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Abstract. A Selberg trace formula is derived for the Laplace-Beltrami operator on
bordered Riemann surfaces with Dirichlet or Neumann boundary conditions,
respectively, using a construction via the compact double of the surface, for which
the standard trace formula is valid. Applications of the trace formula to spectral
functions of the Laplace-Beltrami operators are discussed and their functional
determinants are explicitly expressed in terms of various Selberg zeta functions.
For Selberg's zeta function relevant to the Dirichlet boundary value problem
a representation as a Dirichlet series is given, for which we conjecture conditional
convergence even within the critical strip for Res > ^.

1. Introduction

In recent years the Selberg trace formula [1-3] has become notably popular
among physicists. There are two fields in physics, where Riemann surfaces occur
and the trace formula has been successfully applied: quantum chaology [4, 5] and
string theory [6]. In the first field it was discovered [4] that Gutzwiller's periodic-
orbit theory for the semiclassical quantization of a classically chaotic system
becomes exact for a particle sliding freely on a Riemann surface of genus g ^ 2
(Hadamard-Gutzwiller model). The corresponding periodic-orbit formula is just
Selberg's trace formula. This then has been intensively applied there [5].

The second striking application of the Selberg trace formula has been string
theory. In Polyakov's path integral approach [6], where the string partition
function is given as an integral over all world sheets of the string, there occurs the
functional determinant of the Laplace-Beltrami operator on the world sheet
as a result of the integration over the embedding functions into space-time.
It is possible to evaluate this determinant using the Selberg trace formula and
express it through Selberg's zeta function [6, 7]. Also, the ghost determinant
appearing in string theory may be expressed analogously. In fact, the determinants
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of higher-rank Laplace-like operators allow such a treatment, too [8]. Even in the
case of the superstring a "super-analogue" of Selberg's trace formula has been
derived and applied [9]. Thus the use of Selberg techniques has become a whole
business in physics.

In this paper we derive a trace formula for bordered Riemann surfaces, that is
we study the trace of certain integral operators associated with the Laplace-
Beltrami operator obeying Dirichlet or Neumann boundary conditions. Our inter-
est in that subject mainly stems from string theory, but we hope that one will be
able to use the formula also in quantum chaology, e.g. to study the quantum Sinai
billiard.

In string theory, one way to define off-shell string scattering amplitudes is to use
a functional integral over bordered world sheets [10], the bordering curves being
the incoming and outgoing string states of the scattering process. Then naturally
the functional determinant of the Laplace-Beltrami operator occurs and the
question arises, how to deal with it. Blau et al. [11] used for the first time a version
of Selberg's trace formula for bordered surfaces, but restricted their attention to
surfaces of genus zero.

Our purpose in this paper is to derive a trace formula for bordered Riemann
surfaces of arbitrary genus. We proceed by constructing a compact Riemann
surface through doubling the original one and by using the well-known trace
formula for the cocompact case. To deal with the boundary conditions on the
bordered surface properly, we divide the eigenfunctions of the Laplace-Beltrami
operator on the doubled surface into symmetry classes according to their reflection
property introduced by the doubling procedure. Similar considerations have been
performed in special cases in [11-13]. Such a trace formula in the general context
has first been derived by Venkov [14]. In this article we give a self-consistent
derivation of the trace formula using similar methods as in [14] and also discuss
some applications of it.

Our paper is organized as follows: First we explain the construction of the
doubled surfaces and derive the trace formula. Then we study the trace of the heat
kernel and the MP-zeta function of the Dirichlet-(Neumann-) Laplace-Beltrami
operator and give some of their properties. In addition to the usual Selberg zeta
function (on the doubled surface) we introduce functions that effectively take care
of the correct boundary conditions. We are then in a position to express the
functional determinant of the Dirichlet-(Neumann-) Laplace-Beltrami operator
by these functions or by the respective heat kernels. These are the formulae that
have been used in [15] to study the on-shell limit of off-shell string scattering
amplitudes. Finally, we rearrange the trace formula and introduce a new Selberg
zeta function for the Dirichlet problem, which can be identified with a combination
of the previously introduced functions. In addition we discuss several properties of
this zeta function.

