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Abstract. The geometric structure of theories with gauge fields of spins two and
higher should involve a higher spin generalisation of Riemannian geometry. Such
geometries are discussed and the case of #/-gravity is analysed in detail. While the
gauge group for gravity in d dimensions is the diffeomorphism group of the
space-time, the gauge group for a certain # -gravity theory (which is #-gravity in
the case d = 2) is the group of symplectic diffeomorphisms of the cotangent bundle
of the space-time. Gauge transformations for # -gravity gauge fields are given by
requiring the invariance of a generalised line element. Densities exist and can be
constructed from the line element (generalising ,/detg,,) onlyifd = 1 ord = 2, so
that only for d = 1, 2 can actions be constructed. These two cases and the corres-
ponding # -gravity actions are considered in detail. In d = 2, the gauge group is
effectively only a subgroup of the symplectic diffeomorphism group. Some of the
constraints that arise for d = 2 are similar to equations arising in the study of
self-dual four-dimensional geometries and can be analysed using twistor methods,
allowing contact to be made with other formulations of # -gravity. While
the twistor transform for self-dual spaces with one Killing vector reduces to a
Legendre transform, that for two Killing vectors gives a generalisation of the
Legendre transform.

1. Introduction

W -gravity is a higher-spin generalisation of gravity which plays an important réle
in two-dimensional physics and has led to new generalisations of string theory
[1-12] (for a review, see [13]). The gauge fields are the two-dimensional metric
h,, together with a (possibly infinite) number of higher-spin gauge fields h,,. . ,.
W -gravity can be thought of as the gauge theory of local # -algebra symmetries in
the same sense that two-dimensional gravity can be thought of as the result
of gauging the Virasoro algebra, and different # -algebras lead to different
W -gravities. A # -algebra is an extended conformal algebra containing the
Virasoro algebra and is generated by a spin-two current and a number of other
currents, including some of spin greater than two [22-26] (for a review, see [27]).
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A matter system with # -algebra symmetry can be coupled to # -gravity in
such a way that the conformal symmetry is promoted to a diffeomorphism
symmetry and the whole # -algebra symmetry is promoted to a local gauge
symmetry. For chiral # -algebras, the resulting coupling is always linear in the
gauge fields [4, 5], but if both left and right handed # -algebras are gauged, the
theory is non-polynomial in the gauge fields of spin-two and higher [1]. For the
coupling to pure gravity, the key to understanding the non-linear structure is
Riemannian geometry. The spin-two gauge field is interpreted as a Riemannian
metric and the non-linear action is then easily constructed using tensor calculus

and the fundamental density, ./ — h, where h = det(h,,). This suggests that the
non-polynomial structure of # -gravity might be best understood in terms of some
higher-spin generalisation of Riemannian geometry and the aim of this paper is to
present just such an interpretation. The main results, which include the construc-
tion of the full non-linear action in closed form (without using auxiliary fields), were
first summarised in [14], but here a more detailed account will be given and the
geometry of the results will be discussed. Other approaches to the geometry of
W -algebras and # -gravity are given in [15-21].

In Riemannian geometry, the line element for a manifold M is given in terms of
the metric h,,(x) by

ds = (h,, dx"dx*)'? . (1.1)
An equally good line element can be defined using an n™ rank tensor field h,, ., . .
ds = (hy, py. . pdxtrdx* ... dxtr)tin (1.2)

and this can be used to construct a geometry with almost all the features of the

usual Riemannian geometry, although Pythagoras’ theorem is replaced by a rela-

tion between the n'® powers of lengths.! In fact, the line element (1.2) was con-

sidered by Riemann [30], but rejected in favour of the simpler alternative (1.1).
A further generalization is to consider a line element

ds = N(x, dx) , (L.3)
where N is some function which is required to satisfy the homogeneity condition
N(x, Adx) = AN(x, dx) (1.4)

so that scaling a coordinate interval scales the length of that interval by the same
amount. This defines a Finsler geometry [31] and (1.1) and (1.2) arise with special
choices of the Finsler metric function N. The length of a curve x*(t) is given by
| dtN(x, %) and this is invariant under reparameterizations ¢ — t'(¢) as a result of
(1.4). It is possible to define Finsler geodesics, connections, curvatures etc. [31] and
even to attempt a Finsler generalisation of general relativity (see [31] and refer-
ences therein).

To describe # -gravity, it is necessary to further generalise the geometry by
adopting a general line element (1.3), without imposing the Finsler homogeneity
condition (1.4). Then N is a real function on the tangent bundle TM that defines the

! The line element (1.2) is invariant under the diffeomorphisms dx* = — k*(x), Sh,,,,. . =
Ll s e Where £ denotes the Lie derivative with respect to k*. The transformation of
uiuz...um CAN DE rewritten in a suggestive way as oh,,,,. .., = 1V, k. .., Where k,, . =
k*h,,,,.. ,, and V is an affine connection constructed using h,, .
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length of a tangent vector y* € T,M at xe M to be |y| = N(x, y). It will prove
convenient to work with the “metric function” f(x, y) = N?(x, y) instead of N.
Expanding in y

f )= b)Y+ X)L Y (L)

gives a series of coefficients h,,, by, ;.. 4., - - - and the line element will be coordi-
nate-independent if these transform as tensors under diffeomorphisms of M. The
gauge fields of # -gravity will be given a geometric meaning by relating them to
such tensors.

Similarly, the inverse metric, which defines the squared length |y|*> = h*"y, y, of
a cotangent vector y, can be generalised by introducing a “cometric function”
F(x*, y,) on the cotangent bundle and defining the length of y, € T¥ M to be given
by |y|*> = F(x*, y,). Expanding in y as in (1.5) gives

1
F(x*, y,) = Z;l- Gy #"(X) Yy - - Vun > (1.6)

where the coefficients h{)--*#(x) are contravariant tensors on M, so that the
“length” of a cotangent vector is coordinate independent. For many purposes, we
will find it convenient to work with a cometric function rather than a metric
function.

We shall eventually want to regard the h{)#~(x) as higher spin gauge fields on
M with transformations of the form

6h5,1)“'”” — nh{é‘)“ avlflnz)"’”") + ... (17)

plus higher order terms involving the gauge fields, where the infinitesimal para-
meter Af)"#"~!(x) is a rank n — 1 symmetric tensor. The cometric function (1.6)
can be regarded simply as a generating function for these gauge fields, but as we
shall see, the gauge transformations have a natural geometric interpretation on
T*M.

As the homogeneity condition (1.4) has been dropped, it is possible to consider
a much larger group of transformations than the diffecomorphisms of M, Diff(M),
namely the diffeomorphisms of the tangent bundle (Diff( 7M)) or cotangent bundle
(Diff(T*M)), which in general mix x and y. It is natural to demand that fand F be
invariant (scalar) functions on TM and T*(M), i.e. that F'(x’, y') = F(x, y) etc., and
the transformation F — F’ corresponds to variations under which the gauge fields
h#i---#n of different spins transform into one another. These transformations turn
out to be too general, however. Roughly speaking, this is because they do not
preserve the important difference between the coordinates x on the base manifold
M and the fibre coordinates y. More precisely, the action of Diff(7* M) leads to
transformations of the hf) ~-*=(x) which depend on both x and y, and so are not of
the desired form (1.7) of transformations of higher spin gauge fields on M whose
transformations depend on x alone.

For this reason, we seek a natural subgroup of the bundle diffeomorphisms. For
the cotangent bundle, we consider the symplectic diffeomorphism group
Diffy(T* M) consisting of the subgroup of the diffeomorphism group that preserves
the natural symplectic form Q = dx%dy,. We shall discover the remarkable result
that requiring the cometric function (restricted to certain natural sections of the
bundle) to be invariant under symplectic diffeomorphisms leads to a natural set of
transformations for the gauge fields h*!---#» that are independent of y. This is true
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for any dimension of M. A role for Diff,(7* M) has been suggested previously in
the context of # -gravity [17, 3]. As will be seen, Diff,(7* M) turns out to be the
gauge group for one-dimensional # -gravity, but for the two-dimensional case this
is still too big and it is necessary to restrict further to a subgroup of Diffy(T* M).

In order to construct actions, we shall need some generalisation of the density

N/ — h, h = det[h,,]. To construct an action for a scalar field ¢, all that is needed is
a tensor density 4*’, as the action

= % [ dix i 8,00,¢ (1.8)

is then invariant. The tensor density can be regarded as an 1ndependent field, but as
det [h‘”] is a scalar in two dimensions, one can consistently impose the constraint
det [h‘”] = — 1 and this can then be solved in terms of an unconstrained metric

h,, as = /- hh“" so that (1.8) becomes the standard minimal coupling. The
quantity F(x, y) = h“v " Yuy changes by a total derivative on M under an infinitesi-
mal dlﬂeomorphlsm OF = d(k* F')/0x* so that fud? x F is invariant (with appropri-
ate boundary conditions).

In order to construct # -gravity actions, we shall need a “cometric density”

~ 1~
F(x* y,) = Z G G N (1.9)

which transforms by a total derivative under an infinitesimal %" -grav1ty gauge
transformation, so that [, d’x F is # -invariant. In particular, invariance under
Diff(M) will require that the h(,,) “#n(x) transform as tensor densities under
Diff(M). We will show that, with the gauge group Diffy(7* M), such cometric
densities do not exist for dimensions d > 2, that they do exist for d =1 and
that they do not exist for d = 2, but that there are cometric densities in d = 2
for a certain subgroup # of Diff, (7* M). This means that # -gravity actions
of the type investigated in this paper exist only for d = 1, 2 and that the # -gravity
gauge group in d =1 is Diffy(7* M) while that in d =2 is the subgroup
# < Diffy(T* M). In one dimension, we give an explicit construction of a cometric
density from a cometric, generalising the construction = /—hh. Ind = 2, we
show that the constraint that generalises det[#*'] = — 1 is

.
det (a—F(w) -1 (1.10)
0y, 0y,

and give some evidence to support the conjecture that a cometric density satisfying
this constraint can be written in terms of a cometric. This is the real Monge—
Ampére equation [29] and is sometimes referred to as one of Plebanski’s equations
[28].

