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Abstract. We consider the Schrodinger operator with constant full-rank magnetic
field, perturbed by an electric potential which decays at infinity, and has a constant
sign. We study the asymptotic behaviour for large values of the electric-field coupling
constant of the eigenvalues situated in the gaps of the essential spectrum of the
unperturbed operator.

0. Introduction

On C§°{Rm) define the Schrodinger operator

Here A : Rm —> R m is the magnetic potential, V : Mm —> R+ is the electric potential,
and g > 0 is the electric-field coupling constant. Our further assumptions about A
and V will imply, in particular, the essential selfadjointness of the operator H^, so
that in the sequel H^ will denote the operator self adjoint in L 2 (R m ) .
We assume that the entries

Bij = d x %

A j ~ d x 3

A ι i M = l , . . , m ,

of the magnetic-field tensor B = {Bi-}Ί^J=ι are constant in X. Moreover, we assume

ra. (0.1)

Note that the condition (0.1) may hold only if the dimension m is even, i.e. m — 2d,
d £ Z, d > 1. Let bγ > - > bd > 0 be such numbers that the eigenvalues of the
skew-symmetric matrix B are equal together with the multiplicities to the imaginary
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numbers -ίbj and ibj9 j = 1,..., d. Let {Λq}, q > 1, be the nondecreasing sequence
consisting of positive numbers of the form

Λq = Y^2nό - \)b0 , (0.2)

where n , j — 1,... , d, are positive integers. The numbers yl are known in the
physical literature as Landau levels. If κs different sets {nu... ,nd} yield one and
the same level Λs according to (0.2), then As is repeated x s times in the sequence
{Λq}q>ι. It is well-known (see e.g. [Av.Her. Si]) that we have

q=l

where σ(T) (resp. σess(T)) denotes the spectrum (resp. the essential spectrum) of a
selfadjoint operator T.

Further, we assume that the electric potential V decays at infinity. Therefore, the
multiplier by V is relatively compact with respect to Ho. Hence, we have

Fix a real number λ G p(HQ) = R \ σ(HQ) and denote by JV^iX) the number of

the eigenvalues of the operator ΐίf crossing λ as the parameter t grows from 0 to
the value g > 0. The paper is devoted to the study of the asymptotic behaviour of the
functions yVg

±(X) as g —> oo, the value λ = λ £ ρ(H0) being fixed.
The paper is organized as follows. In Sect. 1 we state our main results and comment

briefly on them. Sect. 2 contains some necessary auxiliary results. In Sect. 3 we prove
Theorems 1.1-1.2, while the proof of Theorem 1.3 can be found in Sect. 4.

1. Statement of Main Results

1.1. We shall say that the potential V belongs to the class &α, α > 0, if and only if
V e C°°(Mm), and the estimates

\DβV(X)\ < Cβ(X)-Q-M , (X) := (1 + \χ\ψ* ,

hold for each X e W71 and each multiindex β for some constants Cβ.
For s > 0 set

Φv(s) = vol{X G Rm : V(X) > s} .

We shall say that the potential V belongs to the class j ^ \ α > 0, if and only if:
i) V e ®α\

ii) the estimate
\X\>R,

holds for some constants Co > 0 and R > 0;

iii) the function Φv(s) is differentiable for s G (0, s0], s0 > 0, and the estimate

sΦ'v(s)<CΦv(s), β G ( 0 , s 0 ] ,

holds for some constant C.
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Remark. Various sufficient conditions which guarantee the validity of condition iii)
can be found in [Shu], Subsect. 28.7, or in [Dau. Rob], Subsect. 2.B. In particular,
condition iii) holds if the estimate

CXV(X)< \X'VV{X)\

is fulfilled for some positive Cx and sufficiently large \X\.
Let Fj(t), j = 1,2, t > 0, be two nondecreasing (resp., nonincreasing) positive

functions. We shall write

(respectively,

Fι(ί)xF2(t), U0)

if and only if there exists a constant C > 1 such that we have

C-lFx(f) < F2(t) < CFγ(t)
for sufficiently large (resp. small) t.

