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Abstract. The correct form of the angular part of radiation conditions is found in
scattering problem for ΛΓ-particle quantum systems. The estimates obtained allow
us to give an elementary proof of asymptotic completeness for such systems in the
framework of the theory of smooth perturbations.

1. Introduction

One of the main problems of scattering theory is a description of asymptotic
behaviour of N interacting quantum particles for large times. The complete
classification of all possible asymptotics (channels of scattering) is called asymp-
totic completeness. The final result can easily be formulated in physics terms. Two
particles can either form a bound state or are asymptotically free. In the case N ^ 3
a system of N particles can additionally be decomposed for large times into
non-trivial subsystems (clusters). Particles of the same cluster form a bound state
and different clusters do not interact with each other.

There are two essentially different approaches to a proof of asymptotic com-
pleteness for multiparticle (N ̂  3) quantum systems. The first of them, suggested
by L.D. Faddeev [1], relies on the detailed study of a set of equations derived by
him for the resolvent of the corresponding Hamiltonian. This approach was
developed in [1] for the case of three particles and was further elaborated by
J. Ginibre and M. Moulin [2] and L. Thomas [3]. The attempts [4, 5] towards
a straightforward generalization of Faddeev's method to an arbitrary number of
particles meet with numerous difficulties. However, the results of [6] for weak
interactions are quite elementary.

Another approach relies on the commutator method [7] of T. Kato. In the
theory of Λf-particle scattering it was introduced by R. Lavine [8, 9] for repulsive
potentials. The proof of asymptotic completeness in the general case is much more
complicated and is due to I. Sigal and A. Soffer [10] (see also the article [11] by
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J. Derezinski for the proof of intermediary analytical results). In the recent paper
[12] G.M. Graf gave an accurate proof of asymptotic completeness in the time-
dependent framework. The distinguishing feature of [12] is that all intermediary
results are also purely time-dependent and most of them have a direct classical
interpretation. Papers [10, 12] were to a large extent inspired by V. Enss (see e.g.
[13]) who was the first to apply a time-dependent technique for the proof of
asymptotic completeness. Actually, for three-particle systems V. Enss proved
asymptotic completeness for arbitrary short-range potentials (fall-off at infinity
quicker than that of the Coulomb potential) and without implicit assumptions on
subsystems.

The aim of the present paper is to give an elementary proof of asymptotic
completeness for N-particle Hamiltonians H with short-range potentials which fits
into the theory of smooth perturbations [7,14]. This proof is quite similar to the
one [15] suggested by the author for three-particle Hamiltonians. One of the
advantages of the theory of smooth perturbations is that it admits two equivalent
formulations. The first of them, time-dependent, is given in terms of unitary groups
of the Hamiltonians considered. Another, the stationary one, is based on their
resolvents. In particular, the stationary version automatically gives (see e.g. [16])
formulas for basic objects of scattering theory: wave operators, scattering matrix,
etc. Properties of these representations, specific for AΓ-particle systems, will hope-
fully be discussed elsewhere.

Our proof of asymptotic completeness relies on new estimates which establish
some kind of radiation conditions for JV-particle systems. We are concerned only
with the angular part of these conditions. Actually, only this part admits a formula-
tion in terms of H-smoothness and is needed for the proof of asymptotic complete-
ness. Compared to the limiting absorption principle (see below) the radiation
conditions-estimates give us additional information on the asymptotic behaviour
of a quantum system for large distances and large times. The limiting absorption
principle suffices for a proof of asymptotic completeness in the case of two-particle
Hamiltonians with short-range potentials. However, radiation conditions-esti-
mates are crucial in scattering for long-range potentials (see e.g. [17]), in scattering
by unbounded obstacles [18, 19] and in scattering for anisotropically decreasing
potentials [20]. In the latter paper (see also the lecture [21] by J.M. Combes) the
role of radiation conditions was advocated for three-particle Hamiltonians.

Our interpretation of radiation conditions is, of course, different from the
two-particle case. Before discussing their precise form let us introduce the general-
ized AΓ-particle Hamiltonians. We consider the self-adjoint Schrδdinger operator
H = — A + V(x) in the Hubert space ffl = L2(IRd). Suppose that some finite
number α0 of subspaces X* of X := Rd is given and let xα, xα be the orthogonal
projections of x e X on X* and XΛ = X Q X", respectively. We assume that

V(χ) = £ V«(x«], (1.1)
α = l

where Fα are decaying real functions of variables xα. Without loss of generality we
can suppose that the linear sum of all subspaces X* exhausts X. The two-particle
Hamiltonian H is recovered if (1.1) consists of only one term with X* = X. The
three-particle problem is distinguished from the general situation by the condition
Xa n Xβ = {0} for α φ β. We prove asymptotic completeness under the assump-
tion that Fα are short-range functions of xα but many intermediary results (in
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particular, radiation conditions-estimates) are as well true for long-range poten-
tials. Clearly, Fα(xα) tends to zero as |x| -» oo outside of any conical neighbour-
hood of XΛ and Fα(xα) is constant on planes parallel to Xα. Due to this property the
structure of the spectrum of H is much more complicated than in the two-particle
case. Operators H considered here were inroduced in [22] and are natural general-
izations of Λf-particle Hamiltonians. Consideration of a more general class of
operators allows to unravel better the geometry of the problem.

The spectral theory of the operator H starts with the following geometrical
construction. Let us introduce the set 3£ of linear sums

χa = χ«ι + X«> + . . . + Xak (1.2)

of subspaces X"J. The zero subspace X° = {0} is included in the set 9C and X itself
is excluded. The index a labels all subspaces Xa e % and can be interpreted as the
collection of all those α7 for which Xaj a Xa. Let xa and xa be the orthogonal
projections of x e X on the subspace Xa and its orthogonal complement

χa:= x Q x- = χΛι n XΛ2 n . . . n X«k, (1.3)

respectively. Since X = Xa © Xa (the symbol 0 denotes the orthogonal sum),
3f splits into a tensor product

L2(X) = L2(Xa)®L2(Xa). (1.4)

In the multiparticle terminology, index a parametrizes decompositions of an
TV-particle system into noninteracting clusters; xa is the set of "internal" coordin-
ates of all clusters, xα describes the relative motion of clusters.

Let us introduce for each a an auxiliary operator Ha = T + Fα, T = — A, with
a potential

v°> (1-5)
a

which does not depend on xa. In the representation (1.4),

Ha=Ta®I + l®Ha , (1.6)

where / is the identity operator (in different spaces), Ta = — Aa= — AXa acts in the
space J^fl = L2(Xa) and

Ha = Ta 4- V\ Ta= - Aa= - Aχa (1.7)

are the operators in the space Jtfa = L2(Xa\ Set 3f ° = C, F° = 0, HQ = 0. The
operator Ha corresponds to the Hamiltonian of clusters with their centers-of-mass
fixed at the origin, Ta is the kinetic energy of the center-of-mass motion of these
clusters and Ha describes an Λf-particle system with interactions between different
clusters neglected. Eigenvalues of the operators Ha are called thresholds for the
Hamiltonian H. Denote U(t) = exp( - iHt\ Ua(t) = exp( - iHat) and let E(Λ)
and Ea(Λ) be the spectral projections of the operators H and Ha corresponding to
a Borel set A c R. According to (1.6) the spectral analysis of the operator Ha

reduces to that of Ha. In particular, if X = XαXα Φ X so that V(x) = K(x), then we
can replace H by the operator H = — A%+ V in the space L2(X).

To formulate the limiting absorption principle let us inroduce the operator Q of
multiplication by (x2 + 1)1/2. The limiting absorption principle asserts that the
operator Q~r is locally /ί-smooth (in the sense of T. Kato) for any r > 1/2. The
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term "locally" means that actually only the operator Q~rE(A) is Jϊ-smooth for an
arbitrary bounded interval A which is separated from all thresholds and eigen-
values of H. A definition of fί-smoothness of the operators Q~rE(Λ) can be given
either in terms of the resolvent (H — z)"1, Im z Φ 0, of the operator H or of its
unitary group U(t). This is discussed e.g. in [16] or [23]. In Sect. 2 we recall the
definition in terms of U(t). The limiting absorption principle ensures, in particular,
that the singular continuous spectrum of H is empty. Furthermore, in the case
N = 2 (but not N > 2) it suffices for construction of scattering theory. There are
many different proofs of the limiting absorption principle for N = 2 but the only
one applicable for N > 2 relies on the Mourre estimate [24, 25, 26] which is
formulated in Sect. 2.

The fundamental result of Λ/-ρarticle scattering theory called asymptotic com-
pleteness is the assertion that the evolution governed by the Hamiltonian H is
decomposed as t -> ± oo into a sum of simpler evolutions governed by the
Hamiltonians Ha. This means that for every/which is orthogonal to eigenvectors
of H there exist / * such that

U(t)f~ΣVa(t)fϊ, ί - > ± o o , (1.8)
a

where " ~ " denotes that the difference between left and right sides tends to zero.
This relation is also sometimes called asymptotic clustering. More detailed formu-
lation of the scattering problem for N-particle Hamiltonians is given in terms of
wave operators (see Theorem 2.7). Using separation of variables (1.6) and applying
(1.8) to the Hamiltonians Ha (in place of H) one can describe the asymptotics of
U(t)fin terms of the "free" operators Ta and of eigenvalues λa

n and eigenvectors
ψn of the operators Ha. Actually, by inductive procedure, (1.8) yields

(1.9)

where for every a the tensor product is the same as in (1.4). In particular, in the
two-particle case the right side of (1.9) consists of the single term exp( — ίTt)f±,
where/1 e tf.

As was already mentioned, our proof of the asymptotic completeness is based
on radiation conditions-estimates. Actually, there is only one estimate which looks
differently in different regions of the configuration space X. Denote by χ(M) the
characteristic function of a set M. Let Vα = VXa be the gradient in the variable xa

(i.e. Vau is the orthogonal projection of Vu on the subspace Xa) and let Vis),

(V<β)f*)(x) = (Vβιι)(x) - |x«Γ2<(Vβιι)(x), xayxa, (1.10)

be its orthogonal projection in Xa on the plane orthogonal to the vector xa. We
emphasize that the space X and its subspaces Xa are not distinguished in notation
from their dual spaces to which Vu and Vau belong. The symbol < , > denotes the
scalar product in different Euclidean spaces. Let Γfl be an arbitrary closed cone in
Rd such that Γα n Xb = {0} if Xa £ Xb. Our main analytical result is that for every
a the operator

^« = χ(rf l)β-1/2v<s) (i.ii)
is locally H-smooth. This result is formulated as a certain estimate which, by
analogy with the two-particle problem, we call the radiation conditions-estimate.
It can be expressed either in terms of the resolvent of H or of its unitary
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group. Actually, it suffices to verify local //-smoothness of the operators
Ga = χ(Yα)6~1/2Vi s ), where YΛ is the intersection of Γfl with some conical neigh-
bourhood of Xa. In other words, Yα is a neighbourhood of Xa with some neigh-
bourhoods of all Xb9 Xa £ Xb, removed from it. Considering the collection of
operators Ga for all α we obtain //-smoothness of the operators &aE(Λ).