The plan of the paper is as follows. In Sect. 2, classical # -algebras and
linearised # -gravity will be reviewed and in Sect. 3 the construction of # -gravities
involving auxiliary variables [2] will be reviewed. In Sect. 4, d-dimensional #" -
gravity and symplectic diffeomorphisms are introduced, cometrics and cometric
densities are analysed in Sect. 5 and actions are constructed in Sect. 6. In Sect. 7, the
relation between Eq. (1.10) and self-dual geometry in four dimensions is used to
motivate a twistor-transform solution of (1.10) which leads to a recovery of the
auxiliary variable formulation of Sect. 3. In Sect. 8, the solution of (1.10) that
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generalises the construction #** = ./ — hh** is considered and # -Weyl symmetry
discussed. Section 9 summarises the results and discusses some generalisations.

2. Classical #-Algebras and Linearised #/-Gravity

The ¥, algebra [25] is a Lie algebra generated by an infinite set of currents
wr={W? W3 W4, ...}, where W has spin r. Expanding W" in modes W7, the
algebra can be written as

[Wo, W1 ={(— Dn— (s — Hm} W}, 2.1)

with r, s = 2. (Note that this algebra is sometimes referred to as w,,. Throughout
this paper, #, will be used to denote the algebra (2.1).) Expanding the range of 7, s
to include a spin-one field W* gives the algebra #7 ., [3], which is the algebra of
symplectic diffeomorphisms of the cylinder, R x S*. Note that the spin-two current
W? generates a Virasoro algebra (without central charge).

This algebra can be realised as the symmetry algebra of the non-linear sigma-
model with action

1 . .
So ='2"jd2x gija,,qﬁ’a“(bj , (2.2)
where the fields ¢i(x*) are maps from two-dimensional flat space-time? (with

coordinates x*) to a suitable target space .#, which is some D-dimensional
manifold with coordinates ¢' (i=1,...,D) and metric g;;(¢*). It is useful to

. . 1 .
introduce null coordinates, x* =—2(x° + x!), so that the flat metric is

ds?* = n,,dx*dx” = 2dx* dx~. Then any symmetric rank-s tensor 7, . . is trace-

less (1" Ty po... = 0)if T _ ;... = 0, so that it has only two non-vanishing compo-
nents, T, ., and T_ ___ _, which both have spin s, but have helicities s and — s
respectively.
The spin-two currents
1 . )
Wity=Tss = Egijai ¢'0: ¢’ 23)

are the components of the traceless stress-energy tensor 7, and satisfy the conser-
vation laws 03y Ty+ =0. They generate the conformal transformations
0¢' = ks 0+ ¢, where the parameters satisfy 0. k. = 0; these conformal trans-
formations are a symmetry of (2.2). Any symmetric tensor d¥._; (¢) on .# can be
used to define the spin-s currents

1 , , .
Wisy = Edg?iz...is 0+ 9" 0+ 9™ ... 010" (2.4)

which are conserved if the tensor is covariantly constant, i.e. 0z Wy, = 0 if
Vidi,....=0, (2.5)

2 Throughout this paper, the two-dimensional space-time or world-sheet will be taken to have
Lorentzian signature. The conversion of formulae to the Euclidean case is straightforward and
given explicitly in [14]
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where V; is the covariant derivative involving the Christoffel connection for the
metric g;;. If (2.5) is satisfied, these currents generate the following semi-local
symmetries of S:

O =Y AF9dy, i, 04101 Dr (2.6)

where A*9 are parameters of helicity + 1 F s satisfying 95 A*® = 0. These non-
linear transformations are higher-spin generalisations of the spin-two conformal
transformation [1].

Any set of covariantly constant symmetric tensors on .# gives in this way a set
of conserved currents W4, each of which generates a semi-local symmetry of S,.
The symmetry algebra and corresponding current algebra will then only close if the
tensors satisfy certain non-linear algebraic identities [1, 5]. If the current algebra is
non-linear (i.e. not a Lie algebra), as will usually be the case for algebras generated
by a finite number of currents, then the corresponding symmetry algebra has
field-dependent structure functions instead of structure constants [1]. For #,
d? = g;; and a rank-s symmetric tensor is needed for each s =3,4,.... The
algebra generated by the currents (2.4) closes to give the algebra (2.1) provided the
tensors satisfy the following algebraic constraint [5]:
— d(s+t—2) (27)

Jrj2...Js+t-2t

dg?il.iZH-js—Z ld;?—ljs---fs+t—3)js+t—2'
for all s,¢t. For flat ., there is a solution to this corresponding to any Jordan
algebra, with d® proportional to the structure constants of that algebra [26]. For
D =1, there is a solution with d§} ; =1 for all s, (corresponding to the one-
dimensional Jordan algebra R). For Jordan algebras of order N (i.e. those with
anorm which is an N'! degree polynomial), then, as in [3], the algebra “telescopes,”
i.e. all currents W of spin s > N can be written as products of the currents of spin
s < N [5]. Then the algebra can be regarded as closing on the finite set of currents
of spin = N, giving the non-linear # algebra, which is a certain classical limit of
the # algebras found in [23, 24]. For example, for Jordan algebras with cubic
norm [26], the spin-four current can be written locally in terms of the spin-two
current as W44, = W12 W+, and all higher currents can be written in terms of
Wi+2), Wi+3). This leads to (two copies of) the algebra #73, generated by
W42y, Wi+3), with classical commutation relations given by (2.1) for r, s < 3 with
W +4)= (T++)* This algebra is a classical limit of Zamolodchikov’s quantum
operator algebra [22].
The chiral semi-local # -algebra symmetry can be promoted to a fully local one
(with parameters A‘*9(x*, x~) depending on both x* and x~) by coupling to
gauge fields h'*® which transform as

Sh'*9 = 03 A9 + O(h) (2.8)

plus terms of higher order in the gauge fields [1, 5]. The linearised action is then
given by adding the Noether coupling to Sy, giving

So+Si=8o+2[d*x Y, [W*9 Wy + hTIW_y] 29

s=2
which is invariant under the linearised transformations (2.6), (2.8) for general local
parameters 4, up to terms dependent on the gauge fields. These can be cancelled by
adding terms of higher order in the gauge fields and the full gauge-invariant action,
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which can be constructed perturbatively to any given order in the gauge fields using
the Noether method, is non-polynomial in the gauge fields [1]. The aim of this
paper is to investigate the full non-linear structure of this theory and give it
a geometric interpretation. Note that the linearised field equations given by
varying (2.9) with respect to the gauge fields imply the W,, constraints W, = 0.
Although only the bosonic realisation of #, gravity will be considered here,
other realisations and other # -algebras can be treated in a similar way. For
bosonic realisations, choosing different sets of d-tensors satisfying different alge-
braic constraints gives different # -algebras [5]. Similar # -algebra realisations
are obtained in many other models, including free-fermion theories, Wess—
Zumino—Witten models and Toda field theories. In each case, the symmetry can be
gauged by coupling to an appropriate # -gravity, with gauge fields corresponding
to each current [5]. For any model with a classical # -algebra symmetry, the chiral
gauging of the right-handed % -symmetry, i.e. the coupling to the gauge fields A+,
is given completely by the Noether coupling (2.9) with A~ set equal to zero, and
no higher order terms in the gauge fields are needed [4, 5]. For models with
a W, symmetry which telescopes down to a #j symmetry, the coupling to
linearised #y gravity is obtained by setting all the gauge fields of spin s > N to zero
in the coupling to ¥, -gravity and modifying the transformations, as in [3];
however, the coupling to non-linear # gravity is rather more subtle [37].

3. Non-Linear Gravity and #-Gravity

Consider first the coupling of the sigma-model (2.2) to two dimensional gravity.
The conformal invariance implies that the only components of the stress-energy
tensor are Ty 4+ = g;;0+ ¢'0+ ¢’ and the linearised Noether coupling to the spin-
two gauge fields h. ;. is given by

1 . :
Spin = 5j¢12x(gij6+¢>‘6_q$’ —h__Tyy —hyetT__). 3.1)
The Noether method gives the higher order terms, which can be summed to give
1. ., . .
= - - o 0. O j
Sll zjdxl—h__h++([1+h h++]glj +¢a+¢
—h__Tiy —hyy T_2). (3.2)

This non-polynomial action is invariant under diffeomorphisms, with 6¢* = k*3, ¢’
and 6h as in [32]. Following [2], it can be re-written in a polynomial “first-order”
form as

S,=2fd*x gij[nﬁ o_¢'+nld,d'—nlinl — 50+ ¢ o_ ¢

1 S 1 o
—Eh__n‘+na—§h++n‘_nf_]. (3.3)
Solving the algebraic field equations for the auxiliary fields n’, and substituting the
solutions into (3.3) gives back the action (3.2).

Although the actions (3.2) and (3.3) give a gauge-invariant coupling to spin-two
gauge fields, they give little insight into the geometric structure and most would
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prefer to use the geometric coupling
1 L
Sgeom = E j dzx\/ - ggﬂva” ¢lav ¢Jgij (34)

to a metric g,,. This is invariant under difffomorphisms and under the Weyl
transformation dg,, = (x)g,,. Choosing the parameterization

g"”‘9<1+h++h__ 2h__ ) 35)
for the metric g,,, the conformal factor © drops out of (3.4) as a result of Weyl
invariance and the action becomes (3.2), with the singularity of (3.2)ath, ;h__ =1

corresponding to the singularity of (3.4) when g = det(g,,) vanishes.

