1 \ ηi = 0}. Suppose

\A\ = L Then θi is defined by

θ ? * ^ * = 1, , h i θoη = η.
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Here T^][+ι^+ι_i denote the operator exchanging particles at 7 | 7 | + 1 and 7 | 7 | + 1 _ i .
Now assume that we have defined θ for \A\ < k and η is a configuration with
\A(η)\ = k + 1. Let j be the smallest index in A(η). Define

^ = T j , i - * ^ i f i < 3 -

For i > j , let ζ — Tλjη and let δ denote the path from 7^ to 7|7 |+i Clearly, for the
path δ the configuration ζ has only k zeros. Hence we can define θt for ί > j by
using induction, namely

where the super index δ denote the dependence of θ on the path δ which has so far
been omitted for the path 7. Note that θ^η = Txzη and for each i there is a u(ϊ) so
that

with Tb defined in (3.18). Furthermore, u is a bijection from {1,. . . , |7|} to itself.
Hence we have

f(Txzη) - f(η) =
l=\

\Ί\

= ΣWWaV-lW ~ /<flα(i)-l)L (3.20)
ί=l

where a = u~ι. Denote the right side of (3.20) by

M

Σ\f = f(T^)-f(v). (3.21)

Let ίi = ̂ (ry) denote the distance between i + 1 and the second zero after i + 1. By
Schwartz' inequality and (3.21),

M

((/(Γ^ry) - f(η))ηxd ~ ηz)f <

For each i fixed change the variable by θa_λη = £. Note that <̂  differs from η
by at most four sites. So the change of normalization and Boltzmann factor e~H is
bounded by some fixed constant. On the other hand, the mapping η —>• θa_ι(η) = ξ is
not one to one. For each ξ there may be more than one η with θOί_1(η) = ξ. We now
give an upper bound of the possible number of η with θa_ι(η) = £. For simplicity
we consider only i = 1. Let j be the position of second zero after 2. By construction,
η and ξ agree after j - 1. The only source of confusion is that η has a zero between
2 and j and the position of this zero is arbitrary. Clearly the choice is bounded by
(j — 2). This proves the maximum number of η mapped into ξ is at most £im Therefore

((SbJ)£-1) < C((TbJ)).

Step 2. To conclude Lemma 3.6, it remains to prove that

(Vx^i) < const.
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Again for simplicity we assume that i — \ and ηλ — 1. Clearly we only have to prove
that

E[ηoηι - - (1 - ηό) ηs] < const. s~2.

But this follows from (3.11). We have thus concluded Lemma 3.6. D

For any two points x = (xι,x2) and y = (yι,y2) in A define the canonical path
from x to y by first connecting x to (xι,y2) by a straight line and then connecting
(xι,y2) to (yι,y2) again by a straight line. From now on ηxy will always denote the
canonical path between x and y. We can now combine Lemmas 3.5 and 3.6 to have

Lemma 3.7. With the same notations and assumptions as Lemmas 3.5 and 3.6,

ηz]',E"»[f I ηz]] < 4E"»{E'*[f;gg \ ηz]
2}

+ const.

+ const. E^{ηzE^[f;FN_ι \ηz]
2}, (3.22)

where 7 = ηzx.

Proof. Apply Lemma 3.6 with vN replaced by z/0; we have (3.22) with the middle
term on the right side replaced by E"°. But switching v0 to uN costs at most some
constant depending on the Hamiltonian. We have thus concluded (3.22). D

Remark. Lemmas 3.3-3.7 are independent of Assumption A.2.

Corollary 3.8. //, in addition, Assumption A.2 holds then

ηz];E"»[f I ηz]] < 4E^{E^[f;gz | Vzγ}

+ const.

where 7 = ηzx and C(ρ) —> 0 β^J ^ —> 0.

C(ρ)\Λ\-1Ev»[f;f], (3.23)

/. Use the Schwartz inequality and Assumption A.2 to bound the last term of
(3.22). D

IV. Proof of Theorem 2, Part II

Our goal in this section is to control the first and the last terms on the right side of
(3.22). We then follow the same strategy as in the proof of Theorem 1 to conclude
Theorem 2. The last term of (3.22) will be bounded in Lemma 4.4 while the first
term will be bounded in Lemma 4.6. Lemmas 4.1-4.3 are preparations for Lemma
4.4. Lemma 4.4 (and its preparations Lemma 4.1—4.3) is the only place we need the
assumption on three point functions, i.e., Assumption A3.