Note that if V G i^+, a > 0, we have

Φv(s)^s-rn^, slO. (1.1)

Let V e &+, a > 0, / be an arbitrary lower-bounded interval. For λ e p(HQ)
introduce the function

(1-2)
q>\:
Λqβl

Since V is a bounded function, the sum at the right-hand side of (1.2) may contain just
a finite number of non-zero terms for any fixed g > 0. If the interval I is bounded,
then the estimate (1.1) implies

Ψg(I)-gm/a, g^™, (1.3)

for all a > 0. If / is unbounded, then the asymptotic behaviour of Ψg(I) is essentially
different for a e (0,2), a = 2 and a > 2. Namely, if a e (0,2), then the estimate
(1.3) holds, if a — 2, then we have

^ (1.4)

and if a > 2 we have

\ — m/2/2 r

/2) J (1.5)

Note that in the case where / is unbounded and a > 2, the estimates (1.4)—(1.5)
together with (1.1) imply that the main asymptotic term of Ψg(I) is independent of
/. More precisely, we have

lim Ψ (Iγ)lΨ (I2)=\ (1.6)
g^oo y y

for a > 2 and any pair of unbounded intervals Iγ and /2.
Assume that V G ̂ J~, a > 0, and, moreover, V obeys the asymptotics

X:=X/\X\, | J f | - > o o .
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Then we can replace (1.3)—(1.4) by more precise asymptotic relations. Namely, we
have

if a > 0 and / is bounded, or if a G (0,2) and I is arbitrary, and

lim g-m/2(loggyιΦ (I) = —
g->oo y 21 (1 + ra/2)

gm-l

if a = 2 and / is unbounded (cf. [Rai 2], p. 46).

1.3 Theorem 1.1. Let V G ̂ ^ > a > ® Then we have

for any λ = λ G p(H0), λ > Λv

Remark. If λ < Λ{, then JVg~(X) — 0.

Theorem 1.2. Lβί V G ̂ J", α G (0,2). Γ/ẑ /t we /zαve

for any λ = λ G p(H0).

Remark. We shall prove Theorem 1.2 for λ > Λj = inf σ(iί 0) = infσ e s s(F 0). The
case λ < Ax is included as a special case in [Rai 2], Theorem 2.1; in this case the
asymptotics (1.8) are valid as well.

Theorem 1.3. Let V G ϋ?9

+'. Then we have

g g ^ ^ ^ -* oo , (1.9)

/<9Γ ύf^J λ = λ G

Remark. The conditions i)-iii) imposed on the potential V may seem rather restrictive
and, as a matter of fact, they really are. As it will be seen from the sequel, these
assumptions enable us to use some known results on the spectral asymptotics for
pseudodifferential operators with Weyl symbols. Since we investigate only the main
asymptotic term of yf/

g

±(λ), our results could be considerably extended applying the
variational technique developed by M. Sh. Birman and M. Z. Solomyak (see e.g.

[Bir. Sol]). Here we would mention just one possible generalization. Let Vx G
a G (0,2]. Assume that V2 > 0 and V2 G Lm/ 2(Mm) if m > 2, V2 G LP(R2\ p > 1
and suppF2 is compact if m = 2. Then the asymptotic formulae (1.8)—(1.9) remain
valid for V = Vι + V2. Note that in this case the main asymptotic term of Ψg(I) as
g —> oo depends only on Vλ but not on V2. In particular, we find that our results are
valid for the Coulomb potential V(X) = l/\X\.

