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Abstract. The geometric structure of theories with gauge fields of spins two and
higher should involve a higher spin generalisation of Riemannian geometry. Such
geometries are discussed and the case of ΊV^ -gravity is analysed in detail. While the
gauge group for gravity in d dimensions is the diffeomorphism group of the
space-time, the gauge group for a certain i^-gravity theory (which is iV^ -gravity in
the case d = 2) is the group of symplectic diffeomorphisms of the cotangent bundle
of the space-time. Gauge transformations for ^-gravity gauge fields are given by
requiring the invariance of a generalised line element. Densities exist and can be
constructed from the line element (generalising ^ / d e t ^ ) only if d = 1 or d = 2, so
that only for d = 1, 2 can actions be constructed. These two cases and the corres-
ponding ^-gravity actions are considered in detail. In d = 2, the gauge group is
effectively only a subgroup of the symplectic diffeomorphism group. Some of the
constraints that arise for d = 2 are similar to equations arising in the study of
self-dual four-dimensional geometries and can be analysed using twistor methods,
allowing contact to be made with other formulations of ^-gravity. While
the twistor transform for self-dual spaces with one Killing vector reduces to a
Legendre transform, that for two Killing vectors gives a generalisation of the
Legendre transform.

1. Introduction

^-gravity is a higher-spin generalisation of gravity which plays an important role
in two-dimensional physics and has led to new generalisations of string theory
[1-12] (for a review, see [13]). The gauge fields are the two-dimensional metric
hμv together with a (possibly infinite) number of higher-spin gauge fields hμv._p.
^-gravity can be thought of as the gauge theory of local Ί^-algebra symmetries in
the same sense that two-dimensional gravity can be thought of as the result
of gauging the Virasoro algebra, and different i^-algebras lead to different
^-gravities. A i^-algebra is an extended conformal algebra containing the
Virasoro algebra and is generated by a spin-two current and a number of other
currents, including some of spin greater than two [22-26] (for a review, see [27]).
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A matter system with i^-algebra symmetry can be coupled to Ί^-gravity in
such a way that the conformal symmetry is promoted to a diffeomorphism
symmetry and the whole Ί^-algebra symmetry is promoted to a local gauge
symmetry. For chiral Ψ-algebras, the resulting coupling is always linear in the
gauge fields [4, 5], but if both left and right handed -^-algebras are gauged, the
theory is non-polynomial in the gauge fields of spin-two and higher [1]. For the
coupling to pure gravity, the key to understanding the non-linear structure is
Riemannian geometry. The spin-two gauge field is interpreted as a Riemannian
metric and the non-linear action is then easily constructed using tensor calculus
and the fundamental density, <J — h, where h = det(/zμv). This suggests that the
non-polynomial structure of Ί^-gravity might be best understood in terms of some
higher-spin generalisation of Riemannian geometry and the aim of this paper is to
present just such an interpretation. The main results, which include the construc-
tion of the full non-linear action in closed form (without using auxiliary fields), were
first summarised in [14], but here a more detailed account will be given and the
geometry of the results will be discussed. Other approaches to the geometry of
^-algebras and ^-gravity are given in [15-21],

In Riemannian geometry, the line element for a manifold M is given in terms of
the metric hμv(x) by

ds = (hμvdxμdxv)1/2 . (1.1)

An equally good line element can be defined using an nth rank tensor field hμιμ2_.μn:

ds = {hμiμ2,,,μJx^dx^ . . . dx^)ίίn, (1.2)

and this can be used to construct a geometry with almost all the features of the
usual Riemannian geometry, although Pythagoras' theorem is replaced by a rela-
tion between the nth powers of lengths.1 In fact, the line element (1.2) was con-
sidered by Riemann [30], but rejected in favour of the simpler alternative (1.1).

A further generalization is to consider a line element

ds = N(x9 dx), (1.3)

where N is some function which is required to satisfy the homogeneity condition

N(x, λdx) = λN(x, dx) (1.4)

so that scaling a coordinate interval scales the length of that interval by the same
amount. This defines a Finsler geometry [31] and (1.1) and (1.2) arise with special
choices of the Finsler metric function N. The length of a curve xμ(t) is given by
J dtN(x, x) and this is invariant under reparameterizations t -> t'(t) as a result of
(1.4). It is possible to define Finsler geodesies, connections, curvatures etc. [31] and
even to attempt a Finsler generalisation of general relativity (see [31] and refer-
ences therein).

To describe ^-gravity, it is necessary to further generalise the geometry by
adopting a general line element (1.3), without imposing the Finsler homogeneity
condition (1.4). Then AT is a real function on the tangent bundle TM that defines the

1 The line element (1.2) is invariant under the diffeomorphisms δxμ = — kμ(x\ δhμiμ2_μn =
<&khμiμ2...μn, where £?k denotes the Lie derivative with respect to kμ. The transformation of
hμιμ2...μn can be rewritten in a suggestive way as <5/ιμiμ2...μn = nV ( μ i/cμ 2...μ n ), where fcμ2...μn =
kμihμiμ2...μn

 a n ί * ^ * s a n affine connection constructed using Λμi...μn
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length of a tangent vector yμ e TXM at x e M to be \y\ = N(x, y). It will prove
convenient to work with the "metric function" /(x, y) = N2(x,y) instead of iV.
Expanding in y

f{x, y ) = . . . h μ v ( x ) y μ f + + h ι μ 2 . . . μ n ( x ) y ^ y ^ . . . / » + . . . ( 1 . 5 )

gives a series of coefficients hμv9 hμιμ2.mmfJln9 . . . and the line element will be coordi-
nate-independent if these transform as tensors under diffeomorphisms of M. The
gauge fields of i^-gravity will be given a geometric meaning by relating them to
such tensors.

Similarly, the inverse metric, which defines the squared length \y\2 = hμvyμyv of
a cotangent vector yμ can be generalised by introducing a "cometric function"
F(xμ, yv) on the cotangent bundle and defining the length of yμeT*M to be given
by \y\2 = F(xμ, yv). Expanding in y as in (1.5) gives

F{xμ,yμ) = YJ-hμt)-
μ«{x)yμi . . . yμn, (1.6)

n ™

where the coefficients hfa" 'μn(x) are contravariant tensors on M, so that the
"length" of a cotangent vector is coordinate independent. For many purposes, we
will find it convenient to work with a cometric function rather than a metric
function.

We shall eventually want to regard the Λgί)"'μn(x) as higher spin gauge fields on
M with transformations of the form

δhζnS"'^ = - nhffi djfr-^ + . . . (1.7)

plus higher order terms involving the gauge fields, where the infinitesimal para-
meter λln)'"μn~1{x) is a rank n — 1 symmetric tensor. The cometric function (1.6)
can be regarded simply as a generating function for these gauge fields, but as we
shall see, the gauge transformations have a natural geometric interpretation on
T*M.

As the homogeneity condition (1.4) has been dropped, it is possible to consider
a much larger group of transformations than the diffeomorphisms of M, Diff(M),
namely the diffeomorphisms of the tangent bundle (Diff(ΓM)) or cotangent bundle
(Diff(Γ*M)), which in general mix x and j ; . It is natural to demand that/and F be
invariant (scalar) functions on TM and Γ*(M), i.e. that F'{x\ y') = F(x, y) etc., and
the transformation F ->F' corresponds to variations under which the gauge fields
hμi μn of different spins transform into one another. These transformations turn
out to be too general, however. Roughly speaking, this is because they do not
preserve the important difference between the coordinates x on the base manifold
M and the fibre coordinates y. More precisely, the action of Diff(Γ*M) leads to
transformations of the hμ^"βn{x) which depend on both x and y, and so are not of
the desired form (1.7) of transformations of higher spin gauge fields on M whose
transformations depend on x alone.

For this reason, we seek a natural subgroup of the bundle diffeomorphisms. For
the cotangent bundle, we consider the symplectic diffeomorphism group
Diff0 (Γ* M) consisting of the subgroup of the diffeomorphism group that preserves
the natural symplectic form Ω = dxμ

Λdyμ. We shall discover the remarkable result
that requiring the cometric function (restricted to certain natural sections of the
bundle) to be invariant under symplectic diffeomorphisms leads to a natural set of
transformations for the gauge fields hμι'"μn that are independent of y. This is true
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for any dimension of M. A role for Diffo(7"*M) has been suggested previously in
the context of -^-gravity [17, 3]. As will be seen, Diffo(Γ* M) turns out to be the
gauge group for one-dimensional ^-gravity, but for the two-dimensional case this
is still too big and it is necessary to restrict further to a subgroup of Diff0(T*M).

In order to construct actions, we shall need some generalisation of the density
y/ — h, h = det[/ιμv]. To construct an action for a scalar field φ9 all that is needed is
a tensor density hμy, as the action

S = ^jddxhμvdμφdvφ (1.8)

is then invariant. The tensor density can be regarded as an independent field, but as
det[/Γμv] is a scalar in two dimensions, one can consistently impose the constraint
det[/ϊμv] = — 1 and this can then be solved in terms of an unconstrained metric
hμv as hμv = y/—hhμ^ so that (1.8) becomes the standard minimal coupling. The
quantity F(x, y) = \ hμv yμyv changes by a total derivative on M under an infinitesi-
mal diffeomorphism, δF = d(kμF)/dxμ so that j M ddxFis invariant (with appropri-
ate boundary conditions).