Consider now the coupling to #,-gravity. The linearised coupling is given by
(2.9) and the higher-order terms can be constructed perturbatively, but no obvious
pattern emerges and no closed form summation analogous to (3.2) appears feasible.
The approach of [2] gives a generalisation of the action (3.3) that is fully invariant
under local # -symmetries [3, 7, 5]. The action is

S=80+8S.,
SO=2.fd2xgij|:7t’+6_¢’+7z1_6+¢‘—n‘+7z1_ —§0+¢’6_¢’],

Sp=2[d%x Y (K Wiay(m) + h2 Wiy (@] , (3.6)

s=2

where

1 L R
W(ts)(ﬂ) = ;dﬁ)sz...is ﬂlw_lL 7Tl§ cee n’i . (3.7)

However, the polynomial field equations for the auxiliary fields ', cannot be
solved in closed form, so that the fields n’, cannot be eliminated. Nevertheless,
these field equations can be solved perturbatively to any given order in the gauge
fields, and the perturbative solution can then be used to reproduce the Noether-
method perturbative action to that order in the gauge fields.

It is clearly desirable to find a geometric approach which gives a closed-form
action to all orders in the gauge fields without using auxiliary fields. In the coupling
to gravity, the Noether approach led to two gauge fields h. ., which could be
assembled into a symmetric tensor h,, satisfying #**h,, = 0, where 7, is the flat
metric. In the covariant approach, all reference to the flat metric #,, is avoided by
dropping the tracelessness condition on h,,. The extra component of h,, then
decouples from the theory as a result of Weyl invariance.

For # -gravity, for each s, the two gauge fields A+ and h™ can be assembled
into a symmetric tensor h,,,, ., which is traceless, n**h,, , = 0. This suggests
that the covariant theory might be written in terms of unconstrained symmetric
tensor gauge fields h,,, ,, ., provided that there are higher spin generalisations of
the Weyl symmetry which can be used to eliminate the traces of the gauge fields, so
that for each s all but two of the components of the gauge field decouple. An
example of such a higher-spin Weyl symmetry, which was suggested in [5], is

Sh§ (3.8)

- (s)
Pip2..ops h(muzo-us.nﬂs) >
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where the parameter of the Weyl-transformations for a spin-s gauge field is
a rank-(s — 2) tensor ¢®. It will be seen later that for a large class of models, the
covariant action can indeed be written in such a way, with a #"-Weyl symmetry
which is similar to (3.8), but in which the spin-two gauge field has no preferred role.

We shall need a covariant generalisation of the spin-s transformation (2.6)
which does not involve any reference to a background world-sheet metric. A natu-
ral guess for this is (cf. [17, 3])

59 = T AT Ly 0,808 0 B ()

s

However, this corresponds to too many gauge transformations, as in the linearised
theory there are only two parameters, A*9 and A", for each spin s. In the
linearised theory, the transformations (2.6) can be rewritten in terms of symmetric
tensors A(;"*"""**~* subject to the condition

Hu Ay P =0 (3.10)

which implies that, for each spin s, the symmetric tensor A(;"*"**~* has only two

non-vanishing components, A*%, In the full non-linear theory, it will be seen that
the transformations can be written as in (3.9) but with the parameters satisfying
a non-linear generalisation of the tracelessness condition which is independent of
the flat metric and which reduces to (3.10) in the linearised theory. These con-
straints can be solved in terms of some unconstrained tensors k***** in such a way
that all but two of the components of the gauge parameters k**** drop out of the
gauge transformation. When expressed in terms of the unconstrained k**** para-
meters, the symmetry is reducible, in the sense of [33].

4. Geometry, Gravity and #-Gravity

Instead of restricting attention to two dimensions, it is of interest to attempt to
formulate # -gravity in d-dimensions. Consider, then, the d-dimensional sigma-
model or (d — 1)-brane in which a configuration is a map ¢’(x*) from an d-
dimensional space-time or world-volume 4", with coordinates x*, to a D-dimen-
sional target-space .# with coordinates ¢'. The cotangent bundle T*.4 has
coordinates (x*, y,), where y, are fibre coordinates. The map ¢'(x*) can be used to
pull-back a metric g;j(¢) on # to an induced metric G,,(x) = ¢;/(¢(x))0,¢'0,¢’ on
A. This transforms as a tensor under Diff(.4#") and can be used to define actions
that are invariant under Diff(./"), such as

SNambu-Goto = jddx - det(Guv)a Scov = j ddx AV h(huv Guv + ,Lt) > (41)

where h,, is a metric on /" and p is a constant. .
In a similar way, a # -metric function given by f(¢, dp) = g;($)d¢’ d¢’
+ dij dtdd? dp* + . . . on M can be pulled back to one on A,

fx, dx) = f($(x), 0, pdx*)
= ¢ij(¢(x))9, 9’0, ¢’ dx* dx”
+ dip(9(x))0,4' 0,470, ¢ dx" dx” dx? + . . .. 4.2)
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This can then be used to define an action, such as

S = [d*x[ht) g;;0,0'0, ¢’ + R dipd,9'0,070,0" +.. 1, (43)
where Rl *" are some tensor densities on 4. It will be useful to introduce
a generating function F(x*, y,) for these,

POt 3 = 5 R 0y - Y @4
n
which can be thought of as a variant of the cometric function and so will be referred
to as a “cometric density function.” In pure gravity, the tensor density h{3) can be
written in terms of a metric tensor h3) by k%) = \/— h,h!3), suggesting that the
cometric density might in turn be related in some complicated way to some
cometric function

1
FO, yu) = 2o ™ 00 s <+ Y (4.5)

where the coefficients h{,)""* are tensors on A"

An important special case is that in which .# is one-dimensional, with
gi1=1,dy1...1=1,..., etc. Then a real-valued function ¢(x) on A" defines
a section of the cotangent bundle, y,(x) = 0,¢, and the lagrangian (4.3) becomes
the cometric density F evaluated on the section, F(x*, 0,9 (x)).

If gij, dijx, . . . transform as tensors under Diff(.#), then the line element
f(¢, d¢) is invariant under Diff(.#) and its pull-back fix, dx) is invariant under
Diff(A4"), as is the action (4.3), provided that the h**- transform as tensor densities.
However, much larger non-linear symmetries can be considered which transform
tensors of different rank into one another. The Diff(.# ) transformation 6¢' = &(¢)
can be generalised to a Diff(7.#) transformation 5¢’ = (¢, d¢) and the metric
function f (¢, d¢) will be invariant if it is a scalar function on the tangent bundle.
The pull-back f(x, dx) will then be invariant under Diff(7.#"). Unfortunately, this
does not lead to a natural set of transformations for the gauge fields.

In a similar way, the cometric function (4.5) can be taken to be a scalar under
Diff(T* .4"), so that under x — x'(x, y), y = y'(x, y), the cometric (4.5) is invariant,
F'(x', y') = F(x, y). However, this group is not useful as the gauge group of # -
gravity, as it has no natural action on the gauge fields. The relation between
¥,, and symplectic diffeomorphisms [25] suggests restricting to these and, as we
shall see, this does lead to useful results.

The symplectic difftomorphisms of the cotangent bundle, Diffo(T* 4"), pre-
serve the two-form dx/%dy, and the infinitesimal transformations take the form

0 0
o e p——
Ber= =5 M) =5 A0 Y) (46)

"

for some function A. The transformations (4.6) satisfy the algebra
[5/1, 5/1'] = 5{A,A') ’ (4-7)

where the Poisson bracket for functions A(x, y), A'(x, y) on T* A" is

M)y =2"2 220 . (4.8)
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This symmetry algebra is isomorphic to the #,-algebra [25]. Strictly speaking,
this is the #, algebra if the functions A are restricted to have the Taylor expansion

A Y)Y = Y AT T OV - - Ve (4.9)
s=2

on T* 4, while if this sum is extended to include a spin-one transformation with
s = 1, then the algebra is #7 ., [3]. A function F(x, y) transforms under these
transformations as F(x, y) - F(x/, '), which implies

oF oF
=0xt— + 0y, —={A,F}. 4.10
OF = oxt o + Y oy {4,F} (4.10)
Consider a section X of T* 4" in which the fibre coordinate y, is set equal to
some cotangent vector field, y,|s = y,(x). On restricting functions A(x, y) on T* 4
to functions 4|y = A(x, y(x)) on the section, the Poisson bracket has the property
that

oAl oA’
Alg, A5y ={A, A s+ 2—] —| Op(¥uls) s 4.11
{ 5 |E} { }|2 8y,l 5 Ol [,,(y ]|2) ( )
where
A A’ "I 04
{A|z, AIIE} = a IE a IE 6/1 |2 IZ (4.12)

ox* 8yu(x)— x* 0y,(x)”

Note d,y, = 0, so that there are no d,y, terms in {4, A'}|5, but /0x*(y,|s) # O.
For sections corresponding to vector fields of the form y,(x) = d,¢ for some
function ¢(x) on A, d;,y,; =0 and the Poisson brackets have the important
property {Als, A5} = {4, A'}|5, so that for such vector fields it will not be
necessary to differentiate between y, and y,|; = y,(x). Furthermore, for such vector
fields the transformation (4.6) on y, is

52 () = 55 40, 06) @13

and this can be consistently rewritten in terms of a transformation of ¢(x), so that
8¢ =A(x,0,0) =D A " " 0@ ... 0u_, b, 4.14)

and this induces the following transformation on any function F(x*, 0,¢(x)):
OF = F(x*, 0,¢(x) + 0,09 (x)) — F(x*, 0,¢(x))

oF y

=369 0,A={A,F} —6x*0,F . 4.15)
The last term in (4.15), — 0x*9,F, would be cancelled if in addition x were varied
as in (4.6), in which case the result (4.10) would be recovered. Transformations in
which the coordinates x*, y, transform as in (4.6) will be referred to as passive
transformations, while transformations such as (4.15) in which x* is inert but the
fields transform as in (4.14) will be referred to as active transformations. Both
satisfy an algebra isomorphic to the symplectic difftomorphism algebra. The
transformation (4.14) is precisely the D = 1 form of the transformation (3.9), with
¢ (x) the bosonic field, so that these transformations indeed satisfy the algebra (4.7),



256 C.M. Hull

which means that the one-boson realisation of # -symmetry has a geometric
interpretation in terms of symplectic difftfomorphisms. Note that no natural trans-
formations can be obtained for the fields ¢ under the full diffeomorphism group of
the cotangent bundle.