2. Derivation of the Trace Formula

Before we start to derive the trace formula, we briefly recall how bordered Riemann
surfaces are most conveniently dealt with [16]. The idea is to lift the discussion to
an appropriately chosen compact surface, since the theory of compact Riemann
surfaces is well developed and comparatively easy to handle.
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Let Σ be a compact Riemann surface of genus g and d± , . . . , dn conformal,
non-overlapping discs on Σ. Then Σ:= Σ\{d1, . . . , dn} is a bordered Riemann
surface of signature (g, n). ct:= dά{ are the n components of dΣ. Now one takes
a copy IΣ of Σ, a mirror image, and glues both surfaces together along dΣ and
d(IΣ). Technically this is done in terms of local coordinates in the following way:
Let z be a local coordinate in the neighbourhood of P e Σ. Then — z is taken as the
local coordinate in the neighbourhood of the mirror image P' of P on IΣ. The
corresponding points on dΣ and d(IΣ), respectively, are identified and thus have
purely imaginary coordinates. The reflection I:P^P'mdΣ then is an anticonfpr-
mal involution (I2 = 1) on the doubled surface Σ: = Σ u IΣ. Furthermore Σ = Σ/I,
and Σ is a compact Riemann surface of genus g = 2g + n — 1 . The uniformization
theorem for compact Riemann surfaces now states that Σ, for g ^ 2, may be
represented as Σ ~ f\ 2tf, where f is the Fuchsian group of Σ and Jtf* is the
Poincare upper half-plane, ffl —^{z — x + ίy \ y > 0}, endowed with the hyperbolic
metric ds2 = y~2(dx2 + dy2). f then is a discrete subgroup of PSL(2, R) that
solely consists of hyperbolic elements. In several circumstances it is advantageous
to represent Σ by a fundamental domain <JF c 2tf for f.

To construct a convenient fundamental domain and representation of the
involution / on it, it is advantageous to view Σ as a symmetric Riemann surface
with reflection symmetry /. For such surfaces the Fuchsian groups are well
investigated by Sibner [17]. He shows that & may be chosen as the interior of
a fundamental polygon in 2tf with 4g + 2n — 2 edges, which is symmetric with
respect to the imaginary axes. The involution / is being represented by z -> — z,
that is a reflection in the symmetry axis of J^. One of the bordering curves, say cn, is
mapped onto the imaginary axis and the others are among the edges of the
fundamental ^polygon. The advantage of this construction is that one can work
directly on ̂  with /, viewed as a mapping of complex numbers, being formally
identical on Σ and <F .

On $f the Laplace-Beltrami operator takes the form A = y2(d2 + dy), hence it
commutes with /. Therefore the eigenfunctions of — A can be simultaneously
chosen as eigenfunctions of/. The odd functions (with respect to /) on Σ are exactly
the (antisymmetric) continuations of the functions on Σ that satisfy Dirichlet
boundary conditions on dΣ, and the even functions are in the same way related to
the functions on Σ that satisfy Neumann boundary conditions. In this paper we will
explicitly deal with the Dirichlet case and mention only from time to time how the
Neumann case looks like. In the trace formula the difference is just a few signs.
Thus from now on we concentrate on odd functions on Σ or β', respectively. They
may be constructed from functions defined on the whole of ffl via Poincare series.
Let/06C(jf ) be continuous, then

^ Λ - f 0 ( y ( - z-))] (l)
γef γef

is such an odd, Γ-automorphic function, i.e. f ( γ z ) = f ( z ) for all γef, and
/(/z) = -/(z).

In the Selberg trace formula one considers traces of integral operators, whose
spectra are related to the spectrum of —A Let ΦeCc°°(lR) be a smooth function
with compact support. Then for z, z'
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is called a point-pair invariant. For MePSX(2, R), which acts on ze J f as a frac-
tional linear transformation, it follows that k(Mz9 Mz') = fc(z, z') and also
k(Iz9 Iz') = fc(z, z'). Let ψ e C°°(^f) be an eigenfunction of -Δ, -Δψ = λψ, then it
is simultaneously an eigenfunction of the integral operator L (see e.g. [2] ),

:= f dμ(z')fc(z, z'W(z') = Ί(λW(z) , (3)

where dμ(z) := — γ~ is the Poincare measure on 3? , and Λ. depends only on Φ. Now

we form the integral kernel

K(z, z'):- ̂  Σ CM*, ?*') - fe(z, 7(- *'))] , (4)
Z y e f

which defines an integral operator on L2(&\ If/e L2(&] is an odd eigenfunction of
— zl with eigenvalue 1, then we compute