In order to construct i^-gravity actions, we shall need a "cometric density"

F(μ ) ΣΛ&Vμ() (19)

which transforms by a total derivative under an infinitesimal ^-gravity gauge
transformation, so that JM ddx Fjs ^-invariant. In particular, in variance under
Diff(M) will require that the h$)'"μn{x) transform as tensor densities under
Diff(M). We will show that, with the gauge group Diffo(Γ*M), such cometric
densities do not exist for dimensions d > 2, that they do exist for d—\ and
that they do not exist for d = 2, but that there are cometric densities in d = 2
for a certain subgroup Jf of Diff0 (Γ*M). This means that Ί^-gravity actions
of the type investigated in this paper exist only for d = 1, 2 and that the i^-gravity
gauge group in d=\ is Diffo(Γ*M) while that in d — 2 is the subgroup
Jf c: Diff0 (T*M). In one dimension, we give an explicit construction of a cometric
density from a cometric, generalising the construction hμv = ^J' — hhμv. In d = 2, we
show that the constraint that generalises det[/Γμv] = — 1 is

_ , ( U 0 )

and give some evidence to support the conjecture that a cometric density satisfying
this constraint can be written in terms of a cometric. This is the real Monge-
Ampere equation [29] and is sometimes referred to as one of Plebanski's equations
[28].

The plan of the paper is as follows. In Sect. 2, classical ^-algebras and
linearised #"-gravity will be reviewed and in Sect. 3 the construction of ^-gravities
involving auxiliary variables [2] will be reviewed. In Sect. 4, d-dimensional 1V~
gravity and symplectic diffeomorphisms are introduced, cometrics and cometric
densities are analysed in Sect. 5 and actions are constructed in Sect. 6. In Sect. 7, the
relation between Eq. (1.10) and self-dual geometry in four dimensions is used to
motivate a twistor-transform solution of (1.10) which leads to a recovery of the
auxiliary variable formulation of Sect. 3. In Sect. 8, the solution of (1.10) that
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generalises the construction hμv = yj— hhμv is considered and W^-Weyl symmetry
discussed. Section 9 summarises the results and discusses some generalisations.

2. Classical i^-Algebras and Linearised ^-Gravity

The iV^ algebra [25] is a Lie algebra generated by an infinite set of currents
W = {W2, W3, W4, . . .}, where W has spin r. Expanding W in modes Wn, the
algebra can be written as

C Wr

m, Ws

n~] = {(r-l)n-(s- \)m) Wr

m\s

n (2.1)

with r, s ^ 2. (Note that this algebra is sometimes referred to as w^. Throughout
this paper, if^ will be used to denote the algebra (2.1).) Expanding the range of r, 5
to include a spin-one field W1 gives the algebra ΨΊ + ^ [3], which is the algebra of
symplectic diffeomorphisms of the cylinder, R x S1. Note that the spin-two current
W2 generates a Virasoro algebra (without central charge).

This algebra can be realised as the symmetry algebra of the non-linear sigma-
model with action

S0 =
 1-μ2xgiJdβφ

id»φ\ (2.2)

where the fields φ\xμ) are maps from two-dimensional flat space-time2 (with
coordinates xμ) to a suitable target space Jί, which is some D-dimensional
manifold with coordinates φι {i = 1,. . . ,D) and metric gtj(φι). It is useful to

introduce null coordinates, x± = —τ=(x° ± x1), so that the flat metric is
v

ds2 = ημvdxμdxv = 2dx+ dx~. Then any symmetric rank-s tensor Γ μ i _ μ s is trace-
less (ημv Γμvpσ... = 0) if T+ -pσ... = 0, so that it has only two non-vanishing compo-
nents, T+ +... + and Γ_ _..._, which both have spin s, but have helicities s and — s
respectively.

The spin-two currents

Wi±2) = T±±=±giJd±φid±φJ (2.3)

are the components of the traceless stress-energy tensor Tμv and satisfy the conser-
vation laws d+ T± ± = 0. They generate the conformal transformations
δφι = k+d±φi, where the parameters satisfy d+k+ = 0; these conformal trans-
formations are a symmetry of (2.2). Any symmetric tensor d\fm..is(φ) on Jί can be
used to define the spin-s currents

ty±s) = - diX..t. d± φ h d± φ h . . . d± φίs (2.4)
s

which are conserved if the tensor is covariantly constant, i.e. d+ W{±s) = 0 if

VA...ί. = 0 , (2-5)

2 Throughout this paper, the two-dimensional space-time or world-sheet will be taken to have
Lorentzian signature. The conversion of formulae to the Euclidean case is straightforward and
given explicitly in [14]
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where V7 is the covariant derivative involving the Christoffel connection for the
metric g^. If (2.5) is satisfied, these currents generate the following semi-local
symmetries of So:

δφJ = Σ ^ ( ± β ) 4 ι 2 . . . ί . - i 8±φiίd±φί2 . . . d±φ^ , (2.6)
s

where λi±s) are parameters of helicity + 1 + s satisfying d+ λi±s) = 0. These non-
linear transformations are higher-spin generalisations of the spin-two conformal
transformation [1].

Any set of covariantly constant symmetric tensors on M gives in this way a set
of conserved currents WA, each of which generates a semi-local symmetry of So.
The symmetry algebra and corresponding current algebra will then only close if the
tensors satisfy certain non-linear algebraic identities [1, 5]. If the current algebra is
non-linear (i.e. not a Lie algebra), as will usually be the case for algebras generated
by a finite number of currents, then the corresponding symmetry algebra has
field-dependent structure functions instead of structure constants [1], For W^*
d[f = gij and a rank-s symmetric tensor is needed for each s = 3,4, . . . . The
algebra generated by the currents (2.4) closes to give the algebra (2.1) provided the
tensors satisfy the following algebraic constraint [5]:

d$Jιh...j.-2 tdy.-ιJ....j..t-*j.+t-s = dϊuϊ:2l<->> (2-7)

for all s, t. For flat Jt, there is a solution to this corresponding to any Jordan
algebra, with d(3) proportional to the structure constants of that algebra [26]. For
D = 1, there is a solution with d(ί{...i = 1 for all s, (corresponding to the one-
dimensional Jordan algebra R). For Jordan algebras of order N (i.e. those with
a norm which is an JVth degree polynomial), then, as in [3], the algebra "telescopes,"
i.e. all currents W±s of spin s > N can be written as products of the currents of spin
s S N [5]. Then the algebra can be regarded as closing on the finite set of currents
of spin ^ JV, giving the non-linear Ψ°N algebra, which is a certain classical limit of
the Ψ"N algebras found in [23, 24]. For example, for Jordan algebras with cubic
norm [26], the spin-four current can be written locally in terms of the spin-two
current as W{±A.) = Wi±2) W{±2) and all higher currents can be written in terms of
Wi±2), W(±3). This leads to (two copies of) the algebra W3, generated by

^(±3)> with classical commutation relations given by (2.1) for r, s ^ 3 with
= (7±±) 2 This algebra is a classical limit of Zamolodchikov's quantum

operator algebra [22].

The chiral semi-local #~-algebra symmetry can be promoted to a fully local one
(with parameters λi±s)(x+, x~) depending on both x+ and x~) by coupling to
gauge fields hi±s) which transform as

δh{±s) = d+λi±s) + O(h) (2.8)

plus terms of higher order in the gauge fields [1,5]. The linearised action is then
given by adding the Noether coupling to Sθ9 giving

So + Sί = So + 2 f d2x £ [/z(+s) Wi+S) + tf~s) W(.s)-\ (2.9)
s = 2

which is invariant under the linearised transformations (2.6), (2.8) for general local
parameters λ, up to terms dependent on the gauge fields. These can be cancelled by
adding terms of higher order in the gauge fields and the full gauge-invariant action,
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which can be constructed perturbatively to any given order in the gauge fields using
the Noether method, is non-polynomial in the gauge fields [1]. The aim of this
paper is to investigate the full non-linear structure of this theory and give it
a geometric interpretation. Note that the linearised field equations given by
varying (2.9) with respect to the gauge fields imply the W^ constraints W±s = 0.

Although only the bosonic realisation of iV^ gravity will be considered here,
other realisations and other #"-algebras can be treated in a similar way. For
bosonic realisations, choosing different sets of ^-tensors satisfying different alge-
braic constraints gives different 1^-algebras [5]. Similar 1^-algebra realisations
are obtained in many other models, including free-fermion theories, Wess-
Zumino-Witten models and Toda field theories. In each case, the symmetry can be
gauged by coupling to an appropriate ^-gravity, with gauge fields corresponding
to each current [5]. For any model with a classical iV-algebra symmetry, the chiral
gauging of the right-handed ^-symmetry, i.e. the coupling to the gauge fields hi+s\
is given completely by the Noether coupling (2.9) with h(~s) set equal to zero, and
no higher order terms in the gauge fields are needed [4, 5]. For models with
a î oo symmetry which telescopes down to a iΓN symmetry, the coupling to
linearised Ψ*N gravity is obtained by setting all the gauge fields of spin s > N to zero
in the coupling to iV^-gravity and modifying the transformations, as in [3];
however, the coupling to non-linear ifN gravity is rather more subtle [37].

3. Non-Linear Gravity and ^-Gravity

Consider first the coupling of the sigma-model (2.2) to two dimensional gravity.
The conformal invariance implies that the only components of the stress-energy
tensor are T++ = gijd±φid±φi and the linearised Noether coupling to the spin-
two gauge fields h+ + is given by

idx(giJd+φd-φh—T++h+ + T—). (3.1)

The Noether method gives the higher order terms, which can be summed to give

S» = \ l d 2 χ l - h h++(ίl+h--h+ + lgijd+φid+φJ

- / z _ _ Γ + + - / z + + Γ__). (3.2)

This non-polynomial action is invariant under diffeomorphisms, with δφι = kμdμφ
ι

and δh as in [32]. Following [2], it can be re-written in a polynomial "first-order"
form as

(3.3)

Solving the algebraic field equations for the auxiliary fields π± and substituting the
solutions into (3.3) gives back the action (3.2).