5. Scalars and Densities

We now turn to the search for natural geometric transformations for the gauge
fields that arise in # -gravity. Before doing this, it will be useful to review the
derivation of the transformation of the metric in ordinary gravity. In Riemannian
geometry, a central role is played by the line element ds® = h,,dx*dx". Under an
infinitesimal passive diffeomorphism, dx* = — k*(x) and the transformation of the
metric h,, under diffeomorphisms can be determined by requiring that the line
element ds* be invariant, which will be the case if h,, transforms as a second rank
tensor, oh,, = 2V,k,,. Then f(x) = h,, y*y" is an invariant for all vector fields y*(x),
i.e. under the transformation x* — x"*(x) one has f'(x') = f(x). Equivalently, the
transformation of the inverse metric h** can be determined by requiring the
invariance of h**d,¢0, ¢ for all functions ¢, or of F(x) = h*”y,y, for all cotangent
vector fields y,(x).

Instead of asking for an invariant function F(x) = F'(x’), it is sometimes of
interest (for example in constructing actions) to seek a density F(x) such that the
integral I = | d?xF (x) is invariant, which will be the case if F'(x') = |0x/0x'| F (x).
Then F(x) = h* Y. Yy is a density for all cotangent vector fields y,(x) if h** trans-
forms as a tensor density. So far, #** and h** are independent; it is a remarkable fact

that given any tensor h*’, one can construct a tensor density by writing / — hh*’,
where h = det[h,,]. If d + 2, one can invert this and obtain h** from h**, while if
d = 2, one can only obtain h** up to a local Weyl transformation. While h** is the
fundamental quantity for the discussion of geometry, it is #** which is crucial for the
construction of actions; nevertheless for Riemannian geometry the two concepts
are equivalent (modulo Weyl transformations if d = 2).

Note that instead of dealing with passive transformations under which the
coordinates x* transform, the above can be formulated in terms of active trans-
formations under which the coordinates remain fixed and the fields transform.
Under active transformations, we demand that F(x) transform_ as a scalar,
OF = k"9, F and that F transform as a scalar density, 6F = (k“F ), so that the
integral I = [d’x F(x) changes by a surface term under dlﬂ'eomorphlsms

The purpose of this section is to generalise this to obtain # -transformations of
the gauge fields h**, h**, . . . occurring in the y expansion of some F(x, y) by
requiring that F transform in an appropriate fashion. The first case to be con-
sidered will be that in which F is a # -scalar, i.e. it is invariant under (passive)
# -transformations, and the gauge fields h**, K", . . . are all tensors. The second
case will be that in which F(x, y) is a # -density, i.. F (x, y) changes in such a way
that [ d IxFis W- -invariant, which will glve a different set of # -transformations for
the gauge fields W, e, . occurring in the y expansion of F(x, y), which will be
tensor densities. #~ -densmes will be used to construct invariant actions in the
following sections. We will concentrate on the case in which the matter system is
a single free boson, as this has a natural relation to the symplectic diffeomorphisms.
However, many of the results generalise to other matter systems and we will
comment further on this in Sect. 9.
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Consider first a cometric function F(x*, y,) (0 =1, ..., d) with the y-expan-
sion (4.5). Invariance of F under the action of Diff(.4") (with y, transforming as
a covariant vector) implies that the coefficients A*'--"#~ in (4.5) transform as
contravariant tensors under Diff(.4"). Similarly, the requirement that F be invari-
ant under general reparameterizations of 7*.4", ie. the requirement that
F'(x',y') = F(x, y) under x - x'(x, y), y = y'(x, y), can be used to obtain trans-
formations of the coefficients A*!---#= However, in general the transformations of
the tensors h*!'--# obtained in this way will be y-dependent and this is unsatisfac-
tory for the application to # -gravity. We shall want to interpret the cometric as
a generating functional for an infinite number of gauge fields h,(x) which are
defined on A" and which transform into functions of the gauge fields, the gauge
parameters and their derivatives that are independent of y. This is certainly true of
the gauge fields that arise in the Noether approach and is necessary if it is to be
possible to couple the same gauge fields to other realisations of the # -algebra. We
will now show that if we restrict our attention to the symplectic diffeomorphisms
of A, then it is possible to find y-independent transformations for the gauge
fields h(,,) .

For any vector field y,(x), the variation of F(x, y(x)) under the (passive) action
(4.6), (4.9) of the symplectic diffecomorphisms on x and y is given by (4.10), which can
be rewritten as

1
lrr%l avhi';).umm-z)

Ilm n-2)
('l) a '1 e ]YM Yuz «+ + Viman-2

OF 04
oy, 0
(Note that for general y(x), the x variation in (4.6) induces an extra transformation

of y(x), 8y = 6x*09,y.) If the tensor fields hy,(x) transform under Diffo(7* .4") in the
following y-independent fashion:

a[‘, yﬂ] (51)

m—1 v(pg... v(ps...
5’1(1,) =Pp Z 6n+m,p+2 I:——n—— A('Sl’; . avh(n)ﬂp) — h(n()” avl(m)l‘p)] R (52)

then the cometric function is not quite a scalar, but transforms under Diffy(7* A4")
as
6F oA

6 6

If the dimension d of /" is one, the right-hand-side vanishes and F is invariant,
F'(x',y') = F(x, y), where F'(x, y) is given by replacing h, by h(y = h) + oh in
4.5), ie. F'(x,y, hgy) = F(x,y, hg + Shyy)) — F(x, y, hy)). For general dimension
d of &, the right-hand-side vanishes for sections in which y, = d,¢ for some ¢, so
that F(x*, 0,¢) is invariant under the transformations (4.6)—(5.2), restricted to the
section y, = 0,¢. For any dimension d, this gives a realisation of an infinite group
of higher-spin gauge transformations acting on scalar fields and gauge fields. The
spin-two A,y transformations are just the diffeomorphisms of 4", with h{}) the
corresponding metric gauge-field, while the A, transformations give higher spin
analogues for which the gauge fields are hfg

0F(x,y) = F(x + 0x,y + 0y, h + 6h) — F(x, y, h) = O Y- (5.3)
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Instead of using this passive formulation in which the coordinates x* transform
and scalars are invariant, an (equivalent) active formulation can be used in which
the coordinates x* are inert and the fields ¢ and h, transform as in (4.14), (5.2).
Then instead of 6F(x*, d,¢) = 0, one has

OF (x*,0,¢) = F(x*, 0,¢ + 0,09, h + ohyy) — F(x*, 0,9, h)

04 GF(x*, 3,9)
oy, ox*

Such an F(x, y) will be referred to as a # -scalar.

To construct invariant actions, one needs scalar densities rather than scalars. It
is straightforward to construct densities D(x, y) that can be integrated over the
whole of the cotangent bundle (i.e. over both x and y) by introducing a metric
Guy on the cotangent bundle and constructing the fundamental density
/det(Gyy).Then | d%xd? y\/aL is invariant under the full group of diffeomor-
phisms of the cotangent bundle for any scalar L. However, for # -gravity one
requires integrals over the base manifold rather than ones over the whole bundle,
i.e. integrals of the form

(5.4)

S = [d*xF(x, y(x)), (5.5)

where y,(x) is some vector field. In particular, for vector fields of the form
yu(x) = 0, ¢ the integral (5.5) becomes a candidate action for % -gravity. Consider,
then, the integral (5.5) where the_“cometric density function” F(x,y) has the
expansion (4.4). If the coefficients h(,,) in (4.4) transform as tensor densities under
Diff(.4"), then the integral will be invariant (up to a surface term) under diffeomor-
phisms.

The next step is to attempt to find transformations of the tensor densities
h(,,) such that the integral is invariant under # -transformations. For active trans-
formations with x* inert and y, transforming as

o4
0y, = par (5.6)

one requires transformations of h, such that
OF = _a; [Q*(F, A)] (5.7)

for some Q*(F, A) constructed from F, A and their derivatives, so that the 1ntegra1
(5.5) is invariant. If Q* = Fk* for some k*(x, y(x)), then the surface term arising
from the variation of (5.5) can be cancelled by a variation of x*, 6x* = — k*. That is,
the change in the measure d*x resulting from the transformation éx* = — k* of x*
would be cancelled by the variation of F under the passwe transformations given
by (5.6), 6x* = — k*and F'(x, y') = F(x, y)J, where J is the jacobian J = |6x/ ox'|.