Let A be a cube of size L and Γ C A be a subcube of size L Define the boundary
dΓ and d~Γ by

dΓ = {x e A \ Γ I \x - Γ\ = 1}, (4.1)

d~Γ = {xeΓ\\x-(Λ\Γ)\ = 1}. (4.2)
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Let g be a function depending only on the configurations in Γ and let vN be a
canonical Gibbs state on A. Define the function

gΓ(δ0,ω0) = E""[g\ω = ω0, δ = <S0], (4.3)

where ω denotes the configuration on d~Γ and δ denotes the density in Γ.

Lemma 4.1. Let g be either a local function at x e Γ or of the form

χ (4.4)

xer

with gx a local function at x. Assume that g depends on the configurations inside Γ
only. Then

E^[gΓ;gΓ] <const\Γ\~\ (4.5)

provided that £ < L1/2 0 and Assumptions A.2 and A.3 hold.

Proof Let v be the marginal of v on Γ. By Corollary 5.6, v has a spectral gap. Hence
we only have to prove that

\K9r\\oo < const. IΓI" 1 .

But this follows from (3.5) and (3.7). D

Lemma 4.2. Let vNω be the canonical Gibbs state in a cube A with boundary

condition ω and density ρN = N/\Λ\ < 2/3. Fix z e dA, let g = \Λ\~ιΣgx,

0' T h e n

,ι _ EUNfi)}\g\\ < C\Λ\-ιN~\ (4.6)

provided that Assumptions A.2 and A.3 hold. Also with the same assumption

1 ^ - 1 . (4.7)

Proof. By Lemma 3.1,

+i,i _ EVN>1} - {EUN+ι>° - EUN'0}] [g]

(N+ I)"1

X

= Ωλ+ Ω2.

Step 1. We can rewrite Ω2 as

Ω2 = -{E^Λ[FN]E^nFN]Yι [{E^^[FN} - E^ <>[FN]}E^ o[g; FN]
v«Λ [g; FN] - Ev»ng; FN]}].

Since E"N[FN] is bounded from above and below (3.12), Ω2 is bounded by C|Λ|~2

if one can prove that

ί?3 = \E"" i[FN] - E^O[FN]\ \E»",°[g;FN]\ < C\A\-\

ΩA = \EVNΛ[9-FN] - E^ng;FN]\ < C\Λ\'2.
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The bound on Ω3 follows from (3.7) and Assumption A2. To bound Ω4, let us
assume without loss of generality that E"N °[FN] = 0. Denote the Radon-Nikodym
derivative of duNι/dvN(f by hN. We can rewrite Ω4 as

Ω4 = Ev».i[g(ωz = l)FN] - E^[g(ωz

-E^°[g(ωz = 0)FN]

= E"»<°[g(ωz = l)FNhN) - Ev"fi\g{ωz = 1)FN]

z = 1) - g(ωz = 0)}FN].

Denote g(ωz = 1) = gι and g(ωz = 0) = g0. Then Ω4 is just

Ω4 = {E^ng^x, hN] - Ev».o[g1]El'».<>[FN; hN]}

- Eι'»fi[gi;hNW^[FN;hN] + E^fi[{9l -go};FN], (4.8)

since E"N<o[FN] = 0. The first term is equal to

By Assumption A.3, it is bounded by C|/l|~2. By Assumption A.2 and definition of g
the second and the third terms of (4.8) are bounded by C|/L|~2. We have thus proved
that Ω2 < C\Λ\-2.

Step 2. It remains to bound Ωx by CI^I^TV" 1. By similar arguments and notations
as in Step 1,

Ωι={N+
X

) - 1I)
X

- (σχ9ι)}ηx]

- -(TV + I ) " 1 Σ EUN^>°[{σxgλ)ηx; hN+1]

^Hηxσχ(g0 - 9ι)l (4.9)

By Assumption A.2 and the form of g, the two terms on the right side of (4.9) are
bounded by const.l^l"1 TV"1. Hence \Ω{\ < C\Λ\~ιN~ι. Together with the bound on
Ω2 in Step 1, we have proved (4.7). The proof of (4.6) is similar and we omit it. D

Lemma 4.3. Let Γ c A be a subcube with ί < L1/1 0 0. Denote by μλ the infinite
volume Gibbs state with chemical potential λ. Let g be a function of the form
g = \Γ\~ι Σ 9X Denote the density on Γ by ρΓ. Let v be a canonical Gibbs

xer
state with number of particles N = \Λ\ρ and with ρ = p'{\). Recall the definition of
gΓ in (4.3). Then for any ε > 0, 7 > 0 and ί large enough

Eu*[gΓ(ω, QΓ) - kQr\gΓ(ω, Qr) - kρΓ] < ε\Γ\~\ (4.10)

provided that

dist(Γ,ylc) > L 1 / 2 0 (4.11)
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and the density ρ is bounded by

0<7<£<2/3. (4.12)

Here k is a constant given by

k=\Γ\E^\σxgΓ(ω,ρΓ)], xeΓ\d~Γ (4.13)

with σx defined by

&J](η) = U(σxη) - f(η)](l - ηx) - [f(σχη) - f(η)]ηx .