Note that our results do not contain the asymptotics of ̂ + ( λ ) for a > 2. These
asymptotics are included as a special case in the general result of [Bir. Rai], Theorem
1.1, where a much more general class of "regular" potentials (A, V) has been studied.
Bearing in mind (1.5) and (1.6), we find that the asymptotic formula in Theorem 1.1
of [Bir. Rai] can be written in the form of (1.9) if B is constant, rank B = m, and
V G ̂ r + , a > 2.
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1.4. For t G R set

Then the asymptotics (1.7) can be written in the form

λ

Λ£~(λ) = / Φv{g~\\ - t))dk(t) (1 + o(D),
— oo

and the asymptotics (1.8)—(1.9) — in the form

oo

= / Φv(9~\t - λ))dfe(t)(l + o(l)), g-*oo.
"'9

λ

Comparing these formulae with the analogous asymptotics obtained in [Al.De.Hem],
[Hem] and [Sob] for the case where the unperturbed operator has the form —A + Vo,
Vo being a periodic function over Mm, we find that the role of the integrated density
of states for the operator considered in the present paper is played by the function
k(t) introduced by Y. Colin de Verdiere in [CdV].

2. Auxiliary Results

2.1. It is well known that on R m = R2d there exist rectangular coordinates (x,y)
with x G Rd, y G M.d such that the operator H^ can be written in the form

.7 = 1

Introduce the self adjoint operator

defined originally on Co°(Rd) and then closed in L2(Rd). The spectrum of h is purely
discrete and the eigenvalues of h together with the multiplicities coincide with the
Landau levels Λq, q > 1. Let {fq}q>ι be the orthonormal in L2(Rd) eigenfunctions
of h such that

The eigenfunctions fq can be written in the form

Ux) = exp(-|x | 2/2)^α(x), q >

where ^ , q > 1, are some polynomials with real coefficients.
Introduce the operator

Mo = I dyh.

which is selfadjoint in L2(R2d).
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Further, set

and define the operator 9̂ *, selfadjoint and bounded on L2(R2oί), as a pseudodifferential
operator ($T)O) with Weyl symbol

S(x, y, ξ, 7/) := V^z - 77, y - 0 , (x, y; ξ, η) G T*R 2 d ,

(see [Shu], Chapter 4, or [Ho]). Thus, for u G L 2 (R m ) we have

(Tu) (x, y) = τj—μ I exp{z[ξ(x - x') + η(y - ?/)]}

x Vb Q ( x + x7) - 77, i(2/ + j/7) - ξ) u(x\ y')dxf dyf dξ dη .

For g > 0 set

The operators H^ and J ^ 1 are unitarily equivalent. To see this, first of all change

the variables xQ —> bJl/2Xj, y^ -> b~Xlly^ j = 1,... , d, in R^^. Let (ξ,7]) be the

variables dual to (x, y). In T*R 2 d = R4 ί i define the linear symplectic transformation

x - > x - 7 7 , y -*y-ξ, ξ-> (y + ξ)/2 , 7? -^ (x + η)/2 .

The supeφosition of these two transformations maps the symbol of the operator ^

into the symbol of $$f- Taking into account Theorem 4.3 in [Ho], we establish the

unitary equivalence of H^2 and 3@^

22. Let T be a linear compact operator in a Hubert space. Then v(μ\ T), μ > 0, is
the number of the singular values of T (i.e. the eigenvalues of (T*T)1 / / 2) greater than
μ. Assume in addition that T is selfadjoint. Then n±(μ; T), μ > 0, is the number of
the eigenvalues of the operator ± T greater than μ. Note that we have

Kμ; T) = i/(μ; Γ*) = n + (μ 2 ; T*Γ) = n + (μ 2 ; Γ Γ * ) , μ > 0, (2.1)

for any compact operator T. Moreover, recall the well-known Weyl inequalities

n+(μ; Tγ + Γ2)

< n + (μ(l - r); ^ ) + n+(μτ; T2), Vμ > 0 , Vr G (0, 1), (2.2)+

• r); Tx) - n_(μr; T2), Vμ > 0, Vr > 0, (2.2)_

which are valid for any couple of compact operators T3 = T.*, j — 1, 2.