Let us compare the limiting absorption principle with the radiation conditions-
estimates. Note that the operator Q~1/2 is definitely not //-smooth even in the free
case H = — Δ. Thus the radiation conditions-estimates show that the differential
operators Vis) improve the fall-off of functions (U(t)f)(x) for large ί and xeΓ f l. In
particular, the operator V(s) is "improving" in the "free" region Γ0, where all
potentials Va are vanishing, //-smoothness of the operator χ(Γ0)β~1/2V(5) is not
very astonishing from the viewpoint of analogy with the classical mechanics.
Indeed, for the free motion the vector x ( t ) of the position of a particle is directed
asymptotically as its momentum ξ (corresponding to the operator — iV). So the
projection of ξ on the plane orthogonal to x(ί) tends to zero. According to the
conjecture (1.9) in the region Γα (for arbitrary α) the evolution in the variable xa

(corresponding to the relative motion of clusters of particles) is also asymptotically
free. Therefore one can expect that for every a the operator χ(Γα)Vis) is "improv-
ing."

We emphasize that the radiation conditions-estimates are to a certain extent
similar (at least from the viewpoint of classical interpretation) to propagation
estimates of I.M. Sigal, A. Soffer (see Sects. 7 and 8 of [10]) and of G.M. Graf (see
Theorems 4.2 and 4.3 of [12]). However, the study of the N-particle problem in
[10] is impeded by a difficult analysis of the so-called threshold energies of the
operator — iQ ~1 <x, V > — i < V, x > Q ~1. We dispense completely with this analysis.
Though in [10] (as in the present paper) the smooth method is adopted, we believe
that our approach is closer to that of [12]. The difference with [12] is that in place
of the stationary operator $a G.M. Graf considers some differential operator
with time-dependent coefficients. To construct scattering theory he establishes
a stronger estimate which, roughly speaking, corresponds to //-smoothness of the
operator χ(Γα)Q~1 / 2 |Vl s ) |1 / 2. We do not possess such an estimate and develop
scattering theory relying only on //-smoothness of the operators &a.

Our proof in Sect. 4 of local //-smoothness of the operators Ga hinges on the
commutator method rather than the integration-by-parts machinery which is used
(see e.g. [17]) to derive the radiation conditions-estimates in the two-particle case.
Actually, we construct such an //-bounded operator M that the commutator
[//, M]:= HM — MR satisfies locally the estimate

i[H,M]£c(G*Gβ-β-'), P > 1 > V α . (1.12)

The arguments of [7] (reproduced in the proof of Theorem 4.5) show that
//-smoothness of the operator Gα is a direct consequence of this estimate and of the
limiting absorption principle. We look for an operator M in a form of a first-order
differential operator

d

M = £ (nijDj + DM), mj = dm/dxJ9 Dj = - id/dxj, (1.13)
;=ι

with a suitably chosen real function m which we call generating for M. This
function is constructed in Sect. 3. Note that m is a homogeneous function of degree
1 so that coefficients m7 of the operator M are bounded. Due to the operator Q~p in
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(1.12) values of m in a compact domain are inessential. The commutator /[//0, M]
yields the leading contribution G*Gα to the right side of (1.12). The commutators

ϊ[Fα, M] = - 2<Vm(x), VFα(xα)>, where VFα - VαFα:= V x«Fα , (1.14)

are controlled by the operator Q~p.
To give an idea of the choice of m suppose for a moment that m(x) = \x\. Then

there is the identity

J[//o,M] = 4V ( s ) |xΓ1V ( s ), H0 = T= -A ,

which can be deduced e.g. from the formulas (4.1) and (4.6) below. Furthermore, by
(1.14),

α)> . (1.15)

Thus, under proper assumptions on Kα, we have that in the case X* = X,

[Kβ,M] = 0(|xΓ>), M - + O O , (1.16)

for some p > 1. This yields the estimate (1.12) and hence smoothness of the
operator g~ 1 / 2V ( s ) with respect to the two-particle Schrόdinger operator H.

However, if X* Φ X, then functions (1.15) decrease only as Ix]" 1 at infinity.
Actually, one can not expect that the operator Q~ 1 / 2V ( S ) is smooth with respect to
the JV-particle Hamiltonian H. To prove a weaker result about //-smoothness of
the operators Ga the function m(x) should be modified in such a way that the
estimate (1.16) with some p > 1 holds for all α. According to (1.14), this is true if
m(x) depends only on the variable xα in some cone where Fα(xα) is concentrated.
A similar idea was applied by G.M. Graf [12] in the time-dependent context. We
emphasize that our requirement on the function m(x) ensures that m(x) = m(xa) in
some conical neighbourhood of every Xa. In other words, a level surface
m(x) = const (which is a sphere for w(x) = |x|) should be flattened in an appropri-
ate way in a neighbourhood of each Xa. Another restriction on m(x) is that the
commutator z[//0, M] should be positive (up to an error O(\x\~p\ p > 1). This
demands that m(x) be a convex function. In this case we can neglect the region
X\Y α by the derivation of the estimate (1.12). It turns out that flattening and
convexity are compatible. However, the commutator z[//0,M] gets smaller
compared to the case m(x) = |x| so that radiation conditions-estimates in the
iV-particle case are weaker for N > 2 than for N = 2. Note also that due to
localization in energy in this estimate we can easily dispense with derivatives of Fα

and prove //-smoothness of the operators Gα both in short-range and long-range
cases.

In Sect. 5 we introduce wave operators (for the definition, see Sect. 2)

W±(H9 Ha; M^Ea(A)\ W±(Ha, H; M(a)E(Λ)) (1.17)

with "identifications"

d

M(a) = £ (rn^Dj + DjrnW), mf - dm(a)/dxj , (1.18)
7=1

which are first-order differential operators with suitably chosen (in Sect. 3) generat-
ing functions m(a\ The "effective perturbation" equals

HM(a} - M(a)Ha = [Γ, M(fl)] H- [Fα, M(fl)] + VaM
(a} , (1.19)
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where Va is defined by (1.5) and

Va=V-Va= ]Γ F α . (1.20)
x« £ xa

According to the results of [14, 27] to prove existence of the wave operators
(1.17) it suffices to verify that every term in the right side of (1.19) can be factorized
into a product K*Ka, where K is //-smooth and Ka is //α-smooth (locally).
Functions m(a} are chosen as homogeneous functions of order 1 (for |x| ^ 1).
Therefore coefficients of the second-order differential operator [Γ, M(α)] are de-
creasing only as x | ~ l at infinity. It turns out that this term can be considered with
the help of the radiation conditions-estimates. Furthermore, similar to m(x\ the
function m(a)(x) depends only on xa in some conical neighbourhood of each XΛ.
This ensures that \V(a\ M(α)] = O(\x\"p\ where p > 1. Finally, it is required that
m(a)(x) equals zero in some conical neighbourhood of XΛ such that Xa £ XΛ. So
coefficients of the operator FflM

(α) also vanish as 0 ( \ x \ ~ p ) , p > 1, at infinity. Thus
the second and third terms in the right side of (1.19) can be taken into account by
the limiting absorption principle. The obtained representation for the operator
(1.19) ensures existence of both wave operators (1.17) (for all a).

Existence of the second wave operator (1.17) implies that for every vector
f±eE(A)J^ and some/*

M(a)U(t)f± ~Ua(t)f*9 ί - > ± o o . (1.21)

If the sum of M(Λ) over all a were equal to the identity operator /, then summing up,
as advised in [28], the relations (1.21) we would have obtained the asymptotic
completeness (1.8). However, the equality ΣflM

(α) = / is incompatible with the
definition (1.18). We choose functions m(α) in such a way that

Σ M(α) - M , (1.22)
a

where M is the same operator as in (1.12). Summing up the relations (1.21) we find
only that

Ml/ίί^-Σl/Λί)/*, ί - > ± o o . (1.23)
α

Note that in the paper [12] of G.M. Graf the role of M(α) is played by time-
dependent identifications such that their sum is essentially equal to /.

At the final step of the proof of the asymptotic completeness we get rid of the
operator M in the left side of (1.23). To that end we introduce the observable

M±(A) = W±(H, //; ME(Λ)) (1.24)

and verify that the range of the operator M±(A) coincides with the subspace
. Actually, we show that the operator ± M±(A) is positively definite on
. By virtue of the inequality m(x) ̂  |x| for |x| ^ 1, this can be easily derived

from the Mourre estimate. Here we shall explain this result by analogy with
classical mechanics. Let us consider a particle (of mass 1/2) in an external field. In
this case the observable U*(t)MU(t) corresponds, in the Heisenberg picture of
motion, to the projection Jί(t] = \x(t)\~l(ζ(t\ x(ί)> of ̂ e momentum ξ(t) of
a particle on a vector x(ί) of its position. For positive energies λ and large t we have
that ξ(t) ~ ξ±,ξ2

±=λ, and x(ί) - 2ξ±t + x ± . Therefore Jί(t} tends to ± λ112 as
ί —> + oo .
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In Sect. 6 we conclude our proof of the main Theorem 2.7. The asymptotic
completeness in the form (1.8) is a direct consequence of the results obtained
in previous sections. Actually, every feE(Λ)Jjf admits the representation
f=M±(A)f± so that

l/(ί)/~ MU(t)f±, £ ^ ± o o . (1.25)

Comparing (1.25) with (1.23) we arrive immediately at (1.8). It remains to establish
existence of the wave operators W±(H, Ha). This is deduced from existence of the
first set of the wave operators (1.17). At this step we assume validity of Theorem 2.7
for all operators Ha (in place off/). This additional assumption is, finally, removed
by an inductive procedure.