Note that the definition of k is independent of the choice of x G Γ\d~ Γ.

Proof Step 1. Clearly by definition, E[(σxf)
2] = E[(σxf)

2]. Note that we have the
identity

σχβr = \Γ\-K

By Corollary 5.6, the marginal of vN on Γ has a spectral gap. Hence

EUN[gΓ(ω, ρΓ) - kρΓ;gΓ(ω, ρΓ) - kρΓ]

< const. Σ E""[{σx(gΓ(ω, ρΓ) - kρΓ)}2]
xer

= const. Σ E"*[{σxgΓ(ω, ρΓ) - k/\Γ\}2].
xer

Let us denote the contribution for x e d~Γ by Ωγ while x G Γ \ d~Γ by Ω2. By
(3.7) Ωx is bounded by

Ωx < const. | Γ Γ 2 + ( d - 1 ) / d , (4.14)

where the factor \r\(d~ι)/d comes from the summation of x over d~Γ.

Step 2. We can write Ω2 as

Ω2 = const. [ \Γ\ - \d~Γ\ ] \Γ\-2E^[gΓ(ω, ρΓ) - k]2,

where gΓ is defined by

gΓ(ω, ρ) = \Γ\σxgΓ(ω, ρ), xeΓ\ d~ Γ.

Let a = EvN[gΓ(ω, ρΓ)]. Then

Ω2 < const. \Γ\-χEUN[{gΓ(ω) ρΓ) - a}2] + const. \Γ\~\k - a)2 . (4.15)

The first term is the variance of g Γ and we can bound it again by using spectral gap
as

const. \Γ\'ιE^ \Σ {°χ9Au,ρΓ)γ] < C(ρ)\Γ\~2. (4.16)
lχer J

Here we have used (4.6) in the last inequality. For the second term in (4.15), let A
denote a subcube of size L1/20 with the same center as \Γ\ and let τ λ denote the
Gibbs state on A with boundary condition ω. By the mixing Assumption A.I,

| £ τ λ , ω [ / ] _ Eτ^'[f]\ < const. L - ^ H / I L

if / depends only on configurations on Γ. Also, by the equivalence of ensembles
Lemma 5.2,

\a-k\ = \E""[gΓ(ω, ρΓ)] - E^{gΓ{ω, ρΓ)]\ < constL" 1/ 2 0. (4.17)
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Note that in order to apply Lemma 5.2 we have to change the expectation with
respect to a Gibbs state in A by the infinite volume Gibbs state. The error we made
is smaller than the right side of (4.17) by Assumption A.I. Lemma 4.3 follows from
(4.14M4.17). D

Lemma 4.4. Let A be a cube of size L or a cube of size L less a subcube of size
smaller than Lι^ιood. Let {gx}xeΛ ^e a fam^y of translationally covariant functions
in the sense that rx_ygy = gχ unless x or/and y are close to the boundary. Assume
that Assumption Al holds for all λ. Then for any 0 < ί < L there exists an ε(ί) with
ε(ί) —» 0 as ί —> oo so that

E"» [/; μiΓ1 ΣgX < const. (i)\A\-ιDΛ(f) + ε(£)\A\-1 (f; f)^, (4.18)

provided that L is large enough. Furthermore, const.(f) < exp(const.(f) for some
constant. In the application we shall choose ί to be a fixed large constant independent
ofL.

Proof First of all we can assume the density ρ is strictly away from zero, i.e.

3 > Q > 7 > 0 F° r otherwise,

E"" Γ/ IΛΓ1 5>xj 2 < E^ \\Λ\~ι X ^ MΓ1 ΣgJ S^[/;/]
L xeΛ J L xeλ xeλ J

<C(ρ)\Λ\-ι\\g\\2

ooE''»[f;f].

Here we have used Assumption A.2. Since C(ρ) -* 0 as ρ —> 0, (4.18) holds if ρ is
sufficiently small. Hence we shall assume ρ is bounded by

I > ρ > 7 > 0.