Set 3F* := 97*1/2. Obviously, under the assumptions of Theorems 1.1-1.2 the
operator W^^1'2 is compact. Bearing in mind the unitary equivalence of the
operators H^ and -^^ -> and applying a suitable version of the Birman-Schwinger
principle (see [Al. De. Hem], Theorem 1.3, or [Bir], Proposition 1.6), we obtain the
following

Lemma 2.1. Let λ = λ G ρ(H0). Then we have

V#>0. (2.3)
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2.3. Introduce the operator χ(λ) acting in

^2(N+; Rd

y) := u = {uq(y)}^ : ] £ / \uq(y)\2 dy < oo

according to the formula

(χ(λ)n)q(y) = \ Λ q - λ \ - ι / 2 u q ( y ) , g > 1 , t / G M d , λ - λ e

The same notation χ(λ) will be also used for the restrictions of the operator χ(λ)
onto the subspaces L 2 (Ifφ x , 1 < κ < oo, of ̂ 2 (N + ; R£).

Further, we shall say that an operator acting in L2(Rp belongs to the class
ya ( resp.^ + ) if and only if it is a ΨΌO with Weyl symbol s e f α (resp. s G &+),
a > 0. It is well-known that if T G 3ζ, then T* e .i^, if Tά G 3ξ, j = 1,2,
then Tj + T2 G i ζ , and if Tj G J ζ , T2 G .5^, then T{T2 e yaJrβ (see e.g. [Shu],
Chapter 4).

Fix λ > Λu λ G ρ(ff0), and A > λ. Denote by P_, P + = P+(Λ) and
P ^ = ̂ ooC l̂) the spectral projections of the operator βff0 corresponding respectively
to the intervals /_ = [Ax, λ), 7+ = (λ, Λ) and 7^ = [yl, oo). Obviously, the
projections P_, P+ and P^ are pairwise orthogonal. Since Aγ = Ίnfσ(H0) and
λ G p(i70), we have P_ + P+ + P ^ = Id as well. We shall use also the notation
Q = P+ + P^.

Lemma 2.2. For any a > 0, λ > Av X G ρ(HQ). we have

ι μ | 0 , (2.4)±

μ 1 0 . (2.5)±

Proof. For definiteness we shall prove the relations (2.4)_-(2.5)_. The proofs of
(2.4)+-(2.5)+ are quite similar.

Recalling (2.1), we obtain the identity

= n+(μ; \β0o - \\~^2PjrP_\^ - ΛΓ1/2), μ > 0.

(2.6)

Set κ_ = #{<? : ylς G 7_}. Introduce the operator χ(λ)Tχ(λ): L2(βξ)κ- ->

L2(M^)X-, where Γ is a ^DO with matrix valued Weyl symbol

srs(y, v)-~ά J fr{χ)fs{χf)e^χ-χf)

-{x + x')-η,y-ndxdx'dξ, r, 5 = 1,... , x_ . (2.7)

The nonzero eigenvalues of the operators |J^0 — λ |~ 1 / / 2 P_^P_ | ^ 0 - λ|~1//2 and
χ(λ)Tχ(λ) coincide. Therefore, we obtain

n+(μ; \W^ - \\'XI2P^P_\M^ - \\~xl2) = n+(μ; χ(λ)Tχ(λ)), μ > 0 . (2.8)
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Further, we have T = T{+T2, where Tγ is a ΨΌO with matrix-valued Weyl symbol

{δrsVb(-η, y)}*~s=ι and T2 is a ΨΌO with matrix-valued Weyl symbol with entries

srs(y, η) =
(2τr>

1

{x - \/χVb(τx — 77, y — rξ) — ξ \/yVb{τx — 77, y — rξ)} dr dxdξ , (2.9)

0

where φ r s ( x , 0 are some polynomials, r, s = 1,... , x_, (see [Rail], Sect. 5).
Applying (2.2)±, we get

±n + (μ; χ(λ)Tχ(λ)) < ± n > ( l τ r ) ; χ(λ)Γ l X(λ))