Although the actions (3.2) and (3.3) give a gauge-invariant coupling to spin-two
gauge fields, they give little insight into the geometric structure and most would
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prefer to use the geometric coupling

Sgeom = \Sd2x^gg^dμφ
idvφ

jgij (3.4)

to a metric gμv. This is invariant under diffeomorphisms and under the Weyl
transformation δgμv = σ(x)gμv. Choosing the parameterization

2h++ l+h+ + h-.

for the metric gμv, the conformal factor Ω drops out of (3.4) as a result of Weyl
invariance and the action becomes (3.2), with the singularity of (3.2) at/z+ + /z__ = 1
corresponding to the singularity of (3.4) when g = d e t ( ^ v ) vanishes.

Consider now the coupling to iV^ -gravity. The linearised coupling is given by
(2.9) and the higher-order terms can be constructed perturbatively, but no obvious
pattern emerges and no closed form summation analogous to (3.2) appears feasible.
The approach of [2] gives a generalisation of the action (3.3) that is fully invariant
under local ^-symmetries [3, 7, 5]. The action is

S = SQ + Sn,

So = 2 Jd 2 xg, jΓπ Vd-φ ι + πLd+ φι - π'+ πL -^d+ φιδ-φΛ ,

Sn = 2$d2xΣ l> ( + s ) Wι+t){π) + tt~* ̂ ( _ s ) (π)] , (3.6)
s = 2

where

W(±s)(π) = -df?i2...isπ
i±πil...πiί. (3.7)

However, the polynomial field equations for the auxiliary fields π± cannot be
solved in closed form, so that the fields π+ cannot be eliminated. Nevertheless,
these field equations can be solved perturbatively to any given order in the gauge
fields, and the perturbative solution can then be used to reproduce the Noether-
method perturbative action to that order in the gauge fields.

It is clearly desirable to find a geometric approach which gives a closed-form
action to all orders in the gauge fields without using auxiliary fields. In the coupling
to gravity, the Noether approach led to two gauge fields h±±, which could be
assembled into a symmetric tensor hμy satisfying ημvhμv = 0, where ημv is the flat
metric. In the covariant approach, all reference to the flat metric ημv is avoided by
dropping the tracelessness condition on hμv. The extra component of hμv then
decouples from the theory as a result of Weyl invariance.

For i^-gravity, for each s, the two gauge fields hi+s) and h{~s) can be assembled
into a symmetric tensor hμιμ2mmmfla which is traceless, ημvhμv_p = 0. This suggests
that the covariant theory might be written in terms of unconstrained symmetric
tensor gauge fields hμιfi2^μs9 provided that there are higher spin generalisations of
the Weyl symmetry which can be used to eliminate the traces of the gauge fields, so
that for each s all but two of the components of the gauge field decouple. An
example of such a higher-spin Weyl symmetry, which was suggested in [5], is

a»?ί«...* = *o.1«*ί2...*)> (3-8)
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where the parameter of the Weyl-transformations for a spin-s gauge field is
a rank-(s — 2) tensor σ(s). It will be seen later that for a large class of models, the
covariant action can indeed be written in such a way, with a iΓ-Weyl symmetry
which is similar to (3.8), but in which the spin-two gauge field has no preferred role.

We shall need a covariant generalisation of the spin-s transformation (2.6)
which does not involve any reference to a background world-sheet metric. A natu-
ral guess for this is (cf. [17, 3])

S φ ι — 2,λ>(<Λ '" s d\ j2 j dμ.φ^1 d μ 2 φ ^ 2 . . . dμ _ φ ^ ' 1 . (3 9)
s

However, this corresponds to too many gauge transformations, as in the linearised
theory there are only two parameters, λi+s) and λ(~s\ for each spin s. In the
linearised theory, the transformations (2.6) can be rewritten in terms of symmetric
tensors λ^/2 "'μs'1 subject to the condition

^v^f S )- p = 0 (3.10)

which implies that, for each spin s, the symmetric tensor λ^1/2""^"1 has only two
non-vanishing components, λi±s\ In the full non-linear theory, it will be seen that
the transformations can be written as in (3.9) but with the parameters satisfying
a non-linear generalisation of the tracelessness condition which is independent of
the flat metric and which reduces to (3.10) in the linearised theory. These con-
straints can be solved in terms of some unconstrained tensors kμv'" in such a way
that all but two of the components of the gauge parameters kμv" drop out of the
gauge transformation. When expressed in terms of the unconstrained kμv" para-
meters, the symmetry is reducible, in the sense of [33].

4. Geometry, Gravity and ^-Gravity

Instead of restricting attention to two dimensions, it is of interest to attempt to
formulate ^Γ-gravity in d-dimensions. Consider, then, the d-dimensional sigma-
model or (d — l)-brane in which a configuration is a map φι(xμ) from an d-
dimensional space-time or world-volume Jί, with coordinates xμ, to a D-dimen-
sional target-space M with coordinates φ\ The cotangent bundle T* Jί has
coordinates (xμ, yμ\ where yμ are fibre coordinates. The map φ\xμ) can be used to
pull-back a metric gij(φ) on Jί to an induced metric Gμv(x) = gίj(φ(x))dμφ

ιdvφ
j on

Jί. This transforms as a tensor under Diff(J/") and can be used to define actions
that are invariant under T)\Ά{Jf\ such as

SNambu-Goto = \ ddx J - det(Gμv), Scov = J ddx ^h(hμv Gμv + μ), (4.1)

where hμv is a metric on Jί and μ is a constant.
In a similar way, a i^-metric function given by f(φ,dφ) = gίj(φ)dφi dφj

+ dijk dφι dφj dφk + . . . on Jί can be pulled back to one on Jί,

f(x,dx)=f(φ(x),dμφdxμ)

= gij(φ(x))dμφ
ίdvφ

jdxμdxv

+ dίjk(φ(x))dμφ
iδvφ

jdpφ
kdxμ dxv dxp + .... (4.2)
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This can then be used to define an action, such as

S = J d d x [ % ) gtjdrfdvφ* + % f dijkd^d^d^k + . . . ] , (4.3)

where hμ^'"μn are some tensor densities on ΛΛ It will be useful to introduce
a generating function F(xμ, yμ) for these,

Π Σ Λ ""W 3V, (4-4)

which can be thought of as a variant of the cometric function and so will be referred
to as a "cometric density function." In pure gravity, the tensor density /rf2

v) can be
written in terms of a metric tensor /if2

v) by /zf2
v) = y/— h{2)hμ2), suggesting that the

cometric density might in turn be related in some complicated way to some
cometric function

F(χ",yμ) = Σ~*M '•""W3V, JV,, (4-5)

where the coefficients h%i)'"
μn are tensors on Jί.

An important special case is that in which Jί is one-dimensional, with
0ii = 1,dii...i = 1,. . . , etc. Then a real-valued function φ(x) on Jί defines
a section of the cotangent bundle, yμ(x) = dμφ, and the lagrangian (4.3) becomes
the cometric density F evaluated on the section, F(xμ, dμφ(x)).

If gij9 dijk, . . . transform as tensors under DiflF(^), then the line element
f(φ, dφ) is invariant under Di ί f (^) and its pull-back/(x, dx) is invariant under
Diff(ΛO, as is the action (4.3), provided that the hμv" transform as tensor densities.
However, much larger non-linear symmetries can be considered which transform
tensors of different rank into one another. The Όiff(Jί) transformation δφι = ξ\φ)
can be generalised to a Diff(TJί) transformation δφ1 = ξ\φ9 dφ) and the metric
function f(φ9 dφ) will be invariant if it is a scalar function on the tangent bundle.
The pull-back/(x, dx) will then be invariant under Diff(ΓJ^). Unfortunately, this
does not lead to a natural set of transformations for the gauge fields.

In a similar way, the cometric function (4.5) can be taken to be a scalar under
Diff(Γ*^Γ), so that under x -> x'(x, y\ y -> j/(x, y\ the cometric (4.5) is invariant,
F'{x\ yf) = F(x, y). However, this group is not useful as the gauge group of W-
gravity, as it has no natural action on the gauge fields. The relation between
Ψ^ and symplectic diffeomorphisms [25] suggests restricting to these and, as we
shall see, this does lead to useful results.