Step 1. Divide A into cubes of size ί with ί large but independent of L. Let a,β
index such cubes and denote the typical cube by Ba. Let ga denote

Hence

. . [ / : , „ - _ j

lα-ylci^L1^

(4.19)
|Q;-Λ C |>L 1 /4

By the Schwartz inequality and Assumption A.2,

\ (4.20)
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if L is large enough. Hence Ωx is negligible for the purpose of (4.19). Let us redefine

The error term is again negligible by a similar argument. From now on, we shall not
be very careful about the boundary terms as they are negligible in this lemma.

Step 2. Recall the definition of gBa in (4.3), i.e.

where ωa denotes the configurations on d~Ba and ρa denotes the density at Ba. By
the Schwartz inequality Ω2 < Ω3 + Ω4 with

Ω3 =

We can bound Ωf by

Ωf = {Ev"E""[S\ga-Ga I ωa,ρa]}2

< E^{E^[f; f I ωa,QaW»[ga;ga \ ωa,ρj}.

By Assumption (A2), the second factor is bounded by C\Ba\~ι. The first factor can
be bounded by

« < const(£)Da(fl Da(f) = ̂  \
[bea

for some const. (£) depending only on L Hence Ω3 is bounded by

Ω3 < const(£)\Λ\-ιDΛ(f). (4.21)

Step 3. Finally we have to bound Ω4. Let Ga = G^ + G%\ where

with δ a constant to be chosen later. Note that, thanks to the constraint Σvx

 =

constant, ^ G ^ is a constant. Hence we can replace Ga by G^ with arbitrary
a

choice of δ. Hence
( 2 ) ( 2 ) (4.22)

where G ( 2 ) = t*\Λ\-ιΣG%\ Note that by definition (G ( 2 ) ;G ( 2 ) ) = (G ( 2 );G) with

G = ίd\Λ\~ι Σ Ga. Agdn by definition (g = Avaga),
a

; G{2)) = (G ( 2 ); G) - (G ( 2 ); g). (4.23)
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For each a fixed, let

h a = E»»\\Λ\-1 Σ 9x\Ba\-
L χeΛ\r

Then we can rewrite (4.22) as

By Lemmas 3.1 and 3.2, \σxha\ < const, l^l" 1. Together with the spectral gap
Corollary 5.3 we have

(ha; hj^2< const. \Λ\-ψl2.

The first factor (G(2); G(2)) can be bounded by

provided δ is chosen according to Lemma 4.3. Hence for i large

1 . (4.24)

Together with (4.22) we have

£ —1

Combining this bound with (4.21), we conclude Lemma 4.4. •

Corollary 4.5. With assumptions and notation of Lemma 4.4. and Corollary 3.7,

ηz]]<\Λ\-ιLDΛ(f) + ε\Λ\-ιE^[f-f]

( \Ίyz\ ϊ

yβΛ ι=l

]2ηz]
2}. (4.25)

Lemma 4.6. Let h be a local function at z e A of size L. Then

EVN[f\hf < const.w(L1/md)

beΛ

hyx\

+ const. \Λ\~ιLJ2 5^(1 + \y- xlΓ^1 ζ £^[(T6 t/)2]
veΛxeΛ i=\

+ ε\Λ\-1El/N[f;f]. (4.26)

(5 defined in (1.22).
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Proof. Let Ba denote a cube of size ia centered at z and let Ba — BaΠ A. Define
(cf. 4.3)

We can bound the variance of ha by Lemma 3.2, as

E"N[ha;ha] < c o n s t . ^ α .

Step 1. By the argument as in Step 2 of Lemma 4.4,

EVN[f\hf <2EUN[f;h-hι]
2 + 2EVN[f;hxΫ

< const.l2w(£)DB{(f) + 2EUN[f\ hxf . (4.27)

To bound the last term let / ( 1 ) denote

Then by Assumption A.2,

f;h{EUN[f;h{]
2 = E^

<EUN[fl)',fω]E'/N[hι;hι

< const. ΓdE"N [/(1); / ( 1 ) ] . (4.28)

By Corollary 5.6 (ρ = ρN = N/\Λ\),

^ - [ / ( 1 ) ; / ( 1 ) ] < const. ^

We now apply Lemma 3.4 to σxβ
ι\ Hence for x e d~B{,

E"»[(σxfMγ] < E"»{E"»>*[f;gx \ ηx = O,^] 2 + E"»>*[f;gx \ ηx = l,

+ comt.E^*[f;FN_NBι_ι \ ηx = I] 2}.