(L/)(z):=f dμ(z')X(z,z')/(z')
&

= \(Lf)(z)-\(Lf)(-z)

= Λ(λ)f(z) , (5)

hence/is also an eigenfunction of L,jvith eigenvalue Λ(λ). — Δ on Σ has a discrete
spectrum, 0 < λl 5Ξ A2 ^ . . . , and .K can be expanded in (odd) eigenfunctions φn

of -Δ,

K(z,z')=Σ Λ(λn)φn(z)φn(Z'). (6)
n=l

As usual, one defines λ = p2 + i, Λ(λ) = Λ(p), and gets as the trace of L,

ΎrL=
w = l «=1

z, z)

ί ^(z)fe(z, 72) - ^ Σ ί ^ωfcfe pz) . (7)
^ pefl ^

The first sum on the r.h.s^of (7) is £ times the r.h.s. of the usual Selberg trace formula
for the compact surface Σ9 and the result of its evaluation is well known to be [1, 2]

( dμ(z)k(z, yz) = (g - 1) dph(p)ptanh(πp)
ye

+ Σ Σ - 7? — >τ0(W(y)) (8)

In order that all the sums and integrals converge absolutely, h(p) has to be an even
function, holomorphic in the strip |Imp| ^ \ + ε, ε > 0, and has to decrease faster
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than \p\~2 at infinity. g(x):= J^£ — h(p)eίpxis the Fourier-transform of h(p\ and

the sum over {y}p runs over all primitive conjugacy classes in Γ. l(y) is the length of
the closed geodesic on Σ that corresponds to the hyperbolic conjugacy class {γ}p.

We now evaluate the second sum on the r.h.s. of (7). To this end we first study
the set fl of reflections. We divide the primitive reflections in fl into two classes as
discussed in [11]. Here an element peΓ/ is called primitive, if it cannot be written
as a power of another reflection. Since pe/7 implies that p2eΓ, the reflections
were classified in [11] according to the properties of their squares. Three cases are
to be distinguished:

• p = pe9 pi = 1. These are the pure reflections in a geodesic.

• p = pi, pf ε {Cjf , i = 1, . . . , n. The {Cjf are the conjugacy classes of the
Ct in Γ, which correspond to the closed geodesies ct on Σ.

• P = Pp, Pp being a primitive element in f and p % $ { C i } f .

There are, however, no pure reflections in Γ that do not lie in the second class. To
see this write pf = yJ9 y^eΓ. As ptCi = ct it follows that/Cj = yΓ1^. Hence yt is the
hyperbolic transformation that identifies the edge of β in one half of 2tf with its
corresponding edge, which, by the symmetric construction^ of ̂ , lies in the other
half of ffl. Now, the y t are the only transformations in Γ that identify edges in
different halves of J f . Thus the pf are the only primitive pure reflections.

We now split the sum over the pefl according to the above classification and
get all elements out of the primitive ones by summing over all powers of the
primitive reflections. There one must only take odd powers, since an even power of
a reflection is a hyperbolic transformation. We define J>(p):= \^ dμ(z)k(z9 pz) as
a shorthand and get

Σ WP) = Σ Σ Σ W+1) + Σ Σ WP?") (9)
pefl i = l Pi k = 0 pp k = 0

With these expressions one can repeat the manipulations carried out in [11]:

= Σ Σ
{p} γeZ(P

2)\f

= Σ ί dμ(z)k(z9p
2k + lz). (10)

{p} Z(p2)\Jf

Here Z(p2):= {yef\yp2y~1 = p2} and Z(p):= (ye Γ \ypy~1 = p} are the central-
izers of p2 and p respectively. One easily finds that they are equal, Z(p) = Z(p2).