2. Basic Notions of Scattering Theory

Let us briefly recall some basic definitions of the scattering theory. For a self-
adjoint operator H in a Hubert space 2tf we introduce the following standard
notation: &(H) is its domain; σ(H) is its spectrum; E(Ω\ H) is the spectral projec-
tion of H corresponding to a Borel set Ω c R; jf (ac)(//) is the absolutely continu-
ous subspace of H; P(ac)(//) is the orthogonal projection on Jf (ac)(//); Jf (p)(//) is
the subspace spanned by all eigenvectors of the operator H; σ(p)(H) is the spectrum
of the restriction of H on Jf(p)(//), i.e. σ(p)(//) is the closure of the set of all
eigenvalues of H. Norms of vectors and operators in different spaces are denoted by
the same symbol || || $ and Jf^ are the classes of bounded and compact operators
(in different spaces) respectively; R(B) is the range of an operator B; "s-lim" means
the strong operator limit; C and c are positive constants whose precise values are of
no importance. Note that operators exp( — iHt)P(ac)(H) converge weakly to zero
as |ί| -> oo and hence

s - lim Xexp( - iHt)P(ac\H) = 0, if Ke Jf^ . (2.1)
|f|->oo

Let K be //-bounded operator, acting from Jf into, possibly, another Hubert
space ffl' . It is called //-smooth (in the sense of T. Kato) on a Borel set Ω c R if for
every f=E(Q;H)fe®(H),

] \ \ K e x p ( - i H t ) f \ \ 2 d t ^ C \\f\\2 .
— oo

Obviously, BK is //-smooth on Ω if K has this property and B e ̂ .
Let now HJ9 j = 1, 2, be a couple of self-adjoint operators and let J be

a bounded operator in a Hubert space ffl . The wave operator for the pair H1,H2

and the "identification" J is defined by the relation

, H ί ; J ) = s~ lim cxp(iH2t)J exp( - iH^P^HJ (2.2)
ί-> ± oo

under the assumption that this limit exists. We emphasize that all definitions and
considerations for " + " and " — " are independent of each other. It suffices to
verify existence of the limit (2.2) on some set dense in Jf . If the wave operator (2.2)
exists, then the intertwining property

Q] (2.3)
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(Ω c R is any Borel set and E^Ω) = E^Ω; Ht)) holds. It follows that the range of
the operator (2.2) is contained in J4f(ac)(H2) and its closure is an unvariant subspace
of H2. Moreover, if the wave operator is isometric on some subspace Jf l5 then the
restrictions of Hl and H2 on the subspaces ^ and J 2̂ = W±(H2,Hl\J)3?l,
respectively, are unitarily equivalent. This equivalence is realized by the wave
operator. Clearly, for every /2 = W±(H2, H x ; J)/1?

exp( — ίH2t)f2 ~ Jexp( — iHιt)fl9 ί-> ± oo .

In the case J = / we omit dependence of wave operators on J. The operator
W±(H2,Hl) is obviously isometric on ^^(HJ. The operator W±(H2,H1) is
called complete if R(W±(H2, H^} = ^(ac)(H2). This is equivalent to existence of
the wave operator W±(Hl, H2\

We note also the multiplication theorem

W± (H3, H I ; JJ) = W±(H^ H2; J} W± (H29 HI ; J) . (2.4)

More precisely, if both wave operators in the right side exist, then the wave
operator in the left side also exists and the equality (2.4) holds.

We need the following sufficient condition of existence of wave operators.

Proposition 2.1. Let an operator / be H \-bounded and let its adjoint /* be
H Abounded. Suppose that for some N < GO,

11=1

(in the precise sense this should be understood as an equality of sesquilinear forms on
^(H1)x2(H2))9 where the operators Kjtn are Hrbounded and are HΓsmooth on
some bounded interval A. Then the wave operators

*E2(Λ))

exist.

This result was obtained in the articles [14, 27]. Proof for the case / = / can be
found e.g. in [23]. For arbitrary / the proof is practically the same [16]. Unboun-
dedness of,/ is inessential because real identifications /E1(A} and /*E2(Λ) are
bounded operators. We use Proposition 2.1 only in the case ^(#ι) = &(H2) and

Let us return to the JV-particle problem. We consider an operator H = T + V
in the Hubert space Jf = L2(lRd), where T — — A and V is multiplication by
a function V(x) defined by (1.1). We usually use the same notation for a function
and the operator of multiplication by this function. Dimensions da = dim X* Φ 0
of the subspaces Xa are arbitrary. In particular, we do not exclude that one of the
subspaces Xα coincides with the whole space X = IRA

As was already mentioned, we construct scattering theory for short-range
potentials. However, the radiation conditions-estimates hold as well true in the
case where potentials contain long-range parts. Therefore we distinguish two types
of assumptions on functions Fα. The first of them is related to the short-range case
and the second - to the general one. We recall (see (1.7)) that Γα = — zlα in the
space 2? α = L2(X*). Derivatives of Fα are understood below in the sense of
distributions.
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Assumption 2.2. Operators V*(T* -f 7)"1 are compact in the space 3FΆ and oper-
ators (|xα | + l)pFα(Γα + I)'1 are bounded in ̂ Άfor some p > L

Assumption 2.3. Functions Fα admit representations

V* = Vl + V* 9 (2.5)

where the short-range parts F* satisfy Assumption 2.2 and long-range parts V* satisfy
the following condition. Operators F?(Γα + I)"1, |VFf |(Γ α 4- J)'1 are compact in
the space Jf" and operators (\x"\ + l)p |VF?|(Γα -f I)'1 are bounded in ̂ fa for some
p>L

Compactness of Fα(Γα + /)" l ensures that the operator H is self-adjoint on the
domain @(H) = 3&(T) =.\@ and H is semi-bounded from below. We have chosen
Assumption 2.3 on functions Fα because it provides the limiting absorption
principle for the operator H. Practically we use only that for 2r = p the operators

((xα)2 + l)Γ / 2 |Kί|1 / 2(Γβ + /Γ 1 / 2 and ((xα)2 4- l)r

are bounded in the space Jf α. This is a consequence of Assumption 2.3 in virtue of
the Heinz inequality. It follows that considered in the space tf the operators
I F«|1/2 and |VF?| 1 / 2 admit the representations

I F«|1/2 - B«(T+ 7)1/2((xα)2 + I)-"2, B«e@ , (2.6)

|VF?| 1 / 2 = BJ(T+ /)1/2((xα)2 + l)~ r/2, Bΐe^ . (2.7)

Similarly, under Assumption 2.2 the representation (2.6) is valid for the operator
|Fα |1/2.

Recall that X is the set of all linear sums (1.2) with X° = {0} included in 3C and
X itself excluded. We define also the set ΘC' of all orthogonal complements Xa to
Xae&. By (1.3), #" consists of all intersections of subspaces Xa = X Q Xα. The
space X0 = X is included in X' and the zero-subspace {0} is excluded from it.
Below a labels all elements of & or S£'.

Let the operator Ha in the space 2tf a = L2(Xa) be defined by equalities (1.5) and
(1.7). The union over all a of their point spectra

Γ0 = U σ(p\Ha)

is called the set of thresholds for the operator H. We need the following basic result
(see [24-26]) of spectral theory of multiparticle Hamiltonians. It is formulated in
terms of the auxiliary operator

d
A = Σ (χj°j + DJ*j)> DJ = - ίδJ> dJ = d/8χj -

J = l

Proposition 2.4. Let Assumption 2.3 hold. Then eigenvalues of H may accumulate
only at Γ0 so that the "exceptional" set Y= Γ0 u σ(p)(H) is closed and countable.
Furthermore, for every A e R \ Γ there exists a small interval Λλ^λ such that the
estimate (the Mourre estimate) for the commutator holds:

i(lH,Alu,u)^c\\u\\\ c = cλ>^ ueE(Aλ)^. (2.8)

Let Q be multiplication by (x2 + l)1^2. Below A is always an arbitrary bounded
interval such that An T= 0, where A is the closure of A. One of the main
consequences of (2.8) is the limiting absorption principle.
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Proposition 2.5. Let Assumption 2.3 hold. Then for any r > 1/2 the operator Q~r is
H-smooth on A.

The proof of this assertion can be found in the article [20] which somewhat
weakens requirements of [24, 25] on Fα.

Corollary 2,6, The operator H is absolutely continuous on E(A)3f. In particular,

Let us give the precise formulation of the scattering problem for TV-particle
Hamiltonians. Denote by Pa the orthogonal projection in J f a on the subspace
Jf (p)(Ha) and set Pa = / <g) Pa, where the tensor product is defined by (1.4). Accord-
ing to (1.6) the orthogonal projection Pa commutes with the operator Ha = T + Va

and its functions. Set also HQ = T, P0 = /. The basic result of the scattering theory
for Λf-particle Schrodinger operators is the following

Theorem 2.7. Let Assumption 2.2 hold. Then the wave operators

W^ = W±(H9Ha'9Pa) (2.9)

exist and are isometric on the subspaces R(Pa). The subspaces R(W^) are mutually
orthogonal and the asymptotic completeness holds:

(2.10)

Our assumptions on Fα are somewhat larger than those of I.M. Sigal and A.
Soffer [10] or G.M. Graf [12] since we do not require anything about derivatives of
Fα. Note, however, that the methods of [10] and [12] can also accommodate
Assumption 2.2 (see [29] and [30], respectively). We remark that in [29] H.
Tamura gave another, somewhat more careful, presentation of the method of [10].

Theorem 2.7 gives the complete spectral analysis of the operator H. Actually, by
the relation (2.10), the absolutely continuous part H(ac) of H is the orthogonal sum
of its restrictions on different subspaces R(W^}. By virtue of the intertwining
property HW* = W^Hα, each of these restrictions is unitarily equivalent to the
operator Hα considered in the space R(Pα). Actually, if /e^f(ac)(//) and

Hf=Σw?Hαf*. (2.11)
α α

Furthermore, according to (1.4), (1.6), for a function φ

Thus #(ac) is unitarily equivalent to the orthogonal sum of the "free" operators Γa

shifted by the eigenvalues of the operators Ha. Theorem 2.7 describes also the
asymptotics as t -+ ± oo of the evolution (7 (ί)/ governed by the Hamiltonian H.
Indeed, the first equality (2.11) implies the relation (1.8) which in virtue of (2.12) can
be rewritten as (1.9).

We conclude this section with some standard technicalities.

Lemma 2.8. For any re[0, 1] the operator [H, Qr~](T + I}"1'2 e@.

Proof. Simple computation shows that

[H, βΠ = [Γ, βΠ = - 2(Vqr)V - (Δqr\ qr(x) = (x2 + I)"2 .

Since r ^ 1, functions Vqr and Aqr are bounded. D
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Lemma 2.9. Let ^eC^R) and re[0, 1]. Then [ψ(H\ Q^e SI.

Proof. Note that

lU(t), QΊ = - ΐ f V(s)lH, β'] U(t - s)ds .
o

Thus by virtue of Lemma 2.8,

(2.13)

For an arbitrary ψ we have that

By (2.13), it follows that

00

since j |ί^(ί)|dί < oo . (2.14)

Finally, let t/^eCo^lR) and ^ι(λ) = 1 on support of ψ so that ψ = ψψi. Then
IΨ(H), QΊ = ψ(H)[ψι(H), βr] + O(H), βr]^ι(H) and both terms in the right
side are bounded in virtue of (2.14). D

Lemma 2.10. For re [0,1] and arbitrary z φ σ ( H ) the operator
Q~r(T+I)(H - z)~^Qr is bounded.

Proof. First we commute the last two factors:

(H - z)~lQr = Qr(H -zΓl-(H- zΓ^H, 6Γ](H - z)~l .