Here NB denote the number of particles in B{ and vN x denotes the measure with
the Hamiltonian having ηx = 0 (cf. definition of v0 in Lemma 3.4). Similarly, we
have the same bound for x G Bx — d~Bx except the first two terms disappeared.

We can now proceed as in Lemmas 3.5-3.7 and Corollary 4.5. Note that the factor
p in (3.16) which is essential for (3.17) to hold is supplied here by the factor ρ. To
summarize, we have

ΓdE"»[fl);fil)] < Ωι+ε\Λ\-ιE"*[f;f]
( \Ίy*\ ϊ

+ const. IΛI^L^W

where Ωx is given by

Ωx = const. ΓdEUN J V EUN>* [/; gx \ Bx]
21. (4.30)
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Together with (4.27) we have

£""[/;ft] < Ωι+ε\Λ\-ιE^[f;f]+conste2w(e)DBί(f)

where Uι is defined by

C hyχ\

(4.31)

i=\

Step 2. Repeat Step 1 with A replaced by A \ Bx and Bx replaced by B2. We can
bound Ωx by

Ωx < Ω2 + const. εΓι\A\Bγ\-ιEVNEUN[f\f \ Bx]

hyχ\

-ιLE"+ cσnsLΓ2d-ι\Λ\B1\-ιLE

+ const. f-2~ιw(£2)DB2(f),

where Ω2 is given by

Ω2 = const. Γ2d-χEUN ]

yeB2xeΛ\B2 t=l

EUN>*[f; hx \ B2]
2.

(4.33)

(4.34)

One can replace the covariance in the middle term E"NEu*[f; f \ Bx] by EVN[f\ f]
to have an upper bound. Also choose ί so large that 2const. < ίχl2. Hence we can
now rewrite (4.33) as

Ω
x <

where Ω2 satisfies

Ω2

Σ
2 xeΛ\B2 t=\

"N'XU>K

(4.35)

( 4 3 6 )
xEd~B2

We now repeat the same argument until we reach a0 with £a° — L ( 1 0 0 α 5 ) . Hence we
have

E"»[f;g] < Ωao

\lyx

α = l

Lα=l

2 = 1

/ /\ (4.37)
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with

2Ω < g-<xod-(l/2)(l+2+-+ao-l)βi/N V^ EUN^x[f\g \B ]

Here we have used the Schwartz inequality in the last inequality. Since £a° =

L(ioodr\ for i i a r g e the last factor £-^0-(a0-i)a0/4 < L-2d^ S o w e c a n at,Sorb

ΩaQ into the second term on the right side of (4.37). For the third term note that for

each y G Ba \ Ba_l9 the numerical factor is

a0

So we can bound the second term as

\Ίyx\

const. (£)L\A\~l ] Γ ]P(1 + \y - x\)~d~λ ] P E"N[(TbJ)2]. (4.40)

By similar arguments, the last term is bounded by

const. (£)w(Lι/md) ^ EUN[(l + dist(6, z))~d~ι(Tbf)
2l (4.41)

beΛ

Combining (4.37)-(4.41), we have concluded Lemma 4.6. D

We can now use Lemma 4.6 in Corollary 4.5 to obtain the following corollary.

Corollary 4.7.

E"»{E"»[f\ηz];E"»[f\ηz]}

< const, i \Λ\-ιLDΛ(f) + e\A\~lE^[/; /]

r hyx\ Λ

1 + \y — x\)~d~ι y ^ (Tb f)
2 >

i=\ J

\b-z\Γd-ιE^[(Tbf)
2]\.

Proof of Theorem 2. Step 1. Assume that (1.22) holds for cubes of size not bigger
than L. Let A = ΩL U r(0_L)ΩL = Ωι + Ω2 (cf. Step 1 in the proof of Theorem 1).
We shall prove that

EΛ[f; f] < (2-w(L) + const)L2DΩL(f). (4.42)

As in the Step 7 of the proof of Theorem 1, we repeat the argument for A =
A U τ ( _ L ) 0 ) A Hence

w(2L) < \w(L) + const.

Therefore w(L) is uniformly bounded. We now prove (4.42).
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Step 2. Recall (2.1)-(2.3). We now apply Corollary 4.7 to bound E[fk\fk | ^ + 1 ]
and the sum over k to have

(/; f)A < E[f\ f\^] + [εw(L) + const. ]L2DΛ(f) + ε(/; f)A

< w(L)L2DΩl(f) + [εw(L) + const. ]L2DΛ(f) + ε(f; f)Λ.