+ n±(μτ; χ(λ)T2χ(λ)), Vμ > 0, Vr G (0, 1). (2.10)±

It is not difficult to check that the entries of the symbol of T2 (see (2.9)) belong
to the class ^ + 1 . Since κ_ < 00, we have

n±(s; χ(λ)T2χ(λ)) = O(S-
2d/(a+ι)) = o(l?1/5(/_)), s | 0, (2.11)±

(see [Dau. Rob]). On the other hand, we have

r l=^et, (2.12)

where t is a $ΌO with (scalar) symbol ^(—77, y). Thus we get

n+(s; χ(λ)TιX(λ)) = Y^n+(s(Λq - λ); t). (2.13)

Applying the standard asymptotic formulae describing the eigenvalue distribution for
elliptic $ΌOs of negative order, we find that

n+(s(Λq - λ); t) = (2πydvo\{(yi η) G T*Rd : Vb(-η, y) (2.14)

> s(Λq — A)}(1 + o(l)), s I 0,

(see [Dau. Rob]). Note that d = rn/2, and the volume at the right-hand side of (2.14)
coincides with 61 . . . bdΦv(s(Λq - λ)).

Combining (2.6), (2.8), (2.10)±, (2.11)±, (2.13) and (2.14), and taking account of
the limiting relation

limlimsupiΦ'w (1_Fr)(7_)/Φr

1 / (/_) < ± 1 ,

we come to (2.4)_.
In order to prove (2.5)_, note the identity

n_(μ; P_WP_(βrf0 - \)~ιP_WP_) = n+(μ; χ(λ)f 2 χ(λ)), μ > 0,

where f is a matrix-valued $T>0 whose symbol is defined by analogy with (2.7) but

Vb is replaced by V^ 2. Arguing as in the case of T, we can show that f = f1 -j- T2,

where fγ is a iẐ DO with matrix-valued symbol {δrsV^2(-η, y)}^~s=v and the entries
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of the symbol of the operator f2 belong to ^ Q ; + 2 )/2 T n u s w e find t n a t f2 = Tx+t2,
where Tx is the operator described in (2.12), and the entries of the symbol of the
operator T2 belong to &a+\. Further the proof of (2.5)_ is analogous to the one of
(2.4)_. Π

Lemma 2.3. For any a > 0, Λ > Ax, λ G ρ(H0), we have

Kμ 1 / 2; Q ί T P _ | i % - Λ Γ V 2 ) = O(μ-2d/{a+l)), μ j 0, (2.15)

Proof. Obviously we have

= n+(μ; \β&0 - X\'ι/2P_W\lά - P_)WP_\J%0 - λ|~ 1 / 2)

= n+(μ; χ(λ)(T - 12)χ(λ)) = n+(μ; χ(λ)(Γ2 - T2)χ(λ)),

where the operators T, f, T2 and T2 have been introduced in the proof of the previous
lemma. Since the entries of the symbols of the operators T2 and f2 belong to the class
i ^ + 1 , we obtain the estimate

n+(μ χ(λ)(T2 - T2)χ(λ)) = O(μ-2d^a+l)), μ [ 0 ,

which entails (2.15). D

Lemma 2.4. For any a > 0, λ > Λx, X G ρ(H0), we have

Kμ 1 / 2 ; P _ ^ P + l ^ o - λ Γ 1 / 2 ) = O(μ~ 2 d / ( Q ; + 2 ) ) , μ I 0, (2.16)

Prao/. Set x + = #{g : Λq G /+}. Let j Γ : L2(Rd)κ+ -+ L2(Rd)κ- be a ΦΌO with
matrix-valued Weyl symbol with entries

(x -{- x') — η, y — ξ I dxdx'dξ ,

r = 1,... , κ_ , s = ft_+ 1, . . . , κ_ + κ+ . (2.17)

Then we have

z V / 2 ; P_WP+\M0 - λ | - 1 / 2 ) = n + (/x; χ{\\T*.Tχ{\)), μ > 0 .