In particular, it would be expected that in this case k* would be given by
k* = — 04/0dy,, in agreement with (4.6). If F transforms as in (5.7) for some Q% it
will be referred to as a # -density, while in the special case in which Q* = F Fk* for
some k*(x, y(x)), so that the active viewpoint is equivalent to a passive one, it will
be referred to as a proper # -density. Surprisingly, it turns out that it is only
possible to contruct # -densities with y-independent transformations of the tensor
densities h, in dimensions d = 1, 2 and that these are not proper densities, as will
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now be seen. This is in contrast to the case of # -scalars, which can be constructed
in any dimension d, and the case of ordinary gravity, where densities are proper.

Consider, then, the variation of the integral (5.5) under the y transformation
(5.6). The change in F is given by

oF o

oF = — —
0y, 0x*

A(x, y(x))

PVHL .. -1 Hnln+1...bm+n-2
Z [h(n) av'l(m) * * y}n yuz coee y;lm+n-2

mn=2
+ (m — l)h(”,’,‘)‘ et Ay Vus oo Vumanes OvVe] . (5.8)

The strategy is to attempt to write the term involving 0,y, in (5.8) as a total
derivative term plus a term with no derivatives on_any y,, as such a term can be
cancelled by a suitable variation of the gauge fields . This would leave F with the
# -density transformation rule (5.7).

In one dimension, d = 1, (5.8) can indeed be rewritten as

0 n+m 2
6F Z ntm—2 [(n — Dhy OAgmy — (M — 1) Ay O], (5.9)
where
d m—
Qx, y) = Z ., m h(n) l(m))’ -2 (5.10)

and the one-dimensional ingices L, ... have been suppressed (hy, = hi' !,

etc.). If the tensor densities h, transform as
5}7(1») = Omenpr2 [(m— D ai;(n) —(n— 1)}—{(”) ], (5.11)

then the variation of ki, cancels the second term on the right-hand side of (5.9), so
that

OF = F(x, ¢ + 0, hypy + Shyp) — F(x, ¢, hyp) = 0,2 . (5.12)
Then the integral (5.5) is invariant up to a surface term under (5.6), (5.11),
oS =[dx 0,Q, (5.13)

and this will vanish with suitable boundary conditions. Note that Q can be
rewritten as

Q(x,y)=N"1 (2—‘;1 [NF]) , (5.14)

where N is the number operator N = yd/dy for_y, so that Ny*=sy* and

~1ys = =1y Thus with the transformation (5.11), F transforms as a # - density,
although the surprising presence of the number operator in (5.14) implies that it is
not a proper % -density, so that the surface term variation (5.7) cannot be com-
pletely cancelled by a transformation of x*. Note that (5.11) implies that h(s) trans-
forms as a contravariant tensor density of weight s under the one-dimensional
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diffeomorphisms with parameter 1 = 4y,
Shigy = A0 by — (s — Dy 0. (5.15)

In one dimension, d = 1, a # -density can be related to a # -scalar transforma-
tion (5.2) as follows. If h, transforms as in (5.11), then h,) = nh, ,, has precisely
the transformation (5.2). This means that the quantity

- oF ~ 1
K(x,y, h(n)) = @ = Z h(n+ Hx)y" = Z ; h(n)(x)yn (5.16)

is a # -scalar. In particular, the variation (5.11) leads to the change of K,

5hK = K(xa Y, i;(n) + 5’:;(n)) - K(X, Vs i;(n)) = ay/laxl< - ayKaxA = - {A’ K} >
(5.17)

and the transformation of x and y under the symplectic diffefomorphism (4.6) leads
to a change of K given by 6K = {4, K}, which cancels (5.17). This gives the

. - . .. OF,
important result that for any d = 1 # -density F, the derivative % is a # -scalar.

For dimensions d > 1, the problem is to write the term involving 0, y, in (5.8) as
a surface term plus a term without any derivatives acting on any y that can be
cancelled by an approprlate h(s) variation. Th1s is not possible for d > 2 or for
d = 2; this is easily seen in the special case F = 1 »* ¥ ¥, Vv, When (5.8) becomes

5F = 9,(4y") — 4(3,y") (5.18)

and there is no way to get rid of the 9,y term (where y* = n*"y,).
However, for the two-dimensional case, if one further imposes the constraint
that
M M =0 (5.19)

then (using 0,y, = 0,y,) it follows that

s = (- § 2iar oo

m=2

- Z —(6 Aoy ™ +)(y+)"'>+(+<—>—), (5.20)

which is of the required form of a total derivative plus a term with no derivatives on
any y. Thus for d = 2 # -gravity linearised about this flat background, linearised
# -densities exist only if the gauge group is restricted to a subgroup of the
symplectic diffeomorphisms in which the parameters satisfy a constraint whose
linearised form is (5.19). This is in agreement with the discussion of linearised
W -gravity of Sect. 2. This suggests that in d = 2, a # -density might exist if the
gauge group is restricted by some constraint whose linearised form is (5.19), and
this is indeed the case. A lengthy calculation (using the fact that in two dimensions

any tensor can be written as T,,, . = Tiu),... + Tju,... and the anti-symmetric
part is proportlonal to the two- dlmensmnal alternatmg tensor® e,, = — ¢,
Tiip...= — e T, ,where T, =¢e*T,, )leads to the result that (5.8) can be

3 The alternating tensor satisfies ¢*¢,, = 6% and % = 1



#W-Geometry 261

written as
~ 0 1
0F=—Q"+ X + _ o
pp nmzzm 5 VY Vimens
[(n +m— 2)hvﬂ1 Hn-1 0\) lﬁ:)ﬂn+l--~l—lm+n—2
(m_l)(n_l) ~1... n n+l...bm+n—-2V
T mra—s oG AT
(m — 1)(m—2) VL e Hin— 1 7 Hnfims 1 ee e 4
T Tmin_3 % R O N (5.21)
where
-2
X = Z Z an[svo'ept h(n mun moave j'zlmn)_m_‘“.My‘_l‘”]
n=2m=2
X e & Y, Vur oo Vi s VaVy0pYs (5.22)
for certain coefficients a,, and
i m—1

Q=

" mZ_2 (m+n—2)m+n—3) rm Vitmsn-2
X [(n — 1)(h(n) Hhn ;lmn)+1...um+n_2v)
+ (m 2)(h2"¢‘)1 “Mn-1 élmn)‘l”+l...um+n_2)] ) (5.23)

Then if the tensor densities transform as

5hu1ﬂz “Bp __ Z 5m+n p+2|:(m _ 1)1(#1#2 av }Tb;).up)v _ (n _ 1)}'{("#1#2... 6\» Ai’.n-)up)

+(——m_p)_(nl_ 0y LA Ry — i M;,;)“"’}] (5.24)

the integral (5.5) transforms as
08 = [d*x(0,Q" + X) . (5.25)

This means that the action will be invariant up to a surface term under the
transformations (5.6), (5.24) for which the parameters A, satisfy the constraint
X = 0. This constraint gives the required non-linear generalisation of (5.19) and
will be discussed in the next section. From (5.24), the h, transform as tensor
densities under the A, transformations. Note that on restricting to one dimension,
the transformation (5.24) reduces to (5.11).

6. Covariant Actions

Before constructing # -invariant actions, it will be useful to consider the analogous
problem of deriving the coupling of a matter system in d dimensions to gravity,
without using any knowledge of geometry. Suppose one has a matter current
Suv = S(u which transforms under diffeomorphisms as a tensor, 8S,, = k*0,S,,
+28,,0,k”, e.g., in the sigma-model example, one has the tensor S, = ¢;;0,¢'0, ¢’



262 C.M. Hull

Note that it would be inappropriate at this stage to subtract a trace to obtain the
usual stress tensor, as that would involve introducing a background metric. The
fact that the current S, transforms linearly implies that the following action

S =[d*x kS, 6.1)

can be made diffeomorphism invariant by attributing to the field " (x) a suitable
transformation law. Indeed, the action is invariant provided h**(x) transforms as
a tensor density:

SR = kP 3, — 200 3,k” + 9, k? . (6.2)

Ifd + 2, one can define ** = h**[det(— #**)]"/?~9 and show that it transforms as

a tensor. The density can be rewritten in terms of the tensor as i** = ./— hh*
(where h = det(h,”) and h,, is the inverse of #**) and this can be substituted into the
action (6.1) to give the usual coupling to a metric tensor h**. Both h and i have the
same number of components and the two formulations are equivalent (at least for
non-degenerate metncs) If d = 2, however, the tensor density cannot be written in
terms of a tensor in this way. Nevertheless, in two dimensions, det(h*") is a scalar,
so that one can consistently impose the constraint det(?*") = — 1 to eliminate one
of the three components of #**. This constraint can then be solved in terms of an
unconstrained tensor h*’ by writing " = /— hh™. This solution is invariant
under Weyl scalings of the metric, 4,, — oh,,, so that h,, depends on only two of
the three components of h,,, as one of the components is pure gauge.

To summarise, the geometric coupling to gravity was recovered by first finding
a gauge field & in terms of which the action was linear and then rewriting this in
terms of a gauge field with covariant transformation properties in the case d =+ 2, or
imposing a covariant constraint in the case d = 2. We now use a similar approach
to seck the coupling of a sigma-model to d-dimensional # -gravity, which in the
case d = 2 has the linearised form (2.9). Consider the case in which the target space
dimension is D = 1. We require an action of the form

S = [d'xF(x*,0,¢) (6.3)

for some cometric # -density F, with expansion (4.4) in terms of the tensor densities

@ “"on A, and demand that it have a # -symmetry invariance under which
¢ transforms as in (4.14) and the transformations of the density gauge fields

@ "~ are independent of ¢.* If such an action is found, the next stage is to rewrite
in terms of a cometric (4.5) whose components hy, are tensors if d # 2, orifd = 2, to
impose invariant constraints and solve in terms of a cometric function with
higher-spin #"-Weyl symmetries, so as to recover the linearised results given
earlier. Note that the gravitational coupling for any tensor current S,, is given by
(6.1). For # -gravity, we will find the coupling for the matter currents
04,9 ...0,,¢, but the same coupling then immediately works for any set of matter
currents S, which transform into one another under # -diffeomorphisms in
the same way as 0,,¢ . .. 0,,9.