Switch the role of Ωι and Ω2 and average,

(1 -2ε)(f;f)Λ < [(I +ε)w(L) + const}L2DΛ(f).

This proves (4.42) and concludes Theorem 2. D

V. Equivalence of Ensemble

In this section, we shall prove a strong version of equivalence of ensemble based on
the mixing Assumption A.2. The equivalence of ensemble is an old subject and has
been studied extensively in the literature, see e.g. [R]. But most classical results are
too weak for our purpose. We are able to obtain stronger estimates because of the
mixing Assumption A.2.

Lemma 5.1 Let λ eRbe α chemical potential. Then the pressure p^ ω(λ) in a cube
A of size L satisfies

\pAω(λ)-p(λ)\<C/L (5.1)

with C independent of L or λ or the boundary condition ω. Similarly, let ρ be the
density of particles defined by ρ = N/\A\, then with the same constant C the free
energy fΛω satisfies

(5.2)

Proof The proof for the pressure is obvious and we omit it. The free energy bound
is also obvious since

- pΛ ω(λ))
λ

> sup(λρ - p(λ)) + C/L = f(ρ) + C/L. D
λ

Lemma 5.2. Let Abe a cube in Έd and Γ c Abe a subcube. Denote the configurations
on A by θ — (77, ζ) with η denoting configurations on Λ\Γ and ζ configurations on Γ.
Let Uχ(ζ) (Vρ(ζ)) denote the marginal density ofζ with respect to the (canonical) Gibbs
state with the boundary condition ω and chemical potential λ (density ρ = p1 (λ)J. Then
there is a constant C independent of ρ, λ or ω so that

e ζ ) , (5.3)

provided that Assumption (A2) holds and

\Γ\ < L 1 / 2 0 , L-χl% <ρ< 9/10. (5.4)
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Proof. Step 1. By definition (ή = # of η particles)

Vn+ι(ζ) = Z~Xλ ^2exp[-H(η, Q]δ(η + C = n + 1)

x Σ ηxexp[-H(η,O\δ(η + C = n+ 1). (5.5)
xeλ\r

Here we have abused the notation and use Vn+ι for F n + 1 /uι . For each x fixed, let

Ix be defined by

Ix(θ) = (1 - Θx)exp[-H(σxθ) + H(θ)]> (5.6)

where σx is defined in (1.15). For each x fixed, change the variable by η = σxξ.
Thus

ηx exp[-H(θ)]δ(η + C = n + 1 ) = ^ Ix(θ) exp[-H(θ)]δ(ξ +~ζ = n), (5.7)

Ή ξ

where θ = (7/, 0 on the left side of (5.7) and θ = (ξ, Q on the right side. Denote by /

We can summarize Step 1 by

W O = Vn{QZnZ£λE
v»\I I C] (5.9)

Sίep 2. Rewrite (5.9) as

W O " Vn(O = Vn\ZnZ-\xE
v«\I I C] - 1] (5.10)

Also let Γ = 0 we have

^n+1 = ^ n ^ " [ G n + 1 ] . (5.11)

Here 6?n + 1 is defined by

Using (5.11) in (5.10) we have that

W O " y n ( O = Vn[E^Gn+iΓ
ι{EVn[I I C] - ^ n [ G n + 1 ] } . (5.12)

Step 3. By definition of Ix, there is a constant k such that

fc-^l - θx) <IX< fe(l - 6>x). (5.13)

Together with (5.4), we can bound EUn[Gn+ι] by

k\A\n~l >EVn[Gn+ι\ > k~ι[(\Λ\ - n X n + l ) " 1 ] > const.k-x\A\n~ l. (5.14)
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We are now ready to bound EUn [I\ζ\-EVn [G n + 1 ] in (5.12). Let us first decompose
the summation into x G Γ and x 0 Γ, namely,

E^[G] = - ( n + I ) " 1

xer

) " 1+ (n + 1 - Co)"1 Σ{EUnUx I Co] " E""[IX]}
xgΓ

+ [(n + 1 - CoΓ1 ~(n+ I)"1 Σ E""Uxl (5.15)

By (5.13), (5.14) and (5.4) the first and the third term together are bounded by

const.ίlΓlrT1 + \Γ\ \A\n~2} < const. \Γ\ \A\n~2 . (5.16)

Combining (5.12)—(5.16) and (5.4) one has the following bound:

I W C o ) - Fn(Co)l < const. L^Vn(ζ0){\Γ\n-1 + | 7 | } , (5.17)

7 = \Λ\~ι Σ{E"nVχ I Co] " E""[IX]}. (5.18)

Certainly |̂ y j is bounded by

6 = sup
Ci,C2

4 1 c2]

where the sup is taken over any two configurations on Γ. Note that EUn[ | ζ{] and
EVn[ I ζ2] are canonical Gibbs measures on A \ Γ. We can now apply Lemma 3.2
to have

|7| < ^ < const. | r | lylΓ1.