We now conjugate p2 in such a way that it acts as a dilatation by a factor
N ( p 2 ) = el(p \ where ί(p2) is the length of the closed geodesic on Σ corresponding
to {p2}. Then p itself acts as pz = e^2)/2(— z). A fundamental domain for the
centralizer Z(p2) is given by {ze 2tf \ 1 ̂  y < N(ρ2)}. Thus



6 J. Bolte and F. Steiner

A manipulation well-known from the proof of the Selberg trace formula in the
cocompact case leads to (see e.g. [2])

We use (12) in (11) and insert N ( p 2 ) = el(p \ In the first sum of (11) we separate the
k = 0 term and introduce L := Σϊ= i l(cύ as the total length of dΣ. The lengths /(ct )
are twofold degenerate, since Ct and Cf 1 both have to be included into the sum.
We collect all this and formulate the trace formula as a theorem.

Theorem. Let h(p) be an even function, analytic in the strip |Imp| ^ 2 + ε> ε > 0> and

decreasing faster than \p\~2 at infinity, with Fourier-transform g(x) = J*^ ^-h(p)elpx.

Let λn = p2 + 4 be the eigenvalues with multiplicities dn of the Dirichlet-Laplace-
Beltrami operator on the bordered Rίemann surface Σ of signature (g, n), then
(g = 2g + n-lg^2)

°° ^ _ 1 + <» oo // \

Σ uω - g— I •fP/.WPta.h,*,,) + Σ Σ 4sinh;t

v,'(r)/2)il(HM)

Remarks.

1. The function /z(p) has to satisfy the same conditions as in the cocompact case
of (8), because the same manipulations have been done in the derivations of
both formulae.

2. The case of Neumann boundary conditions can be treated in complete
analogy to the Dirichlet case. One then has to study functions which are even
under the reflection / on Σ. The relevant integral kernel for which one has to
evaluate the trace is given by

KN(z, z'):= \ Σ [k(z, yz'} + k(z9 y(- z'))] . (14)
Z y e f

The only difference to (13) is that the minus signs in front of the three last
terms change into plus signs.

3. Application to Heat Kernels, Zeta Functions and Determinants

The first spectral function that we want to study with the help of the trace formula

is the trace of the heat kernel for — - A. For t > 0 this is defined by (D = Dirichlet)
ot

= Σ dne~^. (15)
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Inserting the function h(p) = e~(p2 + ̂ 1 into the trace formula (13), we obtain

ΘD(Ϊ) = ΣΛ = I θ£\t)> where the terms on the r.h.s. are labelled according to their
appearance in (13):

y y
~8 ^ t k~o cosh((/c

'π Jt

n oo

The first thing to study is the small-ί asymptotics. One notices that the
contributions θ^\ θ^} and θ^ decrease exponentially for ί->0 + . Thus only
θί>1) and ^E>4) are relevant for the small-ί asymptotics, giving

ί^0+. (17)
8vπ .

In the case of Neumann boundary conditions the term proportional to t ~2 changes
its sign. The result (17) is exactly what one expects from the general expansion given
by McKean and Singer [18].

The functional determinant of the Laplace-Beltrami operator will be defined
by the method of zeta function regularization. Therefore we need to investigate
the zeta function of Minakshisundaram-Pleijel (MP-zeta function), which is for
Re s > 1 defined as

CD(S):= £ <UΓ*. (18)

In terms of this function the determinant of — A is defined to be det(— A)Ό: =
e ~ ̂ (0). This definition requires an analytical continuation of ζΌ to s = 0, which is
possible, because ζΌ is a meromorphic function with only a simple pole at s = 1.

We take h(p) = (p2 + (σ — i))~5> Res, Reσ > 1, to use it in the trace formula.
Then CD(S) = limσ_>1 + ΣΓ=ι dnh(pn). Again we label the terms on the r.h.s. of the
trace formula by ζ&\ . . ., ζί>5) They are given by

lim /(s; σ) ,

lim J(s; σ),
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Γ(s)

0, (19)

where we have introduced the functions /(s; σ) and J(s; σ), which are both entire
functions of 5 for Re σ > 1, whereas H(s; σ) is entire in s for Reσ > 0. These
functions are defined by

( 2 '-' ) !~-ΣΣ

(20)

Kv(z) is a modified Bessel function, and we drop the argument of /(y) and l(p%)
whenever it may not lead to confusion; li\= l(ct). Equation (19) serves as an
analytical continuation to s = 0, since the pole term has been explicitly extracted
in Cί>υ

In principle one could now study (ί>(0)> but to do this properly we first
investigate /(O; σ), J(0; σ) and H(0; σ) for Reσ > 1 or Reσ > 0 respectively. After
rearranging the fe-summations in (20) we arrive at

00

/(O σ) = - In Π Π 0 - e-'σ + n") = - lnZ(σ) ,

,
" oo / 1 _

σ) = - in Π _ == - ln^(σ) - (21)

Z(σ) is the usual Selberg zeta function (on the doubled surface Σ) and 7(σ), X(σ)
are two new functions similar to Z(σ), that come from the additional terms in the
trace formula, and which take care of the boundary conditions.