Since the functions fr and / s appearing in (2.17) are pairwise orthogonal, we find
that the entries of the symbol of the operator ϋ/' belong to ^(α+2)/2> a n d hence the
entries of the symbol of the operator J 7 ^ * ^ belong to ^ + 2 Thus we come to the
estimate

* (μ-MΛ«+2)) ? μ [ 0 ,

entailing (2.16). D

Lemma 2.5. For (my α > 0, λ > Λx, X G ρ(H0), we have

Urn l imsupμ 2 d / αKμ 1 / 2; P_WPoo(A)\M0 - X\'ι/2) = 0. (2.18)
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Proof. Obviously we have

A|"1/2) < v(μι/2(Λ -

< n+(μΛ; P_9rP_) = n+(μA\ T), μ > 0,

where the operator T has been introduced in the proof of Lemma 2.2. Since the
quantity lim sup s 2 d / α n + (s; T) is bounded, the relation (2.18) holds. D

sjO

Lemma 2.6. Let a G (0, 2). Then for any λ = λ € Q(H0), we have

lim limsupμ2d/cM/i1/2; WP^Λ^MQ - λ\~ι/2) = 0. (2.19)

Proof For sufficiently large τl and some c G (0, 1) we have

V / 2 ^ o - Λ Γ 1 / 2 ) < 1/2

(2.20)

Applying the Birman-Schwinger principle, we find that the rightmost quantity in
(2.20) coincides with the number of the eigenvalues of the operator Ho — {c?μ)~ιV
smaller than —A. Employing Theorem 2.1 in [Rai2], we find that the estimate

<cΣ(Aq + AΓ2d/a (2.21)
q>\:

holds with some constant C independent of A. Since a G (0, 2), the series at the
right-hand side of (2.21) is absolutely convergent. Letting A —• oo, we conclude that
the relation (2.19) is valid. D

3. Proof of Theorems 1.1-1.2

3.1. In this subsection we prove Theorem 1.1.
Replacing the operator ( i^ 0 — λ ) " 1 by its negative part and using the minimax

principle, we get

W) < n_(μ; W

= n+(μ; WP_\^ - \\~XP_W), μ > 0.

The rightmost quantity can be estimated directly according to (2.4)_. Thus we get

U!, λ))~1n_(μ; W(β%0 - \γxW) < 1. (3.1)

Restricting the operator W{3@§ — \)~l(W onto the range of P_, we get

n_(μ; ^ ( ^ 0 - λyιW) > n_(μ; P_W(^0 - \yxWP_). (3.2)
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Write the operator identity

p_W{^ - \γxwp_ = p_w*p_(β$0 - \ylp_wp_

z - XΓιPOΰWP_ .

Using the relations (2.1)-(2.2)_, we get

n_(μ; P_W(3&0 - \γxWP_) > n_(μ(l + 2τ) P_WP_(M0 - λ)~1

μ > 0 , r > 0 .

The first term at the right-hand side is estimated according to (2.5)_; this term
is responsible for the main term of the asymptotics. The second term is estimated
according to Lemma 2.4, the third term is estimated according to Lemma 2.5. Thus
we obtain the inequality

liminfΨι/μ([Λv λ)Γιn_(μ; P_W(J¥0 - X)~XWP__) > 1,

which combined with (3.2), and then with (3.1), entails (1.7).

3.2. In this subsection we prove Theorem 1.2.
Replacing the operator (J^o — λ ) " 1 by its positive part and using the minimax

principle, we get

- \)~XQW), μ > 0.

Fix A > λ and apply (2.2)+. Thus we get

+ ^ + - r) W

+ n+(μτ; WP

V μ > 0 , VrG(O, 1). (3.3)

Applying the asymptotics (2.4)+, and taking into account (2.1), (2.19) and the limiting
relations

lim limsup# 1 / 8((λ, Λ))/#1 / β((λ, oo)) = 1,

limlimsuplP1/μ(1_τ)((λ, oo))/^1/μ((λ, oo)) = 1,

we get

lim s u p ^ ( ( λ , oo^-^+ίμ; W(M0 - \γxW) < 1. (3.4)

Now, restricting the operator W(β?f0 - λ)~xW onto the range of ζ), we obtain
the estimate

n+(μ; W(M0 - X)~XW) > n+(μ; QW(β%0 - X)~X(WQ), μ > 0. (3.5)
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Write the operator inequalities

- 2ReP_WQ(MQ - A)"1

J^O-X\-1P__'WQ, Vεe(0, 1).