* If this requirement were dropped, it would be straightforward to find a # -gravity coupling for
all d, but it would not give a universal # -gravity which could be coupled to all matter systems
with # -symmetry and would not give the non-linear form of the linearised action (2.9). Note also
that an active viewpoint is now adopted, so that the coordinates x do not transform
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The results are as follows. Invariance of the action (6.3) requires that F is
a # -density transforming as (5.7) for some Q¥ and the results of the last section
can now be applied to the cotangent vector field y, = 0, ¢. First, if d > 2, there are
no # -densities for which h, has no ¢ dependence in its transformation rules and
so there is no such invariant action.

Next, if d = 1, so that the sigma-model can be interpreted as a particle action,
# -densities indeed exist, so that # -gravity actions can be constructed. Specifi-
cally, the action (6.3), (4.4) is invariant (up to a surface term) under the transforma-
tions (4.9), (4.14) and (5.11), where the one-dimensional indices g, v, . . . have been
suppressed. The gauge group is the symplectic diffeomorphism group of the
cotangent bundle of the one-dimensional manifold 4", Diffo(7T* A4"). This gives the
one-dimensional # -gravity theory of [5].

In one dimension, one can in fact go much further and construct the action
explicitly from an invariant cometric line element (i.e. a # - scalar) F(x, y). For
comparison, the coupling to grav1ty (as opposed to ¥ -gravity) is given by the
truncation of the action (6.3) to 3 j dx h(;)(0¢)* and in this case the tensor density
hsy can be rewritten in terms of a contravariant inverse metric tensor h, by

by = Vhey - (6.4)

(This is the one-dimensional form of i** = \/— h*, with positive definite metric
hyy = (h'')™! = h = det[h,,].) In a similar spirit, we will now show that the action
(6.3), (4.4) with d = 1 can be rewritten in terms of a cometric

F(x, 0¢) = i % hey (00) (6.5)

which transforms as a scalar under Diffy(7*.4), i.e. under the (active) trans-
formation in which h, transforms as in (5.2) and ¢ as in (4.9), (4.14), 6F =
[0A4/0(0¢p)]0,F. (Equivalently, F is invariant under the “passive” transformations
in which, in addition to the above transformations, the coordinate x transforms as

ox = — [04/0(3¢)])

. . . _— . .. OF,
It was seen in the last section that, given any # -density F the derivative Fm is
~ y

oF
a W -scalar. This suggests identifying 8_ with the # -scalar (6.5). However, this is

not quite correct, since the Taylor expansions of F and F start at order y?, while

oF OF\?
that of % starts at order y. It follows that (E is a # -scalar whose expansion

starts at order y* _and so can be identified with (6.5). We then give the cometric
density function F in terms of a # -scalar cometric function F as

2
[ oD T oy, 2D Ry, 69)

The factor of two is a consequence of our conventions, while the square root in (6.6)
was to be expected from comparison with the pure gravity limit; indeed, the term of
lowest order in y in the Taylor expansmn of (6.6) reproduces (6.4). These relations
can be 1ntegrated to give F explicitly, usmg the boundary condition that F(x, y) is
a power series in y starting with the y? term. In terms of the number operator
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o . . _ ~
N=y 5, using the identity F = N~ 1(yd Fdy), we have

F(x,y) = N[y /2F(x, y)] 6.7
so that
- o © 3
NE(x,y) = Y by = (2 y h(,,,y”+2> (6.8)
n=2 n=2

and expanding in y gives the f, in terms of the hy,.

We turn now to the case of two-dimensional # -gravity. Consider the action
(6.3), (4.4) and ¢ transformation (4.9), (4.14) with d = 2. The tensor densities A, will
eventually be expressed in terms of tensors kg, in such a way that in the linearised
limit, (2.6), (2.8) and (2.9) will be recovered. However, even in the linearised theory,
the action was not invariant under the full Diffy(7T*.4") group under which
¢ transforms as (4.14), but only under the subgroup in which the parameters
satisfied a constraint whose linearised form is (3.10). This is of course borne out by
the full non-linear analysis, with the result that the action (4.4), (6.3) is only
invariant under the ¢ transformation (4.9), (4.14) together with a transformation of
the h¢, which is independent of ¢ if the parameters A, satisfy a constraint whose
linearised form is (5.19). The transformation (5.21) implies that an invariant action
is obtained if the constraint X = 0 is imposed, where X is given by (5.22). The
condition that X = 0 for all y(x) implies that

n

-2
PVO (UL Bn-m=2 JMn-m=1...4n-4)0T _
€y €pc Nin—m) Ay " =0 (6.9)
m=2

for each n > 2. This constraint can be rewritten in terms of 4 (4.9) and F as

A *F
mpgvo =0 6.10
39, 07 39, % (610
or, equivalently,
0*F ]‘1 A
=0. 6.11
[0yu6yv 0y, 0y, (.11

Introducing fran_1es ¢4 such that I;{‘zv) = &*2yn* and expanding (6.10) in y gives the
first few constraints as

2 ~
b b b
Hab '1'('3) =0, 7z /1'('4)6 = 3 hf:;)c /1(3)ab >
~ ~ 1~
bed b(c 7d d)b bed
”abl‘(g: = h?3)(c 'q‘(i)ab - h‘(l3(§a A(&)b + E h‘('4)c i(3)ab . (612)

This generalises (3.10) and the trace of A, is set equal to an h-dependent expression
involving the A, for r <'s, so that these constraints can be solved in terms of the
trace-free parts of the parameters, leaving just two parameters for each spin.
The action (6.3), (4.4) is then invariant under the transformations (4.14), (4.9)
and (5.24) provided the parameters satisfy the constraint (6.10). As in the case of
gravity, the linear coupling to tensor densities is fully gauge-invariant, but is
non-minimal. In the case of gravity, the constraint det(h**) = — 1 can be imposed
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and solved as h** = \/— gg"*® to give the usual Weyl-invariant formulation (3.4).
For # -gravity, some generalisation of this constraint is needed that is preserved by
W -gravity transformations. From the analysis of Sect. 2, the linearised form of this
constraint should imply that the h*:*-” are traceless (with respect to the flat metric
N about which one is expanding in the linearised approximation), but the
non-linear constraint should not refer to any fixed background metric. Consider
the following constraints on the gauge fields h,), k), hay:

det(hfz)) = —1, (6.13)
ho b =0, (6.14)
I D uvpe 2~ ~ P upp vac

hllv 4 = g hua hvﬂy h(3) h(3) s (615)

where f,, is the inverse of h(3), h,, his, = 6%. Linearising these constraints implies
that, as required, h3), and h4, are traceless with respect to 7,,, to lowest order in the
gauge fields. Furthermore, it is straightforward to check that these constraints are
preserved by the transformations (5.24), so that they can be consistently imposed
on the gauge fields. The full set of constraints are generated by the constraint

det(G*(x,y) = — 1, (6.16)
where .
G*(x,y) = Flxy) 6.17)
0y,0ys
Expanding the constraint (6.16) in y,, one finds the coefficient of y"*? is a non-

linear constraint on h, which (for n > 0) sets the trace h,, h{,y*’ equal to a non-
linear function of the h,, for m < n, so that the constraint has the correct linearised
limit. The first three constraints from the expansion of (6.16) are precisely (6.13),
(6.14), (6.15). A lengthy calculation shows that this infinite set of constraints on the
density gauge fields hfy} - is preserved by the transformations (5.24), and so can be
consistently imposed on the gauge fields without spoiling the invariance of the
action. Rather than give the lengthy direct proof of this result, we shall instead
present an indirect but simple derivation of this constraint in Sect. 7. Equation
(6.16), (6.17) is the real Monge—Ampére equation for a function of the two variables
y,; this equation is discussed in detail in [29], where the existence of solutions is
established (subject to certain conditions).

The constraint (6.16) can be interpreted as follows. Let z, be complex coordi-
nates on R* with real part y,, so that z, = y, + iu, for some u,. Thus (x*, z,, z,) are
coordinates for a bundle € T* A" which is a complexification of 7* 4", whose fibre
at x*is C?, the complexification of the cotangent space T5 A" ~ IR2. Then substitu-
ting y, = 3 (z, + Z,) in F(x, y) gives a function

~

K.(z %) = F(x,z + 2) (6.18)

for each point x on the base space .4/, which can be interpreted as the Kdhler
potential for the metric
0*Ky(z,2) =~
TRED_ Gy (619)

02,0z, ¥
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on the complexified cotangent space at x, CT* 4" ~ C2. The fact that K, is
independent of u, = —i(zu — z,) implies that K, is the Kéhler potential for

a Kihler metric of signature (2, 2) on R* with two commuting holomorphic Killing
vectors, 0/0u,. The condition det(G*(y)) = — 1 is then the Plebanski equatlon
[28] (or complex Monge-Ampére equation [29]), which requires that the metric is
Ricci-flat and so hyperkdhler and this implies that for each x, the corresponding
curvature tensor is either self-dual or anti-self-dual. Thus, for each x,
F(x, y) = K,(z, Z) is the Kéhler potential for a hyperkihler metric on R* with two
commuting (tri-) holomorphic Killing vectors and signature (2, 2). (For Euclidean
W -gravity, with h,, has 51gnature (2, 0) and the internal hyperkéhler metric G* has
signature (4, 0)). Thus K,(z, Z) gives a two-parameter family of metrics labelled by
the points x* € 4/, so that in this way we obtain a bundle over 4" whose fibres are
C?, equipped with a half-flat metric with two Killing vectors.