In a next step we would like to discuss the analytic properties of the new zeta
functions X(s) and Y(s). Therefore we study the trace of the regularized resolvent
of —A, which can be obtained by the choice h(p) = [p2 + (s — i)2]"1 —
\_p2 + (σ — i)2]"1? for Re 5, Reσ > 1, in the trace formula. The l.h.s. then gives

(22)
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Before performing the limit σ -> 1 + one obtains from the trace formula, by
expressing the r.h.s. in terms of Z(s), Y(s) and X(s),

1 1 Ί

(σ - 1)J
BtΊ "LΛ + Φ-1) λn + σ(

L 1
4 2s -

1 1 |Z'(σ) F(σ) X'(σ)| L 1

~ 22σ- 1 [Z(σ) " Γ(σ) ~ X(σ)} + ~42σ- 1 '

where ψ(z):= Γ'(z)/Γ(z) denotes the digamma function. It is known how Z(σ)
behaves in the limit σ -> 1 + [7],

and thus the behaviour of X(σ) and Y(σ) may be deduced from the fact that the
limit σ -» 1 + yields a finite result on the l.h.s. of (23). From (21) it is clear that

- -
dσ

is finite and positive, as (21) converges for Reσ > 0 and all the summands are
positive. Hence also the limit

2σ-l

exists, which together with (24) defines the constant A. From (26) one may draw the
behaviour of the logarithmic derivative of Y(σ) at σ = 1,

+ l + Oίσ-l), (7->l. (27)
σ — 1

Therefore Y(σ) itself has a simple zero at σ = 1 and 7'(1) is finite. We now define

yo' = (g — 1)7 H -- ^ -- 7 — - . , where y is Euler's constant. It can be shown
Z* ^\ Δ,

that yD = FPζD(ί):= lims^ζD(s) - -— is the finite part of ζD(s) at s = 1.
V 2s-ίJ

With all these definitions the limit σ -> 1 + of (23) yields

_ _ _ _ _
22s-l[Z(s) 7(s) l J

This regularized trace of the resolvent is a meromorphic function of s and thus
defines a meromorphic continuation of the function X(s) Y(s) to all se (C. Knowing
the analytic properties of the Selberg zeta function [2] one can obtain the poles and
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zeroes of X(s) Y(s) from (28). Denote the eigenvalues of — A on Σ by τn = i + r f
with multiplicities δn, then the non- trivial zeroes of Z(s) are sn = \ ± irn. Further-
more denote the Dirichlet eigenvalues as before by λn = i 4- p% with multiplicities

dn and the Neumann eigenvalues by λ^ = 4 + p(

n

N}2 with multiplicities d(

n

N}. Then
X(s) Y(s) has poles of order dn at sn = ^ ± ίpn and zeroes at sn = 0, 1, i ± ίp(

n

N) of
order 1, 1, d^N} respectively.

Another way of obtaining the analytic properties of X(s) Y(s) is to express this
product through determinant functions. Therefore define

^(z):=det'(-^+4, (29)

where the index i = D, N9 A indicates, whether we take the case of Dirichlet or
Neumann boundary conditions on dΣ or —A on the whole of Σ, and the
prime denotes the omission of possible zero modes. The obvious relation
@A(Z) = @D(z)@!N(z) is fulfilled for all z. This can be obtained using the regulariz-
ation

®D(z) = @D(Q)e?°z fl Γf 1 + Y V'ίT" > (30)
π = l L \ λ»/ J

which is valid for all z. The other determinant functions are defined analogously.
Using the representation [7]

Z(s) = s(s - \)3Δ(s(s - l))e2C(^-1)[(2π)1-ses(s-1)G(5)G(s + l ) ] 2 - 1 ) , (31)

with C:= i — ̂ In2π — 2ζ'(— 1), ζ(s) denoting Riemann's zeta function, and G(s)
being Barnes' double gamma function [19], one derives by integrating (28) in s,

f^. ,32,
This can be pushed even a bit further by eliminating the unknown constants X ( l )
and 7'(1). To do this we study the limit s -» oo in (32).