Let us multiply this equality by Q~r(T + /). By Lemma 2.8, [H, Qr](H - Z)
Thus it remains to notice that the operator

Q~r(T + I)Qr(H - zΓ1 = (Γ

is bounded according, again, to Lemma 2.8. D

Quite similarly we obtain the following result.

Lemma 2.11. Suppose that a function v obeys the estimate

\v(x)\ + |(Vt>)(x)| + \(Δυ)(x)\ ^ C(\x\ + 1)-', re[0, 1] . (2.15)

Then

Combining Lemma 2.10 with Proposition 2.5 we immediately obtain

Proposition 2.12. For every r > 1/2 the operator Q~r(T + I) is H-smooth on A.

Proof. For any zφσ(H\

Q-"(T+I)U(t)f= (Q~r(T+I)(H - zΓlQr)Q'rυ(t}(H - z ) f .

Since the first factor in the right side is bounded it suffices to apply the definition of
ίf-smoothness to the element (H - z)feE(Λ)3ίf. D
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By Lemma 2.11, Proposition 2.12 ensures H-smoothness of the operators
Q~rDj where r > 1/2 and/ = 1, . . . , d. It contains also Proposition 2.5. Therefore
we usually give references below only to Proposition 2.12.

Of course, all results formulated for the operator H are as well true for every
operator Ha.

3. Generating Functions

In this section we construct "generating" functions m(x) and m(a}(x) of the operators
(1.13) and (1.18) respectively. We recall that the index a (b,f and g are also
frequently used) labels, as always, all subspaces Xa c 9C' (with XQ = X included in
S£' and the zero subspace {0} excluded from #*'). Set da = dim Xa. For every
a define a conical neighbourhood

Xβ(6) = { | x J > ( l - 6 ) | x | } , 6 6 ( 0 , 1 ) , (3.1)

of JΓα\{0}. In particular, X0(ε) = ^\{0} for any ε. In this section we suppose that
x Φ 0. Note an inequality

\xf\^C(\xa\ + \xb\\ where Xf = Xa + Xb. (3.2)

Clearly, relations Xf = Xa + Xb and Xf = Xa n Xb are equivalent.
We construct, first, non-smooth generating functions parametrized by ε = {εb}

and then average it over all εb. Below we always assume that

εiυ < εb < 42\ where 41] = 2ed\ ε£2) - 3edb (3.3)

and e > 0 is sufficiently small Such εb are sometimes called admissible. Functions
w(x, ε) and m(α)(x, ε) are defined in terms of auxiliary functions (1 + ε fc)|x6 |. An
important property of this set of functions is formulated in the following

Lemma 3.1. Let xεXb(€
db) and Xa £ Xb. Then

(1 + 3ed*)K| < max {(1 + 2€d ')l*/l} (3.4)
Xf c Xb

(the maximum in the right side of (3 A) is taken over all f such that Xf <= Xb).

Proof. Let us introduce Xf = Xar\Xb. The assumption Xa <£ Xb implies that
Xf φ Xa and hence df < da. We shall establish the inequality

(l + 36 d «) |x f l |<( l+2^)l*/ l (3.5)

for x e X f ( € d f ) and the inequality

(l + 3€ d«) |xj<( l + 2ed*)|xb| (3.6)

for
f ) . (3.7)

Note that in the case Xf = {0} we verify (3.6). If Xb c Xa9 then Xf = Xb and the
inequalities (3.5), (3.6) coincide with each other. In this case we verify (3.6) for all
xεXb(€

db). Without loss of generality we suppose that |x = 1. To check (3.5) for
\Xf\ > 1 — €df it suffices to notice that

This is true for sufficiently small € because da > df .
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Let now (3.7) be satisfied. We can assume Xf Φ Xb so that db > df. Then

\xb\>l-€d\ Ix,!^ I-*"', (3.8)

and hence

|xb|2 <!-(!- €db)2 < 2ed\ \xf\2 ^ 1 - (1 - ed')2 ^ ed', e ̂  1 .

Applying (3.2) and taking into account that db > d f , we obtain the estimate
|xα |2 ^ 2c€df or |xα|2 ^ 1 - 2cβd/ for some c> 0. By virtue of this estimate for |xα |
and of the estimate (3.8) for |xb | the inequality (3.6) reduces to

(1 + 3€dα)(l - cedf) < (1 + 2€db)(l - edb) .

For small € the left side is smaller than 1 because da > d f . The right side of this
estimate is larger than 1. D

We define the function m(fl)(x, ε) by the equality

m(fl)(*,ε) = (1 + εβ)|xβ|0((l + εa)\xa\ - max {(1 4- ε f ) \ x f \ } ) , (3.9)
/ Φ β

where θ(s) = 1 for s ^ 0 and θ(s) < 0 for s < 0. Recall that ε obeys always (3.3). The
definition (3.9) can be rewritten in an equivalent form using the identity

0((1 + eβ)|xβ| - max {(1 + s f ) \ x f \ } ) = Π θ((ί + εβ)|xβ | - (1 + ε /)|x / |) .
/ * « / Φ α

(3.10)

Note that (3.9) is not changed if the maximum in its right side is taken over all/ The
product in (3.10) can be taken over al l/ Functions m(α)(x, ε) are obviously
homogeneous of degree 1. Their important property is formulated in the following

Lemma 3.2. Let xeX&(ed b). Then w(α)(x, ε) = 0 i f X a £ Xb. IfXa c Xb, then

m(fl)(*,ε) = (i + εj|xα |θ((l + εα)|xj - max {(1 + e f ) \ x f \ } )
Xf cr Xb

so that m(fl)(x, ε) = m(α)(x&, ε) does not depend on xb.

Proof. According to Lemma 3.1 and (3.3) for xeXb(€db),

( l+ε g ) | x g |< max {( l+εyOIx, !} , X X β £ Xb . (3.11)
Xf c Xb

In the case Xa £ Xb we apply (3.11) to g = a. Since the maximum in (3.11) can only
increase if taken over all/ this shows that the argument of the function θ( ) in (3.9)
is negative.

Let Xa a Xb. One needs to verify that for xeXb(εd b),

max{(l + ε f ) \ x f \ } = max {(1 + β/)|x/|} .
/ Xf c Xb

Clearly, the right side here is bounded by the left side. To prove the opposite
inequality it suffices to take into account (3.11). D

Corollary 3.3. I f x e X a ( € d a ) , then

mW(x,ε) = ( l+ε β ) |x β | f l (( l+ε β ) |x β | - max {(1 + ε/)|x/ |}) .
Xf C Xa
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Let us now average the functions m(α)(x, ε) over all admissible ε. We set

mW(x) = fmW(x,ε)ΠΦ/(β/)& / , (3.12)
/

where φ/ ^ 0,
00

(R + )9 supp φf c [ε ,̂ ε^2)] and j φf(e)dε = 1 . (3.13)
o

The following properties of functions ra(α)(x) are easily derived from their definition.

Lemma 3.4. Ifa^Oandxφ Xfl(3€dα), then m(α)(x) = 0.

Proof. Under our assumptions

(1 + ea)\xa - (1 + 60)|x < [(1 + 3€d«)(l - 3ed«) - l]|x| < 0 .

So the factor in the right side of (3.10) corresponding to/= 0 equals zero. D

Lemma 3.5. Let xeXα(€d α) and x φ X f ( 3 e d f ) for all Xf c Xa, Xf Φ Xa. Then
m(α)(x) = μa\xa\9 where

μa = $(l+ε)φa(ε)dε. (3.14)

Proof. According to the definition (3.12) one needs to verify that for x considered
ra(α)(x, ε) = (1 + εα)|xj. By Corollary 3.3, it suffices to check that for every

Xf ^ Xa,

( l + ε α ) | x α | ^ ( l + ε / ) | x / | .

Since xeXΛ(e d α) and x φ X f ( 3 € d f ) 9 this is an immediate consequence of the obvious
inequality

(1 + 26dα)(l - eda) ^ (1 + 3edf)(l - 3edf) . D

To study other properties of m(α)(x) we rewrite its definition (3.9), (3.12) taking
into account (3.10):

m<β>(x) = |x j f (1 + ea)φa(ea)dβa Π ί θ((l + εα)|xβ | - (1 + ε/)|x/ |)Φ/(ε/)dε/ .
/ Φ «

Calculating integrals in εf and denoting

Φf(ξ) = j <pf(έ)dε , (3.15)
o

we obtain the representation

m(a\x) = \xa\ J(l + εβ)φβ(εβ) Π φ/((! + εa)\xa\\xfΓ
l - l)dεa. (3.16)

Now it is easy to establish smoothness of functions m(α)(x).

Lemma 3.6. Under the assumptions (3.13) m(fl)eC°°(IRd\{0}).

Proof. By virtue of homogeneity we may assume that |x| = 1. Furthermore, ac-
cording to Lemma 3.4, it suffices to consider m(α)(x) in a region |xj Ξ> ca for some
ca > 0. Let us proceed from the representation (3.16). By (3.15), Φ/eC°°(R),
Φf(ξ) = 0 if ξ^ &(}] and Φf(ξ) = 1 if ξ^ ε(

f

2}. Thus the function

βΛlxJIx/Γ1-!) (3.17)
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is infinitely differentiable in xa and x/ if xf φ 0. Moreover, the function (3.17)
equals 1 if (1 + ε^2))|x/ | ^ (1 + e(

a

1})ca. So the integrand in (3.16) is infinitely
differentiable in x, |x| = 1, uniformly with respect to εae(ε(a\ ε(

a

2}). Its derivatives of
arbitrary order are uniformly bounded and supported in (ε^, s(

a

2}). It follows that
the function (3.16) belongs to the class C°°(Rd\{0}). D

Let us enumerate properties of the functions (3.12) used in Sect. 5:

I*) m(α)eC00(R ί ί\{0}) and m(a\x) is a real homogeneous function of degree 1.
2*) Let Xa £ Xb and xeXb(€

db). Then m(fl)(x) = 0.
3J Let Xa c Xb and xeXb(cdb). Then w(α)(x) = m(a\xb\ i.e. m(a)(x) does not

depend on xb.

Note that 2*) and 3J are direct consequences of Lemma 3.2 where the same
properties of m(Λ)(x, ε) were verified.

Let us now construct the generating function m(x). Again we introduce first
a family of functions

) = max{(l + εβ)|xβ |}, ε- {εa} , (3.18)

satisfying all necessary properties except smoothness and then average m(x, ε) over
all εa:

m(x) = J m(x, ε) f] <Pf(*f)def . (3.19)

Here is the list of properties of this function used in next sections:

1) meC^R^XjO}) and ra(x) is a real homogeneous function of degree 1.
2) m(x)^ 1 if |x| - 1.
3) m(x) is convex, i.e. for arbitrary x', x^

w(r'x' + r"x") ̂  r'm(x7) + r'^ίx"), r', r" e [0, 1], r' + r" = I .