The symplectic diffeomorphisms of the cotangent bundle, Diff0(Γ*ΛO, pre-
serve the two-form dxμ

Adyμ and the infinitesimal transformations take the form

δxμ = - A Λ(x, y), δyμ = ^ Λ(x, y) (4.6)

for some function A. The transformations (4.6) satisfy the algebra

lδΛ,δΛl = δ{Λ,ΛΊ9 (4.7)

where the Poisson bracket for functions A(x9 y), A'(x, y) on Γ* Jί is
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This symmetry algebra is isomorphic to the #^-algebra [25]. Strictly speaking,
this is the # ^ algebra if the functions A are restricted to have the Taylor expansion

00

Λ{x,y) = Σ ^&) '" μ ' " 1 W^i )V.-i ( 4 9 )
s=2

on 71* Jf9 while if this sum is extended to include a spin-one transformation with
s = 1, then the algebra is iΓί + a0 [3]. A function F(x,y) transforms under these
transformations as F(x, y) -• F(x\ y'\ which implies

(5F = δxμ \- δyu -— = {A, F} . (4.10)
dxμ dyμ

Consider a section Σ of Γ* Jf in which the fibre coordinate yμ is set equal to
some cotangent vector field, yμ\Σ = yμ(x). On restricting functions A(x, y) on T* Jf
to functions A\Σ = A(x, y(x)) on the section, the Poisson bracket has the property
that

dAf

x), (4.11)
uyμ Σ

 uy\ Σ

where
dΛ'\Σ dA'\Σ dA\Σ

Note dμyv = 0, so that there are no dμyv terms in {A, A'}\Σi but d/δxμ{yv\Σ) Φ 0.
For sections corresponding to vector fields of the form yμ(x) = dμφ for some
function φ(x) on Jf, d[μyv] = 0 and the Poisson brackets have the important
property {A\Σ, A\Σ} = {A9A'}\Σ, so that for such vector fields it will not be
necessary to differentiate between yμ and J^IJ = yμ(x). Furthermore, for such vector
fields the transformation (4.6) on yμ is

and this can be consistently rewritten in terms of a transformation of φ{x\ so that

δφ = A(x,dμφ) = Σλ(s)'"μS~iδμiΦ dμ.-lΦ > ( 4 1 4 )
s

and this induces the following transformation on any function F(xμ, δμφ{x)):

δF = F(xμ, dμφ(x) + dμδφ{x)) - F(xμ, dμφ(x))

dF
d(ΰμφ)

= {A,F}-δxμΰμF. (4.15)

The last term in (4.15), — δxμdμF, would be cancelled if in addition x were varied
as in (4.6), in which case the result (4.10) would be recovered. Transformations in
which the coordinates xμ, yμ transform as in (4.6) will be referred to as passive
transformations, while transformations such as (4.15) in which xμ is inert but the
fields transform as in (4.14) will be referred to as active transformations. Both
satisfy an algebra isomorphic to the symplectic diffeomorphism algebra. The
transformation (4.14) is precisely the D = 1 form of the transformation (3.9), with
φ(x) the bosonic field, so that these transformations indeed satisfy the algebra (4.7),
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which means that the one-boson realisation of ^-symmetry has a geometric
interpretation in terms of symplectic diffeomorphisms. Note that no natural trans-
formations can be obtained for the fields φ under the full diffeomorphism group of
the cotangent bundle.

5. Scalars and Densities

We now turn to the search for natural geometric transformations for the gauge
fields that arise in i^-gravity. Before doing this, it will be useful to review the
derivation of the transformation of the metric in ordinary gravity. In Riemannian
geometry, a central role is played by the line element ds2 = hμvdxμdxv. Under an
infinitesimal passive diffeomorphism, δxμ = — kμ(x) and the transformation of the
metric hμy under diίfeomorphisms can be determined by requiring that the line
element ds2 be invariant, which will be the case if hμv transforms as a second rank
tensor, δhμv = 2Viμkv). Then/(x) = hμvy

μyv is an invariant for all vector fields yμ{x\
i.e. under the transformation xμ-+x'μ(x) one has/ '(* ') =f(x). Equivalently, the
transformation of the inverse metric hμv can be determined by requiring the
invariance oϊhμvdμφdvφ for all functions φ, or of F(x) = hμvyμyv for all cotangent
vector fields yμ(x).

Instead of asking for an invariant function F(x) = F'(x'\ it is sometimes of
interest (for example in constructing actions) to seek a density F(x) such that the
integral / = J ddxF(x) is invariant, which will be the case if F'(x') = \dx/dxr\F(x).
Then F(x) = hμvyμyv is a density^for all cotangent vector fields yμ(x) if hμv trans-
forms as a tensor density. So far, hμv and hμv are independent; it is a remarkable fact
that given any tensor hμv, one can construct a tensor density by writing -J— hhμv,
where h = det[Aμ v]. If d Φ 2, one can invert this and obtain hμv from hμv, while if
d = 2, one can only obtain hμv up to a local Weyl transformation. While hμv is the
fundamental quantity for the discussion of geometry, it is hμv which is crucial for the
construction of actions; nevertheless for Riemannian geometry the two concepts
are equivalent (modulo Weyl transformations if d = 2).

Note that instead of dealing with passive transformations under which the
coordinates xμ transform, the above can be formulated in terms of active trans-
formations under which the coordinates remain fixed and the fields transform.
Under active transformations, we demand that F(x) transform as a scalar,
δF = kμdμF and that F transform as a scalar density, δF = dμ(kμF\ so that the
integral I = J ddxF(x) changes by a surface term under diffeomorphisms.

The purpose of this section is to generalise this to obtain ^-transformations of
the gauge fields hμv, hμvp, . . . occurring in the y expansion of some F(x, y) by
requiring that F transform in an appropriate fashion. The first case to be con-
sidered will be that in which F is a ^-scalar, i.e. it is invariant under (passive)
^-transformations, and the gauge fields hμv, /zμvp, . . . are all tensors. The second
case will be that in which F(x, y) is a -^-density, i.e. F(x, y) changes in such a way
that J ddxFis i ^ ^ n v S r ^ a n t ' which W U Ί g i y e a different set of ^-transformations for
the gauge fields hμv, hμvp, . . . occurring in the y expansion of F(x, y\ which will be
tensor densities, ^-densities will be used to construct invariant actions in the
following sections. We will concentrate on the case in which the matter system is
a single free boson, as this has a natural relation to the symplectic diffeomorphisms.
However, many of the results generalise to other matter systems and we will
comment further on this in Sect. 9.
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Consider first a cometric function F(xμ, yμ) (μ = 1,. . . , d) with the y-expan-
sion (4.5). In variance of F under the action of Diff( Jί) (with yμ transforming as
a covariant vector) implies that the coefficients hμι"'μrn in (4.5) transform as
contravariant tensors under Όiff(J^). Similarly, the requirement that F be invari-
ant under general reparameterizations of T*Jί, i.e. the requirement that
F'(x\ V) = F(x, y) under x ->x'(x, y), y->yf(x9 y\ can be used to obtain trans-
formations of the coefficients hμi-"μrn. However, in general the transformations of
the tensors hμι' 'μrn obtained in this way will be y-dependent and this is unsatisfac-
tory for the application to ^-gravity. We shall want to interpret the cometric as
a generating functional for an infinite number of gauge fields h(n)(x) which are
defined on Jί and which transform into functions of the gauge fields, the gauge
parameters and their derivatives that are independent of y. This is certainly true of
the gauge fields that arise in the Noether approach and is necessary if it is to be
possible to couple the same gauge fields to other realisations of the #"-algebra. We
will now show that if we restrict our attention to the symplectic diffeomorphisms
of Jί, then it is possible to find ^-independent transformations for the gauge
fields hin).

For any vector field yμ(x), the variation of F(x, y(x)) under the (passive) action
(4.6), (4.9) of the symplectic diffeomorphisms on x and y is given by (4.10), which can
be rewritten as

(Note that for general y{x), the x variation in (4.6) induces an extra transformation
of y(x\ δy = δxμδμy.) If the tensor fields h(n)(x) transform under Diffo(Γ* Jί) in the
following ^-independent fashion:

\ Λ-(m) Gvnin) ~ n(tι) ^v^(m) > P Z

L n Jm,n

then the cometric function is not quite a scalar, but transforms under Diffo(Γ* t

as

δF(x, y) = F(x + δx,y + δy, h + δh) - F(x, y, h) = 2 — — d[v yμ] . (5.3)

If the dimension d of Jί is one, the right-hand-side vanishes and F is invariant,
F'{x', yf) = F{x, y), where F'{x, y) is given by replacing h{s) by h{s) = h{s) + δh(s) in
(4.5), i.e. Ff(x,y,his)) = F(x,y,h(s) + δh(s))-F(x,y,his)). For general dimension
d of Jί, the right-hand-side vanishes for sections in which yμ = dμφ for some φ, so
that F(xμ, dμφ) is invariant under the transformations (4.6)-(5.2), restricted to the
section yμ = dμφ. For any dimension d, this gives a realisation of an infinite group
of higher-spin gauge transformations acting on scalar fields and gauge fields. The
spin-two λ{2) transformations are just the diffeomorphisms of Jί, with hμ

2

V) the
corresponding metric gauge-field, while the λ(s) transformations give higher spin
analogues for which the gauge fields are h$"\
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Instead of using this passive formulation in which the coordinates xμ transform
and scalars are invariant, an (equivalent) active formulation can be used in which
the coordinates xμ are inert and the fields φ and \n) transform as in (4.14), (5.2).
Then instead of δF(xμ

9 dμφ) = 0, one has

δF(xμ, dμφ) = F(xμ, dμφ + dμδφ, h(s) + δhis)) - F(xμ

9 dμφ, his))

(5.4)
dAdF(xμ,dμφ)

dyμ dxμ

Such an F(x9 y) will be referred to as a ^-scalar.
To construct invariant actions, one needs scalar densities rather than scalars. It

is straightforward to construct densities D(x, y) that can be integrated over the
whole of the cotangent bundle (i.e. over both x and y) by introducing a metric
GMN on the cotangent bundle and constructing the fundamental density

x/det(GMΛ^).Then J dάxddy^/GL is invariant under the full group of diffeomor-
phisms of the cotangent bundle for any scalar L. However, for i^-gravity one
requires integrals over the base manifold rather than ones over the whole bundle,
i.e. integrals of the form

S = lddxF(x,y{x))9 (5.5)

where yμ(x) is some vector field. In particular, for vector fields of the form
yμ(x) = dμφ the integral (5.5) becomes a candidate action for -^-gravity. Consider,
then, the integral (5.5) where thej'cometric density function" F(x, y) has the
expansion (4.4). If the coefficients hin) in (4.4) transform as tensor densities under
Diff(«yΓ), then the integral will be invariant (up to a surface term) under diίfeomor-
phisms.