Since X(s) and Y(s) are defined by the Euler products (21), they both converge
to unity for s -> oo, i.e. lim^oo X(s)Y(s) = 1. On the r.h.s. of (32) there occur the
determinant functions, for which the same limit has to be investigated. Sarnak
showed [20], that if the trace of a given heat kernel has the small-ί asymptotics

θ(t) = - H — γ + c 4- O(*Jt\ t -> 0 + , then the corresponding determinant function
t \A

has the asymptotics

lndet(- A + z) = az - (az - c)lnz + 2b^/π^/z +/(z), z -> oo , (33)

where Iim2_>00/(z) = 0. In our case this implies,

5(5 - ί)2N(s(s - 1))
Π Πdet(- A + s(s - 1))D @D(S(S — 1))

= — -\Λ(5 — 1) + /(s) (34)

Thus

1 = lim X(s) 7(5) = X(ί) 7'(1)S^U . (35)
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We insert (35) into (32) and obtain the desired representation for X(s) Y(s) in terms
of determinant functions,

5|.-*'->.
which clearly exhibits the analytic properties that we already discussed above.

To evaluate the functional determinant of the Dirichlet-Laplace-Beltrami
operator we require an analytic continuation of X(s)9 Y(s) and Z(s) to s = 1. For
Selberg's zeta function there is one available (see Eq. (40) below)2 and we want to
recall this formula here. In exactly the same manner a similar representation for
X(s) and Y(s) may be obtained as well. For Z(s) one starts with McKean's integral
representation [21],

^^ = 2(2s-l)jΛβ" s ( s- 1 ) fθif )(ί), R e s > l . (37)

The additional factor of two on the r.h.s. stems from the fact that our θ(^\t) is ^
times McKean's 9(t).

We integrate this logarithmic derivative from s > 1 to σ > s and after that
perform σ -> oo. (Notice that lim^^ Z(σ) = 1.) This gives for Res > 1,

(38)
0

Splitting the region of integration and using ([22], p. 342)

1 l n=l

in (38) yields

2 f — θ(t}e~s(s~1)t

o ^

(40)

The large-t asymptotics that may be derived from the trace formula expressions,
θ(o\t) = i + O(e~M\ t -> oo, α:= min(T1? j), shows that the integrals in the ex-

ponential of (40) converge for Re s > \ + >/4 + (Ims)2 — α. Since α > 0, the repres-
entation (40) is valid in a neighbourhood of s = 1.

In complete analogy to this reasoning one can also find a representation for
Y(s) that converges in the vicinity of 5 = 1 and reads

Y(s) = s(s - l ) e x p y + j + ^ ( t ) e - ^ - ^

(41)

Formula (40) is an unpublished result of Aurich and Steiner
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(41) has the same region of convergence as (40). The representation (21) for X(s) is
valid for s = 1 anyway, thus it can most easily be rewritten in terms of ΘD\ For
Re 5 > \ one gets

X(s) = exp J2 f -<Γs(s-1)f0ί,5)(f)j - (42)
I o t )

Equations (40), (41) and (42) together can now be used to express the determinant of
— A in terms of X(l\ 7'(1) and Z'(l) or through ΘD respectively.

To evaluate det'(— A)D we have to differentiate (19) at s = 0. Using the analytic
properties of /(s; σ), J(s; σ) and H(s; σ) derived above, we get

fi(0) = (9 ~ 1)C + £ + In V^OJ + l- lim [7(0; σ) - J(0; σ)] , (43)
8 2<τ->l +

where we used the well-known result [6, 7] ( '̂(O) = (g - 1)C. As Y(σ) and Z(σ)
both have simple zeroes at σ = 1, the result for the determinant is

(44)

Using (40), (41) and (42) the prefactor of the exponential can be expressed through
the trace of the heat kernel,

f °° dt 1 Γ
det'(- Λ)D = Qxp< - f — [0JΓ(0 + θ o ( t ) 4- % (ίmexp - (g -

( ί t J L
(45)

In [15] we have used (45) to express a part of the integrand in the formula for the
string scattering amplitudes in terms of the lengths lt of the bordering curves c f, that
are the external string states of the scattering process.