If F satisfies the constraint (6.16), the constraint (6.10) on the infinitesimal
parameters A can be rewritten, to lowest order in 4, as

O*[F + A1(x, ) _
det(-ay#—ayv—> =—1 (620)

which implies that F + A also corresponds to a Kihler potential for a hyperkihler
metric with two killing vectors, so that for each x, A represents a deformation of the
hyperkéhler geometry.

The field equation obtained by varying ¢ in (6.3) is

0
@aF—O (6.21)

which can be rewritten as

Y 0, [htm " 0, ¢ ... By, 91 =0. (6.22)

7. Twistor Transform Solution of Monte—Ampére—Plebanski Constraints

The general solution of the Monge-Ampere equation (6.16) can be given implicitly
by a Penrose transform construction. For solutions with one (triholomorphic)
Killing vector, the Penrose transform reduces to a Legendre transform solution
[35] which was first found in the context of supersymmetric non-linear sigma-
models [34]. This will now be used to solve (6.16); see [35] for a discussion of the
tw1stor space mterpretatlon It will be convenient to introduce the notation yo = {,

= &, The first step is to write F (x, ¢, &) as the Legendre transform with respect to
C of some H, so that

F(x,(,&)=n{ — H(x,m¢), (1.1)

where the equation

0H
==t (72)
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gives 7 implicitly as a function of x, {, &, so that = = n(x, {, £). Then it is straightfor-
ward to show that . .
oF 0F  0H

= = 7.
A" FE (7.3)
and
on  [(0*H\! on 0*H\" ! 0*°H
= =\ == ~=—\| == — (7.4)
o¢ on o¢ on on 0¢
and to use these to obtain
o2 \on*)
?*F  (P*H\™' H
ocot  \on*) omoE’
0*F  *H (*H\™'(9*°H?
— = — . 7.5
58z~ T +<an2> <anaé> 7
It then follows that
0*F 0*H\ ' *’H
det (ayu 6yv> = — (W) ‘aé—z . (76)
Then the Monge-Ampére equation (6.16) will be satisfied if and only if H satisfies
0*H 0*H
iy 0 (7.7
and the general solution of this is
H=H;(x,n+ &)+ Hy(x,m —¢) (7.8)

for arbitrary functions H,, H,. Then the general solution of (6.16) is given by the
Legendre transform (7.1) of (7.8) and the action (6.3) can be given in the first order
form

S=[d*xF(x,y) = [d®x(n¢ — H{(x", n + ¢') — Ho(x",m — ¢')),  (7.9)

where yo = ¢, y, = ¢'. This is essentially the canonical formulation of # -gravity of
[9]. The field equation for the auxiliary field = is (7.2) and this can be used in
principle to eliminate = from the action. However, it will not be possible to solve
Eq. (7.2) explicitly in general.

The close relation between the forms of the action (7.9) and (3.6), (3.7) suggests
that there may be a covariant Legendre-type transform technique that leads to the
form of the action (3.6), (3.7). Indeed, F can be written as a transform of a function
H as follows:

- 1
F(x*, y,) =2n*y, — 2 " yuyy — 2H(x, W) , (7.10)

where the equation
0H

P (7.11)
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implicitly determines n, = x,(x*, y,). H is not quite a Legendre transform of F with
respect to yo and y, because of the y? term in (7.10). Then

=2t — 'y, (7.12)
and the transform (7.10) can be inverted to give
1~ 1
H(X, 7'C)Z _EF(x”:yv)—}'ﬂ“yu—zn“vyuyv’ (713)

where (7.12) implicitly gives y, = y,(x, 7). As the transform is invertible, any F can
be written as the transform of some H and vice versa. Using

*F 0?H \!
=" — 7.14
ey, T T Z(W‘ W) ’ 719
it follows that
»*F 0*H
det =—1424" Yy~ -2 7.15
© <ayn ayv) * <'7 aTC” 67t” > ’ ( )
where
0°H
= . 1
a=da 52 aﬂy) (116

Then F will satisfy (6.16) if and only if its transform H satisfies
1, 0*H _ 0*H _
2 oo T ont on

1. (7.17)

The general solution of this is
H=n*n"+Lx,n*)+ L(x,n") (7.18)

which can be used to give the action

1
S = jd2x<2n"yu —2H(x, ) — 517‘” yuyv>

1 ~
= jd2x<2n"y,, — R — 571‘” Yupy — 2L(x, ") — 2L(x, n‘)) . (7.19)

The field equation for n* is (7.11), and using this to substitute for n gives the action
(6.3) subject to the constraint (6.16). Alternatively, expanding the functions L, L as

® 1
L(x9 7'C+) = Z - h(+S)(n+)s >
s=2 9%
- B
Lix,n7)= ) Eh( Nn~), (7.20)
s=2
reproduces the action (3.6). In this way, the auxiliary fields n* of the approach of [2]
have a natural twistor interpretation, and we learn that the fact that the actions
(7.9), (3.6) are linear in the gauge fields reflects the fact that the twistor transform
converts the self-duality equation into a linear twistor-space problem.
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Conversely, we know from [2,3] that the action (3.6) is invariant under
W, transformations and that this action can be rewritten as (7.19) provided that
H satisfies the constraint (7.17). However, H(x, m) can be expressed in terms of
a function F(x, y) using the inverse transform (7.13), and using this the action
becomes simply [ d2x F(x, y) while from (7.15) it follows that the constraint (7.17)
becomes precisely (6.16). Thus the fact that (7.19) subject to (7.17) is an invariant
action implies that the action (6.3) subject to the constraint (6.16) is also invariant
This establishes the result that the constraint (6.16) is consistent with the # -
transformations, as claimed in the last section.

8. Covariant Formulation and #-~Weyl Invariance

The constraints on the gauge fields ~é‘,,”,"' generated by (6.16) can be solved in terms
of unconstrained gauge fields in a number of ways. We shall first review the
solution of [14] which led to gauge fields which transformed naturally under
W -Weyl symmetry and then discuss a solution which it is conjectured will lead to
an expression of the gauge fields h{;)* occurring in the expansion of a ¥ -density
F(x, y) in terms of the gauge fields A{}) - in the expansion of a # -scalar.

The constraint (6.13) can be solved in terms of an unconstrained metric tensor

guv = g(2)uv as
& =—995 (8.1)
Similarly, the constraint (6.14) can be solved in terms of an unconstrained third
rank tensor g{3/:
~ 3
& =~— g[élé‘s“)” ~1 g™ gi%s? gap:| 3.2)
and (6.15) can be solved in terms of an unconstrained fourth rank tensor §{3¥’:
" A v {3 1 v a a
m”=v—4}ﬂf+¢”Q“—gﬁ”f’Qﬂwq, (8.3)

where

2
0% =S h™h gy g5 — B Gup »

3 "
= g8 ~ 40" 0 84

This can be repeated for all spins, giving the constrained tensor densities

hy"?*" in terms of unconstrained tensors g(,"**""*", which can be assembled into

a function
® 1
f(xa y) = Z ngtnl)uz..-u,.(x)ym Yuz o« Vi - (85)
n=2

The generating function F for the tensor densities /, can then be written as

F(x,y) = Qx5 f(x, ) , (8.6)
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where Q is determined in terms of f by requiring (8.6) to satisfy (6.16). The function
2 has an expansion of the form

Q0 y)= Y Q6L () Yus Y - + - Vum 8.7
n=0

and substituting (8.6) in (6.16) gives a set of equations which can be solved to give
the tensors Q) in terms of the unconstrained tensors g, in (8.5). This gives

Q(Z) =V 9

1 1
oty =/~ [ZQ’” g’”Q”"g’”’} (83)

where Q*" is given by (8.4) and g {3/ is related to the tensor §{;° in (8.3) by the field
redefinition

4
0(4) f7 —= {g;’p 98) . (8'9)

The solution (8.1) to the constraint (6.13) is invariant under the Weyl trans-
formation g,, - d(x)g,,, and this suggests that (8.6) should be invariant under
higher spin generalisations of this. Indeed, writing F in terms of f gives an action
which is invariant under the # -Weyl transformations

0f (x, y) = o(x, y)f (x, ). (8.10)
Expanding
a(x,y) = 02y (X) + 05)(X)yu + o@(X)yuy, + . .. (8.11)
these can be written as
Iim” Z R A 8.12)

These transformations can be used to remove all traces from the gauge fields,
leaving only traceless gauge fields. These #"-Weyl transformations are similar to
those given in (3.8) and have the same linearised limit, but have the advantage that
they do not give a privileged position to the spin-two gauge field.

The relation (8.6) 1mg11es that a “/// Weyl transformation can be used to set
F(x, y) = f(x, y), so that hey Hm = g(,,) " in this #"-Weyl gauge. This means that
in general the transformations of gi, "*" can be taken to be equal to those of
h(,,) “r or to be related to these by a possible #"-Weyl transformation. For
example, this gives the transformation of g{3) to be that of (6.2), up to a Weyl
transformation

89" = kP 3,g" — 2g°*“ 0,k” + g**(a + ,k*) . (8.13)

Then shifting ¢ — ¢’ = ¢ + 0,k” absorbs the d,k” terms into the Weyl transforma-
tion and the transformation becomes the standard one for an inverse metric:

0g" = kP0,g"* — 2g°“ 0,k” + g* 0o . (8.14)
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v(pipz.. Hip2...4p

Similarly, the term proportional to [0, 4, "]g5*® in the variation dg(y
given by replacing h by g in (5.24) can be absorbed into a #"-Weyl transformation,
but the resulting transformation for g, is not that corresponding to that of
a W -scalar and does not seem to have any obvious geometric interpretation.