The next step is to attempt to find transformations of the tensor densities
h(n) such that the integral is invariant under ^-transformations. For active trans-
formations with xμ inert and yμ transforming as

one requires transformations of h(n) such that

^ (5.7)

for some Ωμ(F, A) constructed from F, A and their derivatives, so that the integral
(5.5) is invariant. If Ωμ = Fkμ for some kμ(x, y(x)\ then the surface term arising
from the variation of (5.5) can be cancelled by a variation of xμ, δxμ = — kμ. That is,
the change in the measure ddx resulting from the transformation δxμ = — kμ of xμ

would be cancelled by the variation of F under the passive transformations given
by (5.6), δxμ = - kμ and F'(x\ y') = F(x, y)J, where J is the jacobian J = \dx/dx'\.
In particular, it would be expected that in this case kμ would be given by
kμ = - dA/dyμ, in agreement with (4.6). If F transforms as in (5.7) for some^Ωμ, it
will be referred to as a ^-density, while in the special case in which Ωμ = Fkμ for
some kμ(x, y(x)\ so that the active viewpoint is equivalent to a passive one, it will
be referred to as a proper i^-density. Surprisingly, it turns out that it is only
possible to contruct ^-densities with ^-independent transformations of the tensor
densities h(n) in dimensions d = 1, 2 and that these are not proper densities, as will
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now be seen. This is in contrast to the case of Ί^-scalars, which can be constructed
in any dimension d, and the case of ordinary gravity, where densities are proper.

Consider, then, the variation of the integral (5.5) under the y transformation
(5.6). The change in F is given by

00

= Σ IΛH) OvHm) yμι yμ2 yμm+n-2
m,n = 2

+ (m - i)n(n) λ(m) yμιyμ2 .Vμm+n-3 dvyPi P °)

The strategy is to attempt to write the term involving dvyp in (5.8) as a total
derivative term plus a term with no derivatives on^any yμ, as such a term can be
cancelled by a suitable variation of the gauge fields his). This would leave F with the
^-density transformation rule (5.7).

In one dimension, d = 1, (5.8) can indeed be rewritten as

δF = JίΩ+ £ ^ + m , [(n - l)h{n) dλim) - (m - l ) i ( m ) 8fcw] , (5.9)

where

— 1

and the one-dimensional indices μ, v, . . . have been suppressed (hip) =
etc.). If the tensor densities hip) transform as

δK) = Σ δm+n,p+2 ί(m - l)λim) dhin) - (n - l)Λ(n) 5λ ( m ) ] , (5.11)

then the variation of /Γ(p) cancels the second term on the right-hand side of (5.9), so
that

δF = F(x, φ + δφ9 h(p) + δhip)) - F(x, φ, hip)) = dxΩ . (5.12)

Then the integral (5.5) is invariant up to a surface term under (5.6), (5.11),

δS = $dxdxΩ9 (5.13)

and this will vanish with suitable boundary conditions. Note that Ω can be
rewritten as

^ V (5.14)

where N is the number operator N = yd/dy for y9 so that Nj;s = sys and
N~1ys = s~1ys. Thus with the transformation (5.11), F transforms as a ^-density,
although the surprising presence of the number operator in (5.14) implies that it is
not a proper Ί^-density, so that the surface term variation (5.7) cannot be com-
pletely cancelled by a transformation of xμ. Note that (5.11) implies that h(s) trans-
forms as a contravariant tensor density of weight 5 under the one-dimensional
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diffeomorphisms with parameter λ = A(2),

δhis) = λdh(s) -{s- l)his) dλ . (5.15)

In one dimension, d = 1, a 1^-density can be related to a i^-scalar transforma-
tion (5.2) as follows. If h(n) transforms as in (5.11), then h(n) = nh(n + 1) has precisely
the transformation (5.2). This means that the quantity

κ(x, y, hin)) = ψ = Σ *(»+!)(*)/ = Σ - M * ) / (5.16)

is a i^-scalar. In particular, the variation (5.11) leads to the change of K,

δhK = K(x, y, h(n) + δh(n)) - K(x, y, h{n)) = dyΛdxK - dyKdxΛ = - {Λ, K} ,

(5.17)

and the transformation of x and y under the symplectic diffeomorphism (4.6) leads
to a change of K given by δK = {A, K}, which cancels (5.17). This gives the

dF
important result that for any d = 1 ̂ -density F, the derivative — is a ^-scalar.

For dimensions d > 1, the problem is to write the term involving dμyv in (5.8) as
a surface term plus a term without any derivatives acting on any y that can be
cancelled by an appropriate h(s) variation. This is not possible for d > 2 or for
d = 2; this is easily seen in the special case F = \ ημv yμyy, when (5.8) becomes

δF = dv(Λf) ~ Λ(dvf) (5.18)

and there is no way to get rid of the dvy
v term (where yv = ημvyμ).

However, for the two-dimensional case, if one further imposes the constraint
that

ημvλffl'=0 (5.19)

then (using dμyx = dvyμ) it follows that

(+^-), (5.20)

which is of the required form of a total derivative plus a term with no derivatives on
any y. Thus for d = 2 1^-gravity linearised about this flat background, linearised
^-densities exist only if the gauge group is restricted to a subgroup of the
symplectic diffeomorphisms in which the parameters satisfy a constraint whose
linearised form is (5.19). This is in agreement with the discussion of linearised
^-gravity of Sect. 2. This suggests that in d = 2, a i^-density might exist if the
gauge group is restricted by some constraint whose linearised form is (5.19), and
this is indeed the case. A lengthy calculation (using the fact that in two dimensions
any tensor can be written as Tμvp_ = T(μV)β... + T[μv]p_. and the anti-symmetric
part is proportional to the two-dimensional alternating tensor3 εμv = - εvμ:
T[μv]P... = - ie μ v 7J, . . . , where TPtmm = ε*βTαβp^.) leads to the result that (5.8) can be

The alternating tensor satisfies εμvεVβ = δμ

p and ε 0 1 = 1
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written as

(nx (n H- m — Z)nin) ov / ( m )

(m -

(m -

where

c—A^r '••—)],

oo n — 2
A — L La anlεvσεpτ n(n-m) A(m) A

n=2m=2

^sx»^yμiytl2...yμn_Ayxyγdβyd (5.22)

for certain coefficients απ, and

+ (m - IKhZ1-*-1 λfcϊ"*1-*"*-2)! . (5.23)
Then if the tensor densities transform as

(n)^ Λ ( P ) ~~ la °m + n,p + 2\ \ m ~ ί)A(m) °v n(n) ~ \ n ~
m,n l_

( m — l)(n — 1) . v ( μ i μ 2 . . . Γ μp) Γv(μi μ2 .. o .. .μP) 1
H -—[ Cvl^(m) Λ ( π ) — Λ ( | I ) λ ( m ) )

the integral (5.5) transforms as

^ = J J 2 x ( 5 μ Ω μ + X ) . (5.25)

This means that the action will be invariant up to a surface term under the
transformations (5.6), (5.24) for which the parameters λ{m) satisfy the constraint
X = 0. This constraint gives the required non-linear generalisation of (5.19) and
will be discussed in the next section. From (5.24), the his) transform as tensor
densities under the λ(2) transformations. Note that on restricting to one dimension,
the transformation (5.24) reduces to (5.11).

6. Covariant Actions

Before constructing ^-invariant actions, it will be useful to consider the analogous
problem of deriving the coupling of a matter system in d dimensions to gravity,
without using any knowledge of geometry. Suppose one has a matter current
Sμv = 5 ( μ v ) which transforms under diffeomorphisms as a tensor, δSμv = kp dp Sμv

+ 2Spiμdv)k
p, e.g., in the sigma-model example, one has the tensor Sμv =

 ί /
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Note that it would be inappropriate at this stage to subtract a trace to obtain the
usual stress tensor, as that would involve introducing a background metric. The
fact that the current Sμv transforms linearly implies that the following action

S = jddxhμvSμv (6.1)

can be made diffeomorphism invariant by attributing to the field hμv(x) a suitable
transformation law. Indeed, the action is invariant provided hμv(x) transforms as
a tensor density:

δhμv = kpdph
μv - 2hp(μdpk

v) + hμvdpk
p . (6.2)

Ifd + 2, one can define hμv = #* v [det(- #v)]i/<2-d) a n d s h o w t h a t i t transforms as
a tensor. The density can be rewritten in terms of the tensor as hμv = y/— hhμv

(where h = det(/ιμv) and hμv is the inverse of hμy) and this can be substituted into the
action (6.1) to give the usual coupling to a metric tensor hμv. Both h and /Γhave the
same number of components and the two formulations are equivalent (at least for
non-degenerate metrics). If d = 2, however, the tensor density cannot be written in
terms of a tensor in this way. Nevertheless, in two dimensions, det(/Γμv) is a scalar,
so that one can consistently impose the constraint det(/Γμv) = — 1 to eliminate one
of the three components of hμv. This constraint can then be solved in terms of an
unconstrained tensor hμv by writing hμy — «J — hhμv. J h i s solution is invariant
under Weyl scalings of the metric, hμv -• σhμyi so that hμv depends on only two of
the three components of hμv, as one of the components is pure gauge.

To summarise, the geometric coupling to gravity was recovered by first finding
a gauge field h in terms of which the action was linear and then rewriting this in
terms of a gauge field with covariant transformation properties in the case d φ 2, or
imposing a covariant constraint in the case d = 2. We now use a similar approach
to seek the coupling of a sigma-model to ^-dimensional ^-gravity, which in the
case d = 2 has the linearised form (2.9). Consider the case in which the target space
dimension is D = 1. We require an action of the form

S = $ddxF(xμ,dvφ) (6.3)

for some cometric ^-density F, with expansion (4.4) in terms of the tensor densities
h(n)"μn on Jί, and demand that it have a ^-symmetry in variance under which
φ transforms as in (4.14) and the transformations of the density gauge fields
hμn) "μn are independent of φ. 4 If such an action is found, the next stage is to rewrite
in terms of a cometric (4.5) whose components h(n) are tensors if d Φ 2, or if d = 2, to
impose invariant constraints and solve in terms of a cometric function with
higher-spin ^-Weyl symmetries, so as to recover the linearised results given
earlier. Note that the gravitational coupling for any tensor current S^ is given by
(6.1). For i^-gravity, we will find the coupling for the matter currents
dμι φ . . . dμnφ, but the same coupling then immediately works for any set of matter
currents S^. . .^ which transform into one another under i^-diffeomorphisms in
the same way as dμι φ . . . dμnφ.