The case of Neumann boundary conditions can easily be derived from (35),

det'(- Δ)N = det'(- Δ)DX(l)Y'(l)e*

-(£-l)C + - . (46)

4. Selberg's Zeta Function for the Dirichlet Problem

One can rearrange the trace formula (13) to yield a form that is more reminiscent of
a periodic-orbit formula in the sense of [4]. (For an explicit example, see e.g. [23].)
The second sum on the r.h.s. of (13) runs over the conjugacy classes {pp}9 where
Pp eΓ is primitive. Therefore the corresponding conjugacy class also occurs in the
first sum over all primitive conjugacy classes in Γ. It is thus natural to combine the
contributions of each such conjugacy class from both sums into a single sum. As
these classes correspond to closed geodesies on Σ that are symmetric w.r.t. the
reflection / we call them bs. One also notes that l(ρ%) is twice the length of the
geodesic on Σ; therefore we introduce l(p%) =:2l(bs).

The remainder of the first sum on the r.h.s. of (13) consists of a summation over
the closed geodesies that are not symmetric under / - we call these geodesies bn -
and over the bordering curves c{. On Σ the foπ's and their mirror images under
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/ yield the same geodesic. We account for that fact by introducing a factor of two
in the summation and counting each geodesic only once.

One notices that the inner /c-summation in the two contributions to the sum
over the fo/s are over even and odd integers respectively and thus can be combined
into a single summation. Completing all this we arrive at

» l(bn)g(kl(bn))
k l b 2 ~ k l 2- e ~ kl^/2 £ ekl^2 - (- l)ke ~ kl^2

" °° 2/.ί>~/ t / i / 2

+ Σ Σ »' ,-H,g(fc*.). (47)
i=ι k=ι e ι — e

Introducing χb = 1 for b = fcw and χb = — 1 for fe = fcs and suppressing the argu-
ment of /(b) yields the alternative form of the trace formula

Σ dnh(pn) = (-^-^ 7° dph(p)ptanh(πp) -

^

V VΣ Σfc//2 fc fc/ί,φ c. fc = ι β 7 — χ&^ 7 1 = 1 fc=ι e —

The zeta functions Jί(s), Y(s) and Z(s) were obtained after inserting h(p) =
\_p2 + (s - 1/2)2]"1 - [p2 + (σ - 1/2)2]"1, Res, Reσ > 1, into the trace formula
(13). Using the same function h(p) in (48) yields

£ dnh(Pn) = - « - D^(s) - ̂ ^ + ̂ RP + |̂ 1 - (.- σ) , (49)
n = i 4 2s -1 2s -I \_ZD(s) ZB(S)]

where we have defined

ZD(S):= Π Π( 1-^" + le~'(ί + ")). R e s > l ,
b φ c, n = 0

ZB(s) := f[ f[(l-e~ li(s + 2k + 1})2' Re 5 > 0 . (50)
ί = l k = 0

The product ZD(s):= Zβ(s) ZD(s) now is Selberg's zeta function for the Dirichlet
problem on the bordered surface Σ. Comparing this definition and (49) with (23)
shows that

In terms of ZD(s) we obtain for the trace of the regularized resolvent

L 1 1 Zp(s)

' 42s-l JD 2s-I ZD(s) '
(52)

The analytic properties of X(s), Y(s) and Z(s) (see the discussion after (28)) show
that ZD(s) is an entire function with (trivial) zeroes of order (g — l)(2fe + 1) at
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s = — fc, /ceN0, and (non-trivial) zeroes of order dn at 5 = \ ± ipn, λn = i + p%
being the Dirichlet-eigenvalues of — A on Σ with multiplicities dn. These properties
are explicitly seen in the representation

ZD(s) = $D(s(s- l))^(2s-1)[(2π)1-sec+s(s-1)G(s)G(5+ I)]*-1 . (53)

The functional equation of Z(s) (see e.g. [2]) together with (36) shows that ZD(s)
satisfies the functional equation

ZD(s) = ZD(\ — s)exp<2π(# — 1) J dwwtan(πw) + —(2s — 1)> .
I o 4 J

(54)