4) Let α be arbitrary. If xeXα(edα), then m(x) = m(xβ), i.e. m(x) does not depend
onx f l .

5) Let α be arbitrary. If xeXa(€
da) and xφXb(3edb) for all Xb c Xa, Xb Φ Zα,

then

where μα is defined by (3.14).
Furthermore, functions (3.12) and (3.19) are related by the equality:

(3.20)

(3.21)

Properties 2) and 3) are easily deduced from the definitions (3.18), (3.19).
Actually, by (3.18), m(x,ε) ̂  (1 4- ε0)|xl ^ (x | and hence m(x) obeys the same
estimate. Being maximum of convex functions, m(x, ε) is convex in x for all ε. So
m(x) is convex as an integral over the parameter ε of convex functions.

Other properties of m(x) will be derived from corresponding properties of
functions m(α)(x). Thus we verify first (3.21). It suffices to check that for almost all
ε (the exceptional set of ε may depend on x)

m(x, ε) = Σ m<β)(x, ε) . (3.22)
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Suppose that ε is chosen in such a way that

(1 + βf)\xf\ * (1 + eβ)\xg\, Vf,VgJ*g.

Then there exists exactly one b = b(x) such that

(1 + εb)|xb | > max {(1 + & f ) \ x f \ } .

By the definition (3.18), m(x, ε) = (1 + εb)|xb |. Similarly, by the definition (3.9),
m(α)(x, ε) = 0 if a φ b and m(&)(x, ε) = (1 + εb)\xb\. This proves (3.22).

Given the relation (3.21), property 1) of m is a consequence of the same property
of functions m(α). According to properties 2*) and 3#) of m(a\ the function (3.21)
satisfies for xeX b(e d b) the equality m(x) = m(xb). This implies property 4).

Let us finally verify 5). By Lemma 3.5 it suffices to prove that for x considered
m(x) = m(α)(x). By virtue of (3.21) to that end we need to check that

m(/)(x) = 0, / φ α . (3.23)

If Xf φ: Xa9 then (3.23) for xeX f l(6d«) follows from property 2J of m(f\ If
Xf c Xa9 then (3.23) for x φ\f(?>€df) follows from Lemma 3.4, applied to m(f\ This
concludes the proof of properties l)-5) of the function m.

4. Positive Commutators and Radiation Conditions

Our proof of the radiation conditions-estimates relies on consideration of the
commutator of H with a first-order differential operator M. Suppose for a moment
that in (1.13) m is an arbitrary smooth function. We start with the standard
calculation of the commutator [H0,

Lemma 4.1. Let an operator M be defined by (1.13). Then

ί[H0, M] = 4 Σ DjWjkDk ~ (A2m\ mjk = d2m/dxjdxk . (4.1)
j . fc

Proof. Let us consider

Ldj, mkdk-\ = djmkdk - mkdkdj . (4.2)

Commuting dj with mk we find that the first term in the right side equals
djmkdk = dj(mjk + mkdj)dk. Similarly, the second term

mkdkdj = (mkdj)(dkdj) = (-mjk

= - (djmjk - mjjk)dk + djmkdkdj, mjjk = d3m/dxjdxk .

Inserting these expressions into (4.2) we obtain that \_d] ,mkdk~\ = 2djmjkdk

— Wkdk- It follows that

[δ?, mkdk + dkmk~\ = [d2, mkdk~\ + [δ

= 2(djmjkdk + dkmjkdj) - mjjkdk + dkmjjk

= 2(djmjkdk + dkmjkdj) + mjjkk, mjjkk =

Summing up these relations in j and k we arrive at (4.1). D
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Basically, we choose m(x) as a function constructed in Sect. 3. However, we
need to get rid of its singularity at x = 0. This is simple because by virtue of
Proposition 2.12 values of m(x) in a bounded domain are inessential. So we can
replace m(x) in a neighbourhood of x = 0 by an arbitrary smooth function.
Actually, we replace m(x) by τ(x}m(x\ where τeC°°(Rd), τ ̂  0, τ(x) = 0 for
|x| ^ 1/2 and τ(x) = 1 for |x| ^ 1. From now on we use notation m(x) for this new
function. Clearly, m(sx) = sm(x) if |x| ^ 1 and s ^ 1. We say that m is homogeneous
for |x| ^ 1.

Let us subtract from a neighbourhood Xα of Xa neighbourhoods Xb of all
Xb a Xa9 Xb Φ Xa. Namely, using notation (3.1), we set

Yβ(€) = Xα(€d)\ U X*(3*)
Xb c Xa,Xb Φ Xa

Note that Xα and X6 are parametrized by €d and 3e, respectively, in order to
accommodate property 5) of Sect. 3. Clearly, Yα(c) n Xb = 0 for sufficiently small
e > 0 if Xa £ Xb. For any cone Γ c Rd denote by Γ its intersection with the
exterior B' = lRd

o\B of the unit ball B = {|x| < 1}: Γ = Γ n B'. In particular, we
consider below Xβ( ) and Ϋβ( ) Set also S^"1 = (|x| = 1}.

Reformulating the conditions l)-5) of Sect. 3, we obtain the properties of m(x):

1° m(x) is a real C°° -function, which is homogeneous of degree 1 for |x| Ξ> 1 and
m(x) = 0for |x| ^ 1/2.

2°m(x)^ 1 if |x| = 1.
3° m(x) is (locally) convex function for |x| ^ 1, i.e.

4° Let α be arbitrary. If xeXΛ(€d), then m(x) = m(xa), i.e. m(x) does not depend
on x

5° Let α be arbitrary. If xeΫα(e), then m(x) obeys (3.20) with some μa ^ 1.

Remark that properties 4° and 5° are formulated here in a slightly weaker form
than in Sect. 3. We emphasize that the parameter e > 0 should be sufficiently small
and it can be chosen arbitrary small. Actually, the concrete construction of the
function m = me is of no importance for us and we always use only its properties
l°-5° listed above.

By property 1° derivatives m; of m are homogeneous functions of degree 0, mjk

are homogeneous of degree — 1 and mjjkk are homogeneous of degree — 3.
Therefore

3), |x|-*oo, (4.3)

and the main contribution to the commutator (4.1) is determined by the operator

L = L(m) = X DjmjkDk . (4.4)
j ,k

To estimate it we first compute the matrix

M(x) = {mjk(x)} = Hess m(x)

in the region where m(x) = μQ\x\:

ro/x) = μolxΓ^j, mjk(x) = μod^Γ^j/c - \x\~3XjXk) . (4.5)
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Here <57 7 = 1 and δjk = 0 if j φ /c. By definition (1.10), the angular part of the
gradient Vu obeys the identity

\v^u\
2 = \vu\2 - | χ | - 2 l<vw,χ>ι 2 - Σ \ U J \ 2 - I* ~ 2 I Σ "A l 2

j j

= Σ(* ~ |xΓ 2 x 2 ) |Wj | 2 - |xΓ 2 Σ XjXkUjΰk, Uj = du/dxj.
j ί Φ fc

According to (4.5) it follows that

Σ^u^ = μo |xΓΊV ( a ) u | 2 . (4.6)
j,k

In the region where m(x) = μjxj &U calculations hold true if x is replaced by xa. By
virtue of property 5° we obtain the following

Lemma 4.2. Let V(

a

s)u be defined by the equality (1.10) and let xeY Λ (€). Then the
identity holds:

Σ^jkUjΰk = μa\xa\-l\V^u\2. (4.7)
j,k

Note that in the case dim Xa = 1 both sides of (4.7) equal zero.
By property 3°, the quadratic form of the operator (4.4) satisfies the inequality

(Lu, w) = Σ ί mjkUjΰkdx ^ Σ j mjkUjΰkdx - c j ] Vu\2dx ,
j,k j,kΩ I x I < 1

where Ω is any region lying outside of the unit ball. Combining this inequality with
Lemma 4.2 we obtain

Proposition 4.3. In notation of Lemma 4.2 for every ue&,

(Lu,u)^μa J \x\-^\V(?u\2dx-c I \Vu\2dx.
yβ(€) ι * ι <ι

It turns out that due to property 4° the commutator [F, M] is in some sense
small. The precise formulation is given in the following

Proposition 4.4. Suppose that Fα satisfies Assumption 2.3. Let m obey property 1°
and m(x) = m(xα) z/ x e Xα(eα) /or some εα > 0. TTίβn

|([F α ,M]w,w)|^C| |β-' '(Γ+/)w| | 2 , ue^, 2r = p . (4.8)

Proof. Suppose first that X" φ ^f. Let us introduce a smooth homogeneous (for
I x I ̂  2) function £α of degree zero such that 0 ^ £β(x) g 1, ζα(x) = 1 if x £ Xα(εα) and
Cα(x) = 0 if xeXα(ε) for some εe(0, εα) and |x| g; 2. The long-range part of Fα is
differentiable so that

i[Kf, M] = 2 | K f , Σ ^-^Ί = - 2 Σ mj3Vΐ/dxj = - 2<Vm(x), VFf(xα)> .
L j = l J 7=1

This scalar product equals zero for xeXα(εα) because m depends only on xα in this
region and, consequently, Vm(x)eZα whereas VF?(xα)eXα. Since |Vm(x)| is
bounded, it follows that

|<Vm(x), VF?(xα)>| g CCα(x)|VF?(xα)|ζαW . (4.9)
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Using the representation (2.7) we find that

where the function

obeys the condition (2.15) because ζΛ(x) = 0 if xeXα(ε) and \x\ ̂  2. Therefore,
taking into account Lemma 2.11, we obtain the bound (4.8) for V*.

To consider [F*, M] we use again that the function ζa(x) differs from 1 only if
xeXα(εα). In this region the function m does not depend on xα. It follows that the
operator

iηΛM = 2f/α(Vαm)Vα + ηΛ(ΔΛm), ηΛ(x) = 1 - ζ2(x) ,

commutes with VI and hence [Fs

α, M] - [F«, (2M]. Clearly,

d
C2M = X ( f β f j D j + D7£α,, + i(dζ*/dxj)mj)9 ξaj = O,-,

7=1

and therefore

LVΪ, C«2M] = 2 Σ (Kί^Λ - βjKJ^, - iVΛ

sdξaj/dxj) . (4.11)
7=1

Note that the functions m7 are bounded together with their derivatives and ξ^ 7 = 0
if x e Xα(ε) and \x ^ 2. By virtue of the representation (2.6) for \V*S\

112 the last term
in (4.11) is estimated exactly as the right side of (4.9). Similarly,

•/) 1 / 2wαu| |

with the function wα defined by (4.10). According to Lemma 2.11 the right side here
is bounded by the right side of (4.8). In the case X* = X the estimates are the same
but the cut-off by ζα is no longer necessary. D

Given Propositions 4.3 and 4.4 the proof of the main result of this section is
quite standard. We formulate it only for the operator H since Ha are its special
cases.