The constraint (6.20) on the parameters A, can be solved in a similar fashion
in terms of unconstrained parameters k{, *"~' and the transformations of the
unconstrained gauge fields can be defined to take the form dg,)* "=
QWi f2# 4 . The g, might be thought of as gauge fields for the whole of the
symplectlc dlﬂ'eomorphlsms of T*4 (with parameters ky), and
appear in the action only through the combinations h(,,) The transformations of
h(,,) and ¢ then only depend on the parameters ki, in the form A,.

In gravity theory, it is sufficient to have a metric h,, in order to construct

actions, as densities can be constructed using ./ — det[h,,]. In # -gravity, it is
natural to ask whether a cometric function F which transforms as a # -scalar can
be used to construct actions, and in particular whether a # -density F can be
constructed from a # -scalar F. If so, this would lend weight to the idea that the
cometric F might play a fundamental role in # -geometry in the same way that the
line element does in Riemannian geometry. This would be particularly attractive,
as a # -scalar transforms naturally under the whole of the symplectic diffeomor-
phisms of the cotangent bundle, Diff,(7* .4"), while a # -density only transforms
under the subgroup of this defined by the constraint (6.10). Thus, as in the previous
paragraph, we would have gauge fields h, for the whole of Diffy(7* A4") with the
W -scalar transformation law (5.24),

5h:4n1)u2 — a(urkﬂz <Hn) + ... (8.15)

with h = [h(,,) (traces);] . plus non-linear terms, and 6h(,,) =
6““1“2 "an + ..., where Ajy ! [k(,,) “#n=1) _ (traces)] + . . . plus non-linear
terms. -

It is straightforward to show that the first few density gauge fields hy,, subject to
the constraints generated by (6.16), can be written in terms of the first few tensor
gauge fields h, as follows:

h =/ — hh) (8.16)
risp = —i— J- h[ha“{’ 2 o hilg, ] (8.17)
~€t |: K#eo — pwv Kooz 4 % BB ppo) KB aﬂ:|
2 (nv 1 (uv 1,p0) J,oBY
+ 3 h h h (3)ap h(% - g h h h(3) h(3)aﬂy ) (818)

where indices are raised and lowered with h** = h{3) and its inverse h,,,
h= det[huv] and

1
K#vpo — 5 hHveo ha( v h?acr))a X (819)

This means that given a set of gauge fields h, transforming under Diffo(7T* A7) as
in (5.2), then the gauge fields h(,,) defined by these equations transform as in (5.24).
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I conjecture that all the f, can be written in terms of h, gauge fields in this way,
although I have as yet no general proof; this is currently under investigation.

9. Summary and Discussion

We have seen that symplectic diffeomorphisms of the cotangent bundle of the
space-time (or world-sheet) ./ play a fundamental role in # -gravity, generalising
the role played by the diffeomorphisms of A" in ordinary gravity theories. For any
dimension d of 4", we found an infinite set of symmetric tensor gauge fields hg, """,
n=23,..., transforming under the action of a gauge group isomorphic to
Diffo(T*,./V) as

m—1

GHE ™ =9 T e pea " K b = i d kit | 01
m,n

where ki, ~"*"~'(x) are unconstrained infinitesimal symmetric tensor parameters.

These transformations had a geometric interpretation: they were precisely the

transformations needed for the generating function

1

F(xll’ yu) = Z; fnl)”.u"(x)yux <o Vun (92)
to transform as a # -scalar, i.e. to be invariant under the action of the gauge group
Diffy(T* A4") (as described in Sect. 5, with y = d¢). This suggested regarding F as
the natural generalisation of the invariant line element of Riemannian geometry.
As well as considering W -scalars, we also considered ¥ -densities F, which we
found could only exist in_ dlmensmns d =1,2. The # -density F generated an
infinite set of gauge fields h “#n_In the case d = 1, these gauge fields transformed

under local Diffy(T* A" ) ~ “/Ifm transformations as

Shigy =Y. Smen,pr2 [(m — 1) Dy — (1 — Dy 02m1 93)
For d = 2, we considered gauge fields with the transformation

5hmu2 “Mp __ Z 5m+n p+2[(m _ 1)).(’“”2 av;;ir})'h)v _ (n _ l)ﬁ(“,,‘)‘“““'avlg,;;,""’

+(m pl)(n; 1) av{lz':l;;luz...ﬁi.).up)v ’,';’(vn()muz ...... ﬂp)}] (94)
Note that we could consider this transformation for any dimension d; in particular,
it reduces_to (9.3) if d = 1. However, for d > 2, the corresponding generating
function F is never a # -density, while for d = 2 F is not a # -density for the full
group Diffy(7* 4") but only for the subgroup defined by the constraint (6.9), or
equivalently, (6.10). This formulation is redundant, in the sense that there are more
gauge fields than are needed, and it was shown that the following constraint could
be consistently imposed on the gauge fields:

0*F (x, y))
det| —— | =—1. 9.5
< 0y, 0y, 3)
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This constraint is preserved by the gauge transformations (9.4), and implies that the
linearised gauge fields are traceless.

For d = 1, we showed that gauge fields h(,,, transformlng as in (9.3) could be
explicitly constructed from gauge fields h, transforming as in (9.1), so that given
any d = 1 # -scalar F(x, y), we obtain a # -density by writing

F(x,y) =N"'[yy/2F(x, »)] . 9-6)

For d = 2, we showed that the first few gauge fields }7(,,), n=2,3,4, could be
expressed in terms of # -scalar gauge fields h, (provided that the gauge fields
satisfied the constraints generated by (9.5)) and conjectured that there was such
a construction for all n. The reformulation in terms of the h, involved many
redundant gauge fields (in the linearised theory, these are the traces of the hy,)
which could be gauged away using #-Weyl transformations.

The action for a smgle scalar field ¢ coupled to # -gravity in either one or
two dimensions (d = 1, 2) is then given by the integral of the % -density F(x, d¢)
over A,

S={d'xY bty "x)S® .., 9.7)
where the currents S, are defined by
so Lo o 9.8)
uieopn = 3 O @ e O @ .

If d = 2, this remains invariant if the constraints generated by (9.5) are imposed on
the gauge fields h,), and it seems that the action can then be reformulated in terms
of # -scalar gauge fields h,.

So far we have restricted ourselves to the rather trivial case of a single boson.
However, for any matter current S,lv that transforms under diffeomorphisms in the
same way as the free boson current  g;;0,¢'d,¢’, i.e. which transforms as a tensor,
the action S = [ d’x i*’S,, is invariant provided that #*" transforms as a tensor
density. In the same way, given any matter system which can be used to construct
a set of currents S, which transform in the same way under # -gravity
transformations as the single-boson currents (9.8), then the action (9.7) involving
these new currents will be ¥ -invariant, provided that the gauge fields 4 transform
as in (9.3) or (9.4). This immediately gives actions for a large set of matter systems;
this will be discussed further elsewhere.

Another important issue is the generalisation of these results to other #'-
algebras. As will be shown in [37], the gauge fields I for Wy gravity are generated
by a # -density F which, in addition to the constraint (9.5), satisfies a non-linear
(N +_1)™ order differential constraint, which implies that only the gauge fields
hey, by, - - - by are independent. Whereas the constraint (9.5) is related to self-
dual geometry, the new (N + 1)'® order differential constraint is similar to the type
of constraint that arises in the study of special geometry [38]. The truncation to the
W -gravity theory corresponding to the algebra #,, (ie. the subalgebra of
¥, generated by currents of even spin) is more straightforward: it corresponds to
setting to zero all of the gauge fields of odd spin, A+ 1.

One motivation for the study of # -geometry is to try to understand finite
# -transformations (as opposed to those with infinitesimal parameters) and the
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moduli space for # -gravity. The infinitesimal transformations for the scalar field
¢ were derived from studying infinitesimal symplectic diffeomorphisms and it
follows that the large W-transformations of ¢ are given by the action of large
Diff, T* 4" transformations on y, = d,¢. The finite transformations of the gauge
fields h, are given by requiring the invariance of the generating function F(x, y),
while the finite transformations for the h(n) follow from requiring the invariance of
f F, or from the construction of F in terms of F. It seems natural to conjecture that
the transformations of the gauge fields can be defined to give invariance under the
full group of symplectic difftomorphisms, as opposed to invariance under the
subgroup generated by exponentiating infinitesimal ones, but this remains to be
proved.

The gauge-fixing of # -gravity and the generalisation of the Liouville theory
that emerges in % -conformal gauge were discussed in [11]. Consider now the
moduli space M, for gauge fields h(,,) subject to the constramts generated by (9.5)
[11]. Linearising about a Euclidean background F = 1 h(z, Vv and choosing com-
plex coordinates z,z on the Riemann surface /" such that the background is
F =y,;, and using the linearised transformations 6h{jy ** = 0; A% *, it follows by
standard arguments that the tangent space to the moduli space M, at a point
corresponding to the background configuration is the space of holomorphic
n-differentials, i.e. the n™ rank symmetric tensors u,, , with n lower z indices
satisfying 0; yi,,. .., = 0 [11]. It follows from the Riemann—Roch theorem that the
dimension of this space on a genus-g Riemann surface (the number of anti-ghost
zero-modes) is dim(M,) = (2n — 1)(g — 1) + k(n, g), where k(n, g) is the number of
solutions x#*:*% (with n — 1 “z” indices) to d;k**""** = 0 (the number of ghost
zero-modes). It would be of great interest to use information about the global
structure of the symplectic difffomorphism group to learn more about the structure
of these moduli spaces.
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