Instead of the Euler products (50) we want to find a representation for ZD(s) in
terms of a Dirichlet series which seems to be more practical to treat. The idea to do
this goes back to McKean [21] and has in a similar context been exploited by
Berry and Keating [24]. We use the relation

oo oo 2m(m — 1)

Π (1 - yx ) = 1 + Σ (- D-π (1_χ,/ , (55)
n = 0 m = l lίr=l V 1 X )

which is due to Euler [25]. Both sides converge absolutely for x| < 1 and
For ZD(s) we take x = χbe~l, y = χbe~sl and for ZB(s) x = e ~ 2//, y = e ~li(s + 1}, and
perform the inner products in (50) using (55),

ϊ

(56)

Here the product over b extends over all closed geodesies, where the c, 's occur with
multiplicities two. In (56) we introduced the coefficients

(57)

To evaluate the product in (56) we introduce so-called "pseudo-orbits" α as formal
sums of primitive closed geodesies b,

α:— m1b1 φ ®mkbk, mi6N 0 . (58)

The length Lα of this pseudo-orbit is defined to be

L β :=m 1/(6 1) + - - + m k/(6 f c). (59)

We also introduce the norm NΛ:= eL\ These notions allow us to perform the
product in (56) to give

ZD(s) = ΣaaN;s, R e s > l , (60)
α

where the sum runs over all possible pseudo-orbits that may be formed out of the
closed geodesies b on Σ according to (58), including the "null-orbit" with
α0 = 1 = NQ. Furthermore, αα:= Πr=ι a% -

Equation (60) is a representation of ZD(s) as a Dirichlet series. Such series
converge absolutely in right half-planes Res > σA and conditionally for Res > σc,
σA^σc. One can derive a similar formula like (60) also for Z(s), where
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σA = 1. The location of the abscissa of absolute convergence in the latter case is
a consequence of the zero of Z(s) at s = 1 due to the existence of the eigenvalue
τ0 = 0. ZD(s\ however, has no zero at s = 1 and, in addition, the χb's, which are not
present for Z(s), introduce alternating signs into the series. Thus one may conjec-
ture that the Dirichlet series (60) converges conditionally also for some Res rg 1.
The absolute convergence of (60) is not changed by the manipulations done,
therefore σA = 1. If there are no small eigenvalues 0 < λn < |, there are no zeroes of
ZD(s) with Re s > \. Our conjecture therefore is that in this case σc = %. This would
mean that one could evaluate (60) numerically, knowing the geodesic length
spectrum of Γ, for Re s = \ + ε, ε positive but arbitrarily small, and could identify
the zeroes sn = %± ίpn as minima of ZD(s) in the vicinity of the critical line Re s = %.
Thus one could compute the eigenvalues for the Dirichlet-Laplace-Beltrami oper-
ator on Σ.

5. Summary

In this paper we derived a Selberg trace formula for bordered Riemann surfaces.
This formula allowed us to express functions of the eigenvalues of the Laplace-
Beltrami operator, endowed with either Dirichlet or Neumann conditions on the
surface's boundary, through the lengths of the closed geodesies on the compact
double of the surface. On the other hand this could be viewed as a trace formula for
reflection symmetric Riemann surfaces concerning the spectral problem of the
Laplace-Beltrami operator on either even or odd functions under the symmetry
operation.

We discussed spectral functions of —A for both Dirichlet and Neumann
boundary conditions and evaluated the respective functional determinants. In
addition we gave an expression that involved the relation between determinant
functions of either cases.

Since in our final formula (45) the dependence of the determinant on the lengths
of the bordering curves is made explicit, this result could be used in string theory to
study the dependence of scattering amplitudes on the lengths of the external string
states [15].

Finally we have investigated the Selberg zeta function ZD(s) for the Dirichlet
problem on the bordered surface Σ. Rearranging the trace formula in such a way
that it looks like a periodic-orbit formula for Σ, we could represent ZD(s) by an
Euler product of the usual type. Rewriting this as a Dirichlet series, we were led to
the hypothesis that we have achieved conditional convergence for that series left of
the abscissa of absolute convergence Re s = 1 up to just before the critical line
Res = i. This fact may be used in the context of periodic-orbit quantization of
classically chaotic systems to compute the eigenvalues of a Sinai-billiard-like
system, i.e. the free motion of a particle on a surface with holes.
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