4 If this requirement were dropped, it would be straightforward to find a ^-gravity coupling for
all d, but it would not give a universal ^-gravity which could be coupled to all matter systems
with ^-symmetry and would not give the non-linear form of the linearised action (2.9). Note also
that an active viewpoint is now adopted, so that the coordinates x do not transform
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The results are as follows. Invariance of the action (6.3) requires that F is
a i^-density transforming as (5.7) for some Ωμ, and the results of the last section
can now be applied to the cotangent vector field yμ = dμφ. First, if d > 2, there are
no ^-densities for which h{s) has no φ dependence in its transformation rules and
so there is no such invariant action.

Next, if d = 1, so that the sigma-model can be interpreted as a particle action,
^-densities indeed exist, so that i^-gravity actions can be constructed. Specifi-
cally, the action (6.3), (4.4) is invariant (up to a surface term) under the transforma-
tions (4.9), (4.14) and (5.11), where the one-dimensional indices μ, v, . . . have been
suppressed. The gauge group is the symplectic diffeomorphism group of the
cotangent bundle of the one-dimensional manifold Jf, Diffo(Γ* Jί\ This gives the
one-dimensional i^-gravity theory of [5].

In one dimension, one can in fact go much further and construct the action
explicitly from an invariant cometric line element (i.e. a 1V-scalar) F(x, y). For
comparison, the coupling to gravity (as opposed to ^-gravity) is given by the
truncation of the action (6.3) to \ \ dxh{2){dφ)2 and in this case the tensor density
h{2) can be rewritten in terms of a contravariant inverse metric tensor h{2) by

h{2) = V ^ . (6.4)

(This is the one-dimensional form of hμv = ^Jhhμv, with positive definite metric
hίl =(/z 1 1)" 1 = h = det[/zμv].) In a similar spirit, we will now show that the action
(6.3), (4.4) with d = 1 can be rewritten in terms of a cometric

F(x,dφ)= Σ -hin)(dφ)n (6.5)
n = 2 n

which transforms as a scalar under Diffo(Γ*,/Γ), i.e. under the (active) trans-
formation in which hin) transforms as in (5.2) and φ as in (4.9), (4.14), δF =
\_dAld(dφ)~\dxF. (Equivalently, F is invariant under the "passive" transformations
in which, in addition to the above transformations, the coordinate x transforms as
δx=- [dΛ/d(dφ)D

dF
It was seen in the last section that, given any ^-density F the derivative — is

8F 8y

a ^-scalar. This suggests identifying — with the ^-scalar (6.5). However, this is
not quite correct, since the Taylor expansions of F and F start at order y2, while

dF ίdP\2

that of -r- starts at order v. It follows that — is a i^-scalar whose expansion
dy \dyj

starts at order y2 and so can be identified with (6.5). We then give the cometric
density function F in terms of a #"-scalar cometric function F as

,6.6)

The factor of two is a consequence of our conventions, while the square root in (6.6)
was to be expected from comparison with the pure gravity limit; indeed, the term of
lowest order in y in the Taylor expansion of (6.6) reproduces (6.4). These relations
can be integrated to give F explicitly, using the boundary condition that F(x, y) is
a power series in y starting with the y2 term. In terms of the number operator
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d ~
N = y — , using the identity F = N * (ydFdy), we have

(6.7)

so that

n=2 \ n=2

and expanding in y gives the h(n) in terms of the h(n).
We turn now to the case of two-dimensional #"-gravity. Consider the fiction

(6.3), (4.4) and φ transformation (4.9), (4.14) with d = 2. The tensor densities his) will
eventually be expressed in terms of tensors his) in such a way that in the linearised
limit, (2.6), (2.8) and (2.9) will be recovered. However, even in the linearised theory,
the action was not invariant under the full Diffo(T*J^) group under which
φ transforms as (4.14), but only under the subgroup in which the parameters
satisfied a constraint whose linearised form is (3.10). This is of course borne out by
the full non-linear analysis, with the result that the action (4.4), (6.3) is only
invariant under the φ transformation (4.9), (4.14) together with a transformation of
the h{s) which is independent of φ if the parameters λ(s) satisfy a constraint whose
linearised form is (5.19). The transformation (5.21) implies that an invariant action
is obtained if the constraint X = 0 is imposed, where X is given by (5.22). The
condition that X = 0 for all y(x) implies that

n-2
εvσεpτ n(n-m) A(m) ~ u

m = 2

for each n ^ 2. This constraint can be rewritten in terms of A (4.9) and F as

?*lr4ΊΓ7Γ
dyμ dyv dyp dyσ

or, equivalently,

Introducing frames ea

μ such that /zf2
v) = e%elηab and expanding (6.10) in y gives the

first few constraints as

M 1 ab C\ vi 1abc Uabc 1
nabA{?>) — *Λ Πab Λ(4) ~ ^ "(3) λ(3)ab 9

abed jTab (c i d ) ίΓ«a (c 3 d) b 1 habed 3 (c i Λ\
(5) — " ( 3 ) Λ(4)α& ~ ^(3)« Λ(4)6 + 2 ( 4 ) Λ ( 3 )« b " IO.1ZJ

This generalises (3.10) and the trace of λis) is set equal to an ^-dependent expression
involving the λ{r) for r < s, so that these constraints can be solved in terms of the
trace-free parts of the parameters, leaving just two parameters for each spin.

The action (6.3), (4.4) is then invariant under the transformations (4.14), (4.9)
and (5.24) provided the parameters satisfy the constraint (6.10). As in the case of
gravity, the linear coupling to tensor densities is fully gauge-invariant, but is
non-minimal. In the case of gravity, the constraint det(/Γμv) = — 1 can be imposed
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and solved as hμv = ^J — ggμλ> to give the usual Weyl-invariant formulation (3.4).
For ^-gravity, some generalisation of this constraint is needed that is preserved by
^-gravity transformations. FromJ he analysis of Sect. 2, the linearised form of this
constraint should imply that the hμ'v are traceless (with respect to the flat metric
ημγ about which one is expanding in the linearised approximation), but the
non-linear constraint should not refer to any fixed background metric. Consider
the following constraints on the gauge fields /ί(2), /Z(3), /i(4):

d e t ( % ) ) = - l , (6.13)

V % f = 0, (6.14)

\ h K h&p Λghμv Hit* = \ hμa Kβy h&p Λgf , (6.15)

where hμv is the inverse of h}^, hμv hjζ) = δμ> Linearising these constraints implies
that, as required, h(3) and /i(4) are traceless with respect to ημv, to lowest order in the
gauge fields. Furthermore, it is straightforward to check that these constraints are
preserved by the transformations (5.24), so that they can be consistently imposed
on the gauge fields. The full set of constraints are generated by the constraint

i = - 1 , (6.16)

w h e r e

G-fry) = ***». (6.17)
dyμ dyv

Expanding the constraint (6.16) in yμ, one finds the coefficient of yn + 1 is a non-
linear constraint on h{n) which (for n > 0) sets the trace hμyh

μn)pσ equal to a non-
linear function of the h(m) for m < n, so that the constraint has the correct linearised
limit. The first three constraints from the expansion of (6.16) are precisely (6.13),
(6.14), (6.15). A lengthy calculation shows that this infinite set of constraints on the
density gauge fields h$'" is preserved by the transformations (5.24), and so can be
consistently imposed on the gauge fields without spoiling the invariance of the
action. Rather than give the lengthy direct proof of this result, we shall instead
present an indirect but simple derivation of this constraint in Sect. 7. Equation
(6.16), (6.17) is the real Monge-Ampere equation for a function of the two variables
yμ; this equation is discussed in detail in [29], where the existence of solutions is
established (subject to certain conditions).

The constraint (6.16) can be interpreted as follows. Let zμ be complex coordi-
nates on IR4 with real part yμ9 so that zμ = yμ + ίuμ for some uμ. Thus (xμ, zμ,zμ) are
coordinates for a bundle C Γ * / " which is a complexification of Γ* Jί, whose fibre
at xμ is C 2 , the complexification of the cotangent space T* Jί ~ IR2. Then substitu-
ting yμ = j (zμ + zμ) in F(x, y) gives a function

Kx(z,z) = F(x,z + z) (6.18)

for each point x on the base space Jί, which can be interpreted as the Kahler
potential for the metric

^2 K (v ϊ\

Gμv(y) (6.19)
dzμdzv
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on the complexified cotangent space at x, <E,T*Jf ~ (C2. The fact that Kx is

independent of uμ = — - (zμ — zμ) implies that Kx is the Kahler potential for

a Kahler metric of signature (2, 2) onJR4 with two commuting holomorphic Killing
vectors, d/duμ. The condition det(Gζ;v(};)) = — 1 is then the Plebanski equation
[28] (or complex Monge-Ampere equation [29]), which requires that the metric is
Ricci-flat and so hyperkahler and this implies that for each x, the corresponding
curvature tensor is either self-dual or anti-self-dual. Thus, for each x,
F(χ, y) = Kx(z, z) is the Kahler potential for a hyperkahler metric on R 4 with two
commuting (tri-) holomorphic Killing vectors and signature (2, 2). (For Euclidean
i^-gravity, with hμv has signature (2,0) and the internal hyperkahler metric Gμv has
signature (4, 0)). Thus Kx(z9 z) gives a two-parameter family of metrics labelled by
the points xμ e Jί, so that in this way we obtain a bundle over JΓ whose fibres are
C2, equipped with a half-flat metric with two Killing vectors.