Therefore, one has the bound

I W O - Vn(O\ < const. Lι/*Vn(ζ)\Γ\n-1 . (5.19)

By induction, for any n and m with 9 | τ l | / 1 0 >m>n> \A\L~λ^ one has

\Vm - Vn\ < const. \m - n\Lι/*\Γ\n-ιVn . (5.20)

The restriction m > n can be removed provided that \m — n\Lι^\Γ\ <̂C n. Hence
(5.20) holds if

\m-n\< \Λ\L~2/5, 9\A\/IO >n> | y l |Z,~ 1 / 8 . (5.21)

Step 4. By definition,

Uχ(O ~ Ve(ζ) = (Ω, + Ω2)Vΰ,

where 17, and Ω2 are defined by (ρN =

\βN-e\<L-V5
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By (5.20) and (5.14) Ωx is bounded by

1^1 < const. \Γ\L1^ ^ ZNZχ

ιeXN\ρN - ρ\

\QN-Q\<L-V5

< const. \Γ\L'3/20 < const. L~ι/ι° . (5.22)

To bound Ω2, note that by (5.1) and (5.2),

ZNZ~leXN = exp[ \Λ\{λρN - fΛ(ρN) - pΛ(λ)}]

< exp[ \Λ\{λρN - f(ρN) - p(X)

Since / is strictly convex in the sense that f"{x) > ε > 0, one has

λx - f(x) - p(λ) < -ε(x - ρf .

So for ρN with 1 ^ — ̂ >| > L~2//5 one has

ZNZ~ιeXN < exp{-const. L^"1}. (5.23)

Since VQN is a probability density on the configurations on Γ, it follows from (3.10)
and (3.11) that

KN(OV-\ζ)\ < \V-\O\ < const. [̂ -1]"Γl .

Together with (5.23) we have Ω2 < | ^ | - 1 . Lemma 5.2 follows from this bound and
(5.22). D

Corollary 5.3. Assume the notations and assumptions of Lemma 5.2. Suppose μλ has
a spectral gap δx. Then Vρ has a gap at least δx/2 (with respect to Glauber dynamics).

Proof. By definition

' f)ve = Σ Έ[fW - f(OΫVρ(η)Vρ(ζ)

" f(O]2Ux(η)Uλ(ζ)

This concludes Corollary 5.3. D

Corollary 5.3 gives a sufficient condition for which the marginal density V has a
spectral gap. But the result fails when the density ρ becomes very close to zero. On
the other hand, the spectral gap in the extremely low density case should be obvious
as it corresponds to Gibbs measure with very high magnetic field. The following
Lemmas 5.4 and 5.5 provide a simple sufficient condition to close this gap.
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Lemma 5.4. Suppose W is a probability density on Γ satisfying (η = # of η particles)

VxW(η) < aW(σxη), a\Γ\ < 1/4, (5.24)

for some positive constant a. Then W has a spectral gap at least 16/a in the sense
that

(f;f)w<a/16®Γ(f). (5.25)

Here &Γ(f) is defined by (1.21) with the underlying measure Γ.

Proof. By definition and Schwartz inequality,

(/; f)w = Σ Σ
v ζ

4 Σ
v ζ

<4Σlf(η)-fΦ)]2W(η). (5.26)

The last term can be bounded by

Σ - fΦ)]2W(η) <2J2 \f(ή) -

2 Σ

X

+ 2 Σ in]'1 Σ VxU(σxη) ~ f(0)]2W(η).
777^0 x

(5.27)

For each x fixed, change the variable σxη = ζ. Hence

ΣfrxQ ~ f(OΫW(ζ) + 2α|Γ| ΣWQ - /(0)]2W(ζ).

Here we have used (5.24) in the last step. By assumption (5.24), a\Γ\ < 1/4, so we
have

Σlfiη) ~ f(0)]2W(η) < 4a®Γ(f).

Together with (5.26) we have proved Lemma 5.4. D
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Lemma 5.5. Let Vρ(ζ) denote the marginal distribution ofvN on Γ as in Lemma 5.2.
Suppose that

Then Vρ satisfies the assumption (5.24) with a = const, ρ and thus it has a spectral

gap at least const, ρ" 1 .