Theorem 4.5. Under Assumption 2.3 for all a the operators

acting from the space L2(lRd) into the vector-spaces L2(lRd) ® <Cdα, da = dim Xa9 are
H-smooth on arbitrary bounded interval A, A n T= 0.

Proof. Let us consider

d(MU(t)f, U(t)f)/dt = ΐ([H, M]/,,/,) , (4.12)

where/, - l/(ί)/,/e®. By (4.1), (4.4),

, M]/t,/f) - 4(L/ί,/ί) - ((z!2m)/ί,/ί) H- z([F, M]/t,/t) .

Taking into account (4.3) and applying Propositions 4.3 and 4.4 to elements u=ft

we find that for any a

i([H,M]/f,/t) ̂  CillG^)/,!!2 - c2\\Q-"(T+ I)ft\\\ 2r = p , (4.13)
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(under the assumption p ^ 3). Here we have omitted || Q~3l2ft ||2 and the integral of
I Vft\

2 over the unit ball because they are estimated by the last term in the right side
of (4.13). Integrating (4.12) and (4.13) over ίe(ί1? ί2) we obtain that

] \\Ga(e)ft\\2dt ^ C(\(MftJt}\^\ + ] \\Q~r ( T + I ) f t \ \ 2 d t ) . (4.14)
t i Ί t i

Suppose now that f = E ( Λ ) f . Then the first term in the right side of (4.14) is
bounded by C||/| |2 because ME(Λ}e^ for bounded A. The second term admits
the same estimate according to Proposition 2.12. It follows that the integral in the
left side of (4.14) is bounded by C \\f\\2 so that each of the operators Ga(ε) is
//-smooth on A. D

Remark. //-smoothness of the operators Ga: L2(IRd) -» L2(^d) ® <Cdα can be refor-
mulated as //-smoothness of da "scalar" operators acting in the space L2(Rd). Due
to the equality <V^s)w, xα> = 0 only da — 1 of these da results are independent of
each other.

Let us associate with every x0 e Sd ~ 1 an index a0 = a(x0) (
or tne corresponding

subspace XaQ) defined by the equality

Xao= Π *ι» Xbe&' (4-15)
xoeXb

Clearly, XΛG is the smallest subspace XbeSC' containing a point x0. In other words,
for any Xb,

x0eXb if and only if Xao c Xb . (4.16)

Let us introduce also a conical neighbourhood of a point x 0eS d~ 1 : Γ(x0;ε) =
{x : <x, x0> > (1 — ε)|x|}. In terms of these definitions we can reformulate The-
orem 4.5 in a more convenient form.

Theorem 4.6. Suppose that Assumption 2.3 holds. Let x0 be an arbitrary point of
Sd~1 and let a0 = a(x0) be defined by (4.15). Then for sufficiently small ε > 0 the
operator

χ(Γ(xo;8))β- 1 / 2VW (4.17)

is H-smooth on A.

Proof. By (4.16), x0 is separated from all Xb such that Xb c XΆo, Xb Φ XΆo. There-
fore Γ(x0; ε) d Yao(€) for sufficiently small ε > 0 and //-smoothness of the operator
(4.17) is ensured by Theorem 4.5 for a = a0. Π

Our proofs in the next section of existence of the wave operators (1.17) and
(1.24) rely on Theorem 4.6. Its formulation is "local" with respect to direction of x.
For the sake of completeness we give also the "global" formulation. To deduce it
from Theorem 4.6 we need the following simple assertion. Recall that the space
X and its dual are always identified.

Lemma 4.7. If Xb ^ Xa> then

)(x)|^|(V^)(x)|. (4.18)

Proof. We can assume that u is real. By definition (1.10) the estimate (4.18) is
equivalent to the bound

fc>l2 ^ l £ α l 2 - \χaΓ
2\<ξa,χa>\2 , (4.19)
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where ξ (ξ = (Vu)(x)) is an arbitrary vector of X and ξa and ξb are its projections
on Xa and Xb respectively. Let xb

a and ξb

a be the orthogonal projections of x and
ξ on XaQXb. Then \xa\

2 = \xb\
2 + \xb

a\\ \ξa\
2 = \ξb\

2 + \ξb

a\
2 and |<£,,xβ>|

^ K&, *b>l + \ξb

a\ \xb

a\. So instead of (4.19) it suffices to prove that

*)! + l#l l*«l) 2 ^ \ξb

a\
2 + I**Γ 2 I<&,*6>I 2 .

By identical transformations we reduce this estimate to the obvious inequality

Now we are able to prove the radiation conditions-estimates as they are
formulated in Sect. 1. Define

Ta(ε) = X\ U x*(ε) (4.20)
Xa £ Xb

The following result is equivalent to local H-smoothness of the operator (1.11).

Theorem 4.8. Suppose that Assumption 2.3 holds. Then for every a and every ε > 0
the operators

(4.21)

are H-smooth on arbitrary bounded interval A, A n Y= 0.

Proof. For every x0eΓβ(ε) n Sd~1 let us consider the subspace XΆo defined by
(4.15). According to definition (4.20), x0

 m&y belong only to Xb containing Xa. It
follows that Xa c XΛo and hence, by Theorem 4.6 and Lemma 4.7, for sufficiently
small ε > 0 the operator χ(Γ(x0; β))δ~1 / 2Vi s ) is H-smooth. So to conclude the
proof of fί-smoothness of the operator (4.21) it remains to choose a finite covering
of the closed set Γα(ε) n Sd-1 by open sets Γ(x0; ε) n S*"1. D

Remark. By (4.18), Theorem 4.8 gives us more information about l/(ί)/in the cone
Γα than in Tb i f X b a Xa.ln particular, the most complete information is obtained
in the cose Γ0 which does not intersect any Xa φ X. On the contrary, the result of
Theorem 4.8 is trivial for a such that dim Xa = 1.

Remark. In the two-particle case the result of Theorem 4.8 reduces to fί-smooth-
ness of the operator Q~ 1/2 V(s) on any bounded positive interval separated from the
point 0. This is different from the usual form of the radiation conditions-estimate
(see e.g. [17]). First, we consider only the angular part of V U ( t ) f . Second, the
estimate of [17] implies that

J | |β- r V ( s ) l7( ί )/H 2 Λ<oo. (4.22)
— co

Here r is some number smaller than 1/2 whereas we require that r = 1/2 which is
less informative. On the other hand, in (4.22) /should belong to some dense (in $?}
set whereas our estimate is uniform for all /e $?.

Note, finally, that in [31] radiation conditions for the JV-particle case were
derived in the free region Γ0. In this paper both radial and angular parts of
radiation conditions were considered. Results of [31] can probably be used for
a proof of asymptotic completeness in the three-particle case. However, informa-
tion about U(t)f in a free region only is not sufficient for the case of N > 3
particles.
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5. Modified Wave Operators

Here we shall establish existence of the wave operators (1.17). Generating functions
ra(fl)(x) are basically the same as those constructed in Sect. 3. Similarly to Sect. 4, in
order to get rid of singularity of m(a)(x) at x = 0 we replace it by τ(x)ra(α)(x), where
τeC*OR d ),τ^O,τ(x) = O f o r | x | g l/2andτ(x) = l f o r | x | ^ 1. We keep notation
w(fl)(x) for these new functions. The conditions l J-S*) of Sect. 3 ensure the
following properties:

l£ m(α)(x) is a real C°°-function, which is homogeneous of degree 1 for |x| ^ 1
and m(α)(x) = 0 for \x\ £ 1/2.

2° Let b be arbitrary. If xeXb(ed), then m(α)(x) = m(a}(xb\ i.e. m(α)(x) does not
depend on xb.

3£ Let Xa £ Xb. If xeX6(ed), then m(α)(x) - 0.

Note that property 2* for b such that Xa φ. Xb is contained in property 3j.
However, this formulation is preferable (compared to 1^-3*) of Sect. 3) because
property 3^ is used only once (in Lemma 5.3).

In order to apply Proposition 2.1 we consider the "perturbation" (1.19). By the
study of the term [Γ, M(α)] in the following two assertions we omit dependence of
m(α) and M(a} on a.

Lemma 5.1. Let m(x) be any function satisfying conditions 1J and 2°. Let λn(x) and
pn(x) be eigenvalues and eigenvectors of the symmetric matrix M(x) = {mjk(x)}. Then
for any b and xeX&(ed) eigenvectors pn(x), corresponding to λn(x) Φ 0, belong to Xb

and are orthogonal to the vector xb.

Proof. Choose an orthonormal basis in X with the first db elements belonging to
the subspace Xb and other db elements from Xb. Let x l 5 . . . , xd be the correspond-
ing coordinates. Since m(x) = m(xb) for x<=Xb(ed) we have that ra7 (x) = 0 if; > db

and mjk(x) = 0 if j > db or k > db. Therefore M(x)ξ = 0 if ξeXb. Furthermore,
differentiating the identity m(sxb) = sm(xb] in s and setting s = 1 we find that
^7.mJ (xδ)x7 = m(xb) (Euler's formula). Differentiation of this relation in xk shows
that Σjmkj(x)*j — O Thus M(x)xb = 0 and hence <pn(x), xby = 0 if
M(x)pn(x) = λn(x)pn(x] with λn(x) Φ 0. D

Remark. If xeXb(ed) for several 6, then the conclusion of Lemma 5.1 holds for
every such b. Among these conclusions there is the strongest one corresponding to
b such that Xb is the smallest. Actually, if pn(x)eXb and <pn(x), xb> = 0, then
</?M(x), x fo'> = 0 for every Xv :=> Xb. On the other hand, the weakest assertion is
true for every xeB': <pπ(x), x> = 0 if λn(x) Φ 0.

Proposition 5.2. Let m(x) be any function satisfying conditions l£ and 2* and let
L = L(m) be defined by (4.4). Then L = K^K^, where operators Kv and K2 are
H-smooth on A.

Proof. Diagonalizing the matrix M we find in notation of Lemma 5.1 that

(Lu, t>) = f £ mjk(x)Dku(x)DjV(x)dx
X j,k

= J Σ λn(x)<,Vu(x), pπ(x)><pn(x), Vv(x)ydx = (K,u, K2v)H ,
X n
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where

(Kju)(x) = Σ vΛ,Λx)<Vκ(x), pπ(x)>pll(x), 7 = 1, 2 ,
n

vΛ,ι(x) = μΛ(x)|1/2, vn, 1(x)vΛ f 2(x) - ̂ (x) (5.1)

and H = L2(lRd) ® <Cd. Clearly, λn(x) are homogeneous (for |x| ;> 1) functions of
order — 1 and pn(x) - of order 0. Since \(KjU)(x)\ ^ C\ VM(X)|, //-smoothness of the
operators χ(E)Kj is ensured by Proposition 2.12.