If F satisfies the constraint (6.16), the constraint (6.10) on the infinitesimal
parameters A can be rewritten, to lowest order in Λ, as

- ! ,6.20)

which implies that F + A also corresponds to a Kahler potential for a hyperkahler
metric with two killing vectors, so that for each x, A represents a deformation of the
hyperkahler geometry.

The field equation obtained by varying φ in (6.3) is

-^- — F = 0 (6.21)
δx* dyμ

 κ }

which can be rewritten as

Σ ^[*&V V""' W • • • K-, Φl = 0 (6.22)

7. Twistor Transform Solution of Monte-Ampere-Plebanski Constraints

The general solution of the Monge-Ampere equation (6.16) can be given implicitly
by a Penrose transform construction. For solutions with one (triholomorphic)
Killing vector, the Penrose transform reduces to a Legendre transform solution
[35] which was first found in the context of supersymmetric non-linear sigma-
models [34]. This will now be used to solve (6.16); see [35] for a discussion of the
twistor space interpretation. It will be convenient to introduce the notation y0 = £
yx = ξ. The first step is to write F(x, £ ξ) as the Legendre transform with respect to
£ of some H, so that

F(x,ζ,ξ) = πζ-H(x,πiξ), (7.1)

where the equation
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gives π implicitly as a function of x, ζ9 ξ9 so that π = π(x, ζ, ξ). Then it is straightfor-
ward to show that

dP_ dP_ m
Tζ-π' Tξ~~Tξ ( 7 3 )

and

dπ _ /d2H\~1 d2H

~dξ~~\)
(

and to use these to obtain
- 132F fd2H

dζ2 ~ \ dπ2

δ2F _ _fd2H\~1 d2H

dζdξ \dπ2 J dπdξ'

32F δ2H fd2H\-1fδ2H

It then follows that

Then the Monge-Ampere equation (6.16) will be satisfied if and only if H satisfies

82H δ 2 H o

and the general solution of this is

H = H1(x,π + ξ) + H2(x, π-ξ) (7.8)

for arbitrary functions Hl9H2. Then the general solution of (6.16) is given by the
Legendre transform (7.1) of (7.8) and the action (6.3) can be given in the first order
form

S = J d2xF(x, y) = j d2x(πφ - Hx(x\ π + φ') - H2(x", π - φ')) , (7.9)

where y0 = φ,y1 = φ'. This is essentially the canonical formulation of 1^-gravity of
[9]. The field equation for the auxiliary field π is (7.2) and this can be used in
principle to eliminate π from the action. However, it will not be possible to solve
Eq. (7.2) explicitly in general.

The close relation between the forms of the action (7.9) and (3.6), (3.7) suggests
that there may be a covariant Legendre-type transform technique that leads to the
form of the action (3.6), (3.7). Indeed, F can be written as a transform of a function
H as follows:

F(x", yv) = 2τfyμ - \ η^yμyy - 2H(x9 π), (7.10)

where the equation
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implicitly determines πμ = πμ(xμ, yp). H is not quite a Legendre transform of F with
respect to y0 and y± because of the y2 term in (7.10). Then

^L = 2πμ-ημ*yy (7.12)

and the transform (7.10) can be inverted to give

H(x, π) = - l- F(xμ, yv) + π"yμ-^ ημvyμyv, (7.13)

where (7.12) implicitly gives yμ = yμ(x, π). As the transform is invertible, any F can
be written as the transform of some H and vice versa. Using

yμyv \dπμ dπ

it follows that

, , , 4 ,

(7.15)

where

(7.16)

Then F will satisfy (6.16) if and only if its transform H satisfies

2 2R d H 1 (717)

The general solution of this is

H = π+ TC + L(x, π + ) + L(x, π") (7.18)

which can be used to give the action

S = J d2x(lπμyμ - 2H(x, π) - i ^ yμyλ

^ l- ^ v y μ y v - 2L(x, π + ) - 2L{x, π ' ) ) (7.19)

The field equation for πμ is (7.11), and using this to substitute for π gives the action
(6.3) subject to the constraint (6.16). Alternatively, expanding the functions L, L as

L(x,π-)= Σ - ^ ( " s ) ( π - ) s

? (7.20)
s = 2 S

reproduces the action (3.6). In this way, the auxiliary fields πμ of the approach of [2]
have a natural twistor interpretation, and we learn that the fact that the actions
(7.9), (3.6) are linear in the gauge fields reflects the fact that the twistor transform
converts the self-duality equation into a linear twistor-space problem.
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Conversely, we know from [2, 3] that the action (3.6) is invariant under
#^o transformations and that this action can be rewritten as (7.19) provided that
H satisfies the constraint (7.17). However, H(x,π) can be expressed in terms of
a function F(x, y) using the inverse transform (7.13), and using this the action
becomes simply J d2x F(x, y) while from (7.15) it follows that the constraint (7.17)
becomes precisely (6.16). Thus the fact that (7.19) subject to (7.17) is an invariant
action implies that the action (6.3) subject to the constraint (6.16) is also invariant
This establishes the result that the constraint (6.16) is consistent with the W-
transformations, as claimed in the last section.

8. Covariant Formulation and ^Γ-Weyl Invariance

The constraints on the gauge fields hμn)" generated by (6.16) can be solved in terms
of unconstrained gauge fields in a number of ways. We shall first review the
solution of [14] which led to gauge fields which transformed naturally under
TF-Weyl symmetry and then discuss a solution which it is conjectured will lead to
an expression of the gauge fields h^y occurring in the expansion of a Ί^-density
F(x9 y) in terms of the gauge fields h^'" in the expansion of a i^-scalar.

The constraint (6.13) can be solved in terms of an unconstrained metric tensor

Qμv = Q(2)μv a S

%) = yΓ^QΪh (8.1)

Similarly, the constraint (6.14) can be solved in terms of an unconstrained third
rank tensor gμ%ξ\

^ \ °" ΐlf j (8.2)

and (6.15) can be solved in terms of an unconstrained fourth rank tensor

K:r = yf^gϊύΐϊΓ + 0(μv Qpσ) - \a{μv βpσ) QxP g«λ , (8.3)

where

QP° 2 h*«Ph°w goLβgyδ - Q[lf Q«β ,

^giμvg?3fg«β. (8.4)

This can be repeated for all spins, giving the constrained tensor densities
h1n)μ2'"μn in terms of unconstrained tensors gμn)μ2'"μn, which can be assembled into
a function

f(χ, y) = Σ - β f t Γ - * 1 (*)JV> yn • • • ^ (8-5)
n = 2 n

The generating function F for the tensor densities h(n) can then be written as

F(x9y) = Ω(x9y)f(x9y)9 (8.6)
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where Ω is determined in terms of/by requiring (8.6) to satisfy (6.16). The function
Ω has an expansion of the form

Q(x, y) = Σ OζiΆ)"^(x)yβι yβ2. . . yβn (8.7)
n = 0

and substituting (8.6) in (6.16) gives a set of equations which can be solved to give
the tensors Ω{n) in terms of the unconstrained tensors gin) in (8.5). This gives

= V ~ 9

1
2

(8.8)

where Qμv is given by (8.4) and gffi* is related to the tensor gμlfσ in (8.3) by the field
redefinition

The solution (8.1) to the constraint (6.13) is invariant under the Weyl trans-
formation gμv -> σ(x)gμv, and this suggests that (8.6) should be invariant under
higher spin generalisations of this. Indeed, writing F in terms of/gives an action
which is invariant under the τιF-Weyl transformations

δf(x9y) = σ(x9y)f(x9y). (8.10)

Expanding
Φ, y) = σi2)(x) + σμ

3)(x)yμ + σ^(x)yμyv + . . . (8.11)

these can be written as
n 1

c μ ι . . . μ n V^ x ( μ i . . . μ r μr+i...μn) {Q1Ί\
°9{ή) — n 2-ι ~9{r) σ(n-r + 2) {oΛZ)

These transformations can be used to remove all traces from the gauge fields,
leaving only traceless gauge fields. These i^-Weyl transformations are similar to
those given in (3.8) and have the same linearised limit, but have the advantage that
they do not give a privileged position to the spin-two gauge field.

The relation (8.6) imglies that a #"-Weyl transformation can be used to set
F(χ, y) =f(x9 y\ so that hft)"

μn = g^'"1*" in this i^-Weyl gauge. This means that
in general the transformations of gfa'"μn can be taken to be equal to those of
hμn)'"μn, or to be related to these by a possible #"-Weyl transformation. For
example, this gives the transformation of gμ

2) to be that of (6.2), up to a Weyl
transformation

δgμv = kpdpg
μv - 2gpiμ dpk

v) + gμv(σ + dpk
p) . (8.13)

Then shifting σ -• σf = σ + dpk
p absorbs the dpk

p terms into the Weyl transforma-
tion and the transformation becomes the standard one for an inverse metric:

δgμv = kpdpg
μv - 2gpiμ dfik

v) + gμvσ . (8.14)
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Similarly, the term proportional to \_dvλ\p)iμ2'"~\g{2)μp) in the variation δgμpμ2'"μp

given by replacing h by g in (5.24) can be absorbed into a 1^-Weyl transformation,
but the resulting transformation for g(n) is not that corresponding to that of
a Ί^-scalar and does not seem to have any obvious geometric interpretation.