Using the relations (2.1) and (2.2)+, we get

n+(μ; QW(3&0 - \γxWQ) > n+(μ(l - ε)"\\ + 3r); WQ(M0 - \

- K(rεμ)1 / 2; P_WP+\βί?0 - X\~l/2)

- v{(τεμγ'2- P_ '/2

- H(τμ)ι/2;

for each sufficiently small ε > 0 and each r > 0. The first term at the right-hand-side
is handled in the same way as the estimate (3.3) was derived; this term yields the
main term of the asymptotics. The second term is estimated according to Lemma 2.4,
the third term is estimated according to Lemma 2.5, and the fourth term is estimated
according to Lemma 2.3. Thus we come to the estimate

which combined with (3.5), and then with (3.4), entails (1.8).

4. Proof of Theorem 1.3

In the proof of Theorem 1.3 we employ the scheme developed in [Bir].
Theorem 2.1 in [Rai2] implies, in particular, the validity of the asymptotic formula

^ g 0(1)), g -+ oo , (4.1)

under the hypotheses of Theorem 1.3. On the other hand, the resolvent identity

( ^ 0 - λ ) " ' - .W~x = λ J ^ ' G ^ o - λ Γ ' , λ = λ e Q(H0),

and the Weyl inequalities (2.2)± entail

±n+(s; W{^ - \yιW) < ±n+(s(l =F r);

+ n±(sr; λ ^

V 5 > 0 , Vr e ( 0 , 1). (4.2)±

Combining (1.4), (1.6), (2.3), (4.1) and (4.2)±, we find that it suffices to prove the
asymptotic estimates

n±(s; 9SWQ\.% - \yιW) = o(S-
d|log5|), s | 0, (4.3)
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in order to derive (1.9). Denote by W the operator defined by analogy with W but
Vb(X) is replaced by (X)"2. Applying the minimax principle, we get

Ĉ o - \)~XW) < n+(sc; W^~2

= z/((sc)1/2; MQ1W), VS > 0 ,

for some constant c. Hence, it suffices to prove the estimate

Kμ; J ^ c Γ 1 ^ = o(μ-2d\logμ\), μ | 0, (4.4)

in order to derive (4.3)±.
By (2.1) and (2.2)+ we get

ι/(μ; M~XW) = v(μ\ WM~X)

Vμ > 0 . (4.5)

Theorem 2.1 in [Rai2] with λ = 0 and a = 1 entails

Kμ/2; M-l/2WJ¥~1/2) = n+(μ/2; ^ f o " 1 / 2 5r^f o " 1 / 2 ) = O(μ~ 2 d ), μ | 0.

Set M* = i(W<MQXI1 -MQXI1W)\ note that the operator i ^ is selfadjoint. Applying
the minimax principle, we obtain

^ ^ - 1 / 2 -1/2.
ι/(μ/2; {W&QI -Mςϊ/ZW)M~wλ) <

= n+(μΛ\/2/2 3S) + n
Vμ > 0 . (4.7)

The Weyl symbol of the operator 3& can be written in the form (see [Ho, p. 374])

- 2τr-2d J sin{2[(r , z) - (ί , 0]}(1 + \x - η + t\2 + \y - ξ - τ\2yx'2

M(x + z, ξ + ζ)dz dζ at dr , (x, y, ξ, ry) G ̂ * R 2 d ,

where

/ t-i/2 ^(ch^^)- 1 exp { - (x2, + φthft^jdί, (x; ξ) e

^=1

π-i/2

is the Weyl symbol of the operator h~Xj/2. Applymg the general results in [Dau. Rob],
we find that

n ± (μ; JT) = O(μ- d | logμ | ) , μ j O , (4.8)

Putting together (4.5)-(4.8), we come to (4.4). Thus the proof of Theorem 1.3 is
complete.
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