To treat the operators χ(B')Kj we notice that, by the definition (1.10) and
Lemma 5.1,

<Vκ(x), pM(x)> - <Vί?Mx), pn(x)\ λn(x) Φ 0 , (5.2)

for every b such that x 6 X&(βd). As in Sect. 4, we associate by the equality (4.15) with
every XoGS*1'1 a subspace Xao,&0 = a(x0). According to Theorem 4.6 for suffi-
ciently small ε > 0 the operator (4.17) is //-smooth. Since x0eX^G, diminishing
ε = ε(x0) we caon suppose that Γ(x0, ε) c Xao(ed). Then the equalities (5.2) are
fulfilled for xeΓ(x0; ε) and b = a0. Therefore, by definition (5.1),

\(Kju)(x)\ ^ΣK MI KV?>(x),pΛ(x)>|, xeΓ (x0;ε) ,
n

and hence for such x

KK^Kxίl^Clxl^^lVίXx)!, C= sup Σ V i M .
1*1 = 1 „

Now H-smoothness of the operator (4.17) ensures that for arbitrary x0eSd~l and
sufficiently small ε = ε(x0) the operator χ(Γ(x0ι s))Kj is //-smooth. To conclude
the proof of //-smoothness of the operators χ(B')K7 it remains to choose a finite
covering of the unit sphere by open sets Γ(x0; ε) n Sd~1. D

We need short-range assumption on potentials only to treat the last term in
(1.19).

Lemma 5.3. Suppose that VΆ satisfies Assumptions 2.2 and a function m(a} has
properties I j and 3j. Then for Xa φ: Xa

V«M(a} = (T+ I)Q'rBQ~r(T + /), r = p/2 ,

where B = B(a'Λ)

Proof. Suppose first that X* Φ X. Let us take into account that m(a}(x) = 0 if
xeXα(εd). Therefore m(f(x) = m$β)(x)(α(x) and m^(x) - m$(x)C2(x) for suitable
CαeC°°(Rd), homogeneous (for |x| ^ 1) of degree 0, such that ζα(x) - 0 if xeXα(ε)
for some ε > 0. By (1.18), (2.6) the operator VaM(a) consists of terms

I ) l / 2 B f > α)(Γ+ /) 1 / 2 w α

and
)(r+ /) 1 / 2w a

where 2r - p, βf a) e^, J3j}'a) e^ and the function wα(x) is defined by (4.10). Since
this function obeys the condition (2.15), to conclude the proof it remains to take
Lemma 2.11 into account. In the case XΆ = X the estimates are the same but the
cut-off by ζα is no longer necessary. D
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Now we collect the results obtained together.

Theorem 5.4. Let Assumption 2.2 hold and let A be any bounded interval such that
A n Γ= 0. Then for all a the wave operators (1.17) exist.

Proof. We shall show that the triple Ha9 H, M(a} satisfies on A the conditions of
Proposition 2.1. To that end one needs to verify that each term in the right side of
(1.19) admits the factorization K*Ka, where K and Ka are H- and Hβ-smooth,
respectively, on A. Actually, we verify that both K and Ka are //-smooth and, in
particular, both of them are /ία-smooth. By Lemma 4.1 and (4.4), the first term in
(1.19) equals [Γ, M(fl)] - 4L(m(fl)) - (A2m(a}). The operator L(m(a)) was considered
in Proposition 5.2. Since m(a) is a homogeneous function of degree 1, it satisfies
condition (4.3) and hence Δ2m(a} = Q~3 / 2.B ( f l )Q"3 / 2, where B(a) is multiplication by
a bounded function. The operator β~3/2 is H- (and Ha-) smooth by Proposition
2.5. The commutator [K', M(Λ)] consists of terms [Fα, M(β)], where Jfα c JΓα. They
were actually already considered in Proposition 4.4. Its assumptions are fulfilled by
virtue of properties l j and 2° of the function m(α). The estimate (4.8) is equivalent to
the representation

[Fα, M(fl)] - (T+ I)Q-rB(«>a)Q-r(T+ I), 2r - p, 5(α' f l)e^ ,

where Q~r(T + I) is H- (and Hfl)-smooth on A by virtue of Proposition 2.12.
Finally, by (1.20), the product VaM

(a} consists of terms FαM(fl), Xa £ Xa, treated in
Lemma 5.3. D

Let us now consider the observable (1.24). Existence of these wave operators
can be verified similarly to Theorem 5.4. Actually, due to Propositions 4.4 and 5.2
the "perturbation"

HM - MH = [Γ, M] + £ [Kα, M]
α

is a sum of products of H-smooth operators. Note that potentials Kα may contain
long-range parts since the short-range assumption was used in Theorem 5.4 only
for the estimate of the term VaM

(a\ which is absent now. Thus, according to
Proposition 2.1, we have

Proposition 5.5. Let an operator M be defined by (1.13), where m is any function
obeying the conditions 1° and 4° of Sect. 4. Then under Assumption 2.3 the wave
operators (1.24) exist.

The operator M±(A) is, clearly, self-adjoint, bounded and, by (2.3), commutes
with H. It is equal to zero on £(R\yl)Jf. Our goal is to show that under the
additional assumption 2° on m the operator + M±(A) is invertible on the sub-
space E(A)J^. In fact, we shall see that it is positively definite there.

We shall consider U(t) on elements/= φ(H)g, where φeCo(A) and gG@(Q).
Clearly, for different φ ana g such elements/are dense in E(A)Jtf*. By Lemma 2.9
applied to ψ(λ) = exp( - iλt)φ(λ) and r = 1, we have that l/(f)/e®(β). Thus
mU(t)f are well defined.

Let ft=U(t)f and ht=U(t)h, where heJf is arbitrary. The identity
i[T, m\ = M shows that

d(mft, ht)/dt - i([Jf, m]/f, ht) = i([Γ, m]/t, ht) = (Mft9 ht) .
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Integrating this equality we find that

(mft, ht) = (m/, h) + } (M/s, hs)ds . (5.3)
o

According to Proposition 5.5

/S, hs) - (M ± (Λ)f, h)\ ̂  ε(s) || Λ || , (5.4)

where ε(s) does not depend on h and tends to zero as s -> ± oo . Comparing (5.3)
and (5.4) we obtain

Lemma 5.6. Letf= φ(H)g, where φECo(A) and ge@(Q). Then

U*(t)mU(t)f=tM±(Λ)f+o(\t\), ί-> ± oo .

Since m ̂  0, Lemma 5.6 implies that

±(M±(A)fJ)= lim \ t Γ l ( m f t , f t ) Z Q .
t~* ± 00

The inequality ± (M ± (Λ)f,f) ^ 0 established on the dense set extends by continu-
ity to the whole space E(Λ)^f. Thus we have

Corollary 5.7. The operator ±M±(Λ)^0.

To prove that ± M±(Λ) is positively definite on E(Λ)3? we use Proposition
2.4. Recall that λ is an arbitrary point of R\ Γand Aλ is a small interval containing
it. By virtue of the identity i[_H, β2] = 2 A, it follows from (2.8) that

ft, Qft)/dt2 = d(AftJt)/dt = (i[H, A]ft,f<) ^ c\\f\\2 ,

f=φ(H)g,

Integrating twice this inequality we find that for sufficiently large |ί|5

l lβ/ t | | ^c | ί | | | / | | . (5.5)

On the other hand, according to Lemma 5.6

(5.6)

By property 2°, m(x) ^ |x| for |x| ^ 1 so that ||β/t||
2 ^ 2\\ft\\2 + \\mft ||2. Thus

comparing (5.5) with (5.6) we obtain the inequality

| |M ± (yl)/ | |^c | | / | | , (5.7)

where /= φ(H)g, ge@(Q)9 φeCo>(Aλ) and c_= cλ. This inequality extends, of
course, to aΆfeE(Λλ)3Ί?. The compact set A is covered by a finite number of
intervals Aλ. Since M±(A) commutes with £(•), it follows that (5.7) is true for all

. Considering now Corollary 5.7 we obtain

Theorem 5.8. Let an operator M be defined by (1.13), where m is any function obeying
the conditions 1°, 2° and 4° of Sect. 4. Suppose that functions V* satisfy Assumption
2.3. Then for every feE(Λ)JP9

c = c(A)>0.

Corollary 5.9. In the space E(A)J^ the kernel of M±(A) is trivial and its range
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6. Existence and Completeness of Wave Operators

In this section we give the proof of Theorem 2.7. Its difficult part is, of course,
asymptotic completeness. We start _with its proof in the form (1.8). Let, as always,
A be a bounded interval such that A n T= 0 and let M and M(a) be defined by the
equalities (1.13) and (1Λ&) with generating functions m(x) and m(α)(x). Recall that
these functions satisfy properties l°-5° of Sect. 4 and lJ-32 of Sect. 5, respectively.
Moreover, the equalities (3.21) and, consequently, (1.22) are fulfilled.

Theorem 6.1. Under the assumptions of Theorem 2.1 for every f= E(Λ)fand some
elements f* the relation (1.8) holds.

Proof. By Corollary 5.9 every feE(Λ)3? admits the representation
/= M±(A)f±J± eE(A)3P, so that the asymptotic relation (1.25) is true. On the
other hand, Theorem 5.4 yields for every a the asymptotics (1.21) where
/± = W±(Ha, H; M(a)E(Λ))f±. Summing up the relations (1.21) and taking into
account (1.22) we obtain the asymptotics (1.23). Comparing it with (1.25) we arrive
at (1.8). D

To complete the proof of Theorem 2.7 we need to establish existence of wave
operators (2.9). Actually, we shall prove that the wave operators W±(H9 Ha) exist
(even without projections Pα). Now we use inductive arguments. We suppose that
Theorem 2.7 is true for all operators Ha

9 X
ae&, and deduce from it the same

statement for H. This is sufficient for justification of induction because, repeating
this argument, we can reduce Theorem 2.7 to the case of operators Hb, where
Xb c Xa, Xb Φ Xa. Thus after a finite number of steps we arrive at the operator H°
for which scattering theory is trivial.

Let us define for every Xb c Xa the operator Ha

b = Ta + Vb in the space ̂ a.
Set Xa

b = Xa θ Xb and tfί = L2(Xa

b). Then Jίf a = 2tf I ® tfb. We introduce also
PI = I <g) Pb, where the tensor product is the same as above. Applied to the
operator Ha Theorem 2.7 states that wave operators

W±(Ha

9H
a

b'9P
a

b) (6.1)

exist, their ranges are mutually orthogonal and

(H\H^Pa

b)} = ̂ a . (6.2)

Note that in the case a = b the operator (6.1) equals Pa = Pa

a and
R(P") = je(p\Ha).