The constraint (6.20) on the parameters λin) can be solved in a similar fashion
in terms of unconstrained parameters kfa)'"

μn~ί and the transformations of the
unconstrained gauge fields can be defined to take the form δgμn)μ2'"μn =
diμi kμn)'"μn) + . . . . The g(n) might be thought of as gauge fields for the whole of the
symplectic diffeomorphisms of T* JV* (with parameters fc(M)), and
appear in the action only through the combinations h{n). The transformations of
hin) and φ then only depend on the parameters k{n) in the form λ(n).

In gravity theory, it is sufficient to have a metric hμv in order to construct
actions, as densities can be constructed using *J — det[/ιμ v]. In ^-gravity, it is
natural to ask whether a cometric function F which transforms as a #"-scalar can
be used to construct actions, and in particular whether a ^-density F can be
constructed from a i^-scalar F. If so, this would lend weight to the idea that the
cometric F might play a fundamental role in i^-geometry in the same way that the
line element does in Riemannian geometry. This would be particularly attractive,
as a #^-scalar transforms naturally under the whole of the symplectic diffeomor-
phisms of the cotangent bundle, Diffo(Γ*^Γ), while a i^-density only transforms
under the subgroup of this defined by the constraint (6.10). Thus, as in the previous
paragraph, we would have gauge fields h(n) for the whole of Difio(T*^V) with the
i^-scalar transformation law (5.24),

δhμ

{:)

μ2" μn = d^kμ

{')'"
μn) + ... (8.15)

with hμ^'"μn = [Agί)-"" - (traces)] + . . . plus non-linear terms, and δhft)~'μn =
diμίλfo-'μn) + . . ., where λft)~

 μn-ir= [fcg.V"'11-0 - (traces)] + . . . plus non-linear
terms.

It is straightforward to show that the first few density gauge fields h(n)9 subject to
the constraints generated by (6.16), can be written in terms of the first few tensor
gauge fields hin) as follows:

\

ffi* = y/^h\ Kμvpσ -

4
lh"

1

hpσ) K«β .1
J h(3)*βγ ]•

(8.16)

(8.17)

(8.18)

where indices are raised and lowered with hμv = hμl) and its inverse hμv,
h = det[/zμv] and

This means that given a set of gauge fields hin) transforming under Diffo( Γ* Jί) as
in (5.2), then the gauge fields h(n) defined by these equations transform as in (5.24).
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I conjecture that all the hin) can be written in terms of hin) gauge fields in this way,
although I have as yet no general proof; this is currently under investigation.

9. Summary and Discussion

We have seen that symplectic diίfeomorphisms of the cotangent bundle of the
space-time (or world-sheet) Jf play a fundamental role in i^-gravity, generalising
the role played by the diffeomorphisms of Jf in ordinary gravity theories. For any
dimension d oiJf, we found an infinite set of symmetric tensor gauge fields h^' "μn,
n = 2, 3, . . . , transforming under the action of a gauge group isomorphic to

KX d h ^ h^8ka)] (9.1)

where kμ^"μrn~ι(x) are unconstrained infinitesimal symmetric tensor parameters.
These transformations had a geometric interpretation: they were precisely the
transformations needed for the generating function

F(χμ,yμ) = Σ-K)"*n(χ)yκ ^ (9-2)
n n

to transform as a ̂ -scalar, i.e. to be invariant under the action of the gauge group
Diffo(T*Jf) (as described in Sect. 5, with y = dφ). This suggested regarding F as
the natural generalisation of the invariant line element of Riemannian geometry.

As well as considering i^-scalars, we also considered ^-densities F, which we
found could only exist irî  dimensions d — 1,2. The i^-density F generated an
infinite set of gauge fields h^'"^. In the case d = 1, these gauge fields transformed
under local Diffo(Γ*</Γ ) ~ # ^ transformations as

δh{p) = Σ δm+n,p+2 [(HI - l)λim)dhin) -{n- l)h{n)dλ{m)-] . (9.3)
m,n

For d = 2, we considered gauge fields with the transformation

r
eΓui^ .μp _ Y s / U)iμιμ2'" F) Γ A*P)V („ λ\hy^ιμ2 ' f) ^P)

ύn(p) — 2 J °m + n,p + 2\ \ m ~ *-)A(ni) °vn{ή) ~ \ n ~ L)n(n) °vA{m)

L
( m — l)[m — I) r Λ v ( μ i μ 2 . . . Γ . . . μ P ) v Γv(μi μ2 . . . o . . . μP) Ί

p - 1

Note that we could consider this transformation for any dimension d; in particular,
it reduces to (9.3) if d = 1. However, for d > 2, the corresponding generating
function F is never a i^-density, while for d = 2 F is not a i^-density for the full
group Ώiffo(T*Jf) but only for the subgroup defined by the constraint (6.9), or
equivalently, (6.10). This formulation is redundant, in the sense that there are more
gauge fields than are needed, and it was shown that the following constraint could
be consistently imposed on the gauge fields:
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This constraint is preserved by the gauge transformations (9.4), and implies that the
linearised gauge fields are traceless.

For d = 1, we showed that gauge fields h(n) transforming as in (9.3) could be
explicitly constructed from gauge fields h(n) transforming as in (9.1), so that given
any d = 1 ̂ -scalar F(x, y\ we obtain a ^-density by writing

%/ (9.6)

For d = 2, we showed that the first few gauge fields h{n)9 n = 2, 3, 4, could be
expressed in terms of i^-scalar gauge fields h(n) (provided that the gauge fields
satisfied the constraints generated by (9.5)) and conjectured that there was such
a construction for all n. The reformulation in terms of the h(n) involved many
redundant gauge fields (in the linearised theory, these are the traces of the h(n))
which could be gauged away using Ί^-Weyl transformations.

The action for a single scalar field φ coupled to ̂ -gravity in either one or
two dimensions (d = 1, 2) is then given by the integral of the 1^-density F(x, dφ)
over Jί,

S = \dixYJh^^{x)Sfi...μn, (9.7)
n

where the currents S^. . .^ are defined by

S%...μn = U t l i φ . . . d μ n φ . (9.8)

If d = 2, this remains invariant if the constraints generated by (9.5) are imposed on
the gauge fields h(n), and it seems that the action can then be reformulated in terms
of ^-scalar gauge fields h{n).

So far we have restricted ourselves to the rather trivial case of a single boson.
However, for any matter current Sμv that transforms under diffeomorphisms in the
same way as the free boson current \ gijdμφ

idvφ\ i.e. which transforms as a tensor,
the action S = J ddx hμySμv is invariant provided that hμv transforms as a tensor
density. In the same way, given any matter system which can be used to construct
a set of currents SJΓi. .μn which transform in the same way under i^-gravity
transformations as the single-boson currents (9.8), then the action (9.7) involving
these new currents will be ^-invariant, provided that the gauge fields h transform
as in (9.3) or (9.4). This immediately gives actions for a large set of matter systems;
this will be discussed further elsewhere.

Another important issue is the generalisation of these results to other W-
algebras. As will be shown in [37], the gauge fields h for iΓN gravity are generated
by a ^-density F which, in addition to the constraint (9.5), satisfies a non-linear
(N +^l) t h order differential constraint, which implies that only the gauge fields
Λ(2)5 (̂3)> h(N) are independent. Whereas the constraint (9.5) is related to self-
dual geometry, the new (N + l) t h order differential constraint is similar to the type
of constraint that arises in the study of special geometry [38]. The truncation to the
Ί^-gravity theory corresponding to the algebra # ^ / 2 (i.e. the subalgebra of
^ generated by currents of even spin) is more straightforward: it corresponds to
setting to zero all of the gauge fields of odd spin, h(2n+i)

One motivation for the study of i^-geometry is to try to understand finite
^-transformations (as opposed to those with infinitesimal parameters) and the
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moduli space for ^-gravity. The infinitesimal transformations for the scalar field
φ were derived from studying infinitesimal symplectic diffeomorphisms and it
follows that the large ^-transformations of φ are given by the action of large
Diff0 T* Jί transformations on yμ = dμφ. The finite transformations of the gauge
fields h(n) are given by requiring the in variance of the generating function F(x, y\
while the finite transformations for the h{n) follow from requiring the invariance of
J F, or from the construction of F in terms of F. It seems natural to conjecture that
the transformations of the gauge fields can be defined to give invariance under the
full group of symplectic diffeomorphisms, as opposed to invariance under the
subgroup generated by exponentiating infinitesimal ones, but this remains to be
proved.

The gauge-fixing of i^-gravity and the generalisation of the Liouville theory
that emerges in Ί^-conformal gauge were discussed in [11]. Consider now the
moduli space Mn for gauge fields h{n) subject to the constraints generated by (9.5)
[11]. Linearising about a Euclidean background F = \ h$)yμv and choosing com-
plex coordinates z, z on the Riemann surface Jί ^such that the background is
F = yzyz, and using the linearised transformations bh\l^"z = dzX

z^"-z, it follows by
standard arguments that the tangent space to the moduli space Mn at a point
corresponding to the background configuration is the space of holomorphic
n-differentials, i.e. the n th rank symmetric tensors μzz...z with n lower z indices
satisfying <3έμzz...z = 0 [11]. It follows from the Riemann-Roch theorem that the
dimension of this space on a genus-g Riemann surface (the number of anti-ghost
zero-modes) is dim(MM) = (2n — \){g — 1) + fc(n, g), where fc(n, g) is the number of
solutions κzz'"z (with n — 1 "z" indices) to dzκ

zz"z = 0 (the number of ghost
zero-modes). It would be of great interest to use information about the global
structure of the symplectic diffeomorphism group to learn more about the structure
of these moduli spaces.
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