Proof. Lemma 5.5 is a simple corollary of Lemma 3.3. For example (5.24) asserts
that the probability to have ηx = 1 is smaller than the probability of having ηx = 0
by a factor const, ρ. Since the density ρ < L~ι/S <ζ\Γ\~{, one can follow the same
argument as in proving (3.10). We omit the details. D

Corollary 5.6 Suppose Assumptions A.I and A.2 hold. Then with the above notation
V has a spectral gap at least const. ρ~ι provided that \Γ\ < L1/20.

VI. Proof of Theorem 3

The proof of Theorem 3 is very similar to that of Theorem 1. We shall follow the
same notation and give details only to those requiring different arguments.

Proof of Theorem 3. Step 1. Instead of the identity (2.2) we use

S(f) = YJEE[fJ log(/ // J + 1) I βj+ι]. (6.1)

3=0

Steps 2 and 3. Clearly,

< const. {-log[ρ(l - ρ)]}ρ(l - ρ)E[(σjλβ)2 \ , ^ + 1 ] . (6.2)

By definition of / and fJ in (2.5), one has

const. j 3 < f3 < const. f3-.

Together with (2.5),

Hence

<2ρ{\-ρ)E[{σjλ[fj)
2}

- 0)E[(f(Vj = 1); hP)2

mJr\η. = 1)

< c o n s t . ρ(l - ρ)E[(σjy/f) ] + c o n s t . E[(f; h(j))v{j)j
r~ι]. ( 6 . 3 )

Here /z(j) and z/(j) are defined in (2.4), and we have used the bound

< const..
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To prove the last inequality, let z\ and z\ denote j{j] = 0) and /(?7 • = 1) respectively,
then it suffices to prove that

2
I r I r

E
/

if \ f 1

z\dμ — \ z^dμ < const. E\ / (zx — zo)
2dμ\ .

y J L. J j

But this nothing but the triangular inequality applies to the L2-norm w.r.t. the measure
dμ.

Step 4. Equation (2.13) needs some modification. Consider the variational problem

u{β) = sup ( //{h$ - h{l\x) dσ -βSσ).

ffdσ=l W )
Here J f dσ — E[f \ ̂ a+x] and Sσ denote the entropy with respect to the measure
dσ. By Assumption (Al)

- ρ)}1'2. (6.4)

By the entropy inequality

j fX dσ < βlog j'expt/T^-f βSσ{f\

we have that u(β) is bounded by

u{β) < βlogjexp [β-\h^ - h^+ι)} dσ. (6.5)

Suppose that β~x < 1. Then (6.5) is bounded by expanding the exponential to the
second order. By definition the first order J(h^£ - h^+ι)dσ — 0. Hence u(β) is
bounded by

u(β) < Cβ~x exp[-Cr] {ρ(l - ρ)}ι/2. (6.6)

If β-χ > 1 then replacing h%> - /z(j+1) by its maximum exp[-Cfα] {^(1 - ρ)}1/2 we
have (6.6) holds trivially. Hence by optimizing β

h%) dσ\ < [Cβ-1 exp[-Cn {ρ(l - ρ)}1'2 + βSσ{f)f

< 4CSσ(f) exp[-Ci°] {ρ(l - ρ)Ϋ'A (6.7)

for all / normalized to / f dσ — 1. We are now ready to bound (/;

oo

f hf-h^)2 c?

OO

= const. Σ {Eu(j)Eu{:ι) [/; hf - h{^+ι | ^ + 1 ] }2(α + I)2

~ — Γ 1
\ const. > yΓj oa 1/1/7 ) J /? / ^-^P — ~~Λ \Q\^ — ^// 1 \Q */
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where /*°° = Eu(^[f | S?+ 1] and Sa denote the entropy with respect to Eu^[\

5^ + 1 ]. Note that we divide / by j ^ to have a normalized probability density.

Step 5. Again we divide the summation into three regions. We shall only consider the
region a0 < a < aι. By induction

Here the Dirichlet form &a is with respect to Eu(j)[\ ^ + 1 ] . So we have

< const. u(C log L)E{ [E«»2>a (y/f)1/2 (ff)1/2] 2f~1}

< c o n s t . u ( C l o g L ) E [ { E " ^

= constu(ClogL)Eί ^ {σxyβf

Conclusion. We can now follow the remaining arguments in Steps 5, 6 and 7 in the
proof of Theorem 1 to conclude Theorem 3. D
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