Scattering theory for operators Ha reduces to that for operators Ha. Indeed, by
virtue of (1.6)

Ua(t)Ub(t)Pb = /®exp(i#βί)exp( - iHa

bt)Pl Xb cr X* ,

where the tensor product is defined by (1.4). So wave operators W±(Ha, Hb\ Pb)
and (6.1) exist simultaneously and

W±(Ha9 Hb; Pb) = I® W± (H\ Ha

b, P
a

b\ Xb c X° .

In particular, (6.2) ensures that

Thus we have
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Proposition 6.2. Suppose that the statement of Theorem 2.7 is true for an operator
Ha. Then for any Xb c Xa the wave operators W±(Ha, Hb\ Pb) exist and for every
feje and some elements f£ (/? = (W±(Ha9 Hb; Pb))*f) the relation holds

Ua(t)f~ Σ Vb(t)Pbf£9 f - > ± o o . (6.3)
Xb c Xa

Note that in the proof of Theorem 6.1 we have used only existence of the second
set of wave operators (1.17). For the proof of existence of W±(H9 Ha) we rely on
existence of W±(H9 Ha; M(a)Ea(A)). Since elements /= Ea (Λ)f are dense in the
space ffl — ̂ f(ΆC}(Ha\ this is equivalent to existence of the wave operators
W± (H, Ha; M(a)(Ha + ί)~ l). Here — i can, of course, be replaced by an arbitrary
regular point of Ha. Some minor technical complications below are related to
unboundedness of the operators M(α). We start with some simple auxiliary asser-
tions. They are basically known but we have not found them in the literature.

Lemma 6.3. Suppose that ζa is a bounded function such that ζa(x) = 0 ifxeXa(ε)for
some ε > 0. Then

s- lim ζa(T+i)(Ha + iΓ1Ua(t)Pa = Q . (6.4)
lίl-»oo

Proof. It suffices to check (6.4) on elements /= g ® ψa, where ψa is an eigenvector
of the operator Ha, Haψa = λaψa, g is an arbitrary element of 3tf a and the tensor
product is defined by (1.4). Linear combinations of such elements /are dense in the
space Patff. According to (1.6)

= (Ta + Ta + ϊ)(Ta + λa + iΓl exp( - i(Ta + λa)t)g ® φa

= exp( - i(Ta + λa)t)(g ®ψa + g®ψa) (6.5)

with g, $a defined by g = (Ta + λa + i ) ~ l g , φa = (Ta - λa)ψa. Clearly,

|ieβexp(-iΓβί)(0®^)|| = \\Ψaexp(-iTat)g\\^a, (6.6)

where

Ψfaa) = J ICαfe, Xa)\2\ψaW)\2dx? ^ C J \ψ*(x")\2dx« ,

Xa | x a | > c | x a |

c = c(ε) > 0, by our assumptions on ζa. It follows that Ψa(xa) ~* 0 as |xj -> oo and
hence the operator Ψa(Ta + I)~ 1 is compact in the space jΊfa. Therefore (6.6) tends
to zero by virtue of (2.1). Since g e J f f l, ψ

a e Jjf a the second term in the right side of
(6.5) can be estimated quite similarly. D

Corollary 6.4. IfXb £ Xa, then

s- lim M™(Ha + iΓlUa(t)Pa = Q. (6.7)

Proof. It is sufficient to take into account that, by property 3£ of m(b} (compared to
Sect. 5 the roles of a and b are here interchanged), the zero-degree homogeneous
function Vm(b} vanishes in the cone Xα(εd). D

Lemma 6.5. Let Fα(Γα + 7)"1 be compact in 3?a and X* £ Xa. Then

s- lim V*(Ha + iΓlUa(t)Pa = 0. (6.8)
|ί|->oo



Radiation Conditions and Scattering Theory for TV-Particle Hamiltonians 55 ΐ

Proof. It suffices to check (6.8) on some dense set so that we can assume that Pa is
one-dimensional (HaPa = λaPa}. Furthermore, the problem can always be reduced
to the case Xa + X* = X. Under this assumption Xa n XΛ = {0} so that
Xα(ε) n Xα(ε) = {0} for sufficiently small ε > 0. Let us choose C00 -function ζa such
that ζa(x) = 0 if x e Xα(ε) and ζa(x) = 1 if x e Xα(ε). We suppose that ζa is homogene-
ous of degree 0 (for \x\ ̂  1). Set ζα = 1 — ζa and split (6.8) into two equalities
corresponding to the decomposition V* = V*ζa + V*ζa. Since the operator
Fα(Γα 4- 7)"1 is bounded, the first equality is true by virtue of Lemma 6.3.

To prove (6.8) with Fα replaced by Fαζ f l we check that

FαΠ#α + 0~ 2 eXo. (6.9)

Let ηp(x) = η ( p ~ 1 x ) , where ηεC$(Ήtd), η(x) = 1 for |x| ^ 1, η(x) = 0 for |x| ^ 2
and let ήp(x) = 1 — ηp(x). Since the operator F α (Γ+/)~ 1 is bounded and
Q~r(Ha + j)"1 e Jfoo for r > 0, it is easy to verify with the help of Lemmas 2.10 and
2.11 that Vaηp(Ha + i )~ 2 e Jf^. So in order to check (6.9) it remains to verify that

lim ||KTW« + 0 ~ Ί I = 0 . (6.10)
p-» oo

We remark that ζa(x)ήp(x) = 0 for |xα | ^ yp with suitably chosen y > 0. Let χ* be
multiplication by the function which equals 0 for |xα | rg yp and equals 1 for
|xα | > yp. Then (6.10) is a consequence of the relation | |χpFα(Γα + I)~l\\ ^0 as
p -+ oo in the space Jf7 α. This is true because the operator Kα(Γα + / )~ 1 is compact
and γ*p converges strongly to zero. D

Now we are able to prove

Lemma 6.6. Suppose that the statement of Theorem 2.7 is true for all operators Ha.
Then the wave operators

iΓ1) (6.H)

exist for all α, b.

Proof. Let us proceed from the relation (6.3). Applying to it the bounded operator
M(b}(Ha + i)"1 we find that for every /e Jf,

(6.12)

(the sum here is, of course, taken over all c such that Xc a Xa). Note the resolvent
identity

(Ha + O'1 - (Hc + O"1 = -(#« + iΓl(Va - VC}(HC + f ) " 1 , (6.13)

where, by (1.5), Va - Vc is the sum of those Fα for which X* c Xa and Xα £ ^Γc.
By virtue of Lemma 6.5 (Va - VC)(HC + i)~lUc(t)Pc -> 0 strongly as |ί| -> oo so
that we can replace in the right side of (6.12) (Ha + i)"1 by (Hc + i)"1. Further-
more, according to Corollary 6.4 the terms in the right side of (6.12) corresponding
to c such that Xc <L Xb tend to zero. It follows that

Xc c X° n Xb

Using again the identity (6.13) (for a = b) and Lemma 6.5 (for a = c) we can replace
(Hc + i)"1 in the right side by (Hb + i)"1. Thus in order to prove existence of (6.11)
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it remains to do the same for all wave operators

W±(H, Hc; M
(b\Hb + 1}~1PC\ Xc ^ Xa n Xb . (6.14)

Let us take into account the multiplication theorem (2.4) which asserts that the
wave operator (6.14) exists and equals

W±(H9 Hb M(b\Hb + i)'1) W±(Hb9 Hc; Pc)

provided these two wave operators exist. The first of them exists by Theorem 5.4
and the second one - by Proposition 6.2. D

Corollary 6.7. The wave operators W±(H, Ha; M(Ha + i)'1) exist for all a.

Proof. It suffices to "sum up" the wave operators (6.11) over all b and to take into
account the relation (1.22). D

Now we can get rid of the identification M.

Proposition 6.8. The wave operators W±(H, Ha) exist for all a.

Proof. Let us apply Proposition 5.5 and Corollary 5.9 to the operator Ha. Accord-
ing to the first of them for every admissible A the wave operator
M*(Λ) = W±(Ha,Ha; MEa(A)) exists. According to the second for every
feEa(A)Jf there exists a (unique) vector f* EEa(Λ)Jff such that/= M*(Λ)f*.
Since Ua(t)f~ M U a ( t ) f a > ί - > ± o o , Corollary 6.7 ensures existence of
W± (H9 Ha; Ea(Λ)) and hence of W± (H, Ha\ D

Since Pa commutes with Va(t\ we have

Corollary 6.9. The wave operators (2.9) exist and are isometric on Pa^.

The proof of the following assertion is standard and is given for completeness of
exposition.

Proposition 6.10. Suppose that the wave operators W±(H,Ha\Pa] and
W±(H, Hb\Pb\ a Φ b, exist. Then their ranges are orthogonal.

Proof. It suffices to check that (Ua(t)Pafa,Ub(t)Pbfb)-*Q as | ί |->oo if a Φ b.
Approximating Pa and Pb by finite-dimensional projections we reduce the problem
to the case of one-dimensional Pα and Pb. Let λa and λb be corresponding
eigenvalues of the operators Ha and Hb. Then

(Ua(t)Pafa9 Ub(t)Pbfb) = (exp( - i(Ta + λ°)t)Pafa, exp( - i(Tb + λb)t)Pbfb)

so that it remains to verify that the operator exp(i(Γfc - T a ) t ) converges weakly to
zero in the space 3? as 1 1 \ -» oo . To this end we shall show that the operator
Ta — Tb is absolutely continuous. In the momentum representation Ta — Tb acts as
multiplication by some quadratic form of coordinate functions ξj (dual to
χ.)j = 1, . . . , d. This form reduces to ΣμjξJ for suitable choice of a basis in lRd.
Due to the condition a φ b at least one of these numbers μ7 is not zero. Therefore
the operator of multiplication by ΣμjξJ is absolutely continuous. D

Let us finally verify the equality (2.10). Since R(Wί) c tf (ac)(#), we need only
to establish the inclusion

) (6 15)
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Linear combinations of elements /= E(A)f for all admissible A are dense in
3tf(ac)(#). So it suffices to check that every/= E(Λ)f belongs to the right side of
(6.15). Let us proceed from Theorem 6.1 and Proposition 6.2. Combining relations
(1.8) and (6.3) we find that for every/e£(yl)J(f there exist elements/* such that
^(0/~ ΣaUa(t)Pafa>t -> ± oo. Since the wave operators (2.9) exist, it follows

that/ = Σa^afa This concludes the proof of (6.15) and consequently of The-
orem 2.7.
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Note added in proof. The proof in Sect. 6 of existence of wave operators W±(H, Ha; Pa) can be
considerably simplified. Actually, existence of W±(H, Ha;M

(a)Pa) ensures that the limit defining
W ± (H, Ha; Pα)/exists if / belongs to the range of the operator W ± (Ha, Ha; M

 (a)Pa). This wave
operator can be computed explicitly. It turns out that the union for different admissible m(α) of
their ranges is dense in Paffl.
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